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Consider a rooted labelled tree graph τn having a total of n vertices.
The width function counts the number of vertices as a function of the dis-
tance to the root φ. In this paper we compute large n asymptotic behavior
of the width functions for two classes of tree graphs (both random and
deterministic) of the following types: (i) Galton–Watson random trees τn
conditioned on total progeny and (ii) a class of deterministic self-similar
trees which include an “expected” Galton-Watson tree in a sense to be
made precise. The main results include: (i) an extension of Aldous’s theo-
rem on “search-depth” approximations by Brownian excursion to the case
of weighted Galton–Watson trees; (ii) a probabilistic derivation which gen-
eralizes previous results by Troutman and Karlinger on the asymptotic
behavior of the expected width function and provides the fluctuation law;
and (iii) width function asymptotics for a class of deterministic self-similar
trees of interest in the study of river network data.

1. Introduction and statements of results. Let T be the space of la-
belled tree graphs rooted at φ. An element τ of T may be coded as a set of finite
sequences of positive integers �i1� i2� � � � � in� ∈ τ such that the following hold:

(i) φ ∈ τ is coded as the empty sequence;

(ii) if �i1� � � � � ik� ∈ τ, then �i1� � � � � ij� ∈ τ ∀ 1 ≤ j ≤ k;

(iii) if �i1� i2� � � � � in� ∈ τ, then �i1� � � � � in−1� j� ∈ τ ∀ 1 ≤ j ≤ in.

If �i1� � � � � in� ∈ τ, then �i1� � � � � in−1� ∈ τ is referred to as the parent vertex
to �i1� � � � � in�� A pair of vertices are connected by an edge (adjacent) if and only
if one of them is parent to the other. In this way edges may also be identified
with the (unique) nonparental or descendant vertex. This specifies the (planar)
graph structure of τ and makes τ a rooted connected graph without cycles. The
space T may be viewed as a complete metric space with the ultrametric

ρ�τ� γ� = 1
sup
n� γ�n− 1 = τ�n− 1 �

and τ�n = 
�i1� � � � � ik� ∈ τ� k ≤ n� This and the countable dense subset T0
of finite labelled tree graphs rooted at φ make T a Polish space. An impor-
tant class of probability distributions on the Borel sigma field of T for this
paper is the Galton–Watson distribution with single progenitor and offspring
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distribution pk� k = 0�1� � � � � for which the probability assigned to a ball
B�τ�1/�N+ 1��� τ ∈ T0� N ∈ 
1�2� � � � is

P

(
B

(
τ�

1
N+ 1

))
= ∏
v∈τ��N−1�

pl�v��

where l�v� = #
j� �v� j� ∈ τ�N� The height of a vertex v = �i1� i2� � � � � in� ∈ τ
is h�v� = n+ 1� The height of a tree τ is

�1�1� h�τ� = sup
h�v�� v ∈ τ�
Let ν = ν�τ� be the total number of vertices in τ. Let �e� be an edge (or link)

of τ. We associate with each edge �e� of the tree τ a random weight W�e�,
where 
W�e�� e = �i1� � � � � in�� n ≥ 1� in ≥ 1 is a (denumerable) collection of
iid positive random variables, independent of τ and, without loss of generality,
assumed to have mean 1. We let Zn = Zn�τ� be the number of vertices in τ
at height n + 1. Then Z0�τ� = 1 counts only the root. Vertices at level 1 are
labeled as �i1�� 1 ≤ i1 ≤ Z1, where Z1 = Z1�τ� is the total number of vertices
in τ at height 2. We arrange the order of these vertices from left to right; that
is, �1� is on the far left, next (if it exists) is �2� and so on, and �0�Z1� is on the
far right. Recursively, the label �i1� i2� � � � � ik+1� with ij ≥ 1 and 1 ≤ j ≤ k+ 1
is assigned to one of the vertices adjacent to �i1� i2� � � � � ik�� In general, a label
of the form �i1� i2� � � � � ik� is a vertex of τ which is connected to the root φ by
a self-avoiding path in τ of exactly k edges. For convenience, one may add an
edge (stem) to the root φ so that root can be regarded as connected to a ghost
vertex by a stem. This also increases the vertex degree of the root. Figure 1
is an example of a labeled tree as described above.

The weighted height of vertex �i1� i2� � � � � ik� is defined as

�1�2� HW�i1� i2� � � � � ik� =
k∑
j=0

W�i1� i2� � � � � ij��

The weighted tree height of τ is defined as

�1�3� HW�τ� = sup
�e�∈τ

HW�e��

Fig. 1. A rooted labelled tree.
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The contour size of the weighted tree τ at height h, also called the (weighted)
width function of τ� is defined as

�1�4� Z�h�=
{

1� for 0≤h<Wφ�

Z�h� τ�=#
{�e� ∈ τ� HW�e′� ≤h<HW�e�}� else�

where �e′� is the parent of �e� and # denotes the cardinality of the set. In the
special case in which all W�e� = W�i1� i2� � � � � ik� = 1� the width function is
given by

�1�5� Z�h� = Zk� k ≤ h < k+ 1� k = 0�1� � � � �

where Zk is the total number of vertices at height k + 1. This is the search-
depth local time process in computer science applications (see [2]). Hydrol-
ogists interpret the weights as geomorphologic parameters such as lengths,
elevation drops and so on, associated with river networks (see also [24]). Un-
der the conditions on the weights to be imposed in this paper the width func-
tion and the search-depth local time will be (suitably scaled) asymptotically
equivalent in distribution.

Troutman and Karlinger [23] considered the expected width function in
the case of Galton–Watson random trees τn conditioned on total size n. In
the hydrologic context one imagines a rain of particles uniformly distributed
over τn and traveling at constant rate v. Then the (hydrograph) proportion of
particles which reach the outlet �φ� in time t is represented by Z�vt�/n� The
expected value is the best prediction in the mean square sense given the size of
the network. This simple idealization illustrates some basic ideas in prediction
problems based on maps of river basins (in place of stream gauge networks).
Graphical data for a familiar sample river basin in Kentucky extracted from
30-m resolution Digital Elevation Maps using RiverTools software developed
by Scott Peckham is given in Figure 2.

The width function for the Kentucky river network depicted in Figure 2 is
given in Figure 3.

Let µn�h� be the conditional expectation of the width function evaluated at
h given total progeny ν = n; that is,

�1�6� µn�h� = E�Z�h��ν = n��

Let Kn be the normalization constant defined by

�1�7� Kn =
∫ ∞

0
µn�h�dh�

and define a probability measure Fn with density K−1
n µn� suitably scaled.

That is,

�1�8� d

dh
Fn�h� = anK−1

n µn�anh�� h ≥ 0�
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Fig. 2. Kentucky river network.

where an is a positive scale parameter. If we take an = √
n in (1.8), then

for a critical Galton–Watson tree τn and under the existence of a moment
generating function in a neighborhood of the origin for the weights, Troutman
and Karlinger [23] show that Fn ⇒ F, where F′�h� = �h/2� exp�−h2/4�� a
Rayleigh density, and “⇒” denotes convergence in distribution.

In Section 2 we will explain how the “expected” Galton–Watson critical
binary tree considered by Troutman and Karlinger [23] may be viewed within
a broader class of deterministic self-similar trees. This class of trees seems to
have originated in the analysis of river network data (e.g., see [22] and [19]).
To define this class of trees requires a notion of network order introduced by
Horton [14] and refined by Strahler [21], according to the following algorithm.
First the vertices of either degree 1 or 2 will be called nonbranching, where the
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Fig. 3. Kentucky river network width function.

degree of a vertex counts the number of adjacent vertices including the parent.
Those of degree one are called leaves. All leaves and adjacent paths of adjacent
nonbranching vertices are assigned order 1. The orders of all other vertices
(or associated edges) are recursively defined as the maximum of orders of the
offspring vertices when these are not all equal, else it is the common order
of the offspring incremented by 1. A contiguous path of edges of equal order
is called a stream of the said order. The highest vertex belonging to a stream
of a given order is called the terminal vertex for the stream. The order of the
root φ defines the order of the network τ and is denoted ω�τ�� This scheme
provides an “order or scale of resolution” in which the given tree is regarded to
be at the finest scale of resolution and the next level of coarsening is obtained
by removing the order 1 streams. The next level of “nonbranching” vertices in
the pruned tree is assigned order 2. The next level of coarsening is obtained
by pruning off the (lowest) order 2 streams and so on. The same algorithm for
network order also occurs as an optimization parameter in binary arithmetic
register allocation problems in computer science [8, 9].

Now, given the notion of order, a finite tree graph for which the number Tij
of order j subtrees rooted at nonterminal vertices of an order i stream is (a)
the same for each order i stream in the network and (b) a function of i� j only
through i− j� j ≤ i� is called topologically self-similar; that is, the matrix of
generators is Toeplitz.

Remark. In river network analysis one computes the sample average Tij
of the number of order j subtrees supported by the various streams of order
i in the network. The generators for the Kentucky river network given in
Figure 2 have the “approximate” Toeplitz form given by the matrix in Table 1.
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Table 1
Sample generators for Kentucky river network

Tree generator matrix

1.13 0.00 0.00 0.00 0.00 0.00 0.00
2.87 1.13 0.00 0.00 0.00 0.00 0.00
6.78 2.70 1.05 0.00 0.00 0.00 0.00

14.71 5.89 2.76 1.16 0.00 0.00 0.00
51.12 20.00 10.75 3.88 1.88 0.00 0.00
84.50 28.50 14.50 6.00 2.50 1.50 0.00
86.00 24.00 8.00 3.00 2.00 1.00 0.00

It is well-known in the hydrology literature (see [20]) that in the case of a
critical binary Galton–Watson process one has

�1�9� ETij = 1
2 2i−j�

A derivation of (1.9) will be given in Section 2. We will consider the width
functions of the class of topologically self-similar trees for which

�1�10� Tij =
�b− 1�

2
· 2i−j�

where b ≥ 2 is an integer.
The paper is organized as follows. In Section 2 some technical preliminaries

are provided which will be used to establish the main results. A principal tool
is that of the associated polygonal walk, referred to as the search-depth process,
(see [1] and [17]), together with our extension of a recent result of Aldous [2] on
weak convergence of the search-depth process to Brownian excursion for the
case of weighted trees; see [4], [12] and [7] for some related preliminaries and
results on Brownian excursion. The weak convergence of the width function
(local time) is then obtained using the well-known existence of a density for
Brownian excursion (e.g., see [15]). Also included in Section 2 are statements
and proofs of a few related results which are well known in the hydrology
literature but less likely to be known among probabilists. The main results
are stated and proved in Section 3.

2. Preliminaries. The search-depth process is the polygonal path process
obtained by following the contour of the tree (see [2]). More precisely, if τn is
a labelled rooted tree with n vertices, then define

�2�1� V0�τn� = φ
and, given Vk�τn� = �i1� � � � � im�� define Vk+1�τn� = �i1� � � � � im� j�� where
j = min
i� �i1� � � � � im� i� ∈ τn and �i1� � � � � im� i� �= Vl�τn� ∀ l < k + 1,
provided the latter set is non-empty, in which case Vk+1�τn� = �i1� � � � � im−1��
The usual search-depth process is then defined by

�2�2� Sk�τn� = h�Vk�τn��� k = 0�1� � � � �2n�
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Fig. 4. Standard search-depth process corresponding to τn.

for the height function h defined in Section 1. Use linear interpolation be-
tween values to define the scaled search-depth 
S�n�

t �τn�� 0 ≤ t ≤ 1 such that
S

�n�
t �τn� �= Sk�τn�/

√
n at t = k/2n� see Figure 4.

The following proposition is well known and simple to prove.

Proposition 2.1. Let τn be distributed as a Galton–Watson tree conditioned
to have total progeny n. Then 
Sk�τn�2n

k=0 is distributed as a simple random
walk conditioned to be positive over k = 1� � � � �2n − 1 and to hit zero for the
first time at k = 2n if and only if the offspring distribution is geometric.

We refer to the conditioned random walk in Propositon 2.1 as a random
walk excursion. It follows from results of Kaigh [16] and Durrett and Iglehart
[6] that the random walk excursion suitably scaled converges to the continuous
state Brownian excursion 
W+

0 �t�� 0 ≤ t ≤ 1. The following recent result of
Aldous [2] fills the gap for more general offspring distributions.

Theorem 2.2 [2]. Let τn be a Galton–Watson tree conditioned to have
total progeny n and whose offspring distribution L satisfies EL = 1� 0 <

Var�L� = σ2 < ∞� gcd
j� P�L = j� > 0 = 1� Then 
S�n�
t �τn�� 0 ≤ t ≤

1 ⇒ 
2σW+
0 �t�� 0 ≤ t ≤ 1 as n→ ∞�

For the applications of interest to us here we require an extension of Al-
dous’s theorem to weighted trees. This is given in the next section (see Theo-
rem 3.1).

The (weighted) search-depth process is defined by replacing h by HW in
(2.2). That is,

�2�3� Ŝk�τn� =HW�Vk�τn���
Again use linear interpolation between values to define the weighted scaled
search depth process 
Ŝ�n�

t � 0 ≤ t ≤ 1 such that Ŝ�n�
t �τn� �= Ŝk�τn�/

√
n at

t = k/2n� see Figure 5.
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Fig. 5. Weighted search-depth process corresponding to τn.

For a Borel subset J of R� define the (total) weighted search-depth occupa-
tion time by

�2�4� *n�J� = 1
2

∫ 1

0
IJ�Ŝ�n�

t �dt

The weighted search-depth local time is then defined as the Radon–Nikodym
derivative (with respect to Lebesgue measure λ on R) accordingly as

�2�5� γn�h� =
d*n
dλ

�h��

Then observe that, on τn,

�2�6� γn�h� =
√
n

2n

[
Z�√nh� + ∑

k� Ŝk≤
√
nh<Ŝk+1

�W−1
k+1 − 1�

]
�

In particular, both the weighted search-depth local time and the weighted
width function (i.e., Banach indicatrix) Z�√nh� of the weighted search-depth
process on τn are constant over identical intervals. In the case of constant
weights the second term in (2.6) vanishes, while more generally we will see
that it is o�1� in probability as n→ ∞� see Theorem 3.3.

In Section 3 we shall show that the fluctuation law for the weighted search-
depth occupation time and weighted width function, viewed as the density
of a random measure, follows that of the occupation time for the Brownian
excursion in the large total progeny limit. While neither the local time nor
occupation time is a continuous functional, we will see that the occupation
time is a.s. continuous. Of particular importance to us in this computation is
the following proposition (see [15] for a proof).

Proposition 2.3. The distribution of W+
0 �t� is absolutely continuous with

respect to Lebesgue measure for each t ∈ �0�1��
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The expected value results of [23] will follow (see Corollary 3.4) from the
fluctuation law calculations and a computation by Chung [5] of the expected
occupation time of 
W+

0 �t� contained in the following result.

Theorem 2.4 [5]. Let

S��a� b�� =
∫ 1

0
I�a ≤W+

0 �t� < b�dt

for 0 < a ≤ b <∞� Then

ES��a� b�� =
∫ b
a

4h exp�−2h2�dh�

In the remainder of this section we will consider two classes of special
deterministic self-similar trees, the so called Peano trees and uniform b-ary
trees. We will calculate the width function asymptotics for the Peano trees in
this section and that of the uniform b-ary trees in Section 3.

First let us recall the general notion of self-similarity introduced in Sec-
tion 1. Consider a class of finite trees of orders m = 2�3� � � � � Suppose that τ
is such a tree of order m and let Ti�j denote the number of subtrees of τ of
order j rooted at nonterminal vertices of a stream of order i� where 2 ≤ i ≤m�
The array ��Ti�j�� is an �m − 1� × �m − 1� lower triangular matrix, referred
to as the generator matrix.

Definition 2.1. Self-similar trees are the trees with generators 
Ti�j
with the property that Ti� i−j = Tj, where Tj counts the number of subtrees
of order i− j rooted at the nonterminal vertices of a stream of order i.

Note that in terms of the above matrices, self-similar trees are defined by
the condition that the generator matrices be Toeplitz, that is, have constant
values along diagonals. In view of Proposition 2.1 the expected critical Galton–
Watson binary tree is self-similar with generator 2i−j−1�

Figure 6 shows several examples of self-similar trees of order 3. Note that
two trees can have the same generators and still be different, owing to two
freedoms in adding the edges. One is that edges can enter a tree from the left
or right side. This is illustrated by comparing Figure 6a and 6b. The second
freedom arises from the many possible ways in which subtrees of different
orders can be interspersed, which is illustrated in Figure 6b and 6c.

The Peano tree is represented by a class of self-similar trees with branching
number b = 3 and generators 
T1 = 0�Tk = 2k−1� k = 2�3� � � �. Figure 7
provides examples of the Peano trees with order 2, 3 and 4. The dashed lines
are subtrees which are put in according to the generators.

In order to compute the numbers of the kth generation of a Peano tree
of order m, it is also convenient to draw cluster forms of the Peano trees
corresponding to Figure 8 so that the recursive relations can be established.
For example, a Peano tree with order 3 consists of four Peano trees of order 2.
Three of them are located in parallel on the same level, and the other one is
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Fig. 6. Self-similar trees: m = 3� b = 2� Tk = 2k−1.

Fig. 7. Peano trees: m = 2�3�4� b = 3� T1 = 0� Tk = 2k−1.

Fig. 8. Cluster forms of Peano trees: m�b = 3� T1 = 0� Tk = 2k−1.
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below. In general, a Peano tree of order m has four sub-Peano trees of order
m− 1.

Let Zm�k be the numbers of the kth generation of a Peano tree of order
m. The width functions of a self-similar tree of order m and generator 
T1 =
0� Tk = 2k−1� k = 1�2� � � � is

�2�7� Zm�h� =
2m−1−1∑
k=0

Zm�k+1 · I�k ≤ h < k+ 1��

where m = 2�3� � � � � A simple induction argument shows that a Peano tree
of order m has height 2m−1 and total progeny 4m−1� We define a normalized
width density fm as

�2�8� fm�h� =
Zm�h�
Nm

�

where h ∈ �0�2m−1� and Nm = 4m−1� Then fm defines a measure µm with
distribution function

�2�9� µm�0� h� =
∫ 2m−1h

0
fm�y�dy =

∫ h
0

2m−1fm�2m−1y�dy

for h ∈ �0�1�. The following theorem formalizes observations of Marani, Rigon
and Rinaldo [18].

Theorem 2.5. The measure µm converges weakly to a continuous singular
probability measure on �0�1� as m→ ∞� namely, the induced infinite product
measure � 1

4δ0 + 3
4δ1�N under the map φ�x� = �x1� x2� � � ��� x = ∑∞

i=1 xi2
−i� x ∈

�0�1��

Proof. The width function of a Peano tree is

Zm�h� =
2m−1−1∑
k=0

Zm�k+1 · I�k ≤ h < k+ 1�

with corresponding width measure

fm�h� =
Zm�h�
Nm

�

Observe by induction that Zm�2m−1h�/Nm� 0 ≤ h < 1, is constant over each
of the intervals

1�x1� � � � � x2m−1� =
[ 2m−1∑
i=1

xi2
−i�

2m−1∑
i=1

xi2
−i + 2−�m−1�

]
� xi ∈ 
0�1�

with constant value ( 1
4

)∑2m−1
i=1 xi × ( 3

4

)2m−1−∑2m−1
i=1 xi �

In view of tightness there is at least one limit probability measure and since
any limit measure agrees with the asserted induced product measure on the
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semialgebra of cylinder sets of the form 1�x1� � � � � x2m−1�� xi ∈ 
0�1, there can
be only one limit point and the proof is complete. ✷

Remark. The multiscaling (cascade) structure of the width function (land-
forms) illustrated in Theorem 2.5 is of special interest to hydrologists in view
of the observed multiscaling structure (random cascades) of rainfall (see [11],
[13] and [25]). This scaling structure provides a basis for distributing rainfall
over drainage basins commensurate with the observed variability and inter-
mittancy properties of precipitation and provides a framework in which one
can compute flood exponents in terms of the scaling characteristics of land-
forms and precipitation. A simple example to illustrate this point is worked
out in [10] using the Peano tree.

Before introducing the next class of self-similar trees we sketch a proof
of (1.9), a fact well known in hydrology and originally due to Shreve [20].
Shreve’s original proof is based on generating function recursions while the
proof sketched below is probabilistic. For this we first introduce a map π on
the subset T0 of finite trees in T by π�
φ� = φ� else π�τ� is the tree graph
obtained by pruning the lowest order streams from τ� Also define τ as the tree
graph obtained by identifying adjacent vertices of degrees 1 or 2 with a single
vertex. Then the order ω�τ� of the tree may be expressed as

�2�10� ω�τ� = inf
n� π�n−1��τ� = 
φ�

Proposition 2.6 [20]. Suppose τ is a critical binary Galton–Watson tree.
Let Tij denote the number of order j subnetworks in a randomly selected order
i stream. Then

ETij = 1
2 2i−j�

Proof. By a simple induction one observes the lack of memory property
for ω�τ�, from which it follows that

P�ω�τ� = k� = 2−k� k = 1�2 � � � �

The order of a subnetwork rooted at a vertex of order j therefore has or-
der distributed as a truncated (at j − 1) geometric distribution, that is,
2j−i−1/�2j−1 − 1�� i = 1�2� � � � � j − 1� The number of vertices in a stream of
order j is geometrically distributed with expected value 2j−1� Therefore, the
expected number of subtrees of order i at an internal vertex in a stream of
order j is �2j−1 − 1� × 2j−i−1/�2j−1 − 1�� ✷

Remark. One may check by induction that, givenZ1 = 2� the (conditional)
distribution of π�τ� coincides with the (unconditional) distribution of τ� We
refer to the invariance under the composite map π of the distribution of a
finite random tree τ, conditional on Z0 > 0, as a stochastic self-similarity.
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Fig. 9. Cluster forms of uniform b-ary trees: m = 3� b = 3� Tk = �b− 1�2k−1� k ≥ 1.

More generally, the second class of problems which we consider is that of
computing the width function for the class of deterministic self-similar trees
defined by generators 
Tk�b� = �b− 1�2k−1� k = 1�2� � � � (see Fig. 9). We set
the problem up in this section but provide the main result in Section 3.

As noted above in the case of Peano trees, self-similar trees can have the
same generators and still be graph theoretically distinct due to the freedom
in adding subtrees. Since we are only interested in the width functions, trees
having same width functions are referred to as trees without distinction. We
will construct those trees according to the following rules:

Rule 1. All edges are added to the trees from right sides.

Rule 2. Subtrees of order m− 1�m− 2� � � � �2�1 will be added to the prin-
cipal path (a chain of edges connecting root to the top of the tree) of order m�
so that two parallel subtrees of order m − 1 are constructed in the principal
path, together with the other two parallel subtrees of order m−1 in the upper
level.

The uniform b-ary self-similar trees are defined as the trees without distinction
having generators 
Tk�b� = �b− 1�2k−1� k = 1�2� � � � In general, for trees of
order m we can get the following cluster form of the uniform b-ary trees.
The recursive equations of 
Zm�k� k = 1�2� � � � �2m − 1 are

Zm�1 = 1�(2.11a)

Zm�j+1 = bZm−1� j�(2.11b)

Zm�j+2n−1 = bZm−1� j�(2.11c)
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for j = 1�2� � � � �2m−1 − 1. The total progeny is

�2�12� Nm = 2bNm−1 + 1 = �2b�m−1 + �2b�m−2 + · · · + 1 = �2b�m − 1
2b− 1

�

where b = 2�3� � � � � n = 2�3� � � � � and Z1�1 =N1 = 1.
We will show in Section 3 that the width functions of a b-ary tree of given

order, as a normalized probabilty measure, converge weakly to a uniform dis-
tribution function over [0, 1]. The following theorem of Troutman and Kar-
linger [23] is of interest for comparison of these results to expected behavior
of critical Galton–Watson trees.

Theorem 2.7 [23]. Let τn�m be distributed as a Galton–Watson binary tree
conditioned to have order m and total progency n. Then the expected width
function converges weakly to a uniform distribution as n→ ∞�

3. Main results.

Theorem 3.1. Let τn be a Galton–Watson tree conditioned to have total
progeny n and whose offspring distribution L satisfies EL = 1� 0 < VarL =
σ2 < ∞� gcd
j� P�L = j� > 0 = 1� Suppose that the iid weights 
W�e��
positive and independent of τn, have mean 1 and variance s2, and assume
limx→∞�x log x�2P��Wφ − 1� > x� = 0� Then the scaled weighted search-depth

process 
Ŝ�n�
t �τn�� 0 ≤ t ≤ 1 converges in distribution to 
2σW+

0 �t�� 0 ≤ t ≤ 1
as n→ ∞�

Proof. We will show that the weighted search depth process Ŝ�n� and
the unweighted search depth process S�n�� defined on the same random tree
τn with total progeny ν = n� are asymptotically equivalent. The result then
follows from Theorem 4.1 of [2].

Fix ε > 0. From Aldous’s Theorem 2.2 we see that S�n� is tight. Choose M
so that

sup
n
P
(
sup
t
S

�n�
t > M

∣∣ν = n) < ε�
Let AM = �supt S

�n�
t > M�� Bn = 
max�e�∈τn �W�e� − 1� ≤ bn� where bn is

a constant depending on n, Cj = 
k� Sk = j and �Cj� = #
k ∈ Cj� Let
µn�j �= jE�Wφ − 1�I��Wφ − 1� ≤ bn�� By stratifying and using Bernstein’s
inequality (e.g., see [3]), for any bn > 0,

P
(
sup
t

∣∣Ŝ�n�
t −S�n�

t

∣∣ > ε∣∣ν = n)

≤ P
(
Ac
M ∩Bn ∩

[
sup
t

∣∣Ŝ�n�
t −S�n�

t

∣∣ > ε]∣∣ν = n)
+P�AM�ν = n� +P�Bcn�ν = n�
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≤ ∑
1≤j≤M√

n

P
(
Bn ∩

[
max
k∈Cj

∣∣Ŝk −Sk∣∣ > ε√n]∣∣ν = n)

+ ε+ nP��Wφ − 1� > bn�

≤ ∑
1≤j≤M√

n

E
�Cj� �ν = nP
([∣∣∣∣

j∑
1

�W�ei� − 1�
∣∣∣∣ > ε√n

]

∩
[
max
1≤i≤j

�W�ei� − 1� ≤ bn
])

+ ε+ nP��Wφ − 1� > bn�

≤ 2
∑

1≤j≤M√
n

E
�Cj� �ν = n exp
{
− �ε√n− µn�j�2

2j�s2 + 2�ε√n− µn�j�bn/3j�
}

+ ε+ nP��Wφ − 1� > bn�

≤ 2n max
1≤j≤M√

n
exp

{
−

√
n�ε− µn�j/

√
n�2

2M�s2 + 2�ε− µn�j/
√
n�bn/3M�

}

+ ε+ nP��Wφ − 1� > bn��
Take bn = b

√
n/ lnn� where b < 3ε/16, to see that limn�lnn/ ln bn� = 2,

max1≤j≤M√
n �µn�j� ≤Mb−1s2 lnn, and for all n sufficiently large

P
(
sup
t

∣∣Ŝ�n�
t −S�n�

t

∣∣ > ε∣∣ν = n) ≤ 2n exp
−2 lnn + ε

+
(

lnn
bn ln bn

)2

�b ln bn�2P��Wφ − 1� > bn��

Now let n→ ∞ to see that Ŝ�n� and S�n� are asymptotically equivalent. ✷

Remark. In [7] it is shown that x2P�Wφ > x� → 0 as x → ∞ makes the
weighted height of the tree O�√n�� One may expect it should be possible to
relax the moment condition on the weights in Theorem 3.1 a bit by removing
the slowly varying factor �log x�2� but apart from this the moment condition
should be best possible for the given scaling.

Theorem 3.2. Under the conditions given in Theorem 3.1, let γn�h� denote
the weighted search-depth local time density defined in (2.5). Then, as n→ ∞,∫ b

a
γn�h�dh⇒

∫ 1

0
I�a ≤ 2σW+

0 �t� < b�dt

for any 0 < a < b� where 
W+
0 �t�� 0 ≤ t ≤ 1 is (standard) Brownian excursion.

Proof. We have, for any 0 < a < b,∫ b
a
γn�h�dh = 1

2

∫ 1

0
I

(
a

σ
≤ Ŝ

�n�
t

σ
<
b

σ

)
dt�
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For fixed 0 < a < b define F� C�0�1� → R by

F�w� =
∫ 1

0
I�w�t� ∈ 1�dt

= λ
t� w�t� ∈ 1
for w ∈ C�0�1� and 1 = �a/√2� b/

√
2�; λ denotes Lebesgue measure. Then note

that F is clearly not continuous on C�0�1�� LetDF be the set of discontinuities
of F. Therefore, in view of the above and Theorem 3.1, we need only show
W+

0 �DF� = 0� where we also use W+
0 to denote the distribution of the process


W+
0 �t�� 1 ≤ t ≤ 1� As we will see, the key to this proof is the fact that


W+
0 �t� has an absolutely continuous distribution with respect to Lebesgue

measure for each t (cf. Proposition 2.3). Beyond this we apply a standard
Fubini argument. Let I1�ω� t� = I�w�t� ∈ 1�� Then for each ω ∈ C�0�1� the
section t→ I1�ω� t� is continuous Lebesgue-a.e. Note that since

F�ω� =
∫ 1

0
I1�w� t�dt�

it follows from Fubini’s theorem that F is measurable. In view of Proposition
2.3, for A = 
�ω� t�� ω�t� ∈ ∂1� ∂1 = 
a/√2� b/

√
2� one obviously has

W+
0

(
ω ∈ C�0�1�� �ω� t� ∈ A) = ∫
∂1
p�t� y�dy = 0�

Therefore, by Fubini’s theorem,∫
C�0�1�

λ
(
t ∈ �0�1�� �ω� t� ∈ A)W+

0 �dω�

=
∫
�0�1�

W+
0

(
ω ∈ C�0�1�� �ω� t� ∈ A)λ�dt�
= 0�

Therefore,

λ
(
t ∈ �0�1�� �ω� t� ∈ A) = 0

for W+
0 -a.a. ω� Let

B = {
ω ∈ C�0�1�� λ�
t ∈ �0�1�� �ω� t� ∈ A� = 0

}
�

Then W+
0 �Bc� = 0 and if ω ∈ B� then, for ωn ∈ C�0�1� such that ωn → ω in

C�0�1��
I1�ωn� t� → I1�ω� t� a.e. t�

and therefore using Lebesgue’s dominated convergence theorem one has

F�ωn� =
∫ 1

0
I1�ωn� t�dt→

∫ 1

0
I1�ω� t�dt = F�ω��

Thus F is continuous except on a set of W+
0 -probability 0 and the proof is

complete. ✷
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Theorem 3.3. Assume the conditions of Theorems 3.1 and 3.2. Then

E

{(∣∣∣∣2
∫ h

0
γn�y�dy− 1√

n

∫ h
0
Z�√ny�

∣∣∣∣
)∣∣∣∣ν = n

}
→ 0

as n→ ∞�

Proof. First note that

Kn =
∫ ∞

0
µn�h�dh

=
∫ ∞

0
E�Z�h��ν = n�dh

=
∫ ∞

0
E

( ∑
k� Ŝk≤h<Ŝk+1

1
∣∣∣∣ν = n

)
dh

= E

(∫ ∞

0

∑
k

1�Ŝk ≤ h < Ŝk+1�dh
∣∣∣∣ν = n

)

= E

(∑
k

�Ŝk+1 − Ŝk�1�Ŝk+1 − Ŝk > 0�
∣∣∣∣ν = n

)

= E

(∑
k

Wk+11�Wk+1 > 0�
∣∣∣∣ν = n

)

= E

(∑
�e�
W�e�

∣∣∣∣ν = n
)

= n�
It is not difficult to verify for the polygonal paths that

γn�h� =
1

2
√
n

∑
k� Ŝk≤

√
nh<Ŝk+1

W−1
k+1�

Since also

Z�√nh� = ∑
k� Ŝk≤

√
nh<Ŝk+1

1�

one has

Z�√nh� = 2
√
n

{
γn�h� −

∑
k� Ŝk≤

√
nh<Ŝk+1

�W−1
k+1 − 1�

}
�

Now,

Fn�h� =
∫ h

0

√
n
µn�

√
ny�

Kn

dy�
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Therefore,

Fn�h� =
√
n

Kn

∫ h
0

E�Z�√ny��ν = n�dy

=
√
n

Kn

∫ h
0

E

(
2n√
n

∫ h
0
γn�y�dy−

∫ h
0

∑
k� Ŝk≤

√
ny<Ŝk+1

�W−1
k+1 − 1�dy�ν = n

)

= 2n
Kn

E�*n�0� h��ν = n�

−
√
n

Kn

E

( 2n−1∑
k=0

∫ h
0

1�Ŝk < Ŝk+1�1
[
Ŝk√
n
�
Ŝk+1√
n

)
�y�

× �W−1
k+1 − 1�dy

∣∣∣∣ν = n
)
�

To complete the proof we will first show that the second term is o�1�� For this
recall that the W�e�’s are positive, iid and independent of τn� One has∣∣∣∣
√
n

Kn

E

( 2n−1∑
k=0

∫ h
0

1�Ŝk < Ŝk+1�1
[
Ŝk√
n
�
Ŝk+1√
n

)
�y��W−1

k+1 − 1�dy
∣∣∣∣ν = n

)∣∣∣∣
=

∣∣∣∣
√
n

Kn

E

( 2n−1∑
k=0

{�1 −Wk+1�√
n

1
[
Ŝk√
n
<
Ŝk+1√
n

≤ h
]

+ �W−1
k+1 − 1�

(
h− Ŝk√

n

)
1
[
Ŝk√
n
< h <

Ŝk+1√
n

]}∣∣∣∣ν = n
)∣∣∣∣

=
∣∣∣∣ 1√
n

E

( 2n−1∑
k=0

�1 −Wk+1�√
n

1
[
Wk+1 > 0� Ŝk < h

√
n
]∣∣∣∣ν = n

)

− 1√
n

E

( 2n−1∑
k=0

{�1 −Wk+1�√
n

− �W−1
k+1 − 1�

(
h− Ŝk√

n

)}

× 1
[
Ŝk√
n
< h <

Ŝk+1√
n

]∣∣∣∣ν = n
)∣∣∣∣

=
∣∣∣∣0 − 1

n
E

( 2n−1∑
k=0

�1 −Wk+1�
(

1 −
√
nh− Ŝk
Wk+1

)
1
[
Ŝk√
n
< h <

Ŝk+1√
n

]∣∣∣∣ν = n
)∣∣∣∣

≤ 1
n

E

( 2n−1∑
k=0

�1 −Wk+1�1
[
Ŝk√
n
< h <

Ŝk+1√
n

]∣∣∣∣ν = n
)

≤ s

n

2n−1∑
k=0

P1/2�Ŝk <
√
nh < Ŝk+1�ν = n�

≤ 2s

√∑2n−1
k=0 P�Ŝk <

√
nh < Ŝk+1�ν = n�

2n
�
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The zero term in the last equality of the above calculation is simply a con-
sequence of the fact that �Wk+1 > 0� is equivalent to �Sk+1 > Sk� and the
weights are assumed positive, mean 1 and independent of τn. In particular,

E
(�1 −Wk+1�1�Wk+1 > 0�1�Ŝk < h

√
n�∣∣τn)

= E
(�1 −Wk+1�1�Wk+1 > 0�)E(1�Ŝk < h√n�∣∣τn) = 0�

Now let Bn = 
max�e�∈τn W�e� ≤
√
n/ log n. In view of the tail condition on the

weights one has P�Bcn� → 0 as n→ ∞� Also

1
[
Ŝk <

√
nh < Ŝk+1

] ≤ 2n
∫ �k+1�/2n

k/2n
1
[
h− Wk+1√

n
< Ŝ

�n�
t < h+ Wk+1√

n

]
dt�

Thus, once Wk+1 is bounded by
√
n/ log n on Bn�

1
[
Ŝk < √

nh < Ŝk+1 ∩Bn
]

≤ 2n
∫ �k+1�/2n

k/2n
1
[{
h− Wk+1√

n
< Ŝ

�n�
t < h+ Wk+1√

n

}
∩Bn

]
dt

≤ 2n
∫ �k+1�/2n

k/2n
1
[
h− 1

log n
< Ŝ

�n�
t < h+ 1

log n

]
dt�

This gives

1
2n

2n−1∑
k=0

P�Ŝk <
√
nh < Ŝk+1� ≤ P�Bcn� + E

(
2*n

(
h− 1

log n
�h+ 1

log n

))
→ 0�

as n→ ∞. ✷

Corollary 3.4. Assume the conditions of Theorems 3.1 and 3.2. Let

Fn�h� =
∫ √

nh

0

µn�y�
Kn

dy

as defined in (1.6) and (1.7). ThenFn ⇒ F, whereF′�h� = 2h exp�−h2�� h ≥ 0�

Proof. In view of Theorems 3.2 and 3.3 we have

lim
n→∞Fn�x� =

∫ 1

0
P

[
0 ≤W+

0 �u� <
x√
2

]
du

=
∫ 1

0
E

[
1
(

0 ≤W+
0 �u� <

x√
2

)]
du

= E

[
S

([
0�

x√
2

))]
�
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Thus, using Theorem 2.4, we have

lim
n→∞Fn�x� =

∫ x/√2

0
4y exp�−2y2�dy

=
∫ x

0
2y exp�−y2�dx�

This concludes the proof. ✷

Remark. The Rayleigh distribution in Theorem 3.3 differs from that in
[23] by a scale factor of 1

2 because τn in that paper is a binary tree.

Let us now consider the width function of the uniform b-ary trees of order
m with generator 
Tk�b� = �b− 1�2k−1� k = 1�2� � � �� In particular, let

Zm�x� =
2m−2∑
k=0

Zm�k+1 · I�k ≤ x < k+ 1��

where m = 2�3� � � � � and let

fm�x� =
Zm�x�
Nm

�

The height of b-ary tree of order m is given by Hm = 2m − 1, so that the
distribution function is

Fm�x� =
∫ Hmx

0
fm�y�dy =

∫ Hmx

0

Zm�y�
Nm

dy =
∫ x

0

Zm�Hmy�
Nm/Hm

dy�

If we let Fm denote the distribution function defined by the density function

Zm�Hmx�
Nm/Hm

�

then we have the following theorem.

Theorem 3.5. The distribution function Fm converges weakly to the uni-
form distribution on �0�1� as m→ ∞.

The proof of above theorem will follow from the following two lemmas.

Lemma 3.1. Let φm�s� be the moment generating function of Fm�

φm�s� =
∫ 1

0
esx
Zm�Hmx�
Nm/Hm

dx�

Then φ�s� = limm→∞φm�s� exists, for s ∈ �0�1�.
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Proof. Let

ψm�s� =
∫ Hm

0
esxZm�x�dx�

Since

Zm�x� =
2m−2∑
k=0

Zm�k+1 · I�k ≤ x < k+ 1�

= Zm�1 · I�0 ≤ x < 1� +
2m−1−1∑
k=1

Zm�k+1 · I�k ≤ x < k+ 1�

+
2m−2∑
k=2m−1

Zm�k+1 · I�k ≤ x < k+ 1�

= I�0 ≤ x < 1� +
2m−1−1∑
k=1

Zm�k+1 · I�k ≤ x < k+ 1�

+
2m−1−1∑
k=1

Zm�k+2m−1 · I�k ≤ x− 2m+1 + 1 < k+ 1��

we have from the recursive relation that

Zm�x� = Zm−1�1 · I�0 ≤ x < 1� + b ·
2m−1−1∑
k=1

Zm−1� k · I�k ≤ x < k+ 1�

+ b ·
2m−1−1∑
k=1

Zm−1� k · I�k ≤ x− 2m−1 + 1 < k+ 1�

= Zm−1�1 · I�0 ≤ x < 1� + b ·
2m−1−2∑
k=0

Zm−1� k+1 · I�k ≤ x− 1 < k+ 1�

+ b ·
2m−1−2∑
k=0

Zm−1� k+1 · I�k ≤ x− 2m−1 < k+ 1�

= Zm−1�1 · I�0 ≤ x < 1� + bZm−1�x− 1� · I�1 ≤ x < 2m−1�
+ bZm−1�x− 2�m−1�� · I�2m−1 ≤ x < 2m − 1��

Therefore,

ψm�s� =
∫ Hm

0
exp�sx�[Zm−1�1 · I�0≤x<1�+ bZm−1�x−1� · I�1≤x<2m−1�

+ bZm−1�x− 2m−1� · I�2m−1 ≤ x < 2m − 1�]dx
=

∫ 1

0
exp�sx�dx+ b

∫ 2m−1

1
exp�sx�Zm−1�x− 1�dx

+ b
∫ 2m−1

2m−1
exp�sx�Zm−1�x− 2m−1�dx
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= �exp s� − 1
s

+ b
∫ 2m−1−1

0
exp�s�x+ 1��Zm−1�x�dx

+ b
∫ 2m−1−1

0
exp�s�x+ 2m−1��Zm−1�x�dx�

Finally we obtain the recursions

ψm�s� =
�exp s� − 1

s
+ b��exp s� + exp�2m−1s��ψm−1�s��

ψ0�s� = 0�

ψ1�s� =
�exp s� − 1

s
�

where m = 1�2� � � � �
It now follows that, since

φm�s� =
1
Nm

ψm

(
s

Hm

)
�

we have

�3�1�

φm�s� =
1
Nm

exp�s/Hm� − 1
s/Hm

+ b
(

exp
s

Hm

+ exp
2m−1s

Hm

)
Nm−1

Nm

φm−1

(
Hm−1

Hm

s

)
�

φ0�s� = 0�

φ1�s� =
�exp s� − 1

s
�

where Hm = 2m − 1 and

Nm = �2b�m − 1
2b− 1

for m = 1�2� � � � �
If we let Pm�·� be the probability measure defined by φm�s�, let δ
0�·� be

the Dirac measure at 0 and let λ�·� be the uniform distribution on [0,1]. Then

Pm�·� =
1
Nm

λ�Hm·� +
Nm−1

Nm

b
(
δ
1/Hm�·� + δ
2m−1/Hm�·�

)
∗Pm−1

(
Hm−1

Hm

·
)
�

where ∗ denotes convolution. Since φ1�s� = �es − 1�/s, P1�·� is the uni-
form distribution on �0�1� and, by induction, Pm�·� has compact support
�0�Hm−1/Hm� ⊂ �0�1�. We also note that

lim
m→∞

Nm−1

Nm

b = lim
m→∞

�2b�m−1 − 1
�2b�m − 1

b = 1
2
�

Thus by tightness Pm�·� has a weakly convergent subsequence to a probability
measure P�·� which in view of the above recursion is a unique limit point. In
particular, limm→∞φm�s� exists by Helly’s selection theorem. ✷
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Lemma 3.2. Let φ�s� = limm→∞φm�s�. Then

φ�s� = es − 1
s

�

In particular, φ�s� is the moment generating function of the uniform distribu-
tion on �0�1�.

Proof. If we take limits on both sides of (3.1), then we have

φ�s� = �1 + es/2�
2

φ

(
s

2

)
�

Let X be the random variable distributed on �0�1� having moment generating
function φ�s�. If we let 
Ui be iid symmetric Bernoulli 0–1 valued, then the
moment generating function of Ui is

1 + es
2

�

In view of the recursion we have for any n ≥1 that

X = U1 +X
2

=
n∑
i=1

Ui

2i
+ X

2n
�

where “=” is equality in distribution. Since 
Ui/2i are independent and∑
i E�Ui/2i� < ∞ and

∑
i Var�Ui/2i� < ∞, it follows by Kolmogorov’s the-

orem that U = ∑∞
i=1Ui/2i converges a.s. and therefore in distribution. For

arbitrary εi ∈ 
0�1 and k ≥ 1,

P

( k∑
i=1

εi
2i

≤ U <
k∑
i=1

εi
2i

+ 1
2k

)
= P�U1 = ε1� � � � �Uk = εk�

= 1
2k

=
∣∣∣∣
[ k∑
i=1

εi
2i
�

k∑
i=1

εi
2i

+ 1
2k

)∣∣∣∣�
Since the binary rationals are dense in �0�1�, it follows that P�a ≤ U < b� =
b − a, 0 ≤ a < b ≤ 1. Therefore U is uniformly distributed over �0�1�. Now
X/2n goes to 0 in distribution and therefore X is uniformly distributed over
�0�1�. This concludes the proof of the theorem. ✷
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