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LIMITS OF ON/OFF HIERARCHICAL PRODUCT MODELS
FOR DATA TRANSMISSION1

BY SIDNEY RESNICK AND GENNADY SAMORODNITSKY

Cornell University

A hierarchical product model seeks to model network traffic as a product
of independent on/off processes. Previous studies have assumed a Markovian
structure for component processes amounting to assuming that exponential
distributions govern on and off periods, but this is not in good agreement with
traffic measurements. However, if the number of factor processes grows and
input rates are stabilized by allowing the on period distribution to change
suitably, a limiting on/off process can be obtained which has exponentially
distributed on periods and whose off periods are equal in distribution to the
busy period of an M/G/∞ queue. We give a fairly complete study of the
possible limits of the product process as the number of factors grows and
offer various characterizations of the approximating processes. We also study
the dependence structure of the approximations.

1. Introduction. A hierarchical product model seeks to model network traffic
as a product of independent processes. The idea is that network dynamics depend
on various mechanical and software processes and controls which operate at
different protocol layers and time scales. The consideration of such models is
motivated by the need for explanations of both large time scale long-range
dependence and self-similarity in measured network traffic as well as perception of
small time scale multifractality. See Kulkarni, Marron and Smith (2001), Misra and
Gong (1998), Mannersalo, Norros and Riedi (1999), Carlsson and Fiedler (2000)
and Riedi and Willinger (2000).

The usual scheme is to consider a process {Z(n)(t) = ∏n
j=1 I

(n)
j (t), t ≥ 0}

where I
(n)
j (·), j = 1, . . . , n, are i.i.d. on/off processes or perhaps the i.i.d. structure

is varied by allowing a progressive scaling of time. An on/off process is an
alternating renewal processes with states {0,1}. [For background on the role
of on/off models in traffic modeling see Heath, Resnick and Samorodnitsky,
(1997, 1998), Leland, Taqqu, Willinger and Wilson (1994), Willinger, Taqqu and
Erramilli (1996), Willinger, Taqqu, Leland and Wilson (1995a, b) and Taqqu,
Willinger and Sherman (1997).] The key idea is that transmission can proceed
iff all the component processes are in the on state. This gives an idealized
representation of different layers and time scales though it does not fully represent
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FIG. 1. Low priority traffic encounters blocking from higher priority streams.

in a detailed manner the network dynamics, protocols and controls. This model is
a proposed balance between realism and statistical and mathematical tractability.
The off periods of the factor processes provide a way to model spacings between
packet arrivals due to hardware and software, TCP windowing and congestion
control, server delays and effects of switches and routers.

The model has the added attractive feature that it can represent other scenarios.
Consider low priority traffic which must traverse a node subject to cross traffic
of n higher priority on/off streams. See Figure 1. The low priority traffic can
traverse the node only when each of the n higher priority streams is in the off state
(from the point of view of the low priority stream this is the on, or transmission
enabling, state) and thus traversal is controlled by a product model. Similarly, if
a low priority stream must traverse n nodes, each subject to blocking by a higher
priority on/off cross stream, then the channel will be open to the low priority stream
only when each node is free of the on state of the cross stream. See Figure 2.

Several authors [e.g., Carlsson and Fiedler (2000), Misra and Gong (1998) and
Kulkarni, Marron and Smith (2001)] assume, in the interest of greater tractability,
that the individual on/off processes are Markovian, which amounts to assuming

FIG. 2. Low priority traffic encounters blocking at several nodes.
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that both the on and off length distributions Fon and Foff are exponential. This
permits fairly explicit calculation of moments and some queueing characteristics.
In particular, Kulkarni, Marron and Smith (2001) provide a compelling and
stimulating account of this model applied to analysis of TCP traffic traces at
the packet level. The following problems are evident with the use of Markovian
factors.

1. Measured on periods as given in Kulkarni, Marron and Smith (2001) are
demonstrably not exponentially distributed and the factor on/off processes are
probably not Markovian.

2. A model with exponential distributions for both on and off periods cannot ex-
hibit long-range dependence, a property usually observed in network traffic
rates. In fact, exponential distributions imply correlations will decrease expo-
nentially fast in the lag [see Kulkarni, Marron and Smith (2001), Misra and
Gong (1998) and Section 6].

3. The hierarchical model already tends toward the black box philosophy and the
assumption of exponential distributions in the interests of both mathematical
and statistical tractability emphasizes the black box aspect. Reliance on
statistical goodness of fit by visual impression of simulated traces also
emphasizes that there is minimal structural modeling.

Despite the last itemized problem, the statistical analysis presented by Kulkarni,
Marron and Smith (2001) is very attractive for its skill and level of detail and
we wondered how important was the feature that the measured on periods were
not exponentially distributed. Thus, we sought approximations to {Z(n)(t), t ≥ 0}
as the number of factors n satisfies n → ∞. It is evident that if just one factor
process is in the off state, then so is the product, so off periods of Z(n)(·) tend to
grow with n. Thus, to get a sensible approximation as n grows, one must stabilize
the overall rate. This can be done by either letting the input rate grow with n

(instead of being constantly 1) or by letting the on periods grow with n. This
paper concentrates on the latter mechanism. We find in Section 3 that under quite
general conditions, a suitable approximation for the n-factor hierarchical model
Z(n)(·) is an on/off model where the on periods are exponential and the off periods
are M/G/∞ queueing model busy periods. For such an approximation, it is easy
to make sensible assumptions which guarantee long-range dependence.

Section 2 discusses more formally the mathematical set-up and Section 3
provides a warm-up to the general theory which discusses the on/off approximation
mentioned in the previous paragraph. Subsequent sections deal with the general
asymptotic theory of product models. Intuitively our set-up can be viewed as
follows. As the number of factors n in the product model grows, individual on
periods become long. We will, however, allow occasional short on periods. Those
can be viewed as breakdowns or other imperfections in the system. Our general
theory describes, in particular, the effect of such “imperfections” on the limiting
approximating model.
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Sections 4 and 5 give the necessary and sufficient conditions for Z(n)(·) to
converge to a limiting approximation Z(∞)(·) in the sense of convergence of
finite dimensional distributions and we also provide various interpretations for
the limiting process Z(∞)(·). The last Section 6, gives information about the
dependence structure of the limiting process Z(∞)(·). In particular, we give various
facts about the decay of the correlation function.

2. Preliminaries. We now review necessary constructions and notations.
A single channel stationary on/off process is constructed with the following
ingredients. Let {Xon,Xn, n = ±1,±2, . . . } be i.i.d. nonnegative random variables
representing on periods and similarly let {Yoff, Yn, n = ±1,±2, . . . } be i.i.d.
nonnegative random variables representing off periods. The X’s are assumed
independent of the Y ’s and the common distribution of on periods is Fon and the
distribution of off periods is Foff. We assume both Fon and Foff have finite means
µon and µoff and we set µ = µon + µoff.

Define

S(±,X)
n =

n∑
i=1

X±i , S(±,Y )
n =

n∑
i=1

Y±i .

Consider the doubly infinite pure renewal sequence that begins with an on period
at time 0: {(

n∑
i=1

(X−i + Y−i )

)
n= ...,−2,−1

,0,

(
n∑

i=1

(Xi + Yi)

)
n=1,2,...

}
.

The interarrival distribution is Fon ∗ Foff and the mean interarrival time is µ. This
pure renewal process has a stationary version [Resnick (1992), page 224 ff.].{(∀D− − S(−,X)

n − S(−,Y )
n

)
n=1,2,...,∀D−,D+,

(
D+ + S(+,X)

n + S(+,Y )
n

)
n=1,2,...

}
,

where (D−,D+) is a random vector independent of {Xn,Yn} with distribution

P [D− > x,D+ > y] =
∫ ∞
x+y

P [Xon + Yoff > s]
µ

ds

=
∫ ∞
x+y

1 − Fon ∗ Foff(s)

µ
ds.

(2.1)

Here is an explicit construction of the stationary on/off process [see Heath, Resnick
and Samorodnitsky (1998) for a one-sided version]. Define three independent
random vectors B, (X

(−,0)
on ,X

(+,0)
on ), (Y

(−,0)
off , Y

(+,0)
off ) which are independent of

{Xon, Yoff,Xn,Yn,n ≥ 1} as follows: B is a Bernoulli random variable with values
{0,1} and mass function

P [B = 1] = µon

µ
= 1 − P [B = 0]



HIERARCHICAL PRODUCT MODELS 1359

and (x > 0, y > 0)

P
[
X(−,0)

on > x,X(+,0)
on > y

] =
∫ ∞
x+y

1 − Fon(s)

µon
ds =: 1 − F (0)

on (x + y),

P
[
Y

(−,0)
off > x,Y

(+,0)
off > y

] =
∫ ∞
x+y

1 − Foff(s)

µoff
ds =: 1 − F

(0)
off (x + y).

Let

D
(0)
+ = B

(
X(+,0)

on + Yoff
) + (1 − B)Y

(+,0)
off ,

D
(0)
− = BX(−,0)

on + (1 − B)
(
Y

(−,0)
off + Xon

)
,

and define a delayed renewal sequence by

{Sn,n = . . . ,−1,0,1,2, . . .}
:=

{(−D
(0)
− − S(−,X)

n − S(−,Y )
n

)
n=1,2,...,−D

(0)
− ,

D
(0)
+ ,

(
D

(0)
+ + S(+,X)

n + S(+,Y )
n

)
n=1,2,...

}
and this delayed renewal sequence is stationary. (In our terminology S0 = D

(0)
+ .)

We now define the indicator process of on periods I (t) to be 1 if t falls in an on
period and I (t) = 0 if t is in an off period. More precisely, the process {I (t), t ∈ R}
is defined in terms of {Sn,n = . . . ,−1,0,1,2, . . . } as follows:

I (t) = B1[−X
(−,0)
on ,X

(+,0)
on )

(t) + (1 − B)1[−Y
(−,0)
off −Xon,−Y

(−,0)
off )

(t)

+ ∑
n �=−1

1[Sn,Sn+Xn+1)(t).
(2.2)

REMARK 2.1. A useful fact [Heath, Resnick and Samorodnitsky (1998),
Corollary 2.2] is that for any t ≥ 0, conditional on I (t) = 1, the subsequent
sequence of on/off periods is the same as seen from time 0 in the stationary process
with B = 1. In particular, conditionally on I (0) = 1, looking forward into the
future produces an on period with distribution F

(0)
on and then a sequence of off

and on periods with distributions Foff and Fon. The situation is similar looking
backwards, or looking both ways.

Our hierarchical product model is formed by taking products of n on/off
indicator processes. As n → ∞, we need to keep the overall on rate roughly
constant to get useful limits. There are two ways to do this. As n increases, one
can either lengthen the on periods or one can increase the individual line on rates
rather than keeping them fixed at 1. We take the former approach in this paper and
investigate the latter elsewhere. So we suppose we have n i.i.d. stationary on/off
indicator processes I

(n)
1 , . . . , I

(n)
n . The on period distribution of each factor process
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depends on n and is denoted by F
(n)
on and has mean µ

(n)
on . The off period distribution

is supposed independent of n and as usual is Foff which has mean µoff. We will
always assume that Foff(0) = 0; this can always be assured by replacing F

(n)
on by

its appropriate geometric convolution power. The corresponding complementary
cumulative distributions are denoted F

(n,0)
on and F

(0)
off ,

F (n,0)
on (x) :=

∫ x

0

1 − F
(n)
on (s)

µ
(n)
on

ds, F
(0)
off (x) :=

∫ x

0

1 − Foff(s)

µoff
ds(2.3)

and B
(n)
i is a Bernoulli random variable for the ith process independent of the on

and off periods with distribution

P
[
B

(n)
i = 1

] = µ
(n)
on

µ
(n)
on + µoff

.

The product model is

Z(n)(t) =
n∏

i=1

I
(n)
i (t).(2.4)

Since Z(n)(t) = 1 iff I
(n)
i (t) = 1 for i = 1, . . . , n, we have

P
[
Z(n)(t) = 1

] =
(

µ
(n)
on

µ
(n)
on + µoff

)n

=
(

1 + µoff

µ
(n)
on

)−n

=
(

1 + nµoff/µ
(n)
on

n

)−n

,

and hence, we stabilize the input rates and get

lim
n→∞P

[
Z(n)(t) = 1

] = e−µoff/µon(2.5)

iff

lim
n→∞

µ
(n)
on

n
= µon.(2.6)

Condition (2.6) will be our standing assumption in the rest of the paper and serves
as the mechanism for stabilizing the input rate of Z(n)(·) as n → ∞.

In subsequent sections we will:

1. Examine conditions under which a limit process Z(∞)(·) exists such that

Z(n)(·) ⇒ Z(∞)(·),(2.7)

in the sense of convergence of finite dimensional distributions.
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2. Provide interpretations of the limit processes Z(∞)(·). Only in certain cases can
the limit process Z(∞)(·) be constructed from independent on/off cycles.

3. Examine the dependence structure of the limit process Z(∞)(·).
To show convergence of the finite dimensional distributions of Z(n)(·) to a limit

Z(∞)(·), it suffices to show, since Z(n)(·) has range {0,1}, that for any k and time
points 0 = h0 ≤ h1 ≤ · · · ≤ hk that

P
[
Z(n)(hi) = 1, i = 1, . . . , k

] → P
[
Z(∞)(hi) = 1, i = 1, . . . , k

]
.

The reason for restricting attention to the range point 1 is that

P
[
Z(n)(hi) = 1, i = 1, . . . , k

] = (
P
[
I

(n)
i (hi) = 1, i = 1, . . . , k

])n
.(2.8)

3. An illuminating special case. In the single channel on/off construction we
replace Xi by nXi and X

(0)
i by nX

(0)
i so that Fon(x) is replaced by Fon(x/n) =

F
(n)
on (x) and F

(0)
on (x) is replaced by F

(0)
on (x/n) =: F (n,0)

on (x). This means that

µ(n)
on = nµon = n

∫ ∞
0

xFon(dx)

in accordance with (2.6). Since (2.6) holds, we have (2.5) holding as well.
We will assume in this section that Fon(0) = 0. The reader will find it easy to see

what changes in our calculations if this assumption does not hold. Alternatively,
one can see what happens in that case from our general discussion in Section 4.

With these assumptions that F
(n)
on (x) = Fon(x/n) it is not hard to see that

Z(n)(·) ⇒ Z(∞)(·). We illustrate the proof by showing that for any h > 0,

P
[
Z(n)(0) = Z(n)(h) = 1

] → P
[
Z(∞)(0) = Z(∞)(h) = 1

]
and defer the proof for an arbitrary finite collection of time points until the general
discussion. Understanding the bivariate distributions of the limit process will
already allow us to identify the limit process.

Define the ordinary renewal function

U(n) =
∞∑

n=0

(
F (n)

on ∗ Foff
)n∗(3.1)

and the delayed renewal function

V (n) = F (n,0)
on ∗ Foff ∗ U(n).(3.2)

Conditional on I
(n)
i (0) = 1, we have I

(n)
i (h) = 1 if either the initial on period

extends past h [which occurs with probability 1 − F
(n,0)
on (h)] or if the initial on
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period plus an off period terminate before h and then there is a last off period
before h followed by an on period which covers h. Thus, we see that as n → ∞,

P
[
Z(n)(0) = Z(n)(h) = 1

]
∼ e−µoff/µon

(
1 − F (0)

on (h/n) +
∫ h

0

(
1 − Fon

(
h − u

n

))
V (n)(du)

)n

(3.3)

= e−µoff/µon

(
1 − nF

(0)
on (h/n) − ∫ h

0 (1 − Fon(
h−u
n

))nV (n)(du)

n

)n

.(3.4)

To get a limit, we obviously need to show that

nF (0)
on (h/n) −

∫ h

0

(
1 − Fon

(
h − u

n

))
nV (n)(du)(3.5)

converges as n → ∞. Now first, as n → ∞, since Fon(0) = 0,

nF (0)
on (h/n) = n

∫ h/n

0

1 − Fon(s)

µon
ds ∼ n · (h/n)

µon
= h/µon.(3.6)

This is an expression of the regular variation of F
(0)
on (·) at 0 and is equivalent to the

weak convergence of the minimum of the n initial on times. Of course, it is this
minimum which determines the end of the on time initiated at 0 by conditioning
on Z(n)(0) = 1.

For the integral term in (3.5), we have, as n → ∞,∫ h

0

(
1 − Fon

(
h − u

n

))
nV (n)(du) ∼ nV (n)(h),(3.7)

so it suffices to understand the limit of nV (n)(h). This quantity certainly remains
bounded as n varies since

nV (n)(h) = nE

( ∞∑
j=0

1[nX(0)+Y+nS
(X)
j +S

(Y )
j ≤h](u)

)
≤ nE

( ∞∑
j=0

1[nX(0)+nS
(X)
j ≤h](u)

)

and by stationarity, this is h/µon.

The Laplace transform of nV (n) is, for any θ > 0,

nV̂ (n)(θ) =
∫ ∞

0
e−θxnV (n)(dx) = nF̂

(0)
on (nθ)F̂off(θ)

1 − F̂on(nθ)F̂off(θ)

= n((1 − F̂on(nθ))/(nθµon))F̂off(θ)

1 − F̂on(nθ)F̂off(θ)

→ F̂off(θ)

θµon
=

∫ ∞
0

e−θx Foff(x)

µon
dx,
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which implies as n → ∞,

nV (n)(h) →
∫ h

0

Foff(s)

µon
ds.(3.8)

This leads to the following result.

PROPOSITION 3.1. If F
(n)
on (x) = Fon(x/n), then

Z(n)(·) ⇒ Z(∞)(·),
in the sense of convergence of finite dimensional distributions. The bivariate
distributions of the limit process Z(∞)(·) satisfy

P
[
Z(∞)(0) = Z(∞)(h) = 1

] = exp
{
−µoff

µon

[
1 + F

(0)
off (h)

]}
.

PROOF. We only verify bivariate distributions converge here; the general case
follows in Section 4.5. From (3.5)–(3.8) we conclude

P
[
Z(n)(0) = Z(n)(h) = 1

]
∼ exp

{
−µoff

µon

}
exp

{
−
[
h/µon −

∫ h

0
Foff(s) ds/µon

]}

= exp
{
−
[
µoff

µon
+ µoff

µon

∫ h

0

(
1 − Foff(s)

)
/µoff ds

]}

= exp
{
−µoff

µon

[
1 + F

(0)
off (h)

]}
. �

3.1. Identifying the limit process. Since F
(0)
on is regularly varying with index 1

at 0 as a consequence of having a density which is nonzero at 0, we get (3.6),
a familiar condition from extreme value theory. Condition (3.6) implies that
suitably normalized minima of n forward recurrence times converge weakly to
an exponential distribution [Resnick (1987)]. Conditional on Z(n)(0) = 1, this
minimum is the time the initial on period ends. The subsequent off period extends
as long as any of n lines is in the off state. It is also instructive to remember that
condition (3.6) is the condition that ensures that the n-initial on periods arrange
themselves asymptotically as Poisson points and we may think of the off periods
as delays in a queueing system. The first off period of Z(n)(·), conditional on
Z(n)(0) = 1, should then be related to the busy period of an M/G/∞ queue.

PROPOSITION 3.2. Suppose F
(n)
on (x) = Fon(x/n). Then Z(∞)(·) is the indica-

tor process of a stationary on/off process where the on distribution is exponential
with parameter 1/µon and the off distribution is the busy period distribution of
an M/G/∞ queue whose input is a Poisson process with rate 1/µon and whose
service length distribution is Foff.
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PROOF. Let C be the busy period length distribution of a stationary M/G/∞
queue described in the statement of the proposition. The Laplace transform of C

is given in Takács (1962) and Hall (1988). For θ > 0,∫ ∞
0

e−θsC(ds) = 1 + θµon − µon∫ ∞
0 exp{−θt − (µoff/µon)F

(0)
off (t)}dt

and the mean is ∫ ∞
0

xC(dx) = µon(e
µoff/µon − 1).

Let Z∗(·) be the indicator process of a stationary on/off process generated by an
off distribution C and an on period distribution E(·) which is exponential with
parameter 1/µon. Then for any t > 0,

P [Z∗(t) = 1] =
∫∞

0 xE(dx)∫ ∞
0 xE(dx) + ∫ ∞

0 xC(dx)

= µon

µon(1 + exp{µoff/µon} − 1)

= e−µoff/µon,

as desired. Furthermore, for any h > 0, since E(x) = E(0)(x),

P [Z∗(0) = Z∗(h) = 1] = e−µoff/µonP [Z∗(h) = 1|Z∗(0) = 1]
= e−µoff/µon

∫ h

0
e−(h−s)/µonU(ds),

where the renewal function U is given by

U =
∞∑

n=0

(E ∗ C)n∗.

To evaluate this using transforms, we get, for any θ > 0,∫ ∞
0

e−θh

[∫ h

s=0
e−(h−s)/µonU(ds)

]
dh

=
∫ ∞
s=0

e−θs

[∫ ∞
h=s

e−(h−s)/µone−θ(h−s) dh

]
U(ds).

The inner integral evaluates to (θ + 1/µon)
−1 and, with “ˆ” denoting transform,

we get

= 1

θ + 1/µon
Û (θ)

= 1

θ + 1/µon

1

1 − Ĉ(θ)µ−1
on /(θ + µ−1

on )
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= 1

θ + µ−1
on − Ĉ(θ)/µon

= 1

θ + µ−1
on − [µ−1

on + θ − 1/
∫∞

0 exp{−θt − (µoff/µon)F
(0)
off (t)}dt]

=
∫ ∞

0
e−θt exp

{
−µoff

µon
F

(0)
off (t)

}
dt.

We conclude ∫ h

0
e−(h−s)µonU(ds) = exp

{
−µoff

µon
F

(0)
off (h)

}
and therefore

P [Z∗(0) = Z∗(h) = 1] = exp
{
−µoff

µon

[
1 + F

(0)
off (h)

]}
,

which matches the bivariate distributions of Z(∞)(·).
Showing that Z∗ and Z(∞) have all multivariate distributions equal is omitted

here. A more general statement follows from a representation theorem proved in
Section 5 and is given in part (i) of Corollary 5.7. �

4. General approximating limits. Here we make use of the lessons learned
from consideration of the special case in Section 3. We assume that the on periods
composing the n-component on/off processes whose product yields Z(n)(·) all
have common distribution F

(n)
on and that off periods as usual have distribution Foff.

We have seen that as n → ∞, the overall input rate must remain stable in order
to obtain useful approximations and this is achieved by imposing condition (2.6).
It is also apparent that in order to get convergence of bivariate distributions, it is
required that the minimum of the n-i.i.d. forward recurrence times each having
distribution F

(n,0)
on should converge weakly. Conditions guaranteeing this weak

convergence of minima are discussed next. We continue to use notation for the
complementary cumulative distributions given in (2.3).

THEOREM 4.1. The following are equivalent:

(i) There exists a proper distribution function F
(∞)
on and a number q , with

0 ≤ q ≤ 1 such that for all points of continuity x of F
(∞)
on ,

F (n)
on (x) → qF (∞)

on (x).(4.1)

(ii) There exists a measure ν which is Radon on [0,∞) such that in [0,∞),

nF (n,0)
on

v→ ν,(4.2)
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where “
v→” denotes vague convergence. In this case, with p = 1 − q and L being

Lebesgue measure, and m(∞)[0, x] = m(∞)(x) = ∫ x
0 (1 − F

(∞)
on (s)) ds,

ν = p

µon
L + q

µon
m(∞).(4.3)

(iii) Let {X(n,0)
i , 1 ≤ i ≤ n} be i.i.d. random variables with common distribu-

tion F
(n,0)
on . Then for all x ≥ 0 which are continuity points of the limit distribution

P

[
n∧

i=1

X
(n,0)
i > x

]
→ e−ν[0,x],(4.4)

as n → ∞.
(iv) Let {X(n,0)

i , 1 ≤ i ≤ n} be i.i.d. random variables with common distribution

F
(n,0)
on . Then the sequence of random point processes whose nth point process has

points {X(n,0)
i , 1 ≤ i ≤ n} converges weakly in the space of Radon point measures

on [0,∞) to a limit Poisson point process, equivalently to a Poisson random
measure with mean measure ν [PRM(ν)],

n∑
i=1

ε
X

(n,0)
i

⇒ PRM(ν).(4.5)

The limiting Poisson process with mean measure ν is the superposition of a
homogeneous Poisson process with rate p/µon and a nonhomogeneous Poisson
process with mean measure qm(∞)/µon.

Define U(n),V (n) as in (3.1), (3.2) and

U(∞) =
∞∑

n=0

(
qF (∞)

on ∗ Foff
)n∗

, V (∞) = ν ∗ Foff ∗ U(∞).(4.6)

Then, any of the previous conditions (4.1)–(4.5) imply pointwise convergence

nV (n) → V (∞).(4.7)

PROOF. The equivalence of (4.2), (4.4) and (4.5) is well known from extreme
value theory [e.g., Resnick (1987)]. Focus on why (4.1) and (4.2) are equivalent.
Given (4.1) we have as n → ∞,

nF (n,0)
on (x) = n

∫ x

0

(1 − F
(n)
on (u))

µ
(n)
on

du ∼
∫ x

0

(1 − F
(n)
on (u))

µon
du

and by dominated convergence this converges to

→
∫ x

0

(1 − qF
(∞)
on (u))

µon
du = px

µon
+ q

µon
m(∞)(x)

and hence (4.2) follows.
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Conversely, if (4.2) holds, then taking Laplace transforms yields for θ > 0,

n
̂
F

(n,0)
on (θ) = n

(
1 − F̂

(n)
on (θ)

θµ
(n)
on

)
∼ 1 − F̂

(n)
on (θ)

θµon
.

For any fixed θ ≥ 0, {(1 − F̂
(n)
on (θ))/(θµon), n ≥ 1} is bounded in n. Hence [Feller

(1971), page 433],

n
̂
F

(n,0)
on (θ) → ν̂(θ),

where ν̂(θ) is the Laplace transform of the measure ν on [0,∞). Thus

lim
n→∞ F̂

(n)
on (θ) = 1 − θµonν̂(θ)

and therefore F
(n)
on (x) → qF

(∞)
on (x) at points of continuity for some proper

distribution F
(∞)
on and some 0 ≤ q ≤ 1.

Finally, we show why (4.7) is true. Taking Laplace transforms we have

nV̂ (n)(θ) = n

̂
F

(n,0)
on (θ)F̂off(θ)

1 − F̂
(n)
on (θ)F̂off(θ)

= ((1 − F̂
(n)
on (θ))/(θµ

(n)
on /n))F̂off(θ)

1 − F̂
(n)
on (θ)F̂off(θ)

→ ((1 − q
̂
F

(∞)
on (θ))/(θµon))F̂off(θ)

1 − q
̂
F

(∞)
on (θ)F̂off(θ)

= (p/(θµon) + (q/µon)((1 − ̂
F

(∞)
on (θ))/θ)F̂off(θ)

1 − q
̂
F

(∞)
on (θ)F̂off(θ)

,

which is the Laplace transform of V (∞) = ν ∗ Foff ∗ ∑∞
n=0(qF

(∞)
on ∗ Foff)

n∗. �

As an example, let

fn(x) = n21[0,1/n)(x).

Suppose {Un, n ≥ 1} are i.i.d. U(0,1) random variables independent of the
nonnegative i.i.d. random variables {ξn, n ≥ 1} assumed to have finite mean. Define
X

(n)
i = fn(Ui) + ξi . Then fn(Ui) ⇒ 0, so that X

(n)
1 ⇒ ξ1. Also

Efn(Ui) = n2P [Ui < 1/n] = n,

so

µ(n)
on = E

(
X

(n)
1

) = Efn(U1) + E(ξ1) ∼ n.
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Hence q = 1, µon = 1, F
(∞)
on (x) = P [ξ1 ≤ x] and ν is

ν[0, x] =
∫ x

0
P [ξ1 > u]du = m(∞)(x).

4.1. General bivariate limits. We now show under any of the equivalent
conditions in Theorem 4.1 that bivariate distributions of Z(n)(·) converge to
those of a limit process Z(∞)(·). However, unlike the case in Section 3, the
limiting process will not, in general, be composed of alternating independent
on/off periods.

Using the reasoning that led to (3.3) and (3.4), we get

P
[
Z(n)(0) = Z(n)(h) = 1

]
∼ e−µoff/µon

(
1 − nF

(n,0)
on (h) − ∫ h

0 (1 − F
(n)
on (h − u))nV (n)(du)

n

)n

.

Now from (4.2) we have nF
(n,0)
on (h) → ν[0, h], and from (4.7) it follows that

nV (n)(x) → V (∞)(x) for all x ≥ 0. Also 1 − F
(n)
on (x) → 1 − qF

(∞)
on (x). Thus

nF (n,0)
on (h) −

∫ h

0

(
1 − F (n)

on (h − u)
)
nV (n)(du)

→ ν[0, h] −
∫ h

0

(
1 − qF (∞)

on (h − u)
)
V (∞)(du)

= ν[0, h] − V (∞)(h) + qF (∞)
on ∗ V (∞)(h)

= ν[0, h] − ν ∗ Foff ∗ U(∞)(h) + qF (∞)
on ∗ Foff ∗ U(∞) ∗ ν(h)

= ν[0, h] − ν ∗ Foff ∗ U(∞)(h) + (
U(∞) − δ0

) ∗ ν(h)

= ν ∗ U(∞) ∗ (δ0 − Foff)(h),

where δ0 is the measure putting mass 1 at 0. We have proved the following result.

PROPOSITION 4.2. Suppose (2.6) and (4.1) or one of its equivalents hold.
Then for any h > 0,

lim
n→∞P

[
Z(n)(0) = Z(n)(h) = 1

]
= exp

{
−
[
µoff

µon
+ ν ∗ U(∞) ∗ (δ0 − Foff)(h)

]}
,

(4.8)

where ν is given by (4.3) and U(∞) is given by (4.6).
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4.2. A special case. Consider the special case where q = 0 and p = 1.
Therefore, ν = µ−1

on L and U(∞) = δ0. Thus the limit in (4.8) is

exp
{
−
[
µoff

µon
+ ν ∗ U(∞) ∗ (δ0 − Foff)(h)

]}
= exp

{
−
[
µoff

µon
+ 1

µon
L ∗ δ0 ∗ (δ0 − Foff)(h)

]}

= exp
{
−
[
µoff

µon
+ 1

µon

∫ h

0

(
1 − Foff(s)

)
ds

]}
= exp

{
−µoff

µon

[
1 + F

(0)
off (h)

]}
,

(4.9)

which is the same limit found in Section 3.

4.3. A converse. It turns out that (2.6) and (4.2) are the exact conditions for
bivariate convergence.

PROPOSITION 4.3. Suppose:

(i) limn→∞ P [Z(n)(0) = 1] = l1 ∈ (0,1).

(ii) For all h ≥ 0, limn→∞ P [Z(n)(0) = 1, Z(n)(h) = 1] = l2(h) ∈ (0,1).

Then (2.6) holds and there exists a Radon measure ν(·) on [0,∞) such that

nF (n,0)
on (·) v→ ν(·),

so (4.2) holds as well.

PROOF. Condition (i) implies, as n → ∞ that (µ
(n)
on /(µ

(n)
on + µoff))

n → l1.
This gives (2.6).

Next, we have

P
[
Z(n)(h) = 1

∣∣Z(n)(0) = 1
] → l2(h)

l1
,

and the left-hand side equals(
1 − [nF

(n,0)
on (h) − ∫ h

0 (1 − F
(n)
on (h − s))nV (n)(ds)]

n

)n

.

This implies

G′
n(h) =

[
nF (n,0)

on (h) −
∫ h

0

(
1 − F (n)

on (h − s)
)
nV (n)(ds)

]
→ − log

l2(h)

l1
=: G′∞(h).
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After some manipulation involving the renewal function V (n), we get

G′
n(h) = nF (n,0)

on ∗ U(n) ∗ (δ0 − Foff)(h).

Note for x ≥ 0,

G′
n(x) ≤ nF (n,0)

on ∗ U(n)(x)

= n

∞∑
j=0

F (n,0)
on ∗ (

F (n)
on ∗ Foff

)j∗
(x)

≤ n

∞∑
j=0

F (n,0)
on ∗ (

F (n)
on

)j∗
(x)

and because
∑∞

j=0 F
(n,0)
on ∗ (F

(n)
on )j∗ is a stationary renewal measure, it is Lebesgue

measure divided by the mean renewal time so that we get

= n · x

µ
(n)
on

= x

µ
(n)
on /n

≤ 2x

µon

for all large n. This bounding function is locally integrable and hence G′
n → G′∞

implies

Gn(x) :=
∫ x

0
G′

n(h) dh →
∫ x

0
G′∞(h) dh

=
∫ x

0
− log

l2(h)

l1
dh =: G∞(x).

Now take Laplace transforms. For θ > 0,

Ĝn(θ) =
∫ ∞

0
e−θunF (n,0)

on ∗ U(n) ∗ (δ0 − Foff)(u) du

= 1 − F̂off(θ)

θ

n
̂
F

(n,0)
on (θ)

1 − F̂
(n)
on (θ)F̂off(θ)

and since

̂
F

(n,0)
on (θ) = 1 − F̂

(n)
on (θ)

µ
(n)
on θ

,
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we get

Ĝn(θ) = 1 − F̂off(θ)

θ

ν̂n(θ)

1 − F̂off(θ)[1 − θ(µ
(n)
on /n)ν̂n(θ)] ,(4.10)

where we set

νn = nF (n,0)
on and ν̂n(θ) =

∫ ∞
0

e−θuνn(du).

Note {Ĝn(θ), n ≥ 1} is a bounded sequence for each θ since

Ĝn(θ) = 1 − F̂off(θ)

θ

(1 − F̂
(n)
on (θ))/(θµ

(n)
on /n)

1 − F̂
(n)
on (θ)F̂off(θ)

≤ 1 − F̂off(θ)

θ

2/(θµon)

1 − F̂off(θ)
= 2

θ2µon
.

We conclude [Feller (1971), Theorem 2a, page 433] that since Gn → G∞ and
{Ĝn(θ), n ≥ 1} is bounded, that Ĝn(θ) → Ĝ∞(θ). Referring to (4.10), we
conclude ν̂n(θ) → ν̂∞(θ) where

1 − F̂off(θ)

θ

ν̂∞(θ)

1 − F̂off(θ)[1 − θµonν̂∞(θ)] = Ĝ∞(θ).

Again applying Theorem 2a, page 433 of Feller (1971) we conclude

νn = nF (n,0)
on → ν∞

and the statement of the proposition is proved with ν = ν∞. �

4.4. Asymptotic independence. In Section 4.5, we will show that the conver-
gence of bivariate limits in Proposition 4.2 can be extended to higher dimen-
sional convergence. The following Section 5 will show various representations of
processes Z(∞)(·) which have the limiting multivariate distributions.

We say that asymptotic independence holds if Z(n) ⇒ Z(∞) and

lim
h→∞P

[
Z(∞)(0) = Z(∞)(h) = 1

]
= exp

{
−2

µoff

µon

}
= P

[
Z(∞)(0) = 1

]
P
[
Z(∞)(h) = 1

]
.

(4.11)

Here are some special cases where it is relatively easy to resolve whether
asymptotic independence holds or not.
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The case q = 0. In this case, using (4.9) we have

lim
h→∞P

[
Z(∞)(0) = Z(∞)(h) = 1

]
= lim

h→∞ exp
{
−µoff

µon

[
1 + F

(0)
off (h)

]} = exp
{
−2

µoff

µon

}
and hence asymptotic independence holds. Note ν = µ−1

on L so ν[0,∞) = ∞.

The case q = 1 and m(∞)(∞) < ∞. Set

F (∞,0)
on (x) = m(∞)(x)

m(∞)(∞)
=

∫ x
0 (1 − F

(∞)
on (s)) ds∫ ∞

0 (1 − F
(∞)
on (s)) ds

.(4.12)

So ν = m(∞)(∞)
µon

F
(∞,0)
on and therefore

ν ∗ U(∞) ∗ (δ0 − Foff) = m(∞)(∞)

µon

(
F (∞,0)

on ∗ U(∞)
) ∗ (δ0 − Foff).

Note that F
(∞,0)
on ∗ U(∞) is a (delayed) renewal function corresponding to mean

interrenewal time m(∞)(∞) + µoff and hence by the key renewal theorem, the
right-hand side of the above display converges to

m(∞)(∞)

µon

∫ ∞
0 (1 − Foff(s)) ds

m(∞)(∞) + µoff
= m(∞)(∞)

µon

(
µoff

m(∞)(∞) + µoff

)
.

Consequently,

lim
h→∞P

[
Z(∞)(0) = Z(∞)(h) = 1

]
= exp

{
−
[
µoff

µon
+ m(∞)(∞)

µon

(
µoff

m(∞)(∞) + µoff

)]}
.

(4.13)

Asymptotic independence does not hold. Note ν[0,∞) < ∞ in this case.
A particularization is obtained by assuming F

(∞)
on = δ0 in which case ν = 0 and

the entire bivariate distribution is exp{−µoff/µon}.

The case q = 1 and m(∞)(∞) = ∞. Here ν = µ−1
on m(∞) and we must evaluate

the limit of

µ−1
on m(∞) ∗ U(∞) ∗ (δ0 − Foff)(h)

as h → ∞. Because m(∞) ∗ U(∞) has a density, we can write

m(∞) ∗ U(∞)(x) =
∫ x

0

(∫ s

y=0

(
1 − F (∞)

on (s − y)
)
U(∞)(dy)

)
ds

=
∫ x

0
p(s) ds.

(4.14)
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[Note that this formula is valid whether or not m∞(∞) is finite.] Considering an
on/off process with on distribution F

(∞)
on and off distribution Foff and starting with

an on period, we see that p(s) is the probability of being in the on state at time s.
Since m(∞)(∞) = ∞, we have p(s) → 1 as s → ∞. Note that

µ−1
on m(∞) ∗ U(∞) ∗ (δ0 − Foff)(h)

= 1

µon

∫ h

0

(
1 − Foff(h − s)

)
p(s) ds

= 1

µon

∫ ∞
0

(
1(s ≤ h)p(h − s)

)(
1 − Foff(s)

)
ds

→ 1

µon

∫ ∞
0

(
1 − Foff(s)

)
ds

= µoff/µon

by the dominated convergence theorem. Consequently, asymptotic independence
holds and

lim
h→∞P

[
Z(∞)(0) = Z(∞)(h) = 1

] = exp
{
−2

µoff

µon

}
.

With the experience built up in the previous cases, we now state a general result.

PROPOSITION 4.4. Under the assumptions of Proposition 4.2, we have
asymptotic independence iff ν[0,∞) = ∞.

REMARK 4.5. The dichotomy between asymptotic independence holding and
not holding corresponds to whether the limiting Poisson process in (4.5) contains
infinitely or finitely many points. This dichotomy will be better understood once
we discuss representations of the limit process in Section 4.

PROOF. Due to the consideration of special cases above, we need only
consider the case when 0 < q < 1 and show asymptotic independence. First,

ν ∗ (δ0 − Foff)(h)

= p

µon

∫ h

0

(
1 − Foff(s)

)
ds + q

µon

∫ h

0

(
1 − Foff(s)

)(
1 − F (∞)

on (h − s)
)
ds

= A + B.

Now A → pµoff/µon and∫ h

0

(
1 − Foff(s)

)(
1 − F (∞)

on (h − s)
)
ds

=
∫ ∞

0

(
1 − Foff(s)

)(
1(s ≤ h)

(
1 − F (∞)

on (h − s)
))

ds → 0
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by the dominated convergence theorem. We conclude that

v(h) := ν ∗ (δ0 − Foff)(h) → p
µoff

µon
.(4.15)

Since U(x) ↑ U(∞) = 1/(1 − q) we have [e.g., see Resnick (1992), page 253]

U ∗ ν ∗ (δ0 − Foff)(h) → U(∞)p
µoff

µon
= µoff

µon

and therefore asymptotic independence holds. �

4.5. Convergence of finite-dimensional distributions. We now show why
finite-dimensional distributions of Z(n)(·) converge.

For this section we need the quantity

p
(n)
j (h1, . . . , hj ) = P

[
I

(n)
1 (hi) = 1, i = 1, . . . , j

∣∣I (n)
1 (0) = 0

]
,(4.16)

where we understand the conditioning to mean that the on/off process is initiated
by an off period with distribution Foff. Note, for example, that

p
(n)
1 (h) = P

[
I

(n)
1 (h) = 1

∣∣I (n)
1 (0) = 0

]
= Foff ∗ U(n) ∗ (

δ0 − F (n)
on

)
(h)(4.17)

→ Foff ∗ U(∞) ∗ (
δ0 − qF (∞)

on
)
(h)

as n → ∞.
As before [see (2.8)] we have for any k ≥ 1 and 0 = h0 < h1 < . . . < hk ,

P
[
Z(n)(hi) = 1, i = 0, . . . , k

]
= (

P
[
I

(n)
1 (hi) = 1, i = 0, . . . , k

])n
∼ e−µoff/µon

(
P
[
I

(n)
1 (hi) = 1, i = 1, . . . , k

∣∣I (n)
1 (0) = 1

])n
,

where now the conditioning at time 0 to be in state 1 indicates an on/off process is
started in the on state with distribution F

(n,0)
on . The event

⋂k
i=1[I (n)

1 (hi) = 1] can

be realized if the initial on period with distribution F
(n,0)
on extends beyond hk or if

the initial on period ends at time u in some (hj−1, hj ] and then a system starting
with an off period is in the on state at times hi − u, i = j, . . . , k. Thus(

P
[
I

(n)
1 (hi) = 1, i = 1, . . . , k

∣∣I (n)
1 (0) = 1

])n
=

(
1 − F (n,0)

on (hk) +
k∑

j=1

∫ hj

hj−1

F (n,0)
on (du)p

(n)
k−j+1(hj − u, . . . , hk − u)

)n

=
(

1 − 1

n

[
nF (n,0)

on (hk)

−
k∑

j=1

∫ hj

hj−1

nF (n,0)
on (du)p

(n)
k−j+1(hj − u, . . . , hk − u)

])n

.
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We claim that for every j ≥ 1 and h1, . . . , hj (except possibly countably many),

p
(n)
j (h1, . . . , hj ) → p

(∞)
j (h1, . . . , hj ),(4.18)

where p
(∞)
j (h1, . . . , hj ) is the probability that in a (possibly terminating) on/off

process with off distribution Foff and on distribution qF
(∞)
on , starting with an off

period of distribution Foff, the times h1, . . . , hj are in the on state.
Assuming this claim to be true, we will have

lim
n→∞P

[
Z(n)(hj ) = 1, j = 0, . . . , k

]
=: P [

Z(∞)(hj ) = 1, j = 0, . . . , k
]

= exp

{
−
[

µoff

µon
+ ν[0, hk]

−
k∑

j=1

∫ hj

hj−1

ν(du)p
(∞)
k−j+1(hj − u, . . . , hk − u)

]}
.

(4.19)

We may rewrite (4.19) as follows. Write q(∞) = 1 − p(∞) and then

ν[0, hk] −
k∑

j=1

∫ hj

hj−1

ν(du)p
(∞)
k−j+1(hj − u, . . . , hk − u)

=
k∑

j=1

∫ hj

hj−1

ν(du)
(
1 − p

(∞)
k−j+1(hj − u, . . . , hk − u)

)

=
k∑

j=1

∫ hj

hj−1

ν(du)q
(∞)
k−j+1(hj − u, . . . , hk − u)(4.20)

= 1

µon

k∑
j=1

∫ hj

hj−1

(
p + q(1 − F (∞)

on (u)
)
duq

(∞)
k−j+1(hj − u, . . . , hk − u)

= 1

µon

k∑
j=1

∫ hj

hj−1

(
1 − qF (∞)

on (u)
)
q

(∞)
k−j+1(hj − u, . . . , hk − u)du.

Note that

q
(∞)
l (h1, . . . , hl) = P

[
l∨

i=1

I
(∞)
1 (hi) = 0

∣∣∣∣I (∞)
1 (0) = 0

]

is the conditional probability that at some time point the system is off and where the
conditioning means start the on/off process with an off period with distribution Foff

and on periods have distribution qF
(∞)
on . Thus we have the following theorem.
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THEOREM 4.6. For any k = 0,1, . . . and 0 = h0 < h1 < · · · < hk ,

P [Z(∞)(hj ) = 1, j = 0, . . . , k]

= exp

{
−
[

µoff

µon
+ 1

µon

k−1∑
j=0

∫ hj+1

hj

(
1 − qF (∞)

on (u)
)

(4.21) × q
(∞)
k−j (hj+1 − u, . . . , hk − u)du

]}
,

= exp

{
−
[

µoff

µon
+

k∑
l=1

∫ hl

hl−1

q
(∞)
k−l+1(h0, . . . , hk;x)ν(dx)

]}
.(4.22)

One sees from (4.21) that the limiting process Z(∞) is characterized by a
quadruple (µon, q,F

(∞)
on , Foff).

It remains to prove (4.18), which we do by induction. We have already verified
the case j = 1 in (4.17), so make the induction hypothesis that (4.18) holds for
all j ′ < j . Conditioning on where the first off/on cycle ends, we decompose
p

(n)
j (h1, . . . , hj ) as

p
(n)
j (h1, . . . , hj )

=
∫ h1

0
p

(n)
j (h1 − u, . . . , hj − u)Foff ∗ F (n)

on (du)

+
j−1∑
i=1

∫ h1

0
Foff(du)

×
∫ hi+1−u

hi−u
F (n)

on (dw)p
(n)
j−i(hi+1 − u − w, . . . , hj − u − w)

+
∫ h1

0

(
1 − F (n)

on (hj − u)
)
Foff(du)

=: f (n)
j (h1, . . . , hj ) +

∫ h1

0
p

(n)
j (h1 − u, . . . , hj − u)Foff ∗ F (n)

on (du).

From the induction hypothesis

f
(n)
j (h1, . . . , hj ) → f

(∞)
j (h1, . . . , hj )

as n → ∞, for all except, perhaps, countably many h1, . . . , hj , with f
(∞)
j (h1,

. . . , hj ) defined in the obvious way. Therefore,

p
(n)
j (h1, . . . , hj ) =

∫ h1

0
f

(n)
j (h1 − u, . . . , hj − u)U(n)(du)

→
∫ h1

0
f

(∞)
j (h1 − u, . . . , hj − u)U(∞)(du) = p

(∞)
j (h1, . . . , hj )
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and so we conclude that (4.18) holds for all, except perhaps, countably many
h1, . . . , hj as required.

REMARK 4.7. Here is an immediate and, perhaps, not surprising conclusion
from (4.21). The limiting process Z(∞) is product infinitely divisible. Indeed, let
(µon, q,F

(∞)
on ,Foff) be the quadruple corresponding to Z(∞). For k = 1,2, . . .

let Z
(∞)
j , j = 1, . . . , k, be i.i.d. processes corresponding to the quadruple

(µon/k, q,F
(∞)
on ,Foff). Then

{
Z(∞)(t), t ∈ R

} d=
{

k∏
j=1

Z
(∞)
j (t), t ∈ R

}
,

in terms of equality of finite dimensional distributions, which is what we mean by
infinite divisibility of Z(∞).

5. Representations of the limiting process. If we think of off periods as
representing interruptions of service, then we saw in Proposition 3.2 that in
case q = 0, the limiting process Z(∞) has a very simple representation: i.i.d.
interruptions distributed according to Foff arrive according to a time homogeneous
Poisson process with intensity 1/µon, and Z(∞)(t) is simply the indicator function
of the event that at time t there are no interruptions present in the system. The
duration of the interruptions form a busy period in the M/G/∞ queue and Z(∞)(·)
is an on/off process. In this section we develop various representations of this type,
valid in more general cases.

It is possible to generate representations of the limiting process Z(∞)(·) on
[0,∞) but because Z(∞)(·) is stationary, it is also natural and illuminating to
consider representations on R. We study each type of representation in turn in
the next two subsections.

5.1. Representations of Z(∞) on [0,∞). Here is an outline of how to develop
a general representation for {Z(∞)(t), t ≥ 0}. We regard this outline as suggestive
of the result and do not justify all the steps. Once the representation Z∗(·)
suggested by this outline is in place, we show it has the same finite dimensional
distributions as Z(∞)(·) given in (4.20).

Let X(n,0) = {X(n,0)
j , 1 ≤ j ≤ n} be i.i.d. with distribution F

(n,0)
on , Y(0) = {Y (0)

j ,

1 ≤ j ≤ n} be i.i.d. with distribution F
(0)
off and suppose that conditionally on

X(n,0),Y(0), we have {W(n,+,·)
j (·), j ≥ 1}, {W(n,−,·)

j (·), j ≥ 1} independent with
the following descriptions: W

(n,+,x)
j (·) is a nonstationary on/off indicator process

with on period distribution F
(n)
on and off period distribution Foff starting with an

initial on period of length x. Similarly, W
(n,−,y)
j (·) is an on/off indicator process

with on period distribution F
(n)
on and off period distribution Foff starting with an
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initial off period of length y. We will also need W
(+,·)
j (·), j ≥ 1, W

(−,·)
j (·), j ≥ 1

which are independent, possibly terminating, on/off processes with W
(+,x)
j (·)

starting with an on period of length x and W
(−,y)
j (·) starting with an off period

of length y. The on period distribution is qF
(∞)
on and the off period distribution

is Foff.
Consider the j th indicator process I

(n)
j in (2.4). Observing I

(n)
j is equivalent to

observing

W
(n,+,X

(n,0)
j )

j with probability
µ

(n)
on

µ
(n)
on + µoff

and observing

W
(n,−,Y

(0)
j )

j with probability
µoff

µ
(n)
on + µoff

.

Think of I
(n)
j (·),1 ≤ j ≤ n, as points in the space D[0,∞) ∩ {0,1}[0,∞) of

{0,1}-valued cadlag functions. We thus get a sequence of point processes{
n∑

j=1

ε
I

(n)
j

, n ≥ 1

}

and Proposition 3.2.1, page 154 of Resnick (1987) suggests this sequence of point
processes converges weakly to a Poisson limit provided nP [I (n)

1 ∈ ·] converges
vaguely. However, note for a measurable set A ⊂ D[0,∞) ∩ {0,1}[0,∞), we have

nP [I (n)
1 ∈ A]

= nP
[
W

(n,+,X
(n,0)
1 )

1 (·) ∈ A
] µ

(n)
on

µ
(n)
on + µoff

+ nP
[
W

(n,−,Y
(0)
1 )

1 (·) ∈ A
] µoff

µ
(n)
on + µoff

=
∫ ∞

0
P
[
W

(n,+,x)
1 (·) ∈ A

]
nF (n,0)

on (dx)
(
1 + o(1)

)
(5.1)

+
∫ ∞

0
P
[
W

(n,−,y)
1 (·) ∈ A

]
F

(0)
off (dy)

µoff

µ
(n)
on /n + µoff/n

→
∫ ∞

0
P
[
W

(+,x)
1 (·) ∈ A

]
ν(dx)

+
∫ ∞

0
P
[
W

(−,y)
1 (·) ∈ A

]
F

(0)
off (dy)

µoff

µon
.
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Now let M1 = ∑
j εχj

be PRM(ν), that is, a Poisson process with mean

measure ν, and similarly let M2 = ∑
j εγj

be PRM((µoff/µon)F
(0)
off ) on [0,∞)

with M1,M2 independent and independent of W
(+,·)
j , j ≥ 1; W

(−,·)
j , j ≥ 1. The

previous convergence (5.1) suggests [Resnick (1987), page 154]

n∑
j=1

ε
I

(n)
j

⇒
∞∑

j=1

ε
I

(∞)
j

,

where the limit is PRM on D[0,∞) ∩ {0,1}[0,∞) with mean measure given
by (5.1), and this further suggests

Z(n)(·) ⇒ Z∗(·),
where

Z∗(·) = ∏
j

I
(∞)
j (·).

Because of the structure of the mean measure in (5.1), we have

Z∗(·) = ∏
χj ∈M1

W
(+,χj )

j (·) ∏
γj ∈M2

W
(−,γj )

j (·).(5.2)

THEOREM 5.1. The process Z∗(·) given in (5.2) has the same finite-
dimensional distributions as Z(∞)(·) given in (4.20) or (4.22).

PROOF. Consider time points

0 = h0 < h1 < · · · < hk

and define for any j ≤ k,

p+
j (h1, . . . , hj ;x) = P

[
W

(+,x)
j (hl) = 1, l = 0,1, . . . , j

]
,

and set q+
j = 1 − p+

j . Then using (5.2) and conditioning on M1 and M2, we get

P [Z∗(hl) = 1, l = 0, . . . , k]

= E

(∏
j

p+
k+1(h0, . . . , hk;χj)

)
P
(
M2

([0,∞)
) = 0

)

= E

(
exp

{
−

∫
[0,∞)

(− logp+
k+1(h0, . . . , hk;x)M1(dx)

)})
P
(
M2

([0,∞)
) = 0

)
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and using the standard form for the Laplace functional of a PRM [e.g., Resnick
(1987), page 129], we get

= exp
{
−
[∫

[0,∞)
(1 − p+

k+1(h0, . . . , hk;x))ν(dx) + µoff

µon

]}

= exp
{
−
[∫

[0,∞)
q+
k+1(h0, . . . , hk;x)ν(dx) + µoff

µon

]}

= exp

{
−
[

k∑
l=1

∫ hl

hl−1

q
(∞)
k−l+1(hl − x, . . . , hk − x)ν(dx) + µoff

µon

]}
,

which agrees with the specification of the finite-dimensional distributions of
Z(∞)(·) given by (4.20). �

The following is an immediate consequence of Theorem 5.1 or Theorem 5.3
below. We consider the case q = 1 so that

ν(dx) = m(∞)(dx)

µon
= (1 − F

(∞)
on (x)) dx

µon

and also assume that

µ(∞)
on =

∫ ∞
0

(
1 − F (∞)

on (x)
)
dx < ∞.(5.3)

(Note that µ
(∞)
on is not the limit of µ

(n)
on as n → ∞.) Thus

ν = µ
(∞)
on

µon
F (∞,0)

on ,

where

F (∞,0)
on (y) =

∫ y

0

(1 − F
(∞)
on (s))

µ
(∞)
on

ds.

COROLLARY 5.2. In the case q = 1 and µ
(∞)
on < ∞ the limiting process Z(∞)

can be represented in law as

Z(∞)(t) =
N∏

j=1

Wj(t), t ≥ 0,(5.4)

where N is a Poisson random variable with mean µ−1
on (µ

(∞)
on + µoff), independent

of a sequence {Wj(·), j ≥ 1} of i.i.d. stationary on/off processes with on

distribution F
(∞)
on and off distribution Foff.
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PROOF. Since ν[0,∞) < ∞, we have N1 := M1[0,∞) is a Poisson random
variable with parameter ν[0,∞) = µ

(∞)
on /µon. Likewise, N2 := M2[0,∞) is a

Poisson random variable with parameter µoff/µon. Furthermore, we have the
representations

M1 =
N1∑
j=1

ε
X

(∞,0)
j

, M2 =
N2∑
j=1

ε
Y

(0)
j

,

where {X(∞,0)
j } is i.i.d. with common distribution F

(∞,0)
on , independent of N1 and

{Y (0)
j } is i.i.d. with common distribution F

(0)
off independent of N2. Let {B(∞)

j , j ≥ 1}
be i.i.d. Bernoulli random variables independent of M1,M2 and assume

P
[
B

(∞)
j = 1

] = µ
(∞)
on

µ
(∞)
on + µoff

.

By a simple thinning argument,

Z∗(·) d=
N1+N2∏

j=1

[
B

(∞)
j W

(+,X
(∞,0)
j )

j (·) + (1 − B
(∞)
j )W

(−,Y
(0)
j )

j

]
.

Since what is inside the square brackets is a stationary on/off process, the result
follows. �

Corollary 5.2 confirms what we saw in Proposition 4.4: in the case q = 1 and
µ

(∞)
on < ∞ the measure ν is finite and the limiting process Z(∞) is nonergodic.

Moreover, there is a positive probability

exp
{
−µoff + µ

(∞)
on

µon

}
= P [N = 0]

that Z(∞) ≡ 1; that is, there are no interruptions in the limit. The corresponding
probability when ν[0,∞) = ∞ is equal to zero. This is somewhat surprising
because the case q = 1 and µ

(∞)
on < ∞ corresponds, intuitively, to “more

interruptions” than the other two cases. Furthermore, the representation (5.4)
offers an alternative explanation of the limiting dependence results obtained in
Section 4.4. Specifically, for all k = 0,1, . . . ,

ϕk := lim
	k→∞· · · lim

	1→∞P

[
Z(∞)

( j∑
i=1

	i

)
= 1, j = 0,1, . . . , k

]

=
∞∑

n=0

P [N = n](5.5)
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×
(

lim
	k→∞· · · lim

	1→∞P

[
W1

( j∑
i=1

	i

)
= 1, j = 0,1, . . . , k

])n

= exp

{
−
[

µoff

µon
+ µ

(∞)
on

µon

(
1 −

(
µ

(∞)
on

µ
(∞)
on + µoff

)k
)]}

,

and then

ϕ∗ := lim
k→∞ϕk = exp

{
−µ

(∞)
on + µoff

µon

}
is simply the probability P [N = 0] that there are no interruptions in the limiting
process. A similar computation can be performed for the probability ψk that the
limiting process is in the off state at k + 1 points very far from each other.

5.2. Representations of Z(∞) on R. Now we give a construction of the limit
process on R.

We start with the case q = 1. Let D = {(x, y) : 0 ≤ x ≤ y} and T : D →
R+ × R+ be a mapping defined by T (x, y) = (x, y − x). Let M1 and M2
be independent Poisson random measures on R+ × R+ with mean measures
m1 and m2, respectively, where

m1 = 1

µon

(
L × F (∞)

on
) ◦ T −1(5.6)

and

m2 = 1

µon
(L × Foff) ◦ T −1.(5.7)

Note that m2 is a finite measure with total mass µoff/µon, while m1 is finite if and
only if the mean µ

(∞)
on of the distribution F

(∞)
on is finite in which case the total mass

is µ
(∞)
on /µon.

Let

Z∗(t) = Z+,∗(t)Z−,∗(t), t ∈ R,(5.8)

where

Z+,∗(t) = ∏
(X+

j ,Y +
j )∈M1

W
+,(X+

j ,Y+
j )

j (t), t ∈ R,(5.9)

and

Z−,∗(t) = ∏
(X−

j ,Y −
j )∈M2

W
−,(X−

j ,Y −
j )

j (t), t ∈ R.(5.10)

Furthermore, conditionally on M1 and M2 the stochastic processes W
+,·
j , j ≥ 1,
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and W
−,·
j , j ≥ 1, are independent, with the following distribution. For (x, y) ∈

R+ × R+, W
+,(x,y)
j is an on/off process with on distribution F

(∞)
on and off

distribution Foff, that has a special on period containing the origin, equal to
(−y, x). Similarly, for (x, y) ∈ R+ × R+, W

−,(x,y)
j is an on/off process with on

distribution F
(∞)
on and off distribution Foff, that has a special off period containing

the origin, equal to (−y, x).
A straightforward marking of a Poisson random measure argument shows that

the process Z∗ in (5.8) has an alternative representation,

Z∗(t) = ∏
p∈M

p(t), t ∈ R,(5.11)

where M is a Poisson random measure on E = D(R) ∩ {0,1}R, endowed with the
cylindrical σ -field F , whose mean measure is given by

m(A) =
∫ ∞

0

∫ ∞
0

P
(
W

+,(x,y)
1 ∈ A

)
m1(dx, dy)

+
∫ ∞

0

∫ ∞
0

P
(
W

−,(x,y)
1 ∈ A

)
m2(dx, dy), A ∈ F .

(5.12)

THEOREM 5.3. The stochastic process Z∗ defined by either (5.8) or (5.11) is
a version of the limiting process Z(∞) in the case q = 1.

PROOF. We work with the representation (5.11). The first step is to establish
stationarity of the process Z∗. This will follow once we show that the mean
measure m in (5.12) is shift invariant; that is,

m(A) = m(As) for all A ∈ F and s ≥ 0,(5.13)

where

As = {p ∈ E :p(· + s) ∈ A}.
This fact is clear if µ

(∞)
on < ∞. Indeed, in this case one can write

µon

µ
(∞)
on + µoff

m(A) = µ
(∞)
on

µ
(∞)
on + µoff

∫ ∞
0

∫ ∞
0

P
(
W

+,(x,y)
1 ∈ A

) µon

µ
(∞)
on

m1(dx, dy)

+ µoff

µ
(∞)
on + µoff

∫ ∞
0

∫ ∞
0

P
(
W

−,(x,y)
1 ∈ A

)µon

µoff
m2(dx, dy),

and the right-hand side of the latter expression is the probability law of the
stationary on/off process on R with on distribution F

(∞)
on and off distribution Foff;

see Section 2. Since any distribution F
(∞)
on is the weak limit of a sequence of

probability laws with finite means, it follows immediately that the measure m

in (5.12) is shift invariant in all cases.
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We have, for any m = 0,1, . . . and 0 = h0 < h1 < · · · < hm,

P [Z∗(hi) = 1, i = 0,1, . . . ,m]
= P [M2(R+ × R+) = 0]P [Z+,∗(hi) = 1, i = 0,1, . . . ,m]
= e−µoff/µon

× exp
{
− 1

µon

∫ ∞
0

dx

×
∫ ∞
x

(
1 − P

[
W

+,(x,y−x)
1 (hi) = 1, i = 0,1, . . . ,m

])
F (∞)

on (dy)

}
= e−µoff/µon

× exp

{
− 1

µon

m−1∑
j=0

∫ hj+1

hj

((
1 − F (∞)

on (u)
)

× q
(∞)
m−j (hj+1 − u, . . . , hm − u)

)
du

}

= P [Z(∞)(hi) = 1, i = 0,1, . . . ,m]
by (4.21). Together with stationarity, this proves that Z∗ and Z(∞) have the same
finite-dimensional distributions. �

We next proceed to give a representation of the limiting process Z(∞) in the
case 0 ≤ q < 1. Let

(
W

(q)
j

)
be i.i.d. terminating on/off processes with (defective)

on distribution qF
(∞)
on and off distribution Foff, each one of which starts with an

off period, and independent of a time homogeneous Poisson random measure Mq

on R with intensity pµ−1
on . Let

Z∗
q(t) = ∏

�j∈Mq,�j≤t

W
(q)
j (t − �j), t ∈ R.(5.14)

THEOREM 5.4. The stochastic process Z∗
q defined by (5.14) is a version of the

limiting process Z(∞) in the case q < 1.

PROOF. Since the random measure Mq is time homogeneous, the process Z∗
q

in (5.14) is obviously stationary. Let k = 0,1, . . . and 0 = h0 < h1 < · · · < hk .
Observe that the number of terminating on/off processes that arrive before time 0
and run an off period at least one of the times h0 < h1 < · · · < hk has a Poisson
distribution with mean

τ−1 = pµ−1
on

∫ ∞
0

q
(∞)
k+1(x,h1 + x, . . . , hk + x) dx,
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while the number of the terminating on/off processes that arrive between times hj

and hj+1 and run an off period at least one of the times hj+1 < · · · < hk has a
Poisson distribution with mean

τj = pµ−1
on

∫ hj+1

hj

q
(∞)
k−j (hj+1 − x, . . . , hk − x) dx,

j = 0,1, . . . , k. Moreover, these k + 2 Poisson random variables are independent.
We conclude that

P
[
Z∗(hi) = 1, i = 0,1, . . . , k

] = exp

(
−

k∑
j=−1

τj

)
.(5.15)

Note that

τ−1 = pµ−1
on

∫ ∞
0

[
Foff(x) + q

∫ x

0
q

(∞)
k+1(x − y,h1 + x − y, . . . ,

hk + x − y)F (∞)
on ∗ Foff(dy)

+ q

∫ x

0

(
k−1∑
j=0

∫ hj+1+x−y

hj+x−y
q

(∞)
k−j (hj+1 + x − y − z, . . . ,

hk + x − y − z)F (∞)
on (dz)

)

× Foff(dy)

]
dx

= pµ−1
on µoff + qτ−1

+
k−1∑
j=0

∫ ∞
0

(∫ x

0

(∫ hj+1+x−y

hj+x−y
q

(∞)
k−j (hj+1 + x − y − z, . . . ,

hk + x − y − z)F (∞)
on (dz)

)
× Foff(dy)

)
pq

dx

µon
.

Now, for each j = 0,1, . . . , k − 1, simple algebra gives∫ ∞
0

(∫ x

0

(∫ hj+1+x−y

hj+x−y
q

(∞)
k−j (hj+1 + x − y − z, . . . ,

hk + x − y − z)F (∞)
on (dz)

)
Foff(dy)

)
dx

=
∫ ∞

0

(∫ hj+1+x

hj +x
q

(∞)
k−j (hj+1 + x − z, . . . , hk + x − z)F (∞)

on (dz)

)
dx

=
∫ hj+1

hj

(
1 − F (∞)

on (x)
)
q

(∞)
k−j (hj+1 − x, . . . , hk − x) dx.



1386 S. RESNICK AND G. SAMORODNITSKY

Since it is clear that τ−1 < ∞, we conclude that

τ−1 = µoff

µon
+ q

µon

k−1∑
j=0

∫ hj+1

hj

(
1 − F (∞)

on (x)
)
q

(∞)
k−j (hj+1 − x, . . . , hk − x) dx,

and so

k∑
j=−1

τj = µoff

µon
+ µ−1

on

k−1∑
j=0

∫ hj+1

hj

(
1 − qF (∞)

on (x)
)
q

(∞)
k−j (hj+1 − x, . . . , hk − x) dx,

and so the statement of the theorem follows from (5.15) and (4.21). �

REMARK 5.5. By constructing the on/off process involved in the representa-
tion of the limiting process Z(∞) in Theorems 5.3 and 5.4 to have their sample
paths in the the appropriate cadlag space, we immediately see that the above theo-
rems give us a construction of a version of the limiting process Z(∞) with sample
paths in the cadlag space as well. This is a version we will work with in the sequel.

REMARK 5.6. We can relate Theorem 5.4 to Theorem 5.1 as follows. Recall
that ν = p

µon
L + q

µon
m(∞) so that PRM(ν) can be represented as an independent

superposition of two Poisson processes, M11 and M12, where M11 has mean
measure p

µon
L so that it is homogeneous, and M12 has mean measure q

µon
m(∞).

The leads to a representation which is a slight elaboration of (5.2), namely, for
t ≥ 0,

Z∗(t) = ∏
�j∈M11

W
(+,�j )

j (t)
∏

ηj ∈M12

W
(+,ηj )

j (t)
∏

γj ∈M2

W
(−,γj )

j (t).(5.16)

Note that ∏
�j∈M11

W
(+,�j )

j (t) = ∏
�j∈M11,�j≤t

W
q
j (t − �j)

in law. The representation (5.16) is for t ∈ R+. Write the analogous representation
for a process on [−T,∞) and we will need ingredients,∑

j

ε�j
∼ PRM

(
p

µon
L

)
,

∑
j

εηj
∼ PRM

(
q

µon
m

(∞)
T (·)

)
,

∑
j

εγj
∼ PRM

(
µoff

µon
F

(0)
off,T (·)

)
,
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with the notation explained in the next line. For any −∞ < s < t < ∞,

lim
T →∞m

(∞)
T (s, t] = lim

T →∞m(∞)(s + T, t + T ] = lim
T →∞

∫ t+T

s+T

(
1 − F (∞)

on (u)
)
du

≤ lim
T →∞(t − s)

(
1 − F (∞)

on (T + s)
) = 0,

and similarly,

lim
T →∞F

(0)
off,T (s, t] = lim

T →∞F
(0)
off (s + T, t + T ] = 0.

This suggests that in the reconstruction of (5.16) on [−T,∞), when T → ∞, the
second and third factors become negligible.

The clarity that is provided by representation (5.14) is only obtained by having
a representation on all of R.

An immediate conclusion of Theorem 5.4 is the following generalization of
Proposition 3.2.

COROLLARY 5.7. (i) If q = 0 then Z(∞)(·) is the indicator process of a
stationary on/off process where the on distribution is exponential with parameter
1/µon and the off distribution is the busy period distribution of an M/G/∞
queue whose input is a Poisson process with rate 1/µon and whose service length
distribution is Foff.

(ii) If 0 ≤ q < 1 and F
(∞)
on = δ{0} then Z(∞)(·) is the indicator process of a

stationary on/off process where the on distribution is exponential with parameter
p/µon and the off distribution is the busy period distribution of an M/G/∞
queue whose input is a Poisson process with rate p/µon and whose service
length distribution

∑∞
n=1 pqn−1Fn∗

off is a geometric convolution of the original off
distributions Foff.

(iii) If 0 ≤ q < 1 and F
(∞)
on is the exponential distribution with parameter λ

then Z(∞)(·) is the indicator process of a stationary on/off process modulated by
a state process, N , as follows. If N = n ≥ 0 then i.i.d. interruptions arrive to the
system according to a Poisson process with rate nλ + pµ−1

on . Each interruption
has Foff distribution. When an interruption arrives, the state process N will stay
equal to n with probability pµ−1

on /(nλ + pµ−1
on ) and will move to state n − 1 with

probability nλ/(nλ + pµ−1
on ). When an interruption leaves the system, the state

process N stays the same with probability p = 1 − q and goes up by one with
probability q . In particular, if N = n ≥ 0 at the beginning of an on period, this on
period will have exponential distribution with parameter nλ + pµ−1

on .

Note for (i) that when q = 0, each W
(q)
j (·) indicates an off period distributed

according to Foff followed by an on period of infinite length. So off periods
or interruptions arrive according to a homogeneous Poisson process and form a
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Poisson clump. Similarly, for (ii), each on period is 0 with probability q and infinite
with probability p := 1 − q so W

(q)
j (·) indicates an initial off period followed by a

geometric number of additional off periods and then an infinite on period.
With a bit of extra work we can push the conclusions in the first two parts of the

previous corollary further.

PROPOSITION 5.8. Let Toff = inf{t ≥ 0 :Z(∞)(t) = 0}. Then for every s > 0,

P
[
Z(∞)(0) = 1, Toff > s

]
= exp

{
−
(

µoff

µon
+ ν[0, s]

)}

= exp
{
−
[
µoff

µon
+ 1

µon

∫ s

0

(
1 − qF (∞)

on (u)
)
du

]}
.

(5.17)

In particular, Z(∞)(·) is the indicator process of a stationary on/off process with
exponentially distributed on periods if and only if q = 0 or if 0 ≤ q < 1 and
F

(∞)
on = δ{0}.

PROOF. In the notation of representation (5.2) and Theorem 5.1, we have

P
[
Z(∞)(0) = 1, Toff > s

] = P
[
M2[0,∞) = 0

]
P
[
M1[0, s] = 0

]
= exp

{
−
(

µoff

µon
+ ν[0, s]

)}
.

If Z(∞)(·) is the indicator process of a stationary on/off process with exponen-
tially distributed on periods, then we must have, for some a > 0, ν[0, s] = as, for
all s > 0. This is possible only if q = 0 or if 0 ≤ q < 1 and F

(∞)
on = δ{0}. The

converse follows from Corollary 5.7. �

6. Rate of decay of covariances. We need to understand the dependence
structure of the limiting process Z(∞) in order to assess the suitability of the
hierarchical product models as explanations of measured traffic. In particular, it
is of interest to understand in what cases the limiting process Z(∞) will exhibit
long-range dependence. In this section, we study the rate at which the covariance
function

R(t) = Cov
(
Z(∞)(t),Z(∞)(0)

) = P
(
Z(0) = Z(t) = 1

)− exp
{
−2

µoff

µon

}
(6.1)

decays as t → ∞. Even though covariances provide only limited information on
the length of memory in a stationary stochastic process, their rate of decay is,
nonetheless, illuminating. This is a traditional way of studying dependence for
stationary processes [see, e.g., Beran (1994) and references therein] and has been
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used in particular for on/off processes [see Heath, Resnick and Samorodnitsky
(1998) or Willinger, Taqqu and Erramilli (1996) and references therein]. One of
our goals is to compare the behavior of the covariances of the process Z(∞) with
those of on/off processes.

It turns out that the asymptotic behavior of the covariances is very different,
depending on whether q < 1 or q = 1 and, in the latter case, whether µ

(∞)
on < ∞

or µ
(∞)
on = ∞. We consider, therefore, these three cases separately.

6.1. The case q = 1 and µ
(∞)
on < ∞. In this case it follows immediately from

(4.13) or (5.5) that

lim
t→∞ R(t) = exp

{
−2

µoff

µon

}(
exp

{
µ2

off

µon(µ
(∞)
on + µoff)

}
− 1

)
,(6.2)

a nonzero limit because of lack of ergodicity; see Corollary 5.2 and Proposi-
tion 4.4.

6.2. The case q = 1 and µ
(∞)
on = ∞. In this case limt→∞ R(t) = 0. It follows

from (4.8) and (4.14) that

R(t) = exp
{
−2

µoff

µon

}{
exp

[
µoff

µon

(
1 −

∫ t

0

1 − Foff(t − s)

µoff
p(s) ds

)]
− 1

}

∼ µoff

µon
exp

{
−2

µoff

µon

}(
1 −

∫ t

0

1 − Foff(t − s)

µoff
p(s) ds

)

= µoff

µon
exp

{
−2

µoff

µon

}(
F

(0)
off (t) +

∫ t

0

1 − Foff(t − s)

µoff

(
1 − p(s)

)
ds

)
(6.3)

as t → ∞. Recall that p(s) is the probability of being in the on state at time s in
an on/off process with on distribution F

(∞)
on and off distribution Foff and starting

with an on period. Denoting

E(t) =
∫ t

0

1 − Foff(t − s)

µoff

(
1 − p(s)

)
ds, t ≥ 0,(6.4)

we see that the rate of decay of the covariance is determined by the slower rate of

decay, that of F
(0)
off (t) and that of E(t). Note that

1 − p(t) =
∫ t

0
ψ(t − x)U(∞)(dx),

where

ψ(t) =
∫ t

0

(
1 − Foff(t − x)

)
F (∞)

on (dx), t ≥ 0.
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Therefore,

E(t) = 1

µoff

∫ t

0
g(t − x)U(∞)(dx),(6.5)

where

g(t) =
∫ t

0
h(t − x)F (∞)

on (dx)(6.6)

and

h(t) =
∫ t

0

(
1 − Foff(x)

)(
1 − Foff(t − x)

)
dx, t ≥ 0.(6.7)

Observe that

h(t) ≤ µoff

(
1 − Foff

(
t

2

))
, t ≥ 0,(6.8)

and so the function h is directly Riemann intergrable [Remark 3.10.5 in Resnick
(1992)]. Therefore so is the function g [Proposition 2.16(d) in Çinlar (1975)]. This
fact and representation (6.5) of the function E as a convolution of g with a renewal
function U(∞) show that one can try using a key renewal theorem to find the
rate at which the function E converges to zero. Since the renewal function U(∞)

corresponds to an infinite mean distribution F
(∞)
on ∗ Foff, one has to use a “heavy

tailed” key renewal theorem.
To use the available “heavy tailed” key renewal theorems we have to assume

regular variation of the tail of the distribution F
(∞)
on . Specifically, assume that

1 − F (∞)
on (x) = x−αL(x), x → ∞,(6.9)

for some 0 < α ≤ 1, and a slowly varying function L. No special assumptions
will be imposed on the distribution Foff. We will see that the rate of decay of the
function E is determined by the tail of F

(∞)
on . However, we already see from (6.3)

that the rate of decay of the entire covariance function R depends on the tails of
both distributions, F

(∞)
on and Foff.

Recall from Section 4 that m(∞)(t) = ∫ t
0 (1 − F

(∞)
on (s)) ds, t ≥ 0.

THEOREM 6.1. Under the regular variation assumption (6.9),

lim inf
t→∞

(
F

(0)
off (t) + (m(∞)(t))−1 µoff

�(α)�(2 − α)

)−1
R(t)

= µoff

µon
exp

{
−2

µoff

µon

}
.

(6.10)
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Furthermore, if 1/2 < α ≤ 1 then

lim
t→∞

(
F

(0)
off (t) + (m(∞)(t))−1 µoff

�(α)�(2 − α)

)−1

R(t)

= µoff

µon
exp

{
−2

µoff

µon

}
.

(6.11)

PROOF. Since µoff < ∞, we see that 1 −Foff(t) = o(1 −F
(∞)
on (t)) as t → ∞.

It follows from the standard properties of distributions with subexponential and,

in particular, regularly varying tails, that F
(∞)
on ∗ Foff(t) ∼ 1 −F

(∞)
on (t) and, hence,

m
(∞)
1 (t) ∼ m(∞)(t) as t → ∞ as well, where m

(∞)
1 (t) = ∫ t

0 (1−F
(∞)
on ∗Foff(s)) ds,

t ≥ 0. See, for example, Embrechts, Goldie and Veraverbeke (1979). It follows
from Theorem 4 in Erickson (1970) that

lim inf
t→∞ m(∞)(t)E(t) = lim inf

t→∞ m
(∞)
1 (t)E(t)

= 1

�(α)�(2 − α)µoff

∫ ∞
0

g(x) dx

(6.12)

= 1

�(α)�(2 − α)µoff

∫ ∞
0

h(x) dx

= 1

�(α)�(2 − α)µoff
µ2

off = µoff

�(α)�(2 − α)
,

which together with (6.3) establishes the first claim of the theorem.
To prove (6.11), note that we can write

E(t) = 1

µoff

∫ t

0
r(t − x)F (∞)

on (dx),(6.13)

where

r(t) =
∫ t

0
h(t − x)U(∞)(dx), t ≥ 0.

Since the function 1 − Foff(t) is nonincreasing and integrable, we conclude that
by (6.8) that h(t) = o(1/t) as t → ∞. It follows by Theorem 3 in Erickson (1970)
that in the case 1/2 < α ≤ 1,

lim
t→∞ m(∞)(t)r(t) = lim

t→∞ m
(∞)
1 (t)r(t)

=
(

1

�(α)�(2 − α)

∫ ∞
0

h(x) dx

)
= µ2

off

�(α)�(2 − α)
.

(6.14)

Now we use (6.13) to write for 0 < ε < 1,

µoffE(t) =
∫ εt

0
r(t − x)F (∞)

on (dx) +
∫ t

εt
r(t − x)F (∞)

on (dx) := E1(t) + E2(t).
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It follows from (6.14) that

lim sup
t→∞

m(∞)(t)E1(t) ≤ (1 − ε)−(1−α) µ2
off

�(α)�(2 − α)

because by Karamata’s theorem m(∞)(t) is regularly varying with exponent 1 − α

[see, e.g., Theorem 0.6 in Resnick (1987)]. On the other hand,

E2(t) ≤ 1 − F (∞)
on (εt) = o

((
m(∞)(t)

)−1)
as t → ∞ because α > 1/2. We conclude that

lim sup
t→∞

m(∞)(t)E(t) ≤ (1 − ε)−(1−α) µoff

�(α)�(2 − α)
,

and since this is true for all 0 < ε < 1, we conclude that

lim sup
t→∞

m(∞)(t)E(t) ≤ µoff

�(α)�(2 − α)
,

which together with (6.12) shows that

lim
t→∞ m(∞)(t)E(t) = µoff

�(α)�(2 − α)
.(6.15)

In combination with (6.3), the statement (6.15) proves the remaining part of the
theorem. �

REMARK 6.2. It follows immediately from Theorem 6.1 that∫ ∞
0

R(t) dt = ∞.(6.16)

This is sometimes taken to be an indication of long-range dependence [see, e.g.,
Beran (1994)]. Note, furthermore, that (6.16) always holds in the case q = 1 and
µ

(∞)
on = ∞, whether or not the assumption of regular variation (6.9) is satisfied.

Indeed, observe simply that∫ ∞
0

(∫ t

0

(
1 − Foff(t − s)

)(
1 − p(s)

)
ds

)
dt = µoff

∫ ∞
0

(
1 − p(s)

)
ds = ∞

since the amount of time spent in either state of a nonterminating alternating
renewal process is infinite with probability 1. Now (6.16) follows from (6.3).

REMARK 6.3. Karamata’s theorem mentioned above actually shows that if
α < 1 then

m(∞)(t) ∼ 1 − F
(∞)
on (t)

1 − α
,

and so Theorem 6.1 can be, in the case α < 1, reformulated accordingly.
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REMARK 6.4. It follows from Theorem 6.1 that (at least, in the range 1/2 <

α ≤ 1) the rate of decay of the covariance function R(t) is faster when the tail of
the distribution F

(∞)
on is heavier. This should be contrasted with the case of on/off

processes where heavier tails tend to cause the covariance function to decay slower
[see, e.g., Heath, Resnick and Samorodnitsky (1998)].

REMARK 6.5. It is an open question to what extent (6.11) is true in the case
0 < α ≤ 1/2. The main ingredient in the proof of a key renewal theorem we used
to obtain (6.12), the fact that

lim
t→∞m

(∞)
1 (t)

(
U(∞)(t + h) − U(∞)(t)

) = 1

�(α)�(2 − α)
(6.17)

is false, in general, in the case 0 < α ≤ 1/2, as counterexamples in Williamson
(1968) demonstrate (in the arithmetic case). This, clearly, rules out the expected
key renewal theorem, at least for some directly Riemann intergrable functions. On
the other hand, at least in the arithmetic case, (6.17) fails only on a “small” set, so
there is hope that a key renewal theorem may still hold for a reasonably rich class
of functions.

At the very least one would expect both (6.17) and the corresponding key
renewal theorem to hold under some smoothness assumptions on the distribution
F

(∞)
on ∗ Foff and, in fact, Erickson (1971) does state a theorem of this kind, that

assumes existence of a sufficiently regular density of F
(∞)
on ∗Foff. Unfortunately, no

proof is given, and we have not been able to locate the promised future publication
in which the proof was to appear. It is unfortunate that there does not seem to
have been much progress on heavy tailed key renewal theorems since Erickson
(1970) [but the interesting recent paper of Doney (1997) may be a sign of important
additional future developments].

6.3. The case q < 1. The decomposition (6.3) still holds in this case, but now
p(s) is the probability of being in the on state at time s in a terminating on/off
process with (defective) on distribution qF

(∞)
on and off distribution Foff and starting

with an on period. The expressions (6.5) and (6.6) are still valid, but now we have
to replace (6.7) with

h(t) = q

∫ t

0

(
1 − Foff(x)

)(
1 − Foff(t − x)

)
dx, t ≥ 0.(6.18)

We study the decay rate of the covariance function R(t) under several different
scenarios.

We start with the case q = 0.

THEOREM 6.6. If q = 0 then

lim
t→∞

R(t)

F
(0)
off (t)

= µoff

µon
exp

{
−2

µoff

µon

}
.(6.19)
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The proof is an immediate conclusion from (6.3).
Unless specified otherwise, in the remainder of this section we assume that

0 < q < 1.
Observe that

h(t) ≥ 2q
(
1 − Foff(t)

) ∫ t/2

0

(
1 − Foff(x)

)
dx

∼ 2qµoff
(
1 − Foff(t)

)
, t → ∞.

(6.20)

It turns out that under mild heavy tails assumptions on Foff the above holds as an
asymptotic equivalence

lim
t→∞

h(t)

1 − Foff(t)
= 2qµoff.(6.21)

By Fatou’s lemma, the minimal asumption under which (6.21) holds is the
assumption Foff ∈ L, the class of long tailed distributions: G ∈ L if Ḡ(t − x)/

Ḡ(t) → 1 as t → ∞ for all x > 0. A sufficient condition for (6.21): There is a
function H integrable on (0,∞) such that

(1 − Foff(x))(1 − Foff(t − x))

1 − Foff(t)
≤ H(x) for all 0 < x <

t

2
.(6.22)

Examples include Foff with a regularly varying tail, in which case one can take
H(x) = CFoff(x) for some C > 0, or, say, Foff(x) = exp{−axβ} for 0 < β < 1,
in which case one can take H(x) = exp{−a(2 − 2β)xβ}. We do not know if the
relation (6.21) holds under the assumption that Foff belongs to the class S of
subexponential distributions: recall that G ∈ S is G ∗ G(t) ∼ 2G(t) as t → ∞.
We refer the reader to Embrechts, Goldie and Veraverbeke (1979) for information
on subexponential distributions and some of their properties used below.

THEOREM 6.7. Let Foff ∈ S and let 1 − F
(∞)
on (t) = o(Foff(t)) as t → ∞.

Assume that (6.21) holds [ for which (6.22) is a sufficient condition]. Then (6.19)
holds.

PROOF. We claim that under the conditions of the theorem,

lim
t→∞

g(t)

1 − Foff(t)
= 2qµoff(6.23)

as well. Indeed, it follows from (6.21) and the assumption 1−F
(∞)
on (t) = o(Foff(t))

that

g(t) ∼ 2qµoff

∫ t

0

(
1 − Foff(t − x)

)
F (∞)

on (dx)

= 2qµoff

(
Foff ∗ F

(∞)
on (t) − F

(∞)
on (t)

)
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as t → ∞. Using the assumptions Foff ∈ S and 1 − F
(∞)
on (t) = o(Foff(t)), it is a

standard property of subexponential distributions that Foff ∗ F
(∞)
on (t) ∼ Foff(t) as

t → ∞ [see Embrechts, Goldie and Veraverbeke (1979)], and so (6.23) follows.
The latter fact also implies that pU(∞) which is a geometric convolution of the
distributions Foff ∗ F

(∞)
on has a tail of the same order,

1 − pU(∞)(t)

1 − Foff(t)
= 1

p
.(6.24)

Therefore, using once again the properties of subexponential random variables, we
see that

E(t) ∼ 2qµoff

∫ t

0

(
1 − Foff(t − x)

)
U(∞)(dx)

= 2qµoff

p

(
Foff ∗ pU(∞)(t) − pU(∞)(t)

)
∼ 2qµoff

p
Foff(t)

as t → ∞.
On the other hand,

Foff(t) = o
(
F

(0)
off (t)

)
(6.25)

as t → ∞ if Foff ∈ L ⊃ S. Now the statement of the theorem follows from
(6.25) and (6.3). This completes the proof. �

REMARK 6.8. It is easy to see by looking carefully at the above argument
that the full force of (6.21) is not needed for its conclusion. For example, the
same argument will establish (6.19) under the following conditions: There is a
distribution G ∈ S such that

g(t) = O
(
1 − G(t)

)
,

(
1 − G(t)

) = o
(
F

(0)
off (t)

)
as t → ∞.(6.26)

Note that the first part of (6.26) already implies that

max
(
1 − F (∞)

on (t),Foff(t)
) = O

(
1 − G(t)

)
as t → ∞.

The situation is a bit different in the case of exponential tails. Assume that there
is a β > 0 such that

̂
F

(∞)
on (−β)F̂off(−β) = 1

q
(6.27)
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and ∫ ∞
0

teβtF (∞)
on (dt) < ∞,

∫ ∞
0

teβtFoff(dt) < ∞(6.28)

[recall that
̂
F

(∞)
on (θ) = ∫ ∞

0 e−θtF
(∞)
on (dt) is the Laplace transform of F

(∞)
on , and

F̂off(θ) is the Laplace transform of Foff].

THEOREM 6.9. Assume (6.27) and (6.28) hold. Then

lim
t→∞ eβtR(t)

= 1

µon
exp

{
−2

µoff

µon

}

×
̂
F

(∞)
on (−β)(F̂off(−β) − 1)2

̂
F

(∞)
on (−β)

∫∞
0 teβtFoff(dt) + F̂off(−β)

∫∞
0 teβtF

(∞)
on (dt)

.

(6.29)

PROOF. It is immediate that the function Foff(t)e
βt is directly Riemann

integrable. Using Proposition 2.16(d) in Çinlar (1975) twice, we see that so is
the function h�(t) = eβth(t), with h given in (6.18), and, hence, so is the function
g�(t) = eβtg(t), with g given in (6.6). Therefore, Proposition 3.11.1 in Resnick
(1992) applies, and for E(t) given in (6.5) we have

lim
t→∞ eβtE(t) = 1

µoff

∫∞
0 eβxg(x) dx

q
∫ ∞

0 xeβxF
(∞)
on ∗ Foff(dx)

.

Notice that under the asumptions of the theorem,

F
(0)
off (t) = o(e−βt ) as t → ∞.

Since ∫ ∞
0

eβxg(x) dx = q

µoff

̂
F

(∞)
on (−β)

(
F̂off(−β) − 1

)2

and ∫ ∞
0

xeβxF (∞)
on ∗ Foff(dx)

= ̂
F

(∞)
on (−β)

∫ ∞
0

teβtFoff(dt) + F̂off(−β)

∫ ∞
0

teβtF (∞)
on (dt),

the statement of the theorem follows from (6.3). �
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REMARK 6.10. It is interesting to note that in the case q < 1 the state-
ment (6.16) indicating that the covariance function is not integrable holds if and
only if the second moment of Foff is infinite. Indeed, this is a direct consequence
of (6.3) and the fact that∫ ∞

0

(∫ t

0

(
1 − Foff(t − s)

)(
1 − p(s)

)
ds

)
dt = µoff

∫ ∞
0

(
1 − p(s)

)
ds < ∞

since the amount of time spent in the off state of a terminating alternating renewal
process with a finite mean off distribution is finite, regardless of the on distribution.
Compare this with Remark 6.2.
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