
The Annals of Applied Probability
2003, Vol. 13, No. 4, 1517–1533
© Institute of Mathematical Statistics, 2003

ON THE PROPERTIES OF r-EXCESSIVE MAPPINGS
FOR A CLASS OF DIFFUSIONS
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We consider the convexity and comparative static properties of a class
of r-harmonic mappings for a given linear, time-homogeneous and regular
diffusion process. We present a set of weak conditions under which the
minimal r-excessive mappings for the considered diffusion are convex and
under which an arbitrary nontrivial r-excessive mapping is convex on the
regions where it is r-harmonic. Consequently, we are able to present a set
of usually satisfied conditions under which increased volatility increases
the value of r-harmonic mappings. We apply our results to a class of
optimal stopping problems arising frequently in studies considering the
pricing of perpetual American contingent claims and state a set of conditions
under which the value function is convex on the continuation region and,
consequently, under which increased volatility unambiguously increases the
value function and expands the continuation region, thus postponing the
rational exercise of the claim.

1. Introduction. The r-harmonic mappings, especially the minimal
r-excessive mappings, play a major role in most studies considering either the
optimal stopping problem or the singular stochastic control problem of a linear
diffusion (cf. [4] and references therein, [10], Chapter 8, and [14], Chapter 10; see
also [2, 5, 6, 15]). Since the value has to typically be r-excessive and r-harmonic
on the continuation region (or in the do-nothing-region) and all r-excessive map-
pings can be expressed as a linear combination of the minimal r-excessive
mappings, it is clear that it is essentially the form of these mappings that deter-
mines the convexity properties of the value function. Similarly, since all smooth
r-harmonic mappings can be expressed as a linear combination of the minimal
r-excessive mappings, we again find that the form of the minimal r-excessive map-
pings is the principal factor determining the curvature of smooth r-harmonic
mappings. Convexity and concavity, being second-order properties, affect the
quadratic variation of a transformation and, therefore, are helpful properties when
comparing the r-harmonic mappings between two diffusions evolving at the same
expected rate but subject to a different diffusion coefficient measuring the infinites-
imal variance of the stochastic fluctuations. Somewhat surprisingly, not much has
been done in characterizing the form of r-harmonic mappings (except for ordinary
Brownian motion) even while it is of essential importance in many applications
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(e.g., in the theory of real options and in studies considering the pricing of perpet-
ual American contingent claims; cf. [8]) due to its significance in the comparative
static analysis of r-harmonic mappings, especially r-excessive mappings.

Motivated by this argument, we plan to consider the form and comparative static
properties of a class of r-harmonic mappings for a linear, time-homogeneous and
regular diffusion. Since most economical, financial and ecological applications
of diffusions deal with nonnegative processes, we limit our interest in diffusions
defined on R+ even while it is clear that our principal results can be extended to
diffusions defined on an arbitrary subinterval of R or on the entire R. We state
a set of easily verifiable conditions under which the convexity of the minimal
r-excessive mappings for the considered diffusion is always unambiguously
guaranteed and, consequently, under which all r-excessive mappings for the
considered diffusion are convex on the regions of r-harmonicity. Since increased
volatility increases the value of convex r-harmonic mappings, we are able to
establish a set of weak conditions under which this positive result is always valid
and, therefore, under which increased volatility increases the value of optimal
stopping problems and extends the continuation region, thus postponing rational
exercise. Since this conclusion is independent of the reward function, we find that
on the continuation region both the curvature of the value function and the sign
of the relationship between stochastic fluctuations and the value are inherently
process-specific properties and not reward-specific. This result is of essential
interest, since it extends previous results characterizing the comparative static
properties of optimal stopping policies and explains the positivity of sign of the
relationship between volatility and the value for pre-exercise states in models
subject to concave rewards (cf. [1]). Another both economically and ecologically
important consequence of our results is that the minimal r-excessive mappings
for standard mean-reverting diffusions subject to concave drifts are also convex
on R+ as long as the growth rate of the net depreciation rate is positive at the
origin. Consequently, our results show that r-excessive mappings may be convex
on the set of r-harmonicity also in the presence of mean reversion.

The contents of this study are as follows. In Section 2 we study the convexity
of the minimal r-excessive mappings for the considered diffusion. In Section 3
we present a set of convex inequalities for r-harmonic mappings and study the
comparative static properties of these mappings. Finally, in Section 4 we apply our
principal results to an optimal stopping problem and state a set of usually satisfied
conditions under which increased volatility increases the value of the optimal
stopping problem and postpones rational exercise by expanding the continuation
region.

2. The convexity of the minimal r-excessive mappings. Let X = {X(t); t ∈
[0, τ (0))}, where τ (0) = inf{t ≥ 0 :X(t) ≤ 0} (which may be infinite), be a
linear, time-homogeneous and regular diffusion defined on a complete filtered
probability space (�,P, {Ft}t≥0,F ) and evolving on the state space R+. We
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assume that X does not die in the interior of R+ and that the differential operator A
representing the infinitesimal generator of X is given by

A = 1

2
σ 2(x)

d2

dx2 + µ(x)
d

dx
,(1)

where µ : R+ �→ R and σ : R+ �→ R are given continuous mappings on R+. In
accordance with most applications, we assume that σ(x) > 0 on (0,∞) and
that the upper boundary ∞ is natural for the diffusion X. Whenever the lower
boundary 0 is regular for X, we assume that it is killing. Moreover, we also assume
throughout this study that (a transversality condition)

lim
t→∞Ex[e−rtX(t); t < τ(0)] = 0(2)

for all x ∈ R+. The continuity of µ(x) and σ(x) imply that the basic characteristics
of the diffusion X are now absolutely continuous with

S′(x) = exp
(
−

∫ x 2µ(y)

σ 2(y)
dy

)

denoting the density of the scale function S of X and

m′(x) = 2

σ 2(x)S′(x)

denoting the density of the speed measure m of X. Before beginning our analysis,
we present the following definition.

DEFINITION 1 ([7], Chapter 2, [11], Section 4.6, and [13], Section 2.3). The
Green kernel Gr : R2+ �→ R+ of the linear diffusion {X(t); t ∈ [0, τ (0))} is defined
as

Gr(x, y) =
∫ ∞

0
e−rtp(t;x, y) dt,

where p(t;x, y) is the transition density of X defined with respect to its speed
measure m. There are two linearly independent fundamental solutions, ψ(x) and
ϕ(x), with ψ(x) increasing and ϕ(x) decreasing, spanning the set of solutions
of the ordinary second-order differential equation ((A − r)u)(x) = 0 within the
domain of the generator of {X(t); t ∈ [0, τ (0))}. In terms of these solutions,
Gr(x, y) can be rewritten in the alternative form

Gr(x, y) =
{

B−1ψ(x)ϕ(y), x < y,

B−1ψ(y)ϕ(x), x ≥ y,

where

B = ψ ′(x)

S′(x)
ϕ(x) − ϕ′(x)

S′(x)
ψ(x) > 0

denotes the constant (with respect to the scale) Wronskian determinant of the
fundamental solutions.
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DEFINITION 2 ([7], page 31, [9], Chapter 12, [14], pages 196–200, and [15]).
A nonnegative and measurable mapping f : R+ �→ R+ ∪{∞} is called r-excessive
if it satisfies the following conditions:

1. Ex[e−rtf (X(t))] ≤ f (x) for all x ∈ R+ and t ≥ 0.
2. limt↓0 Ex[e−rtf (X(t))] = f (x) for all x ∈ R+.

A measurable mapping f : R+ �→ R+ is called r-harmonic if for all x ∈ R+ we
have

Ex

[
e−rτU f

(
X(τU)

)] = f (x),

where τ (U) = inf{t ≥ 0 :X(t) /∈ U } denotes the first exit time of the diffusion X

from an arbitrary open set U ⊂ R+ with compact closure Ū ⊂ R+.

We now plan to consider the form of the fundamental solutions ψ(x) and
ϕ(x) constituting the minimal r-excessive mappings for {X(t); t ∈ [0, τ (0))} (any
nontrivial r-excessive mapping for {X(t); t ∈ [0, τ (0))} can be written as their
linear combination; cf. [7], page 32). Our first main result is now summarized in
the following theorem.

THEOREM 1. Assume that the transversality condition (2) holds. Then we
have, for all x ∈ R+,

σ 2(x)
ϕ′′(x)

S′(x)
= 2r

∫ ∞
x

ϕ(y)
(
θ(y) − θ(x)

)
m′(y) dy(3)

and

σ 2(x)
ψ ′′(x)

S′(x)
= 2r

[∫ x

0
ψ(y)

(
θ(x) − θ(y)

)
m′(y) dy + ψ ′(0)

S′(0)

θ(x)

r

]
,(4)

where θ(x) = rx − µ(x). Especially, if 0 is unattainable (i.e., either natural or
entrance) for X, then

σ 2(x)
ψ ′′(x)

S′(x)
= 2r

∫ x

0
ψ(y)

(
θ(x) − θ(y)

)
m′(y) dy.(5)

PROOF. A straightforward application of Dynkin’s theorem (cf. [12],
page 298) implies that, for all x ∈ R+,

Ex

[
e−rTsX(Ts)

] = x − Ex

∫ Ts

0
e−rsθ(X(s)) ds,(6)

where Ts = s ∧ τ (s) ∧ τ (0) is an almost surely finite Ft -stopping time, s ∈ R+
and τ (s) = inf{t ≥ 0 :X(t) ≥ s}. Letting s tend to ∞, invoking the transversality
condition (2) and reordering terms, we have

x = Ex

∫ τ(0)

0
e−rsθ(X(s)) ds.(7)



ON PROPERTIES OF r-EXCESSIVE MAPPINGS 1521

Invoking Definition 1, we can rewrite (7) in terms of the Green kernel in the form

x = B−1ϕ(x)

∫ x

0
ψ(y)θ(y)m′(y) dy + B−1ψ(x)

∫ ∞
x

ϕ(y)θ(y)m′(y) dy.(8)

Standard differentiation then yields

1 = B−1ϕ′(x)

∫ x

0
ψ(y)θ(y)m′(y) dy + B−1ψ ′(x)

∫ ∞
x

ϕ(y)θ(y)m′(y) dy,(9)

implying that

d

dx

[
1

ϕ′(x)

]
= 2rS′(x)

σ 2(x)ϕ′2(x)

[
−θ(x)

r

ϕ′(x)

S′(x)
−

∫ ∞
x

ϕ(y)θ(y)m′(y) dy

]
.

Since ∞ was assumed to be unattainable, we have

−ϕ′(x)

S′(x)
= r

∫ ∞
x

ϕ(y)m′(y) dy,

implying (3). Analogously, we observe that

d

dx

[
1

ψ ′(x)

]
= 2rS′(x)

σ 2(x)ψ ′2(x)

[∫ x

0
ψ(y)θ(y)m′(y) dy − ψ ′(x)

S′(x)

θ(x)

r

]
.

Since

ψ ′(x)

S′(x)
− ψ ′(0)

S′(0)
= r

∫ x

0
ψ(y)m′(y) dy,

we find that

−ψ ′′(x) = 2rS′(x)

σ 2(x)

[∫ x

0
ψ(y)

(
θ(y) − θ(x)

)
m′(y) dy − ψ ′(0)

S′(0)

θ(x)

r

]
,

from which (4) follows. If 0 is unattainable for X, then ψ ′(0)/S′(0) = 0, finally
implying (5). �

Theorem 1 demonstrates that under the conditions of this study the signs of
ψ ′′(x) and ϕ′′(x) are determined by the signs of the functionals I1 : R+ �→ R and
I2 : R+ �→ R defined as

I1(x) =
∫ ∞
x

ϕ(y)
(
θ(y) − θ(x)

)
m′(y) dy(10)

and

I2(x) =
∫ x

0
ψ(y)

(
θ(x) − θ(y)

)
m′(y) dy + ψ ′(0)

S′(0)

θ(x)

r
.(11)

Since ϕ(x), ψ(x) and m′(x) are nonnegative, we observe that it is the behavior of
the mapping θ(x) = rx − µ(x) (which can be interpreted as the net depreciation
rate of an asset yielding a revenue flow X) that essentially determines the signs
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of ψ ′′(x) and ϕ′′(x) and, therefore, the convexity properties of the fundamental
solutions (in [4, 5, 6] the mapping −θ(x) is interpreted as the convenience yield of
holding inventories). If 0 is a natural boundary for the diffusion X, we find that,
given the transversality condition (2), we necessarily have that limx↓0 θ(x) = 0,
since (cf. [13], page 32)

lim
x↓0

Ex

∫ ∞
0

e−rsθ(X(s)) ds = 1

r
lim
x↓0

θ(x) = 0.

Moreover, it is worth observing that (8) can also be derived by observing that
(r − A)x = θ(x) and invoking standard results characterizing the connection
between resolvent operators and the second-order differential operator (A − r)

(cf. [13], pages 29–37, and [14], proof of Theorem 8.1.5 on page 134). A set of
interesting implications of Theorem 1 are now stated in the following corollary.

COROLLARY 1. Assume that θ(x) is nondecreasing on R+. Then ϕ(x) is
convex on R+. Moreover, ψ(x) is convex on R+ if either:

(i) 0 is unattainable for X, or
(ii) limx↓0 µ(x) ≤ 0 and 0 is attainable for X.

PROOF. The alleged results are straightforward consequences of Theorem 1.
�

Corollary 1 states conditions under which both the increasing ψ(x) and
the decreasing ϕ(x) fundamental solutions are convex on R+. An obvious but
important consequence of Corollary 1 affecting models subject to concave drifts
(e.g., logistic diffusions) is now stated in the following corollary.

COROLLARY 2. Assume that µ ∈ C1(R+), that µ(x) is concave and that

lim
x↓0

θ ′(x) = r − lim
x↓0

µ′(x) ≥ 0.

Then θ(x) is nondecreasing and the conclusions of Corollary 1 are satisfied.

PROOF. The concavity of µ(x) implies that θ(x) is convex. Since the
derivative of a continuously differentiable convex mapping is nondecreasing, we
find that the condition limx↓0 θ ′(x) ≥ 0 implies that θ ′(x) ≥ limx↓0 θ ′(x) ≥ 0 for
all x ∈ R+. �

It is now worth noticing that the decreasing fundamental solution ϕ(x) cannot
be globally concave, since if it were we would have for all x > a > 0 that

ϕ(x) ≤ ϕ(a) + ϕ′(a)(x − a),
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implying that limx→∞ ϕ(x) = −∞ and, thus, violating the nonnegativity of ϕ(x).
However, it is clear from Theorem 1 and especially from (4) that it is possible to
state conditions under which the global concavity of the increasing fundamental
solution ψ(x) can be guaranteed. Unfortunately, such conditions typically lead
to the violation of the transversality condition (2) [and the integrability of θ(x)].
More precisely, we have the following result.

LEMMA 1. Let τ (U) = inf{t ≥ 0 :X(t) /∈ U } denote the first exit time of X

from an arbitrary open set U ⊂ R+ with compact closure Ū ⊂ R+ and assume
that 0 is not an entrance for X. If the increasing fundamental solution ψ(x) is
convex on R+, then

Ex

[
e−rτ(U)X(τ (U))

] ≤ x(12)

for all x ∈ R+. If ψ(x) is concave on R+, then it is the opposite inequality that
holds (independently of the boundary behavior of X at 0).

PROOF. It is clear that the fundamental solution ψ(x) is r-harmonic for the
diffusion X (cf. [14], page 171). Thus, if U is an arbitrary open set U ⊂ R+ with
compact closure Ū ⊂ R+, we have

Ex

[
e−rτ(U)ψ

(
X(τ(U))

)] = ψ(x)

for all x ∈ R+ (cf. [9], page 7). On the other hand, the convexity of the increasing
fundamental solution and the boundary condition ψ(0) = 0 (which is valid since 0
is not an entrance; cf. [7], page 19) imply that

e−rτ(U)ψ
(
X(τ(U))

) ≥ ψ
(
e−rτ(U)X(τ (U))

)
,

since e−rτ(U) ∈ [0,1]. Taking expectations and invoking Jensen’s inequality then
yield that

ψ(x) = Ex

[
e−rτ(U)ψ

(
X(τ(U))

)] ≥ ψ
(
Ex

[
e−rτ(U)X(τ (U))

])
.

The monotonicity of ψ(x) implies that, for all x ∈ R+ and arbitrary open set
U ⊂ R+ with compact closure Ū ⊂ R+,

Ex

[
e−rτ(U)X(τ (U))

] ≤ x,

completing the proof in the convex case.
Assume now that ψ(x) is concave. Since ψ(0) = 0 if 0 is not an entrance

for X and ψ(0) ≥ 0 if 0 is an entrance for X, we find that e−rτ(U)ψ(X(τ (U))) ≤
ψ(e−rτ(U)X(τ (U))), where U ⊂ R+ is an open set with compact closure Ū ⊂ R+.
Jensen’s inequality then yields that

ψ(x) = Ex

[
e−rτ(U)ψ

(
X(τ(U))

)] ≤ Ex

[
ψ

(
e−rτ(U)X(τ (U))

)]
≤ ψ

(
Ex

[
e−rτ(U)X(τ (U))

])
,

completing the proof of our lemma. �
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REMARK 1. It is worth observing that the proof of Lemma 1 clearly implies
that (12) is also satisfied if one can find a monotonically increasing and convex
mapping h : R+ �→ R satisfying the following conditions:

(i) h(0) ∈ (−∞,0];
(ii) Ex[e−rτ(U)h(X(τ (U)))] ≤ h(x) for all x ∈ R+ and all open sets U ⊂ R+

with compact closure Ū ⊂ R+.

In other words, to prove that the process X satisfies (12), it is only sufficient to
find a monotonically increasing and convex test function satisfying conditions
(i) and (ii).

Lemma 1 shows why the convexity of the increasing fundamental solution
is typically needed in order to guarantee the validity of the transversality
condition (2). An interesting consequence of (12) is that, given the conditions
of Lemma 1, the identity mapping x �→ x is r-excessive for the process X,
since x �→ x is continuous and nonnegative on R+, and it also satisfies the
condition (12) (cf. [9], page 7). Consequently, the process e−rtX(t) constitutes an
Ft -supermartingale on R+ and, therefore, converges almost surely as t ↑ ∞. It is
worth emphasizing that this result is closely related to the almost-sure convergence
of Doob’s minimal r-excessive transformations (cf. [15], Definition 2.6).

Let f : R+ �→ R+ be a continuous mapping on R+ and define the functional
v : R+ �→ R+ as

v(x) = Ex

[
e−rτ(a,b)f

(
X(τ(a,b))

)]
,(13)

where τ(a,b) = inf{t ≥ 0;X(t) /∈ (a, b)} denotes the first exit time from the open
interval (a, b) ⊂ R+. It is well known that v(x) is r-harmonic for X and that v(x)

can be rewritten on (a, b) in terms of the fundamental solutions ψ(x) and ϕ(x) in
the form

v(x) = f (a)
ϕ(x) − (ϕ(b)/ψ(b))ψ(x)

ϕ(a) − (ϕ(b)/ψ(b))ψ(a)
+ f (b)

ψ(x) − (ψ(a)/ϕ(a))ϕ(x)

ψ(b) − (ψ(a)/ϕ(a))ϕ(b)
.(14)

Our main result summarizing the form of the mapping v(x) is now stated in the
following result.

THEOREM 2. Assume that the conditions of Corollary 1 are satisfied and that

ϕ(b)

ϕ(a)
≤ f (b)

f (a)
≤ ψ(b)

ψ(a)
.(15)

Then v(x) is convex on (a, b).

PROOF. It is clear that under the conditions of Corollary 1 the fundamental
solutions are convex on R+. Moreover, v(x) can be rewritten as

v(x) = ψ(b)f (a) − f (b)ψ(a)

ϕ(a)ψ(b) − ϕ(b)ψ(a)
ϕ(x) + ϕ(a)f (b) − ϕ(b)f (a)

ϕ(a)ψ(b) − ϕ(b)ψ(a)
ψ(x).
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Since the sum of two convex mappings is convex and the multipliers of ψ(x) and
ϕ(x) are nonnegative when ψ(b)f (a) ≥ f (b)ψ(a) and ϕ(a)f (b) ≥ ϕ(b)f (a), the
result follows from our assumption (15). �

An important consequence of Theorem 2 is now stated in the following result.

THEOREM 3. Assume that the conditions of Corollary 1 are satisfied, that
f (x) is r-excessive for {X(t); t ∈ [0, τ (0))} and that f (x) is r-harmonic on (a, b).
Then f (x) is convex on (a, b).

PROOF. The r-excessivity of f (x) implies that f (x) is continuous, nonnega-
tive, and satisfies for all x, y ∈ R+ the condition (cf. [7], page 32)

f (y)

f (x)
≥




ψ(y)

ψ(x)
, x ≥ y,

ϕ(y)

ϕ(x)
, x ≤ y.

Thus, we find that f satisfies condition (15). Moreover, the r-harmonicity of f

on (a, b) implies that

f (x) = ψ(b)f (a) − f (b)ψ(a)

ϕ(a)ψ(b) − ϕ(b)ψ(a)
ϕ(x) + ϕ(a)f (b) − ϕ(b)f (a)

ϕ(a)ψ(b) − ϕ(b)ψ(a)
ψ(x).(16)

The convexity of f then follows from the convexity of the fundamental solutions
ψ(x) and ϕ(x). �

REMARK 2. There is an alternative way for proving Theorem 2. It is well
known that, for any r-excessive mapping f : R+ �→ R+ for X, there is a probability
measure ν that does not charge the set where f (x) is r-harmonic [i.e., if f is
r-harmonic on �, then ν(�) = 0] and such that, for all x ∈ R+,

f (x) =
∫
(0,∞)

Gr(x, y)

Gr(x0, y)
ν(dy) + ϕ(x)

ϕ(x0)
ν({0}) + ψ(x)

ψ(x0)
ν({∞}),(17)

where x0 ∈ R+ is a given reference point for which f (x0) = 1 (cf. [7], page 32;
see also [15], where this representation is applied for solving optimal stopping
problems of linear diffusions). Observing that if f (x) is r-harmonic on (a, b) and
x0 ∈ (a, b), then

f (a) = ϕ(a)

ϕ(x0)

[
ν((0, a]) + ν({0})] + ψ(a)

ψ(x0)

[
ν([b,∞)) + ν({∞})]

and

f (b) = ϕ(b)

ϕ(x0)

[
ν((0, a]) + ν({0})] + ψ(b)

ψ(x0)

[
ν([b,∞)) + ν({∞})],
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since

0 ≤ ψ(a)

ψ(x0)

∫
(a,x0)

ϕ(y)

ψ(y)
ν(dy) ≤ ϕ(a)

ψ(x0)
ν((a, x0)),

0 ≤ ϕ(b)

ψ(x0)

∫
(x0,b)

ψ(y)

ϕ(y)
ν(dy) ≤ ψ(b)

ψ(x0)
ν((x0, b)),

and ν((a, b)) = 0. A straightforward application of Cramér’s rule then yields that

ν((0, a]) + ν({0}) = ϕ(x0)
ψ(b)f (a) − ψ(a)f (b)

ψ(b)ϕ(a) − ψ(a)ϕ(b)

and that

ν([b,∞)) + ν({∞}) = ψ(x0)
ϕ(a)f (b) − ϕ(b)f (a)

ψ(b)ϕ(a) − ψ(a)ϕ(b)
.

It is then clear from (17) that if x ∈ (a, b), then

f (x) = ϕ(x)

ϕ(x0)

[
ν((0, a]) + ν({0})] + ψ(x)

ψ(x0)

[
ν([b,∞)) + ν({∞})],

implying (16).

To illustrate our results explicitly, assume now that f : R+ �→ R+ is a
continuous mapping satisfying the absolute integrability condition

Ex

∫ τ(0)

0
e−rs |f (X(s))|ds < ∞.(18)

Define now the functional Rrf : R+ �→ R+ as

(Rrf )(x) = Ex

∫ τ(0)

0
e−rsf (X(s)) ds.(19)

Since (Rrf )(x) satisfies the ordinary second-order differential equation ((A −
r)Rrf )(x) + f (x) = 0, we observe that ((A − r)Rrf )(x) = −f (x) ≤ 0 for all
x ∈ R+ and, therefore, that (Rrf )(x) is r-excessive for {X(t); t ∈ [0, τ (0))}.
Moreover, it is also clear that (Rrf )(x) is r-harmonic for {X(t); t ∈ [0, τ (0))}
on the regions where f (x) = 0. In light of Definition 1, we find that (19) can be
rewritten as

(Rrf )(x) = B−1ϕ(x)

∫ x

0
ψ(y)f (y)m′(y) dy

+ B−1ψ(x)

∫ ∞
x

ϕ(y)f (y)m′(y) dy.

(20)

Differentiating (20) twice yields

(Rrf )′′(x) = B−1ϕ′′(x)

∫ x

0
ψ(y)f (y)m′(y) dy

+ B−1ψ ′′(x)

∫ ∞
x

ϕ(y)f (y)m′(y) dy − 2f (x)

σ 2(x)
.
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Thus, if f (x) = 0 on (a, b) ⊂ R+ we find that

(Rrf )′′(x) = B−1ϕ′′(x)

∫ a

0
ψ(y)f (y)m′(y) dy

+ B−1ψ ′′(x)

∫ ∞
b

ϕ(y)f (y)m′(y) dy,

whenever x ∈ (a, b). Therefore, we find that whenever the conditions of Corol-
lary 1 are met, (Rrf )′′(x) ≥ 0 for all x ∈ (a, b). In other words, given the condi-
tions of Corollary 1, the r-excessive mapping (Rrf )(x) is convex on (a, b) as was
demonstrated in Corollary 3.

REMARK 3. It is worth pointing out that (20) has an important implication,
which can be applied to the identification of the regions where the r-excessive
mapping (Rrf )(x) is r-harmonic for {X(t); t ∈ [0, τ (0))}. It is easy to demon-
strate that (20) implies that∫ x

0
ψ(y)f (y)m′(y) dy = ψ ′(x)

S′(x)
(Rrf )(x) − (Rrf )′(x)

S′(x)
ψ(x) := I (x)

and that∫ ∞
x

ϕ(y)f (y)m′(y) dy = (Rrf )′(x)

S′(x)
ϕ(x) − ϕ′(x)

S′(x)
(Rrf )(x) := J (x).

Thus,

I (b) − I (a) =
∫ b

a
ψ(y)f (y)m′(y) dy

and

J (a) − J (b) =
∫ b

a
ϕ(y)f (y)m′(y) dy,

implying that I (b) = I (a) and J (a) = J (b) on the regions (a, b) ⊂ R+ where
f (x) = 0, that is, on the regions where (Rrf )(x) is r-harmonic for {X(t); t ∈
[0, τ (0))}. Similarly, I (x) is increasing and J (x) is decreasing on the set where
f (x) > 0, that is, on the set where (Rrf )(x) is r-superharmonic for {X(t); t ∈
[0, τ (0))} (see [15], Theorem 4.7, for a comparison).

3. Convex inequalities and comparative static analysis. Having considered
the convexity properties of the fundamental solutions ψ(x) and ϕ(x), it is our
purpose in this section to analyze the comparative static properties of r-harmonic
mappings and, especially, of the minimal r-excessive mappings. To accomplish
this task, let X̂ = {X̂(t); t ∈ [0, τ̂ (0))}, where τ̂ (0) = inf{t ≥ 0 : X̂(t) ≤ 0} (which
may be infinite), be a linear, time-homogeneous and regular diffusion defined on
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the state space R+ and satisfying the condition that X̂ does not die in the interior
of R+. In accordance with the notation of the previous section, let

Â = 1

2
σ̂ 2(x)

d2

dx2
+ µ(x)

d

dx
(21)

denote the differential operator representing the infinitesimal generator of X̂ and
assume that σ̂ : R+ �→ (0,∞) is a continuous mapping satisfying the inequality
σ̂ (x) ≥ σ(x) for all x ∈ R+. Thus, X̂ can be interpreted as a diffusion evolving at
the same expected growth rate as X but subject to greater stochastic fluctuations [in
most applications σ̂ (x) = γ σ (x), where γ > 1 is an exogenously given constant].
We immediately find the following result.

LEMMA 2. Assume that the twice continuously differentiable mapping
u : (a, b) �→ R+ is r-harmonic for X on (a, b) ⊂ R+. That is, assume that
u(x) satisfies the ordinary differential equation ((A − r)u)(x) = 0 for all x ∈
(a, b) ⊂ R+.

(i) If u(x) is convex, then u is r-subharmonic for X̂ on (a, b).
(ii) If u(x) is concave, then u is r-superharmonic for X̂ on (a, b).

PROOF. Assume that u(x) is convex and r-harmonic for X on (a, b). Then we
find that, for all x ∈ (a, b),(

(Â − r)u
)
(x) = (

(Â − A)u
)
(x) = 1

2

(
σ̂ 2(x) − σ 2(x)

)
u′′(x) ≥ 0,

implying that u is r-subharmonic for X̂ on (a, b). The concave case is proved
analogously. �

Let f : R+ �→ R+ be a continuous mapping on R+ and, in accordance with the
notation of the previous section, define the functional v̂ : R+ �→ R+ as

v̂(x) = Ex

[
e−rτ̂(a,b)f

(
X̂(τ̂(a,b))

)]
,

where τ̂(a,b) = inf{t ≥ 0; X̂(t) /∈ (a, b)} denotes the first exit time from the open
interval (a, b) ⊂ R+. Our first key result summarizing the comparative static
properties for a broad class of r-harmonic mappings is now stated as follows.

THEOREM 4. Assume that the conditions of Theorem 2 are satisfied. Then
v(x) ≤ v̂(x) for all x ∈ R+.

PROOF. Theorem 2 implies that v(x) is convex on (a, b). Lemma 2 then
implies that v(x) is r-subharmonic for X̂ on (a, b). Therefore,

Ex

[
e−rτ̂(a,b)v

(
X̂(τ̂(a,b))

)] ≥ v(x).
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Invoking the boundary conditions v(a) = f (a) and v(b) = f (b) and the continuity
of v(x) then implies that, on (a, b),

v̂(x) = Ex

[
e−rτ̂(a,b)f

(
X̂(τ̂(a,b))

)] ≥ v(x),

completing the proof of our theorem. �

Theorem 4 shows that increased stochastic fluctuations (i.e., volatility) increase
or leave unchanged the value of r-harmonic mappings of the type (13) whenever
the conditions of Theorem 2 are satisfied. Thus, we find that the sign of the
relationship between volatility and the value of an r-harmonic mapping (13) is
a process-specific property that does not depend on the form of the underlying
mapping f (x). Moreover, another interesting consequence of Theorem 4 is that if
the conditions of Theorem 2 are satisfied, then

sup
a<b

Ex

[
e−rτ̂(a,b)f

(
X̂(τ̂(a,b))

)] ≥ sup
a<b

Ex

[
e−rτ(a,b)f

(
X(τ(a,b))

)]
.

Let ψ̂(x) now denote the increasing and ϕ̂(x) the decreasing fundamental
solution of the ordinary differential equation ((Â−r)u)(x) = 0. A set of important
implications of Theorem 4 is now summarized in our next corollary.

COROLLARY 3. Assume that the conditions of Theorem 2 are satisfied. Then

Ex[e−rτ̂(a,b) ] ≥ Ex[e−rτ(a,b) ].(22)

Especially,

ψ̂(x)

ψ̂(b)
≥ ψ(x)

ψ(b)

for all x < b < ∞, and

ϕ̂(x)

ϕ̂(a)
≥ ϕ(x)

ϕ(a)

for all 0 < a < x.

PROOF. Equation (22) follows directly from Theorem 4 by choosing f ≡ 1.
The other two inequalities are simple consequences of the convexity of the
fundamental solutions ψ(x) and ϕ(x) and the results (cf. [7], page 18)

Ex[e−rτ(0,b)] = ψ(x)

ψ(b)

when x ≤ b and

Ex[e−rτ(a,∞) ] = ϕ(x)

ϕ(a)
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when x ≥ a. �

Corollary 3 proves the intuitively clear result that, given the conditions of
Theorem 2, increased stochastic fluctuations increase or leave unchanged the value
of functionals of the type Ex[e−rτ(a,b) ] by speeding up the rate at which the process
exits from an arbitrary open interval (a, b).

4. Optimal stopping. Given the assumptions of Section 2, we now plan to
consider the optimal stopping problem

V (x) = sup
τ<τ(0)

Ex

[
e−rτ g(X(τ ))

]
,(23)

where τ is an arbitrary Ft -stopping time subject to the constraint τ < τ(0) and
g : R+ �→ R+ is a continuous mapping satisfying the integrability condition

Ex

[
e−rtg

(
X(t ∧ τ (0))

)]
< ∞(24)

for all (t, x) ∈ R
2+. Our main result characterizing generally the form of the value

function on the continuation region {x ∈ R+ :V (x) > g(x)} under a set of usually
satisfied conditions is now summarized in the next theorem.

THEOREM 5. Assume that the conditions of Theorem 3 are satisfied. Then
V (x) is convex on the continuation region {x ∈ R+ :V (x) > g(x)}, and increased
stochastic fluctuations increase or leave unchanged the value and expand or leave
unchanged the continuation region. That is, V̂ (x) ≥ V (x) for all x ∈ R+ and
{x ∈ R+ :V (x) > g(x)} ⊆ {x ∈ R+ : V̂ (x) > g(x)}, where

V̂ (x) = sup
τ<τ̂ (0)

Ex

[
e−rτ g

(
X̂(τ )

)]
,

and X̂ is defined as in Section 3. Especially, if the reward g(x) is convex on R+,
then V (x) is convex on R+ as well.

PROOF. Under the conditions of Theorem 3, all r-excessive mappings for
{X(t); t ∈ [0, τ (0))} are convex on the regions where they are r-harmonic. Since
V (x) is the least of the r-excessive majorants of g(x) for {X(t); t ∈ [0, τ (0))}
and V (x) is r-harmonic on the continuation region C = {x ∈ R+ :V (x) > g(x)},
Theorem 4 implies that, on C,

Ex

[
e−rτ̂(C)V

(
X̂(τ̂ (C))

)] ≥ V (x),

where τ̂ (C) = inf{t ≥ 0 : X̂(t) /∈ C}. Invoking now the continuity of V (x) across
the boundary of the continuation region then yields

V (x) ≤ Ex

[
e−rτ̂ (C)g

(
X̂(τ̂ (C))

)] ≤ sup
τ<τ̂ (0)

Ex

[
e−rτ g

(
X̂(τ )

)] = V̂ (x),
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proving that increased stochastic fluctuations increase or leave unchanged V (x)

and, therefore, that increased volatility expands or leaves unchanged the contin-
uation region, since clearly {x ∈ R+ :V (x) > g(x)} ⊆ {x ∈ R+ : V̂ (x) > g(x)}.
Finally, since V (x) = g(x) on the stopping region, we find that if the reward g(x)

is convex, then V (x) is convex as well. �

Theorem 5 states a result that is of essential importance in economic and
financial applications of optimal stopping since it demonstrates that, given the
conditions of Theorem 3, the value function is always convex on the continuation
region independently of the form of the underlying reward. As a consequence,
we find that the form of the value for pre-exercise states is inherently a process-
specific property, not payoff-specific. This argument clearly emphasizes the role
of the form of the fundamental solutions ψ(x) and ϕ(x) as the determinants of
the sign of the relationship between volatility and both the value and the optimal
stopping policy of an optimal stopping problem. Two interesting associated results
are now presented in our next two theorems.

THEOREM 6. Assume that g(x) is nondecreasing and continuous on R+.
Define the mapping ζ : R+ �→ R+ as

ζ(x) = g(x)

ψ(x)

and assume that:

(i) ζ(x) attains a unique interior global maximum at x̃ = arg max{ζ(x)};
(ii) g ∈ C1((x̃,∞)) ∩ C2((x̃,∞) \ D), where D is a set of measure 0;

(iii) the mapping

K0(x) = g′(x)

S′(x)
ψ(x) − ψ ′(x)

S′(x)
g(x)

is decreasing for x > x̃.

Then the optimal stopping time in (23) is τ = inf{t ≥ 0 :X(t) /∈ (0, x̃)}, and the
value reads as

V (x) = ψ(x) sup
y≥x

ζ(y) =
{

g(x), x ≥ x̃,

ψ(x)ζ(x̃), x < x̃.
(25)

Especially, if the conditions of Corollary 1 are satisfied, then V (x) is convex on
(0, x̃), and increased volatility increases or leaves unchanged the value V (x) and
expands or leaves unchanged the continuation region {x ∈ R+ :V (x) > g(x)} =
(0, x̃) by increasing or leaving unchanged the optimal stopping boundary x̃.

PROOF. Denote the proposed value function as V ∗(x). Since V ∗(x) =
Ex[e−rτ∗

g(X(τ ∗))], where τ ∗ = inf{t ≥ 0 :X(t) /∈ (0, x̃)}, we find immediately
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that V (x) ≥ V ∗(x) for all x ∈ R+. To prove the opposite inequality, observe first
that V ∗(x) is continuous, twice continuously differentiable on R+\D, nonnegative
and dominates the reward g(x) for all x ∈ R+. Moreover, since (AV )(x) = rV (x)

on (0, x̃), our monotonicity assumptions on the mapping K0(x) imply that for all
x ∈ (x̃,∞) \ D we have K ′

0(x) = ((Ag)(x) − rg(x))ψ(x)m′(x) = ((AV )(x) −
rV (x))ψ(x)m′(x) ≤ 0, implying that V ∗(x) is an r-excessive majorant of the
reward g(x) (cf. [7], page 32, and [14], pages 214–217). However, since V (x)

is the least of such majorants, we find that V ∗(x) ≥ V (x), completing the proof of
the first part of our theorem. The rest of the proof follows directly from Theorem 5.

�

THEOREM 7. Assume that g(x) is nonincreasing and continuous on R+.
Define the mapping ρ : R+ �→ R+ as

ρ(x) = g(x)

ϕ(x)

and assume that:

(i) ρ(x) attains a unique interior global maximum at x̂ = arg max{ρ(x)};
(ii) g ∈ C1((0, x̂)) ∩ C2((0, x̂) \ D), where D is a set of measure 0;

(iii) the mapping

K∞(x) = g′(x)

S′(x)
ϕ(x) − ϕ′(x)

S′(x)
g(x)

is decreasing for x < x̂.

Then the optimal stopping time in (23) is τ = inf{t ≥ 0 :X(t) /∈ (x̂,∞)}, and the
value reads as

V (x) = ϕ(x) sup
y≤x

ρ(y) =
{

ϕ(x)ρ(x̂), x > x̂,

g(x), x ≤ x̂.
(26)

Especially, if the conditions of Corollary 1 are satisfied, then V (x) is convex
on (x̂,∞), and increased volatility increases or leaves unchanged V (x) and
expands or leaves unchanged the continuation region by decreasing or leaving
unchanged the optimal stopping boundary x̂.

PROOF. The proof is completely analogous with the proof of Theorem 6. �

Theorems 6 and 7 state a set of easily verifiable conditions under which the
value of the optimal stopping problem (23) can be explicitly determined in terms
of the fundamental solutions ψ(x) and ϕ(x), especially, under which the standard
financial conclusion stating that increased volatility should increase the value and
postpone the exercise of a real investment opportunity holds true (cf. [1, 2, 3, 8]).
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