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We study the behavior of large loss networks in which the offered traf-
fic is subject to acceptance controls. Hunt and Kurtz proved a functional
law of large numbers for the dynamics of such networks, as capacity and
offered traffic are allowed to increase in proportion. However, limiting dy-
namics were not in general uniquely identified. We establish further results
identifying these dynamics under given conditions. We also investigate the
existence of fixed points for these dynamics and relate them to limiting
equilibrium behavior, permitting the investigation of common modelling
assumptions. We study in detail single- and two-resource networks and we
give an example of bistability for the former.

1. Introduction. We study the dynamic and equilibrium behavior of
large loss networks in which the offered traffic is subject to acceptance
controls. Such networks were considered by Hunt and Kurtz (1994) (referred
to henceforth as HK), who established rigorous results for their asymptotic
behavior as capacity and offered traffic are allowed to increase in proportion.
We develop these results further, so that they may be applied to deduce
detailed behavior in networks.

The results are particularly appropriate to the effective control of modern
high-capacity communications networks in which traffic of widely differing
characteristics is integrated. In general they remain qualitatively correct for
smaller capacity networks, and, further, are readily modified to model ac-
curately their quantitative behavior. [See, e.g., Bean, Gibbens, and Zachary
(1994, 1995) and Moretta (1995). For a review of earlier work and summary,
without proofs, of present results, see Zachary (1996).]

The mathematical framework is the same as that of HK. Consider a se-
quence of loss networks, indexed by a scale parameter N. All members of the
sequence are identical except in respect of capacities and call arrival rates, and
are identically controlled. (As defined more precisely below, capacities and call
arrival rates are essentially proportional to N.) Resources (or links) are in-
dexed in a finite set � and call types in a finite set �. For the Nth member
of the sequence, each resource j ∈ � has integer capacity Cj�N�, and calls
of each type r ∈ � arrive as a Poisson process of rate κr�N�. Each such call,
if accepted, simultaneously requires an integer Ajr units of the capacity of
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each resource j for the duration of its holding time, which is exponentially
distributed with mean 1/µr (where µr ≥ 0). All arrival streams and holding
times are independent.

Let nN�t� = �nNr �t�� r ∈ ��, where nNr �t� is the number of calls of type
r in progress at time t, and let mN�t� = �mN

j �t�� j ∈ � � where mN
j �t� =

Cj�N�−∑
r∈� Ajrn

N
r �t� is the free capacity of resource j at time t. Let Z+∪	∞�

be topologized according to the one-point compactification of Z+, and give E =
�Z+ ∪ 	∞��J, where J = �� �, the corresponding product topology. A call of
type r arriving at time t is accepted if and only if mN�t−� belongs to some
acceptance region �r (independent of N) in E, which is well behaved in that
its indicator function I�r

is continuous with respect to the above topology.
[Of course, the process mN�·� only takes values in Z

J
+.] HK show that this

framework permits the modelling of a wide variety of control mechanisms,
including most of those employed in practical applications to communications
networks.

Now suppose that, as N → ∞, for all j ∈ � , r ∈ �,

1
N
Cj�N� → Cj�

1
N
κr�N� → κr�(1.1)

For each N define the normalized process xN�·� = nN�·�/N. We are interested
in the existence and characterization of any possible “fluid limit” process x�·�
of these normalized processes [see, e.g., Kelly (1991)].

Any such limit necessarily takes values in the space X=	x∈R
R
+�

∑
r Ajrxr

≤ Cj for all j ∈ � �, where R = ���. For each x ∈ X, let mx�·� be the Markov
process on E with transition rates given by

m →
{
m−Ar� at rate κrI	m∈�r��
m+Ar� at rate µrxr�

where Ar denotes the vector �Ajr� j ∈ � � and ∞ ± a = ∞ for any a ∈ Z+.
Note that the process mx�·� is reducible, and so does not always have a unique
invariant distribution. HK, Theorem 3, show that, provided the distribution
of xN�0� converges weakly to that of x�0�, the sequence of processes xN�·� is
relatively compact in D

R
R�0�∞� and any weakly convergent subsequence has

a limit x�·� which obeys the relation

xr�t� = xr�0� +
∫ t

0
�κrπu��r� − µrxr�u��du�(1.2)

where, for each t, πt is some invariant distribution of the Markov process
mx�t��·� and additionally satisfies, for all j,

πt	m� mj = ∞� = 1 if
∑
r∈�

Ajrxr�t� < Cj�(1.3)

This result involves a separation, in the limit, of the time scales of the pro-
cesses xN�·� and mN�·�; see HK and Bean, Gibbens, and Zachary (1995). The



CONTROLLED LOSS NETWORKS 875

condition (1.3) ensures that, for times t such that
∑

r∈� Ajrxr�t� < Cj, the cor-
responding dynamics of the process x�·� are as they would be in the absence
of the constraint j.

Under appropriate conditions (see, e.g., Sections 3 to 5) there exists a func-
tion π ′ on X (each value of which is a probability distribution on E) with
the property that, for all convergent subsequences, we may take πt = π ′

x�t�
in (1.2). We may then define a velocity field v = �vr� r ∈ �� on X by
vr�x� = κrπ

′
x��r� − µrxr� so that (1.2) becomes

xr�t� = xr�0� +
∫ t

0
vr�x�u��du�(1.4)

In Section 2 we assume that such a velocity field v exists. We consider
the existence of fixed points for the dynamics of the process x�·� and relate
these to the limiting equilibrium behavior of the processes xN�·� and mN�·�.
In particular we give weak convergence results for the case where there is a
single fixed point.

Section 3 considers further the general problem of identifying the distri-
butions πt, t ≥ 0, and derives some conditions under which this is possible.
In Section 4 we study the single resource case J = 1. Here it is relatively
straightforward to identify the velocity field v (which always exists). How-
ever, interesting bistable behavior may occur, and we give an example of this.
Similarly, in Section 5 we study the two-resource case. We give an essentially
complete analysis, deriving conditions for the existence of a velocity field and
identifying it. We show how these results may be applied to deduce both dy-
namic and equilibrium behavior in a simple example, and show also that here
the commonly assumed product form for the limiting distribution of mN�·� is
incorrect.

2. Fixed points and equilibrium behavior. Assume throughout the
present section that there does exist a distribution-valued function π ′, and
hence a velocity field v, on X as defined above. Define x ∈ X to be a fixed
point of the limiting dynamics x�·� if v�x� = 0. The conditions of the following
theorem are usually easy to verify in applications.

Theorem 2.1. Suppose that, for all t > 0, x�t� is a uniquely defined and
continuous function of x�0�. Then there exists at least one fixed point for the
process x�·�.

Proof. Define the mapping θ� R+ ×X → X by θ�t� x�0�� = x�t�. Define
the sequence of sets An = 	x ∈ X� x = θ�2−n� x��, for n = 0�1� � � � � Since
X is compact and convex, Brouwer’s fixed point theorem implies that, for all
n ≥ 0, the set An is nonempty; further, the uniqueness of x�·�, given x�0�,
implies that if x ∈ An then θ�k2−n� x� ∈ An for all integer k > 0. In particular
An ⊆ An−1 for all n ≥ 1. Since X is compact and the sets An are closed
(by the hypothesized continuity), standard results show that

⋂∞
n=0 An �= �. It
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now follows from the continuity of x�·� that there exists a point x such that
θ�t� x� = x for all t so that, from (1.4), v�x� = 0. ✷

We expect that, for large N, once the process xN�·� is close to any fixed point
x, especially one which is asymptotically stable in the usual terminology of
dynamical systems, it will remain close to it for an extended period of time,
and that the distribution of mN�·� over that period will similarly remain close
to π ′

x [see HK, Kelly (1991) and Bean, Gibbens and Zachary (1995)]. Further,
the following result is not surprising.

Theorem 2.2. Suppose that v is such that there exists a single fixed point x̄
and that, for all x�0�, x�t� → x̄ as t → ∞. Then (i) the invariant distribution of
the process xN�·� converges weakly to the distribution concentrated on x̄, and
(ii) the invariant distribution of the process mN�·� converges weakly to π ′

x̄.

Proof. The proof is an adaptation of the theory of Section 2 of HK. Start
each process xN�·� at time 0 with its invariant distribution φN, so that both
xN�·� and mN�·� are stationary. Define the random measure νN on �0�∞�×E
by

νN��0� t� ×  � =
∫ t

0
I	mN�u�∈ � du�

for all t ∈ �0�∞� and  in the σ-algebra on E generated by the open sets.
The first part of condition (1.1) ensures that the sequence φN is relatively
compact, and so there exists a subsequence in which φN converges weakly
to φ, say. From Lemma 1 of HK there exists a further subsequence in which
�xN�·�� νN� converges weakly to a limit �x�·�� ν�, with respect to the topology
of that paper. By Theorem 3 of HK the process x�·� is continuous and satisfies
(1.4). For all t ≥ 0, xN�t� has distribution φN, and so x�t� has distribution φ.
Hence, in all convergent subsequences, φ is the distribution concentrated on
the globally asymptotically stable fixed point x̄, so that the result (i) follows.

It follows from Lemma 2 of HK, the proof of Theorem 3 of that paper and
the hypothesis of the present theorem that the limiting (random) measure ν
satisfies

ν��0�1� ×  � =
∫ 1

0
π ′
x�u�� �du�(2.1)

for all  in the above σ-algebra on E. Since the continuous process x�·� may
be almost surely identified with the fixed-point x̄, the right-hand side of (2.1)
is almost surely equal to π ′

x̄� �. It follows by bounded convergence that the
expectation of νN��0�1� × � converges to π ′

x̄� �. By stationarity, this expecta-
tion is equal to the probability of the set  under the invariant distribution
of the process mN�·�. Hence this distribution converges weakly to π ′

x̄, in all
convergent subsequences, and so result (ii) follows. ✷
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Observe that the invariant distribution of the process mN�·� determines the
equilibrium acceptance probabilities for the various call types; see Section 5
for an important application.

3. Drifts. Consider now the general problems of identifying the distri-
butions πt of (1.2) and determining any velocity field which exists. For each
subset � of � , let E� = 	m ∈ E� mj < ∞ if and only if j ∈ � �. We assume
(without loss of generality—see HK) that the matrix of capacity requirements
�Ajr� and the acceptance regions �r are such that, for each x ∈ X and � ⊆ � ,
there is at most a single invariant distribution π�

x of the Markov process mx�·�
on E which assigns probability one to the set E� . [The distribution π�

x may
also be thought of as the invariant distribution of the obvious projection of the
process mx�·� onto Z

�
+ .] Note that E� contains the single point �∞� � � � �∞�

and so the distribution π�
x always exists.

For each x∈X define ��x�= 	� ⊆ � � ∑
r Ajrxr=Cj for all j∈� and

π�
x exists�. Then, from the results of HK described in Section 1, it follows

that there exist nonnegative functions λ� �·�, � ⊆ � , such that, for all t,

πt =
∑

� ∈��x�t��
λ� �t�π�

x�t��(3.1)

where, necessarily,

∑
� ∈��x�t��

λ� �t� = 1�(3.2)

and where additionally we make the convention that λ� �t� = 0 if � /∈ ��x�t��.
Identification of πt, t ≥ 0, thus reduces to identification of the functions λ� �·�.

Now define, for each x, each � ⊆ � such that π�
x exists, and each j ∈ � ,

α�
j �x� = ∑

r∈�
Ajr	κrπ�

x ��r� − µrxr��(3.3)

For each x, the α�
j �x� have natural interpretations as drifts for both the pro-

cesses x�·� and mx�·�. In particular

α�
j �x� = 0 if j ∈ � �(3.4)

This follows from the observation that, in equilibrium, the jth component
of the restriction of the process mx�·� to E� has zero drift for each j ∈ � .
A formal proof may be given analogously to that of Lemma 4 of HK. Also,
from (1.2), (3.1)–(3.3), for each j ∈ � ,

∑
� ∈��x�t�� λ� �t�α�

j �x�t�� is the drift
rate of the process

∑
r∈� Ajrxr�·� at time t. Thus, using also (3.4), we have

immediately the following lemma, which encapsulates the idea of x-feasibility
of Hunt (1990, 1995) and is frequently useful in deducing that λ� �t� = 0 for
appropriate � and t.
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Lemma 3.1. Let j ∈ � and suppose that, for all t in some interval T,∑
r∈� Ajrxr�t� = Cj and λ� �t�α�

j �x�t�� ≥ 0 for all � ∈ ��x�t�� with j /∈ � .

Then, for almost all t ∈ T, λ� �t�α�
j �x�t�� = 0 for all � ∈ ��x�t��.

For general networks, Lemma 3.1 yields the following partial result, whose
conditions are satisfied in many applications.

Theorem 3.2. Suppose that � ⊆ � is such that, for all t in some interval
T, � ∈ ��x�t�� and if � ′ ∈ ��x�t�� then � ′ ⊆ � . Suppose further that, for
all t ∈ T,

if � ′ ∈ ��x�t�� and j ∈ � \� ′� then α� ′
j �x�t�� > 0�(3.5)

Then πt = π�
x�t� for almost all t ∈ T.

Proof. For each j ∈ � , apply Lemma 3.1 to deduce that, under the con-
ditions of the theorem, for almost all t ∈ T, λ� ′ �t� = 0 for all � ′ ∈ ��x�t��
with j /∈ � ′. ✷

More generally, it seems natural to conjecture that the condition (3.5) is
unnecessary for Theorem 3.2 to hold. This is so for single- and two-resource
networks, for which we give a full analysis in the following two sections.

We first require some additional notation. Partition the set X by defining,
for each � ⊆ � , X� = 	x ∈ X� ∑

r Ajrxr�t� = Cj if and only if j ∈ � �. We
shall find it convenient to write Xj for X	j�, and shall make similar nota-
tional simplifications elsewhere. Note in particular that, from (3.1), πt = π�

x�t�
whenever x�t� ∈ X�.

4. Single-resource systems. Consider further the single-resource case
� = 	1�. It is convenient to write C for C1, Ar for A1r, and α� �x� for α�

1 �x�.
Here E = Z+ ∪ 	∞�. Define �∗ = 	r ∈ �� ∞ ∈ �r�. It follows from the

assumed continuity of each I�r
at ∞ that �∗, � \�∗, are the sets of call types

which are accepted, respectively, rejected, for all sufficiently large values of
the free capacity in the network.

Note that, from (3.3), α��x� = ∑
r∈� Ar	κrI	r∈�∗� − µrxr�. This quantity is

also the drift rate towards the origin of the restriction of the process mx�·� to
Z+, except in some finite neighborhood of the origin. Elementary Lyapounov
techniques for irreducible processes with such partial spatial homogeneity
[see, e.g., Fayolle, Malyshev and Menshikov (1995)] now show that the distri-
bution π1

x (= π
	1�
x ) exists if and only if α��x� > 0. It follows that 	1� ∈ ��x� if

and only if x ∈ X+
1 = 	x ∈ X1� α��x� > 0�.

Further, the processes x�·� and α��x�·�� are continuous and, on the set X�,
the latter is the drift rate of the process

∑
r Arxr�·�. Hence, if t is such that

x�t� ∈ X+
1 , then there exists t′ > t such that x�u� ∈ X+

1 for all u ∈ �t� t′�. It
follows that the set 	t� x�t� ∈ X+

1 � is a countable union of intervals, to each of
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which Lemma 3.1 may be applied to deduce that λ��t� = 0 for almost all t in
this set.

It now follows, using also (3.1) and (3.2), that a velocity field for the limit
process x�·� may be defined everywhere on X, the function π ′ being given by

π ′
x =

{
π�
x � if x ∈ X \X+

1 �

π1
x� if x ∈ X+

1 �
(4.1)

(This result is also given, for the case �∗ = �, by Lemma 4 of HK.)
It is readily verified that, for each r, π ′

x��r� is Lipschitz continuous on
each of the sets X \ X+

1 and X1 [see Bean, Gibbens and Zachary (1995)].
Hence trajectories of the process x�·� are uniquely defined functions of their
positions at time 0 and discontinuities in the velocity of any trajectory occur
only at times of passage from X� to X+

1 . (Passage from X+
1 to X� is clearly

impossible.) It follows from standard arguments for dynamical systems that,
for each t, x�t� is a continuous function of x�0� and so, by Theorem 2.1, the
process x�·� always possesses at least one fixed point.

Bean, Gibbens and Zachary (1995) consider in detail the (apparently more
natural) case �∗ = �. They show how the distribution π1

x, where it exists,
may be determined precisely, and give sufficient conditions for the existence
of a single fixed point. There are also practical circumstances where we might
have �∗ �= �, and much of the analysis of that paper extends to this case
[for further details see Zachary (1996)]. However here, and provided also∑

r∈� ArκrI	r∈�∗�/µr ≤ C so that x�1� ∈ X \X+
1 given by x

�1�
r = κrI	r∈�∗�/µr

is a fixed point, there may also be further fixed points in the set X+
1 . This

is illustrated by the following example of (at least) bistability in which, for
appropriate parameter values, there are at least three fixed points, at least
two of which are asymptotically stable. This example illustrates in detail be-
havior which corresponds closely to what happens in a more complex network
if its control strategy is such that congested states of the network are self-
perpetuating. [See, e.g., Gibbens, Hunt and Kelly (1990).]

Suppose that there are two call types, with Ar = 1 for r = 1�2. Let µ1 = 1,
µ2C < κ1 < C and assume κ2 > 0. Let �1 = 	m� m > 0� and let �2 = 	m� 0 <
m ≤ s� for some s > 0. Then, for all x = �x1� x2� ∈ X, α��x� = κ1 − x1 −µ2x2,
and it is readily verified that there exists a unique point x̂ = �x̂1� x̂2� ∈ X1
such that α��x̂� = 0 and that X+

1 = 	x ∈ X1� x1 < x̂1�. It follows easily that,
provided the process x�·� remains within X \ X+

1 —which, for example, will
certainly be the case if x2�0� ≤ x̂2—its trajectories tend to the (asymptotically
stable) fixed point x�1� = �κ1�0�.

However, once within the set X+
1 , the process x�·� can only leave it at the

point x̂. Note also that, for all x ∈ X, v1�x� = κ1π
′
x��1� − x1. It follows from

the continuity of π ′
x��1� on the set X1 that, as x → x̂ in X+

1 , v1�x� → v1�x̂� =
κ1−x̂1 > 0. We also have v1�0� > 0. By considering the birth and death process
on Z+ of which π1

x, x ∈ X+
1 , is the invariant distribution, it is not difficult to

show that, if µ2 is close to (but less than) κ1/C, then v1�x� > 0 for all x ∈ X+
1 .

Thus, in this case, all those trajectories of the process x�·� which do enter or
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start at time zero in the set X+
1 leave it again at the point x̂ and tend to the

unique fixed point x�1�.
Similarly we may show that, for sufficiently small µ2, v1�x� < 0 for some

x ∈ X+
1 and hence there exist at least two fixed points of the process x�·� in

the set X+
1 . In the case where there are exactly two such points x�2�, x�3�, with

x
�2�
1 < x

�3�
1 , the point x�2� attracts those trajectories of x�·� which enter the set

X+
1 at points x satisfying x1 < x

�3�
1 , while those trajectories which enter X+

1

at points x satisfying x1 > x
�3�
1 tend, as in the earlier case, to the fixed point

x�1�. The points x�1� and x�2� are thus asymptotically stable, while x�3� has a
domain of attraction of Lebesgue measure zero.

Figure 1 illustrates a numerical example in which C = 1000, κ1 = 500,
µ1 = 1�0, κ2 = 700, µ2 = 0�1 and s = 5. There are three fixed points as
above. The upper panel shows trajectories of the limit process x�·� for several
initial positions. The locations of the two asymptotically stable fixed points
x�1�, x�2� are as indicated. The curved solid line separates the domains of

Fig. 1. Two-type system: analytical and simulation results.
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attraction of these two points. It is of course also a trajectory of x�·� and in-
tersects X1 at the unstable fixed point x�3� (which in this example lies very
close to x̂). The lower panel shows simulated trajectories of the process x1�·�
(= n1�·�). Here C is sufficiently large that the process x1�·� should be reason-
ably well approximated by x�·� and indeed the bistable behavior of x1�·� is
clearly evident. However, this process is of course ergodic, so that, over suf-
ficiently long time periods, it alternates between typically lengthy residences
in the neighborhoods of x�1� and x�2�.

5. Two-resource networks. Consider now the two-resource case � =
	1�2�. Our interest is again in describing both the dynamic and equilibrium
behavior of the process x�·�. By the remark following (1.3), for times t such
that x�t� /∈ X12, the behavior of x�·� may be described as in the previous
section, so that it is sufficient to consider further the case x�t� ∈ X12.

For either j ∈ � , let j′ denote its complement in � . Note that, as in the
previous section, for any x and j, the distribution π

j
x exists, and so also αjj′ �x�

is defined, if and only if α�
j �x� > 0. (Recall that the restriction of the process

mx�·� to Ej is essentially one dimensional.) For each j, define the function βj
on X by

βj�x� =
{
α
j′
j �x�� if α�

j′ �x� > 0�

α�
j �x�� if α�

j′ �x� ≤ 0�
(5.1)

As in the previous section, the continuity of the indicator functions I�r
ensures

that, for each x, the restriction of the process mx�·� to E12 = Z
2
+ possesses a

property of partial spatial homogeneity. Each βj�x� also has an interpreta-
tion as an averaged drift for this restricted process, and standard results for
such processes [see, e.g., Fayolle, Malyshev and Menshikov (1995), or Zachary
(1995), Theorem 2.4] show that the distribution π12

x does not exist whenever
β1�x� ∧ β2�x� < 0. Standard arguments for one-dimensional processes, as in
the previous section, also show that each of functions βj is continuous on X.

Define X+
12, X0

12, X−
12 to be the sets of x in X12 such that β1�x� ∧ β2�x� is,

respectively, greater than, equal to, and less than 0. Further partition X−
12 as

V1 ∪V2 ∪W− ∪W+ where

Vj = 	x ∈ X−
12� βj�x� > 0�� j = 1�2�

W− = 	x ∈ X−
12� β1�x� ∨ β2�x� ≤ 0� α�

1 �x� ∨ α�
2 �x� ≤ 0��

W+ = 	x ∈ X−
12� β1�x� ∨ β2�x� ≤ 0� α�

1 �x� ∧ α�
2 �x� > 0��

[That V1, V2, W− and W+ do form a partition of X−
12 follows from (5.1).] The

following theorem identifies πt uniquely for t such that x�t� ∈ X+
12 ∪V1 ∪V2 ∪

W− (so that a unique velocity field exists within this region). For t such that
x�t� ∈ W+, πt is not in general uniquely determined (see below). We discuss
subsequently behavior when x�t� lies in the remaining “boundary set” X0

12,
which is typically of Lebesgue measure zero in X.



882 N. G. BEAN, R. J. GIBBENS AND S. ZACHARY

Theorem 5.1. For almost all t:

(i) if x�t� ∈ X+
12, then πt = π12

x�t�;

(ii) if x�t� ∈ Vj, then πt = π
j
x�t�;

(iii) if x�t� ∈ W−, then πt = π�
x�t�;

(iv) if x�t� ∈ W+, then πt = λ1�t�π1
x�t� + λ2�t�π2

x�t�, for some nonnegative

λ1�t�, λ2�t�, necessarily summing to one.

Proof. For each j, let Tj = 	t� ∑
r∈� Ajrxr�t� = Cj� α�

j �x�t�� >
0� βj�x�t�� > 0�. It follows as in the previous section, by using the continuity
of α�

j and βj and considering drifts, that Tj is a countable union of intervals.
From the definition of βj and the convention following equation (3.2), we may
apply Lemma 3.1 to each of these to deduce that

λ��t� = λj
′ �t� = 0 for almost all t ∈ Tj�(5.2)

To prove (ii) note first that, if x ∈ Vj, then α�
j �x� > 0 [for otherwise we

would have, from (5.1), α�
j′ �x� = βj′ �x� < 0 and so α�

j �x� = βj�x� > 0—a
contradiction]. Hence 	t� x�t� ∈ Vj� ⊆ Tj and the result now follows from
(3.1) and (3.2) on recalling that π12

x does not exist for x ∈ Vj.
To prove (i) suppose that t is such that x�t� ∈ X+

12. Then, easily from (5.1),
α�

1 �x�t�� ∨ α�
2 �x�t�� > 0. Suppose α�

1 �x�t�� > 0. Then, as above, there exists
t′ > t such that �t� t′� ⊂ T1 and α1

2�u� = β2�u� > 0 for all u ∈ �t� t′�. It follows
from (5.2) and further consideration of drifts that also x�u� ∈ X+

12 for all
u ∈ �t� t′�, and hence, again from (5.2) followed by a further use of Lemma 3.1—
this time for the case j = 2—we have that λ��u� = λ1�u� = λ2�u� = 0 for
almost all u ∈ �t� t′�. The result (i) now follows easily, again using (3.1) and
(3.2).

To prove (iii) observe that, for all x ∈ W−, none of the distributions π1
x, π2

x

and π12
x exists, so that this result is immediate.

Finally, let T′ = 	t� x�t� /∈ X�� α
�
1 �x�t�� ∧ α�

2 �x�t�� > 0�. As before we may
show that T′ is a countable union of intervals, to each of which a coupling
argument, identical to that of the proof of Lemma 2 of Hunt (1995), may be
applied to deduce that πt�E�� = 0 and so λ��t� = 0 for almost all t ∈ T′. Since
	t� x�t� ∈ W+� ⊆ T′ and the distribution π12

x does not exist for x ∈ W+, the
result (iv) now follows. ✷

We now consider the identification of πt for x�t� ∈ X0
12. Under the condition

�∞�∞� ∈ �r for all r ∈ ��(5.3)

it is not difficult to show that the distribution π12
x also fails to exist for x such

that β1�x� ∧ β2�x� = 0: the condition implies, from (3.3), that α�
j �x� ≥ βj�x�,

j = 1�2, and then the above assertion follows from, for example, Zachary
(1995), Theorem 2.4, except in the “zero-drift” case α�

j �x� = βj�x� = 0, j = 1�2.
This latter case is here easily handled by, for example, the simple Lyapounov
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function f�m� = m1. Hence, under condition (5.3), we may replace X−
12 by

X−
12∪X0

12 in the definitions of V1, V2, W− and W+. Theorem 5.1 will continue
to hold as stated and will now identify πt everywhere.

Condition (5.3) corresponds to the requirement that calls of all types are
accepted provided the free capacity of each resource in the network exceeds
some given value. This condition will be satisfied in most applications. Else-
where it seems very unlikely that the boundary region X0

12 (which may well
fail to exist at all) will cause problems.

At least under condition (5.3), when W+ is empty, the dynamics of the
process x�·� are readily inferred from Theorem 5.1 and the slightly more de-
tailed description of behavior given in its proof. In particular, the process will
usually only remain within the set X12 for a nonzero length of time while
in the set X+

12, and, if β1�x�t�� ∧ β2�x�t�� should fall below zero, will then
depart to X+

1 or X+
2 . Further, only mild regularity conditions are required

to show, as in Section 2, that there exists at least one fixed point for the
process x�·�.

Hunt (1995) gives an example in which the set W+ is nonempty [and for
which (5.3) also fails to hold]. Here the process x�·� generally departs the set
W+ immediately, indeterminately to either X+

1 or X+
2 —corresponding to the

fact that the sequence of processes xN�·� may have different limits in different
subsequences. The example confirms that the result (iv) of Theorem 5.1 is the
best possible statement of behavior in the set W+. It is therefore important for
the control of networks to have conditions which ensure that this set is empty.
Some such conditions are given by Moretta (1995), and by Zachary (1996), and
suggest that in particular W+ is always empty under the condition (5.3).

We conclude with an example which also provides a counterexample to a
commonly assumed result. Let C1 = C2 = C. Assume three call types and let
A = �Ajr� be given by

A =
(

1 0 1

0 1 1

)
�

Let κ1 = κ2 = κ and κ3 = κ′ where κ + κ′ > C. Further let µr = 1 for all r.
Finally take �1 = 	m�m1 > 0�, �2 = 	m�m2 > 0� and �3 = 	m�m1∧m2 > s�
where s > 0 is a trunk reservation parameter which restricts acceptance of
calls of type 3 when either resource in the network is close to capacity.

For j = 1�2 and all x ∈ X, α�
j �x� = κ + κ′ − �xj + x3� ≥ κ + κ′ − C > 0�

so that in particular the distribution π
j
x exists. Note also that πj

x��j′ � = 1. It
follows, using also (3.3) and (3.4), that, for each j and for each x ∈ Xj ∪X12,

κπj
x��j� + κ′πj

x��3� −C = α
j
j�x� = 0�(5.4)

and hence βj′ �x� = α
j
j′ �x� = κ+ κ′πj

x��3� − �xj′ + x3� ≥ κ�1 − π
j
x��j��. Since

the distribution π
j
x is here independent of x for x ∈ Xj ∪X12, it follows that

βj′ �x� is positive and bounded away from zero on this set. Thus, from (4.1)
and Theorem 5.1, for each � ⊆ 	1�2�, πt = π�

x�t� whenever x�t� ∈ X� . In
particular, a velocity field v may be defined everywhere on X.
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It now follows easily that the process x�·� enters the set X12 (both resources
fill to capacity) within a finite time and remains within it thereafter. In par-
ticular, any fixed point necessarily lies in this set. It follows, using also (5.4),
that such fixed points x are the solutions of

κ′π12
x ��3� = x3�(5.5)

In general the distribution π12
x must be determined numerically. However,

there are good reasons for believing it to be relatively insensitive to variation
of x within X12 [see Moretta (1995) for some numerical investigations], so
that we may reasonably expect that there exists a single fixed point x̄ ∈ X12
such that, for all x�0�, x�t� → x̄ as t → ∞. It then follows in particular, from
Theorem 2.2, that the invariant distribution of mN�·� converges to π12

x̄ . We now
show that this limit distribution does not have a product form, contrary to the
assumption of many routines used to calculate call acceptance probabilities
in applications. (HK, in a similar but more complex argument, show that this
limit distribution does not have the particular product form which corresponds
to the well-known generalized Erlang fixed point approximation.)

Suppose instead that we may write π12
x̄ �m� = π̄1�m1�π̄2�m2� for some dis-

tributions π̄1, π̄2 on Z+. Recall that π12
x̄ is the invariant distribution of the

Markov process mx̄ restricted to Z
2
+. Since s > 0, the balance equation associ-

ated with the point m = �0�0� is

π̄1�0�π̄2�0��x1 + x2 + x3� = �π̄1�0�π̄2�1� + π̄1�1�π̄2�0��κ�(5.6)

Further, for j = 1�2, consideration of the balance of probability flux between
the set 	m ∈ Z

2
+� mj = 0� and its complement shows that π̄j�0��xj + x3� =

π̄j�1�κ. Substitution of this result, for each j, into (5.6) implies that x3 = 0,
in contradiction of (5.5).
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