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CRITICAL RANDOM WALKS ON TWO-DIMENSIONAL
COMPLEXES WITH APPLICATIONS TO

POLLING SYSTEMS

BY I. M. MACPHEE AND M. V. MENSHIKOV

University of Durham

We consider a time-homogeneous random walk � = {ξ(t)} on a two-
dimensional complex. All of our results here are formulated in a constructive
way. By this we mean that for any given random walk we can, with an
expression using only the first and second moments of the jumps and
the return probabilities for some transient one-dimensional random walks,
conclude whether the process is ergodic, null-recurrent or transient. Further
we can determine when pth moments of passage times τK to sets SK =
{x :‖x‖ ≤ K} are finite (p > 0, real). Our main interest is in a new critical
case where we will show the long-term behavior of the random walk is very
similar to that found for walks with zero mean drift inside the quadrants.
Recently a partial case of a polling system model in the critical regime was
investigated by Menshikov and Zuyev who give explicit results in terms of
the parameters of the queueing model. This model and some others can be
interpreted as random walks on two-dimensional complexes.

1. Introduction. This paper has two distinct parts. In the first and much the
larger part we consider a time-homogeneous random walk � = {ξ(t)} on a two-
dimensional complex. A two-dimensional complex is a union of a finite number
of quarter plane lattices Z2+ connected at boundaries where one component on
each of a specified set of quadrants takes value 0. We are going to consider the
specific case where each boundary belongs to only two quarter planes and the
drifts combine to take the walk around a cycle. An easy case to picture is the union
of the four quarter planes on Z2, see Figure 1, though for notational convenience
we will actually embed a complex with n quarter planes in Rn. Many features of
the general case are discussed in [4] and [6] but our case is not treated there as
additional techniques and ideas are needed. We will not discuss the general case
here.

All of our results here are formulated in a constructive way. By this we mean
that for any given random walk we can, with an expression using only the first
and second moments of the jumps and the return probabilities for some transient
one-dimensional random walks, conclude whether the process is ergodic, null-
recurrent or transient. Further we can determine when pth moments of passage
times τK to sets SK = {x :‖x‖ ≤ K} are finite (p > 0, real). To do this we use the
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Lyapunov function method, that is, we demonstrate that a well chosen function
of the underlying random walk is a sub(super)martingale and then use the results
of [9] and [2] for one-dimensional discrete time stochastic processes. We have
restricted ourselves to the two-dimensional case as it is only here that we can
give precise necessary and sufficient conditions for recurrence or transience of the
random walk and the finiteness or otherwise of the pth moments of the passage
times.

Our main interest is in a new critical case where we will show the long-term
behavior of the random walk is very similar to that found for walks with zero mean
drift inside the quadrants in [5, 6, 3, 2] and for zero drift Brownian motion with
reflections in [14] and [12]. In our problem the mean drifts are not zero so the local
behavior of this process is quite different from that of the walk with zero mean drift
inside the quadrants. Nevertheless, the global behavior of the system is similar
to the zero mean drift case in that the tail of the stationary measure will decay
polynomially, not exponentially, over the state space in the ergodic case. Further in
this case the distribution of the process will converge over time polynomially, not
exponentially, to the stationary measure. We do not show this explicitly here but
it follows directly from our calculations of passage time moments via the results
of [11]. It seems to us that this process is interesting as it exhibits this behavior
without any regions of zero drift or heavy tailed jumps.

It is clear that the Lyapunov function method can be applied in more than
two dimensions. For example, [10] contains an almost complete classification of
random walks on Z3+. The main result of that paper also appears as Theorem 4.4.5
of [6]. In the notation of that book the case which was not considered
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is very similar to the main subject of this paper. The completion of the classification
and even finding sufficient conditions for ergodicity of walks on Z3+ when K̃ = 1
is still an open problem.

The ideas in [2] for discrete processes were used in [12] to obtain criteria
for finiteness of passage time moments for continuous nonnegative stochastic
processes and Brownian motion with zero drift in a wedge. It seems to us that
the ideas of our paper can be modified to treat reflected Brownian motion on two-
dimensional complexes with internal skew reflections when the drift is nonzero.

In the second part of the paper we use the results of the first part to investigate
the properties of polling and similar systems in the critical regime—in a polling
system customers arrive at various nodes where they queue for service from
a single server which visits the nodes, serving all tasks queueing at a node
before moving on to another; see [7]. Recently a partial case of the polling
system model was investigated in [13] which gives explicit results in terms of
the parameters of the queueing model. This part of the present paper can be
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regarded as a generalization of the results of [13]. It is not our goal here to study a
specific queueing model but just to show how such problems can be recast in the
terminology of random walks on two-dimensional complexes. We only consider
systems where there are two service nodes but we permit a variety of regimes,
corresponding to the quarter planes of the complex, in which the behavior of the
server and system are different. Each regime has its own set of system parameters,
for example, arrival rates, service time distributions. These are restricted by the
requirement that we can find an embedded point process which is a random walk
on a two-dimensional complex. This allows for regimes where both nodes receive
service simultaneously with service times being independent and exponentially
distributed, as well as regimes where service times are nonexponential but one
node receives all of the service. There may well be other possibilities.

2. Preliminaries and notation. We start by specifying the way in which the
planes are connected and need to assume some regularity properties of the one-step
transition probabilities.

Faces and their connections.

1. For any set of integers 1 ≤ i1 < · · · < ik ≤ n, k ≥ 1, a face of Rn+ is the set

B∧ ≡ ∧(i1, . . . , ik) = {
x ∈ Rn :xi > 0, i ∈ {i1, . . . , ik}; xi = 0 otherwise

}
.

2. � lives on the collection L = C ∩ Zn+ where

C = ⋃
∧

B∧ with ∧ ∈ {{i}, i = 1, . . . , n; {i, i + 1}, i = 1, . . . , n − 1; {n,1}}.
We will use the notation Ai ≡ B∧ ∩ Zn+ where ∧ = {i}, i = 1, . . . , n, and
Bi ≡ B∧ ∩Zn+ where ∧ = {i, i +1}, i = 1, . . . , n−1, with ∧ = {n,1} for i = n.
Note that we are interested in L as an essentially two-dimensional object and
consider it as embedded in Rn for notational convenience only. When we refer
to coefficients xi of x ∈ L with i = n + 1 or i = 0 we will interpret this as
referring to x1 or xn, respectively.

3. The one-step transition probabilities pxy ≡ P (ξ(t + 1) = y|ξ(t) = x) = 0
unless one of the following conditions holds:

• x ∈ Bi , y ∈ Ai ∪ Bi ∪ Ai+1 (which means An ∪ Bn ∪ A1 when i = n);
• x ∈ Ai , y ∈ Bi−1 ∪ Ai ∪ Bi (meaning Bn ∪ An ∪ B1 when i = n).

When n = 4, C sits very nicely in the plane as is depicted in Figure 1.

Irreducibility and aperiodicity. We will assume throughout that � is irre-
ducible and aperiodic. This is not necessary for our arguments but no interesting
phenomena are lost and it simplifies exposition.
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FIG. 1. The space C when n = 4.

Homogeneity of jumps. We assume homogeneity of jumps outside some finite
set B0 containing the origin. If x, x̂ /∈ B0 belong to the same face (Ai or Bi) and
ŷ − x̂ = y − x then we assume px̂ŷ = pxy .

Jumps are bounded below. We require pxy = 0 when, for any i, x ∈ Bi \ B0
and y −x has any component less than −1 or when x ∈ Ai \B0 and (y −x)i < −κ

for some finite κ ∈ Z+.
The assumption that jumps from Bi are bounded below by −1 is forced if

we wish to maintain both homogeneity and restrict the chain to jumps between
adjacent planes only by passing through their shared axis Ai .

Notation for expected jump sizes. It is necessary to assume the existence of
certain moments of the jump distributions within the faces and on the boundaries
connecting them. Let

M(x) = ∑
y∈L

(y − x)pxy for every x ∈ L

so M(x) is formally an n-vector and when x ∈ Bi , M(x) is the drift vector of
the process �. M(x) does not have any interpretation as a vector when x ∈ Ai

but its three potentially nonzero components M(x)i−1, M(x)i and M(x)i+1 are
important in the critical case K = 1 to be defined below [our notational convention
is that M(x)i+1 refers to M(x)1 when i = n]. By the homogeneity assumption,
M(x) = M(y) when x and y are in the same plane Bi or the same axis Ai and
outside B0. For p > 1 let

M(p)(x) = ∑
y∈L

‖y − x‖ppxy for every x ∈ L(1)

denote the pth moment of the jump length. Here ‖z‖ denotes the standard
Euclidean distance.



CRITICAL RANDOM WALKS ON COMPLEXES 1403

FIG. 2. Drift vectors for the random walk.

We need the following notation:

Mi0 = M(x)i and Mi1 = M(x)i+1, x ∈ Bi \ B0,

are the components of the drift vector M(x) in the face Bi while for x ∈ Ai \ B0

M+
i 0 = ∑

y∈Bi

(y − x)ipxy, M+
i 1 = ∑

y∈Bi

(y − x)i+1pxy (jumps into Bi),

M−
i0 = ∑

y∈Bi−1

(y − x)ipxy, M−
i1 = ∑

y∈Bi−1

(y − x)i−1pxy (jumps into Bi−1)

and finally,

M0
i = ∑

y∈Ai

(y − x)ipxy (jumps along Ai)

are the various expected jump sizes into the faces of L which are accessible
from Ai . They are depicted in Figure 2.

Moment assumptions.

1. M(γ )(x) is finite for some γ > 2 for every x ∈ L [in particular M(x) is finite
for every x]. For x ∈ Bi \ B0 we will use the notation

λi0 = ∑
y∈L

(
(y − x)i

)2
pxy, Ri = ∑

y∈L

(
(y − x)i(y − x)i+1

)
pxy,

λi1 = ∑
y∈L

(
(y − x)i+1

)2
pxy

for second moments of the jumps within Ai ∪ Bi ∪ Ai+1.
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K < 1 K > 1 K = 1

FIG. 3.

2. Mi0 < 0, Mi1 > 0 for every i. We define the angles αi ≡ arctanMi1/|Mi0| and
from these

K ≡
n∏

i=1

Mi1

|Mi0| =
n∏

i=1

tanαi.(2)

We will give a complete classification of the long-term behavior of � in the
three cases K < 1 (ergodicity), K > 1 (transience) and K = 1. The main new
results are for this critical case K = 1. Figure 3 shows geometrically that in this
case, following a connected series of drift vectors through the faces Bi , ignoring
what happens at the crossing of the axes Ai , we return to our starting point. It is
this that makes � critical.

3. The cases K < 1 and K > 1. We will make extensive use of a result
of Lamperti [8] and its generalization by Aspandiiarov, Iasnogorodski and
Menshikov in [2] to deal with the critical case. The noncritical cases with K 	= 1
can be resolved with some general Foster-type results from the book by Fayolle,
Malyshev and Menshikov. To apply them we must first investigate the behavior of
certain induced chains as defined in §4 of [6].

The Markov chain Xi induced on Ai is the one-dimensional Markov chain on Z
with transition probabilities defined as follows. Let Lim(j) = {y ∈ Bi :yi+m = j}
for m = 0, 1. Next for x ∈ Bi \ B0 and k ≥ −1, define

q+
i (k) = P

(
ξi+1(t + 1) = xi+1 + k|ξ(t) = x

) = ∑
y∈Li1(xi+1+k)

pxy .(3)

For x ∈ Ai \ B0 define q0
i (0) = ∑

y∈Ai
pxy and

q0
i (k) =




P
(
ξi+1(t + 1) = k|ξ(t) = x

) = ∑
y∈Li1(k)

pxy, k > 0,

P
(
ξi−1(t + 1) = −k|ξ(t) = x

) = ∑
y∈Li−1,0(−k)

pxy, k < 0,
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while for x ∈ Bi−1 \ B0 and k ≤ 1, define

q−
i (k) = P

(
ξi−1(t + 1) = xi−1 − k|ξ(t) = x

) = ∑
y∈Li−1,0(xi−1−k)

pxy,

where homogeneity within the faces Ai and Bi ensures that these are all well
defined. Now we define

P
(
Xi(t + 1) = j + k|Xi(t) = j

) =




q+
i (k), j > 0, k ≥ −1,

q0
i (k), j = 0,

q−
i (k), j < 0, k ≤ 1,

(4)

so that Xi captures the behavior of � orthogonal to Ai on the collection of faces
Bi−1 ∪ Ai ∪ Bi .

Our assumptions on the moments of � immediately imply that∑
k

kq+
i (k) = Mi1 > 0 and

∑
k

kq−
i (k) = −Mi−1,0 > 0

and as the state 0 cannot be absorbing it follows from homogeniety that 0 is a
transient state for Xi . Hence the expected number of visits to 0 by Xi is finite and
in the terminology of [6], each of the axes Ai are transient faces while the Bi are
ergodic faces.

The following Theorem 1 states Theorems 2.1.2 and 2.1.10 of [6] which
describe how the drifts of a process can be used to determine its transience or
ergodicity.

Let {Si, i ≥ 0} be a sequence of nonnegative random variables with S0 constant
and Sn measurable with respect to Fn = σ(ξ0, . . . , ξn) for n ≥ 1. Let {Ni, i ≥
0} be an increasing sequence of stopping times adapted to {Fn} with N0 = 0
and let Y0 = S0 and Yi = SNi

for i ≥ 1. Also, for constant D > 0, let τ =
min{n ≥ 1 :Sn ≤ D} and σ = min{i ≥ 1 :Yi ≤ D}. Finally, let {Xi∧σ } denote
a sequence {Xi} stopped at σ and IE be the indicator function of an event E.

THEOREM 1. (i) If S0 > D and for some ε > 0 and all n ≥ 0,

E
(
Y(n+1)∧σ |FNn∧σ

) ≤ Yn∧σ − εE
(
N(n+1)∧σ − Nn∧σ |FNn∧σ

)
a.s.,

then E(τ ) ≤ S0/ε < ∞.
(ii) If S0 > D, the jumps Sn+1 − Sn are uniformly bounded below and there

exists ε > 0 and a positive constant b such that for every n ≥ 0,

E
(
(Sn+1 − Sn)I{Sn+1−Sn<b}|Fn

) ≥ ε a.s.,

then P(τ = ∞) > 0.

Now we will use Theorem 1 to prove the main result of this section.
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THEOREM 2. If K < 1, then � is ergodic while if K > 1 then � is transient.

PROOF. We will use Theorem 1 with Sn = f (ξn) for a suitable Lyapunov
function f . Let πi = ∏i−1

j=1 tanαj and consider the function f , where for x ∈
Ai ∪ Bi , 1 ≤ i ≤ n − 1,

f (x) = xi

πiu
i−1 + xi+1

πi+1u
i

(5)

with f (x) = uxn + x1 for x ∈ An ∪ Bn where u = K−1/n. This function is
nonnegative, piecewise linear and for x ∈ Bi \ B0 and v = M(x) we calculate
for each i

δi ≡ E
(
f (ξ(t + 1)) − f (ξ(t))|ξ(t) = x

)
= f (x + v) − f (x) = 1

πi+1u
i
(uMi0 tanαi + Mi1).

Hence for all i, if K < 1 then u > 1 and so δi < 0 while for K > 1 we have u < 1
and so δi > 0. Figure 4 shows how the contours of f relate to the drift vectors
M(x), x ∈ Bi \ B0 for each i in the case K < 1.

Let �tf = f (ξ(t + 1)) − f (ξ(t)) and ai = E(�tf |ξ(t) = x) for x ∈ Ai \ B0.
In the case K < 1, for any integer k > 0 and x ∈ Ai with ‖x‖ large enough that
ξ(t + j) /∈ B0 a.s. for 0 ≤ j ≤ k − 1,

E
(
�t+j f |ξ(t) = x

)
= E

(
�t+j f

(
I{ξ(t+j)∈Ai} + I{ξ(t+j)∈Bi−1∪Bi }

)|ξ(t) = x
)

≤ aiE
(
I{ξ(t+j)∈Ai}|ξ(t) = x

) + δ
(
1 − E

(
I{ξ(t+j)∈Ai}|ξ(t) = x

))
by the tower property of conditional expectation, where δ = max1≤i≤n δi < 0.
Telescoping these together we have

E
(
f (ξ(t + k)) − f (ξ(t))|ξ(t) = x

)

=
k−1∑
j=0

E
(
�t+j f |ξ(t) = x

)

≤ kδ + (ai − δ)E
(
Vi(k)|ξ(t) = x

)
,

where Vi(k) denotes the number of times � visits Ai between times t and t +k−1.
As Ai is transient, E(Vi(k)|ξ(t) = x) is uniformly bounded for every k and so for
some large enough ki and ε = −δ/2, we have

E
(
f (ξ(t + ki)) − f (ξ(t))|ξ(t) = x

) ≤ −εki

for x ∈ Ai \ B0 with ‖x‖ large enough. Hence, by choosing

k(x) =
{

1, x ∈ Bi , i = 1, . . . , n,

ki, x ∈ Ai , i = 1, . . . , n,
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FIG. 4. Drift vectors relative to contour of f in the case K < 1.

and setting St = f (ξ(t)) and Ni+1 = Ni + k(ξ(Ni)), i ≥ 1, the conditions of the
first part of Theorem 1 are satisfied. As f satisfies c1‖x‖ ≤ |f (x)| ≤ c2‖x‖ for
some constants c2 > c1 > 0, it follows that the expected hitting time of � to
{x ∈ L :‖x‖ ≤ D} (with D suitably large) is finite and so by irreducibility and
aperiodicity � is ergodic.

In the case K > 1 we can, by integrability and homogeneity, choose a truncation
level b so that for x ∈ Bi \ B0,

δ̃i = E
(
�tf I{�tf <b}

∣∣ξ(t) = x
)
> δi/2 > 0

for i = 1, . . . , n. Now take ε = min1≤i≤n δ̃i > 0 and as above, choose k(x) = 1 for
x ∈ Bi while for x ∈ Ai for each i, choose k(x) = ki large enough that

E
(
f (ξ(t + ki)) − f (ξ(t))|ξ(t) = x

) ≥ ki δ̃ + (ai − δ̃)E
(
Vi(ki)|ξ(t) = x

) ≥ ε.

Defining the stopping times Ni as in the ergodic case but this time setting
Si = f (ξ(Ni)), we see by the second part of Theorem 1 that the hitting time to
{x ∈ L :‖x‖ ≤ D} from x0 with ‖x0‖ > D for the imbedded process ξ(Ni) is
infinite with positive probability. By lower boundedness of the jumps and uniform
boundedness of the Ni+1 − Ni it follows from standard results that � is transient.

�

REMARK. Only the existence of a first moment, that is, M(x) is required
for this result. The theorem shows that (under the moment condition) the jump
behavior from the faces Ai does not affect the transience/ergodicity of the process.
Our γ > 2 moment condition is required to deal with the critical case K = 1 of the
next section. In this critical case the jump behavior on the Ai is crucially important
as no f allowing us to use Theorem 1 exists.
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4. Transience and recurrence in the critical case. When K = 1 there are
various possibilities for the behavior of the process �. We will find conditions
which ensure the transience, null-recurrence or ergodicity respectively of �.

Our method is to produce a Lyapunov function f of the states x such that the
process f (�) satisfies exactly the right Lamperti conditions on its mean drifts
as specified in the following result of Menshikov and Zuyev (see [13]) which is
in turn a variant of Theorem 3.2 in [8]. No function satisfying the conditions of
Theorem 1 exists in this critical case.

THEOREM 3. Let X be a time-homogeneous Markov chain on a countable
state space A = {αn}. Assume that there exists a positive function f :A → R+
with the following properties:

lim
n→∞f (αn) = +∞(6)

and there exist constants C0, δ > 0 such that

E
(|f (X(t + 1)) − f (X(t))|2+δ

∣∣X(t) = αn

) ≤ C0 for all n.(7)

Let

an = f (αn) · E
(
f (X(t + 1)) − f (X(t))|X(t) = αn

)
,

bn = E
((

f (X(t + 1)) − f (X(t))
)2∣∣X(t) = αn

)
.

Then X is recurrent if lim sup(2an − bn) < 0, and X is transient if lim inf(2an −
bn) > 0.

PROOF. See Theorem 1 in [13]. The proof uses the well-known Foster’s
criteria which can be found in [1] or [6]. �

To exhibit our Lyapunov function we need to calculate a couple of properties of
the one-dimensional walk induced from � onto Ai as introduced in the previous
section.

LEMMA 1. Let Xi denote the one-dimensional random walk on Z induced
from � onto Ai with one-step transition probabilities as defined in (4). Then Xi is
transient and there is a unique constant si ∈ [0,1) such that

P
(
Xi ever hits 0|Xi(0) = j

) = s
j
i , j > 0.

Further, the process s
Xi(t)
i satisfies E(s

Xi(t+1)
i |Xi(t)) = s

Xi(t)
i on {Xi(t) > 0} and

ui ≡ P (Xi exits 0 and never returns) =
∞∑

j=1

q0
i (j)(1 − s

j
i ) > 0.(8)
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PROOF. These are routine calculations. When � cannot make jumps to-
ward Ai from within Bi , that is, q+

i (−1) = 0 we will set si = 0. Otherwise
si is calculated as the unique root in (0,1) of the equation Gi(z) = 1 where
Gi(z) = ∑∞

x=−1 q+
i (x)zx is the one-step transition probability generating function

of Xi from states j > 0. Our moment assumptions ensure that Gi is a smooth
function of z with G′

i(si) < 0 when si > 0 so for z ∈ (si,1) we have the in-
equality E(zXi(t+1)|Xi(t)) < zXi(t) on {Xi(t) > 0}, while for z ∈ (0, si) we have
E(zXi(t+1)|Xi(t)) > zXi(t).

Note that Xi , when started from state j < 0, is certain to visit state 0 eventually
so transitions to such states make no contribution to ui . As the number of upward
excursions from 0, including the eventual infinite excursion, is geometrically
distributed we can interpret 1/ui as the expected number of such excursions from 0
for the process Xi . The analogue of these for � are excursions from Ai into Bi .

�

In order to state the main theorem of this section we need to define two sets of
constants that express the crucial properties of the underlying random walk �. Let
πi = ∏i−1

j=1 tanαj with π0 = 1/ tanαn, πn+1 = π1 = 1 and define Ci , i = 1, . . . , n,
to be the unique constants satisfying[

M−
i 1

πi−1
+ M−

i 0 + M0
i + M+

i 0

πi

+ M+
i 1

πi+1

]
+ Ciui = 0.(9)

Further for any constant p ∈ [0,1] define for each i = 1, . . . , n,

hi(p) =
(
p − 1

2

)(
λi0 tanαi + 2Ri + λi1/ tanαi

πiρi sinαi

)
,(10)

where ρi = ‖M(x)‖ for x ∈ Bi \ B0.

THEOREM 4. If
∑n

i=1(Ci − hi(0)) > 0 then the process � is recurrent while
if

∑n
i=1(Ci − hi(0)) < 0 then � is transient.

REMARKS. The presence of the πi in the formulas for Ci and hi(p) gives
the impression that this result somehow depends upon where we choose to start
numbering the faces. In fact the choice of starting axis only affects

∑
Ci − hi by

a positive multiplicative scaling which has no influence on our result. A detailed
investigation of the recurrent case is the subject of Section 5. From this point on we
will neglect to mention B0 as all our calculations depend on ‖x‖ being sufficiently
large.

PROOF OF THEOREM 4. We will treat the transient case in detail and only
indicate the minor changes needed for the recurrent case.

The piecewise linear Lyapunov function used in the cases K 	= 1 is not adequate
for this task. There are two important modifications required of which the most
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involved is the replacement of the linear martingale term with a nearly linear
transformation which we describe now. For any constants h (positive or negative)
define, for i = 1, . . . , n,

Fi(x,h) = xi

πi

+ xi+1

πi+1
− h

xi+1/πi+1

xi/πi + xi+1/πi+1

= xi

πi

+ xi+1

πi+1
− h

xi+1

xi tan αi + xi+1

(11)

for x ∈ Ai ∪ Bi ∪ Ai+1, i ≤ n − 1, with the obvious replacement of xn+1
with x1 for x ∈ An ∪ Bn ∪ A1. For any positive constant v we see that −h ≤
Fi(x,h) − v ≤ 0 along the line xi tanαi + xi+1 = vπi+1 and similarly on the
level curve {x :Fi(x,h) = v}, 0 ≤ xi

πi
+ xi+1

πi+1
− v ≤ h so the Fi are “almost

linear” functions. They do not fit together smoothly on the Ai where we see that
Fi(x,hi) = Fi−1(x,hi−1) + hi−1 and we need to remember this at a later point in
our calculation.

Expanding Fi using Taylor’s formula to second order we find that for x,
x + y ∈ Ai ∪ Bi ∪ Ai+1

Fi(x + y,h) − Fi(x,h)

=
(

yi

πi

+ yi+1

πi+1

)
− h tanαi

xiyi+1 − xi+1yi

(xi tan αi + xi+1)
2

+ h tanαi

(xiyi+1 − xi+1yi)(yi tanαi + yi+1)

(xi tanαi + xi+1 + θ(yi tan αi + yi+1))3
,

(12)

where θ ∈ [0,1] depends upon x and y. As y will represent possible jumps from
x ∈ Bi , we can assume its components are bounded below by −1 and so the
residual term’s denominator (xi tan αi + xi+1 + θ(yi tanαi + yi+1))

3 is bounded
below by (

(xi − 1) tanαi + xi+1 − 1
)3 = π3

i+1Fi(x,h)3 + O
(
Fi(x,h)2)

.

Taking expectations and noting the relations Mi0 = −ρi cosαi and Mi1 = ρi sinαi

we see that when x ∈ Bi (so jumps end inside Ai ∪Bi ∪Ai+1) and Fi(x,h) is large

E
(
Fi

(
ξ(t + 1), h

) − Fi

(
ξ(t), h

)|ξ(t) = x
)

= 0 − h tanαi

xiρi sinαi + xi+1ρi cosαi

(xi tan αi + xi+1)2
+ O

(‖x‖ · M(2)(x)

Fi(x,h)3

)

= − hρi sin αi

xi tanαi + xi+1
+ O

(
Fi(x,h)−2)

= − hρi cosαi

πiFi(x,h)
+ O

(
Fi(x,h)−2)

,

(13)
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where in obtaining the final expression we have used the binomial theorem to write

1

xi tan αi + xi+1
= 1

πi tanαiFi(x,h)
+ O

(
Fi(x,h)−2)

.

Using a very similar argument but with Taylor’s formula only to first order we
calculate

E
([

Fi

(
ξ(t + 1), h

) − Fi

(
ξ(t), h

)]2∣∣ξ(t) = x
)

= 1

π2
i

(
λi0 + 2Ri

tanαi

+ λi1

tan2 αi

)
+ O

(
Fi(x,h)−1)

.
(14)

Further modifications to the Lyapunov function of Theorem 2 are needed to
deal with the behavior of � at the axes Ai . Let q−

i = ∑
y∈Bi−1

pxy , where x ∈ Ai ,
i = 1, . . . , n, and let

δ ≡
∑n

i=1(Ci − hi(0))

2n + 2
∑n

i=1 q−
i /ui

,

where ui was defined in (8). Note that we have δ < 0 in the transient case but δ > 0
in the recurrent case. Next define for each i

C′
i = Ci − 2δ

q−
i

ui

, C̃i = C′
i − δ and h̃i = hi(0) + δ(15)

with hi(0) as in (10) so that
∑n

i=1(C̃i − h̃i) = 0. For each i we now use the
functions Ti(x) = β

xi+1
i for x ∈ Ai ∪ Bi , where the βi are constants to be chosen,

to construct the process T (�) satisfying

T (ξ(t)) = Ti(x) when ξ(t) = x ∈ Ai ∪ Bi.(16)

To establish transience of � it turns out that we will require

C′
iE

(
1 − T (ξ(t + 1))|ξ(t) = x

)
> C′

i

(
1 − Ti(x)

)
when x ∈ Bi.

The results of Lemma 1 imply that when C′
i > 0 we must choose βi ∈ (0, si) and

when C′
i < 0 we require βi ∈ (si,1). For any such choice of the βi we define now

for later use

�i ≡ �i(βi) = −C′
iE

(
T (ξ(t + 1)) − T (ξ(t))|ξ(t) = x

)
/Ti(x)

for any x ∈ Bi with xi > 1 and note that �i > 0. Further for x ∈ Ai with xi > 1
and ui as defined in (8), we define

�i ≡ �(βi) = C′
iE

(
IBi

(t + 1)
[
1 − T (ξ(t + 1))

]∣∣ξ(t) = x
) − C′

iui,

where the notation IE(t) denotes the indicator function of the event {ξ(t) ∈ E}
for any time t . The results of Lemma 1 imply that �i < 0. When considering the
recurrence problem we choose βi to ensure that �i < 0 which then makes �i > 0.
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With these preliminary calculations in place we now proceed to exhibit a
function f on L such that the jump moments

µ1(f |x) = E
(
f (ξ(t + 1)) − f (ξ(t))|ξ(t) = x

)
and

µ2(f |x) = E
([

f (ξ(t + 1)) − f (ξ(t))
]2∣∣ξ(t) = x

)
of f (ξ(t)) satisfy the transience conditions of Theorem 3. Specifically we will
show that when

∑
i Ci − hi(0) < 0 there is a function f and an ε > 0 such that

2f (x)µ1(f |x) − µ2(f |x) ≥ ε for all x outside some finite set near the origin.
The conditions for recurrence when

∑
i Ci − hi(0) > 0 are established in a nearly

identical fashion.
Our Lyapunov function f is defined by

f (x) = Fi(x, h̃i) +
i−1∑
j=1

(C̃j − h̃j ) + C′
i

(
1 − Ti(x)

)
, x ∈ Ai ∪ Bi,(17)

for i = 1, . . . , n (with the usual replacement of xn+1 by x1 when this is necessary)
and Fi is defined in (11). The βi are as yet not specified but we will show later
how they should be chosen.

We start with µ2(f |x). Our assumptions of homogeneity within faces and
M(γ )(x) < ∞ for some γ > 2 and all x ∈ L imply that µ2 is uniformly bounded
on L. We now show that within Bi , for each i, µ2 converges to a constant we can
calculate as xi+1 becomes large. For all x ∈ Bi we have

µ2(f |x) = 1

π2
i

(
λi0 + 2Ri

tan αi

+ λi1

tan2 αi

)
+ O

(
Fi(x, h̃i)

−1) + Wa
i (x) + Wb

i (x),

where

Wa
i (x) = (C′

i)
2E

([
Ti(x) − Ti(ξ(t + 1))

]2∣∣ξ(t) = x
)

and

Wb
i (x)

= 2C′
iE

([
Fi

(
ξ(t + 1), h̃i

) − Fi

(
ξ(t), h̃i

)] · [
Ti(x) − Ti(ξ(t + 1))

]∣∣ξ(t) = x
)
.

As Ti(x) = β
xi+1
i and jumps are bounded below we have the relation Ti(x) −

Ti(y) = O(Ti(x)) for x ∈ Bi and y such that pxy > 0. Further Ti(x) → 0 as
xi+1 → ∞ so we see that for x ∈ Bi with xi+1 not too small, we have

Wa
i (x) = O

(
Ti(x)2)

and Wb
i (x) = O(Ti(x)).
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At this point note that f (x) = Fi(x,hi) + O(1) so that when considering
asymptotics Fi(x,hi)

−1 = f (x)−1 + O(f (x)−2). Combining these estimates we
have

µ2(f |x) = 1

π2
i

(
λi0 + 2Ri

tan αi

+ λi1

tan2 αi

)
+ O

(
f (x)−1) + O(Ti(x))

= −2
ρi cosαi

πi

hi(0) + O
(
f (x)−1) + O(Ti(x)).

(18)

It remains to compute µ1 and show that under the condition
∑

i (Ci −hi(0)) < 0
we have lim inf 2f (x)µ1(f |x) − µ2(f |x) > 0. To establish the required inequal-
ities we consider each Ai ∪ Bi in four pieces: Ai ; a strip of Bi adjacent to Ai ;
{x ∈ Bi :xi = 1}; the rest of Bi . We now consider these in the reverse of the order
listed.

Using the expansion (12) and the consequent estimate (13) above we have for
x ∈ Bi such that xi > 1 (so all jumps end in Ai ∪ Bi ),

µ1(f |x) = − h̃iρi cosαi

πiFi(x, h̃i)
+ O

(
F−2

i (x, h̃i)
)

+ C′
i

[
E

(
1 − Ti(ξ(t + 1))|ξ(t) = x

) − (
1 − Ti(x)

)]
(19)

= −(
hi(0) + δ

)ρi cosαi

πif (x)
+ O

(
f (x)−2) + �iTi(x).

From (19) and (18) it follows that for x ∈ Bi such that xi > 1,

2f (x) · µ1(f |x) − µ2(f |x)

= −2
(
hi(0) + δ

)ρi cosαi

πi

+ 2�iTi(x)f (x) + 2hi(0)
ρi cosαi

πi

+ O
(
f (x)−1)

= −2δ
ρi cosαi

πi

+ 2�iTi(x)f (x) − O(Ti(x)) + O
(
f (x)−1)

so that, since δ < 0 and �i > 0, there exists ji such that for some ε > 0,
2fµ1 − µ2 ≥ ε for x with xi+1 ≥ ji .

Next when x ∈ Bi with xi = 1 (so it is possible to reach Ai+1 in a single
jump) the same expansion holds except that Fi(x, h̃i) is replaced by Fi+1(x, h̃i+1)

on Ai+1. We simply substitute Fi+1(x, h̃i+1) = Fi(x, h̃i) + h̃iIAi+1(t + 1) and
proceed as before [as before IE(t) denotes the indicator function of the event
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{ξ(t) ∈ E}]. This time

µ1(f |x) = − h̃iρi cosαi

πiFi(x, h̃i)
+ O

(
F−2

i (x, h̃i)
)

+ C′
iE

(
IBi

(t + 1)
[
1 − Ti(ξ(t + 1))

]∣∣ξ(t) = x
)

+ (h̃i + C̃i − h̃i )E
(
IAi+1(t + 1)|ξ(t) = x

) − C′
i[1 − Ti(x)]

(20)

= − h̃iρi cosαi

πif (x)
+ O

(
f (x)−2) − δE

(
IAi+1(t + 1)|ξ(t) = x

)
+ C′

i

[
Ti(x) − E

(
IBi

(t + 1)Ti(ξ(t + 1))|ξ(t) = x
)]

= −δE
(
IAi+1(t + 1)|ξ(t) = x

) + O
(
f (x)−1) + O(Ti(x))

and now (20) and the uniform boundedness of µ2 imply

2f (x) · µ1(f |x) − µ2(f |x)

= −2f (x) · δE
(
IAi+1(t + 1)|ξ(t) = x

) + O
(
f (x)Ti(x)

) + O(1)

so that again, since δ < 0, there exists ε > 0 such that 2f (x)µ1(f |x) − µ2(x) ≥ ε

when xi+1 and hence f (x) are large.
When x ∈ Bi with xi+1 = j for values j = 1, . . . , ji we know that µ2 is

uniformly bounded while (19) for each such j says

µ1(f |x) = − h̃iρi cosαi

πif (x)
+ �iβ

j
i + O

(
f (x)−2)

so that as �i > 0, βi > 0 and f (x) → ∞ as xi → ∞ there exist constants Nj and
ε > 0 such that 2f µ1 − µ2 ≥ ε when xi ≥ Nj . Hence for x with xi ≥ maxj≤ji

Nj

we can be sure that 2f (x)µ1(f |x) − µ2(f |x) ≥ ε.
This only leaves the axes Ai . We again employ the argument that leads to the

Taylor expansions in (13) and (14), but as � can jump into either Bi−1 or Bi

from Ai we must consider both Fi and Fi−1, combining them with appropriate
indicator functions. The sum to be considered is quite long so temporarily we will
abreviate our notation writing Ex for expectation conditioned on {ξ(t) = x} and
sometimes ξi for ξi(t + 1), IBi−1 for IBi−1(t + 1) and so on. Considering just the
linear components of f we see that for x ∈ Ai we have

Ex

(
IBi−1

ξi−1

πi−1
+ ξi

πi

+ IBi

ξi+1

πi+1

)
− xi

πi

= M−
i1

πi−1
+ M−

i0 + M0
i + M+

i0

πi

+ M+
i1

πi+1
,

which we saw before in (9). For the nonlinear terms in Fi , Fi−1 note that, for
example,

Ex

(
ξi+1(t + 1)

ξi(t + 1) tanαi + ξi+1(t + 1)

)
= O

(
f (x)−1)
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by the Taylor argument leading to (13) as ξi+1(t + 1) ≥ 0 and ξi(t + 1) ≥ xi −
κ > 0 (recall the assumption that jumps are bounded below). Further for x ∈ Ai ,
1 − Ti(x) = 0 and we defined �i such that

C′
iEx

(
IBi

[1 − Ti(ξ)]) = C′
iui + �i

with ui as in (8). Taking care to include the constant terms as well, we have, for
i = 2, . . . , n,

µ1(f |x) = Ex

(
f (ξ(t + 1))

) − f (x)

= Ex

(
IAi∪Bi

Fi + IBi−1Fi−1
) − Fi(x, h̃i) − (C̃i−1 − h̃i−1)Ex(IBi−1)

+ C′
iEx

(
IBi

[1 − Ti(ξ)]) + C′
i−1Ex

(
IBi−1[1 − Ti−1(ξ)])

=
[

M−
i1

πi−1
+ M−

i0 + M0
i + M+

i0

πi

+ M+
i1

πi+1

]
+ C′

iEx

(
IBi

(1 − Ti)
)

− h̃iEx

(
IBi

ξi+1

ξi tanαi + ξi+1

)

+ C′
i−1Ex

(
IBi−1(1 − Ti−1)

) − (C̃i−1 − h̃i−1)Ex(IBi−1)(21)

− h̃i−1Ex

(
IBi−1

ξi

ξi−1 tanαi−1 + ξi

)

= (C′
i − Ci)ui + �i + O

(
f (x)−1) + (C′

i−1 − C̃i−1)Ex(IBi−1)

− C′
i−1Ex

(
IBi−1Ti−1

) + h̃i−1Ex

(
IBi−1

ξi−1 tan αi−1

ξi−1 tanαi−1 + ξi

)

= −2δq−
i + �i + δq−

i + O(Ti−1(x)) + O
(
f (x)−1)

= −δq−
i + �i + O(Ti−1(x)) + O

(
f (x)−1)

,

where (C′
i −Ci)ui = −2δq−

i from (15). We know that −δ > 0 but �i = �(βi) < 0.
By choosing βi close enough to si so that

−δq−
i + �i > 0

we can guarantee that µ1(f |x) is bounded away from 0 for large enough x ∈ Ai .
Examining the results of Lemma 1 we see that this choice of βi is possible under
the assumption that M+

i1 < ∞, that is, the jumps in direction xi+1 from Ai have
finite mean. On the axis A1 exactly the same argument applies with i − 1 replaced
by n throughout as crucially

∑n
i=1(C̃i − h̃i ) = 0. Finally, µ2(f |x) is uniformly

bounded everywhere so that since f (x) → ∞ as x increases we have shown that
2fµ1 − µ2 ≥ ε > 0 for large enough x ∈ Ai .

As our process � lives on a countable state space any sensible labelling {αn}
allows us to apply Theorem 3 directly as we have shown that the function f defined
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in (17) satisfies the condition 2f · µ1 − µ2 ≥ ε everywhere outside some finite
region around the origin and hence lim infn 2f · µ1 − µ2 > 0.

To modify the proof to establish recurrence when
∑

i Ci − hi > 0 we observe
that now δ > 0 and we simply select the βi so that �i < 0, �i > 0 for each i

and proceed exactly as above to show that 2fµ1 − µ2 is bounded below 0 for all
suitably large x. �

5. Existence of return time moments. It is possible to give a more refined
description of the possibilities in the critical case by considering the finiteness of
moments of the first-hitting time of finite subsets for our random walk �. Given a
finite set SK = {x ∈ L :‖x‖ ≤ K} for some constant K , the first-hitting time of SK

from x0 /∈ SK is

τK(x0) = inf{t : ξ(0) = x0, ξ(t) ∈ SK}.
General results showing when moments of hitting times are finite and when infinite
were established in [2] for the critical process with asymptotically zero drifts. We
start with a technical lemma based on the results there, which is important in this
section as it will enable us to apply our earlier calculations concerning the sign of

2f (x)µ1(f |x) − µ2(f |x)

to processes of the form f (�)2p, which is the key to learning about the finiteness
or otherwise of E(τK(x0)

p).

LEMMA 2. Suppose that {Xn} is a time-homogeneous Fn-adapted nonnega-
tive stochastic process such that for some γ > 2 and some finite B ,

E(|Xn+1 − Xn|γ |Fn) < B

uniformly in n. For k = 1,2 let µk(Fn) = E([Xn+1 − Xn]k|Fn). Then for p > 0
such that 2p < γ and any ε0 > 0 there exists a constant K such that on {Xn > K},∣∣E(

X
2p
n+1 − X2p

n |Fn

) − pX2p−2
n

(
2Xnµ1(Fn) + (2p − 1)µ2(Fn)

)∣∣ < ε0X
2p−2
n .

PROOF. Here {Fn} is any suitable filtration—we will only need to use the
natural filtration Fn = σ(ξ0, . . . , ξn), n ≥ 0, in what follows. The term

2Xnµ1(Fn) + (2p − 1)µ2(Fn)

will be central to our subsequent arguments as its sign essentially determines
whether X

2p
n is a submartingale or supermartingale. A result analogous to this

lemma was proved in Lemma 10 of the Appendix to [2] under weaker moment
conditions but for a Markov chain. In fact the proof there translates directly to
our case so we refer the reader to that lemma—it is written in terms of Markov
chains there because the Appendix to [2] is concerned with showing exactly how
the results of that paper extend those of in [9].
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So far we have assumed [see (1) and following] that the jumps of our random
walk � satisfy the moment condition M(γ )(x) < ∞ for all x for some γ > 2. We
are now concerned with exactly what moment conditions obtain so we introduce
γ̂ = sup{γ :M(γ )(x) < ∞ for all x ∈ L} (γ̂ = ∞ is possible but we have no need
to consider it separately). For our intended applications of Lemma 2 above note
that any function g which differs from a linear function only by uniformly bounded
terms satisfies g(x) = O(‖x‖) and so the stochastic process g(�) will satisfy
Lemma 2’s moment conditions for p < 1

2 γ̂ . �

Establishing the existence of moments of return times proceeds in basically the
same way as establishing recurrence and we show this first.

THEOREM 5. If
∑

i Ci − hi(0) > 0 then there is a unique p0 > 0 such that∑
i Ci −hi(p0) = 0. If 2p0 < γ̂ then for 0 < p < p0 we have, for sufficiently large

sets SK and any x /∈ SK

E
(
τK(x)p

) = O(‖x‖2p).

This is also true for p = p0 when p0 > 1.

PROOF. The existence of p0 is evident from definitions (9) and (10) which
imply the expression

∑
i Ci − hi(p) is linear in p and decreasing.

It’s necessary to modify the Lyapunov function constructed in the previous
section. For 0 < p < p0 let

δ(p) ≡
∑n

i=1(Ci − hi(p))

2n + 2
∑n

i=1 q−
i /ui

so δ(p) > 0

and define for each i

C′
i (p) = Ci − 2δ(p)

q−
i

ui

,

C̃i(p) = C′
i(p) − δ(p) and h̃i (p) = hi(p) + δ(p).

Our modified Lyapunov function is

fp(x) = Fi

(
x, h̃i(p)

)

+
i−1∑
j=1

(
C̃j (p) − h̃j (p)

) + C′
i (p)

(
1 − Ti(x)

)
, x ∈ Ai ∪ Bi,

with Ti(x) as defined for (16). The leading terms of the expansions of µ2(f |x)

and µ2(fp|x) are identical so (18) also holds for fp . To achieve cancellation of
leading terms it is necessary to consider 2fpµ1(fp|x) + (2p − 1)µ2(fp|x) now.
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The reader can readily check that the proof of Theorem 4 when applied to fp(�)

demonstrates that

2fp(x) · µ1(fp|x) + (2p − 1)µ2(fp|x) ≤ −ε < 0(22)

for some ε > 0 and all suitably large x ∈ L. It is clear that fp can be defined for
p > p0 but as δ(p) < 0 for such p, (22) will not hold.

For p < p0 the process fp(�) satisfies the conditions of Lemma 2 and we can
hence deduce that for some d > 0,

E
(
fp(ξ(t + 1))2p − fp(ξ(t))2p

∣∣ξ(t) = x
) ≤ −dfp(x)2p−2

for sufficiently large x. The result now follows from Theorem 1 of [2] which
gives the estimate E(τ

p
K(x)) = O(fp(x)2p) which we combine with our earlier

observation about essentially linear functions like fp . �

Showing which return time moments are infinite requires the introduction of a
process very similar to f (�) but different in a couple of important respects. This
companion process need not be a submartingale so we can be rather less careful
about the exact sign of various terms but we must be able to get an estimate of
how long it takes to reach a set S from any suitably distant starting state in order
to employ some general results from [2].

THEOREM 6. For p > min{p0,
1
2 γ̂ }, with p0 as defined in Theorem 5, we have

E
(
τK(x)p

) = ∞
for sufficiently large sets SK and x where ‖x‖ ≥ K(1 + δ) for some δ > 0.

PROOF. Suppose first that 2p0 < γ̂ . Let T̂i (x) = s
xi+1
i for i = 1, . . . , n with

the si as defined in Lemma 1. Next, using the constants πi and Ci as defined in (9)
and its preceding paragraph, define the function f̂ :L → R by

f̂ (x) = xi

πi

+ xi+1

πi+1
+ Ci

(
1 − T̂i (x) − xi+1/πi+1

xi/πi + xi+1/πi+1

)
, x ∈ Ai ∪ Bi,

for i = 1, . . . , n (reading i + 1 as 1 when i = n). With this set up we consider the
process f̂ (�).

We want to employ Theorem 2 of [2] but this requires we first show that the
conditions of their Lemma 2 (which shows how long it takes to reach a set like SK

from starting points sufficiently far away) are satisfied. To do this we show that
E(f̂ (ξ(t + 1))2 − f̂ (ξ(t))2|ξ(t) = x) is bounded below uniformly in x and that
E(f̂ (ξ(t + 1))2r − f̂ (ξ(t))2r |ξ(t) = x) ≤ df̂ (x)2r−2 for some r > 1, constant
d > 0 and suitable x.

Replacing �i , �i , δ with 0 and h̃i , C′
i , C̃i with Ci and adapting the calculations

leading to (19) and (21) we see that

µ1(f̂ |x) =
{

O
(
f̂ (x)−1)

, x ∈ Bi ,

O
(
T̂i−1(x)

) + O
(
f̂ (x)−1)

, x ∈ Ai ,
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so that, since s = maxi{si} < 1, 2f̂ µ1(f̂ |x) + (2p − 1)µ2(f̂ |x) = O(1) by our
moment assumptions on �. By using Lemma 2 with Xt = f̂ (ξ(t)) and p = 1
the boundedness of E(f̂ (ξ(t + 1))2 − f̂ (ξ(t))2|ξ(t) = x) is established. Again
applying Lemma 2 to the process f̂ (�) we see that for p < 1

2 γ̂ there exists a
positive constant d such that for sufficiently large x

E
(
f̂ (ξ(t + 1))2p − f̂ (ξ(t))2p

∣∣ξ(t) = x
) ≤ df̂ (x)2p−2.

This shows that f̂ (�) satisfies the conditions of [2] Lemma 2.
By repeating the argument leading to (22), but for some p ∈ (p0,

1
2 γ̂ ), we can

show that

2fp(x) · µ1(fp|x) + (2p − 1)µ2(fp|x) ≥ ε

for some ε > 0 and all suitably large x ∈ L and hence, via Lemma 2, that for some
d > 0,

E
(
fp(ξ(t + 1))2p − fp(ξ(t))2p

∣∣ξ(t) = x
) ≥ dfp(x)2p−2 > 0(23)

for sufficiently large x.
We now recall the hitting time τK(x) and introduce for D > 0 the hitting times

σD(x) = min
{
t : f̂ (ξ(t)) ≤ D,ξ(0) = x

}
.

We have established that the process fp(�)2p when stopped at a suitably large
set S is a submartingale. As the processes fp(�) and f̂ (�) also satisfy the
other conditions of [2] Theorem 2 its conclusion holds, namely that for large
enough D and starting points x sufficiently far from ŜD ≡ {x : f̂ (x) ≤ D}, we
have E(σD(x)p) = ∞. As f̂ is essentially a linear function we can choose D for
any sufficiently large K so that SK ⊆ ŜD which implies τK(x) ≥ σD(x) and hence,

E
(
τK(x)p

) = ∞.

The nonfiniteness of higher moments in this case follows by the usual Hölder type
argument.

It remains to consider p > 1
2 γ̂ when γ̂ is finite. By assumption γ̂ > 2 so the

argument leading to (23) is valid for some r ∈ (1, 1
2 γ̂ ) and [2], Lemma 2 implies

that for any q ∈ (0,1) there exist positive ε and δ such that

P
(
σD(x) > εf̂ (x)2∣∣ξ(t) = x

) ≥ q whenever ‖x‖ ≥ D(1 + δ).

For p > 1
2 γ̂ let F denote the union of the faces Ai , Bi on which M(2p)(x) = ∞.

Consider starting our random walk from an x0 ∈ F such that ‖x0‖ ≥ D(1 + δ).
Clearly σD(x0)

p = ∑
x(1 + σD(x))pI{x}(1) and hence

E
(
σD(x0)

p
) ≥ qεp

∑
x

f̂ (x)2pP
(
ξ(1) = x|ξ(0) = x0

) = ∞
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because by assumption M(2p)(x0) = ∞ for x0 ∈ F and |f̂ (x)| ≥ C‖x‖ for some
positive constant C when ‖x‖ is large. For starting points x0 /∈ F it is clear from
our homogeneity and drift assumptions that there are no x with ‖x‖ ≥ D(1 + δ)

from which the random walk will with probability 1 hit ŜD before reaching F so
that E(σD(x)p) = ∞ for all x with ‖x‖ ≥ D(1 + δ). �

COROLLARY 1. When
∑n

i=1 Ci −hi(0) > 0, � is null-recurrent if p0 < 1 and
ergodic if p0 > 1, where p0 > 0 is defined in Theorem 5.

PROOF. As p0 > 0, � is recurrent by Theorem 4. If p0 < 1 then, by
Theorem 6, E(τK(x)) = ∞ for all x /∈ SK with some large enough K and so
� is null-recurrent. If p0 > 1, Theorem 5 implies that for x /∈ SK we have
E(τK(x)p) < ∞ for 1 ≤ p < min(p0,

1
2 γ̂ ) and hence � is ergodic. �

6. Applications. The paper [13] considers polling systems with Poisson
arrival streams and the exhaustive service discipline in the critical case where the
mean load on the system equals the mean arrival rate. We quickly describe their
model and results. Independent homogeneous Poisson streams of customers arrive
at a pair of nodes, each with an infinite buffer, at rates λ1 and λ2, respectively.
A single server visits (polls) the nodes performing the service of the customers
in their buffers. The service times of the customers at node i, i = 1,2, form
a sequence of i.i.d. random variables each distributed as a variable σi with the
mean mi and independent of the system’s state. The served customers leave the
system. After the server has started service at node i it continues there until
the buffer is empty (this is the so-called exhaustive service discipline). Then the
server stops serving the i1th node and moves to the other node i2. The time
taken for this switch between nodes i1 and i2 is a random variable ri1i2 assumed
independent of the number of customers present in the whole system at the moment
the i1th node is exhausted.

Using essentially the same techniques as in this paper they give explicit
conditions for null-recurrence or transience of the system in terms of mean
switching times, the arrival rates and the first two moments of the service times
in the case where ρ = λ1m1 + λ2m2 = 1. They go on to give partial results for
systems with three or more nodes.

The results of this paper apply to various generalizations of the standard polling
system model as discussed in [13]. We only consider cases where there are two
service nodes but we permit a variety of regimes in which the behavior of the
server and system are different. Each regime has its own set of system parameters,
for example, arrival rates, service time distributions. These are restricted by the
requirement that we can find an embedded point process which is a random walk
on a two-dimensional complex. This allows for regimes where both nodes receive
service simultaneously with service times being independent and exponentially



CRITICAL RANDOM WALKS ON COMPLEXES 1421

distributed, as well as regimes where service times are nonexponential but one
node receives all of the service. There may well be other possibilities.

Changes of regime can occur at any time when there are no customers at one or
other node according to the following rule. There are 2n regimes and in regime r

the customers are put into class types cri according to the node they are waiting
at. If r is odd, customers at node 1 have class cr1 = 1 and those at node 2 class
cr2 = 2, while if r is even, cr1 = 2 and cr2 = 1. Following regime r , the next
regime is randomly chosen from regimes r , r − 1 if there are no customers of
class cr2, while if there are no customers of type cr1 it is randomly chosen from
regimes r , r + 1. During changes of regime we assume only that the changes to
queue lengths have finite mean so customers may accumulate or indeed be lost or
served by some other mechanism.

The earlier sections of this paper are relevant to this generalized polling
system model only in the case where, for every r , regime r’s service rate for
customers of class cr1 is greater than their arrival rate, while for class cr2 the
arrival rate is greater than the service rate. Methods for deciding the transience or
recurrence/ergodicity of the general case appeared in [10] and are treated at some
length in Chapters 4 and 5 of [6].

A further type of generalization is possible in which completed tasks are routed
back into the input buffers independently but with probabilities that depend on
regime and node. This would be a multi-regime open two node Jackson network.
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