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SCENERY RECONSTRUCTION IN TWO DIMENSIONS
WITH MANY COLORS

BY MATTHIAS LÖWE AND HEINRICH MATZINGER III

EURANDOM

Kesten has observed that the known reconstruction methods of random
sceneries seem to strongly depend on the one-dimensional setting of the
problem and asked whether a construction still is possible in two dimensions.
In this paper we answer this question in the affirmative under the condition
that the number of colors in the scenery is large enough.

1. Introduction and the main result. The following problem has its roots in
ergodic theory but may also be considered interesting in its own right. Consider
a graph (V,E) and color its vertices in an arbitrary way (so we do not only
concentrate on proper colorings in the strict sense that any two adjacent vertices
need to have a different color). This coloring will be called a scenery on (V,E).
Then we run a random walk on (V,E) of which we only know the color record
(i.e., the sequence of colors it reads at the vertices) but not where it actually reads
them. The question then is: Can we still say anything about how V was colored?

This problem, which at first glance might seem a bit hopeless, was first
investigated independently by Benjamini and by den Hollander and Keane [2].
From here the problem splits into basically three branches:

1. Can we distinguish two (known) sceneries by their random walk record? or,
more ambitiously:

2. Can we even reconstruct (unknown) sceneries by the observations we obtain
from a random walk? and:

3. Are there sceneries which cannot be reconstructed or distinguished by the color
record of a random walk?

Basic answers to all three of these questions have been given already, while
other aspects are still wide open. For example, Benjamini and Kesten [1]
discovered the very strong result that almost surely any two given sceneries on
the integer lattice Z or Z

2 can be distinguished by a simple random walk on
these lattices given that the colors are selected by an i.i.d. process. Previous to
that Howard [6] had already been able to show that in one dimension a periodic
scenery can be distinguished from a periodic scenery with one defect.

Matzinger [10] showed that on Z even more is true: Almost every i.i.d. two-
color scenery can be reconstructed from the color record of a simple random
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walk (which even might have nonzero probability of standing still). This implies
Benjamini’s and Kesten’s [7] result in one dimension as well as the earlier
observation by Matzinger [9] that the same holds true for three and more colors.
However, notice that Benjamini’s and Kesten’s techniques also work in a two-
dimensional situation or when the random walk is allowed to jump. A remarkable
answer to question 3 has been given by Lindenstrauss [8], who showed that there
are still uncountably many sceneries on Z which cannot be distinguished from the
color record of a simple random walk.

To be more specific, in what follows (V,E) will always be the integer lattice Z
2

and a function ξ : Z2 → Z will be called a two-dimensional scenery. For a subset
D ⊂ Z

2 we call ξ :D → Z a piece of scenery. If the range of ξ contains exactly
m elements we will say that ξ has m colors or that it is an m-color scenery. Two
sceneries ξ and ξ will be called equivalent if there are a ∈ Z

2 and

M ∈
{(−1 0

0 1

)
,

(
1 0
0 −1

)
,

(−1 0
0 −1

)
,

(
1 0
0 1

)
,

(
0 1
1 0

)
,

(
0 −1
1 0

)
,

(
0 1

−1 0

)
,

(
0 −1

−1 0

)}

such that

ξ(x) = ξ(Mx + a) ∀x ∈ Z
2.

Similarly, we call two pieces of scenery ξ :D → Z and ξ :D → Z equivalent if
again

ξ(x) = ξ(Mx + a) ∀x ∈ D

holds true (a and M as above) and moreover M(D) + a = D.
In other words ξ and ξ are equivalent (in symbols, ξ ∼ ξ ) if they can be obtained

from each other by translation and reflection on the coordinate axes. It is rather
obvious that in general we cannot expect to distinguish equivalent sceneries by
their color record and thus also reconstruction will work only up to equivalence.
Throughout this paper we will consider ξ ’s that result from an unbiased i.i.d.
random process with m colors (thus we will also say that ξ has m colors); that
is, the ξ(v) are i.i.d. for all v ∈ Z

2 and

P
(
ξ(0) = i

)= 1

m

for all colors i ∈ {0, . . . ,m − 1}. Moreover, let (Sk)k∈N be a simple, symmetric
random walk in two dimensions starting at the origin.

The main result of this paper states that if m is large enough, the color record of
(Sk), that is,

χ := (
χ(k)

)
k∈N

:= (
ξ(Sk)

)
k∈N

,
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contains enough information to reconstruct ξ almost surely up to equivalence.
Additionally, we will present a well-defined algorithm that given the scenery on
a finite set reconstructs the whole scenery with probability larger than 1/2. In the
next section we will see why this actually suffices to prove the main theorem. This,
in a more mathematical way, is expressed in the following theorem, which states
that with sufficiently many colors reconstruction of ξ from χ (up to equivalence)
is possible with probability 1.

THEOREM 1.1. There exists m0 ∈ N such that if m ≥ m0, there exists a
measurable function (with respect to the canonical σ -fields)

A : {0, . . . ,m − 1}N → {0, . . . ,m − 1}Z
2

such that

P
(
A(χ) ∼ ξ

)= 1.(1.1)

Here the measure P lives on the product space of the outcomes of ξ and the space
of all random walk paths.

REMARK 1.2. We have not calculated any lower bound for m0 yet. We are
also convinced that the methods presented here will lead to an m0 which is terribly
large and far off any reasonable number and, in particular, any of the “borderline”
cases m = 4,5 for which we have as many colors as (or one more color than,
respectively) we have neighbors in Z

2 or even m = 2 (for which we doubt that
Theorem 1.1 is valid). This is basically so because we decided to keep the present
proof as simple and transparent as possible and to use as many colors as necessary
to this end. The specification of a good bound on m0 will be subject to further
research of the authors.

In Section 2 we present the basic ideas of the algorithm used to reconstruct a
random scenery; Section 3 contains the rigorous proof of Theorem 1.1.

2. The main ideas and basic notation. The proof of Theorem 1.1 is crucially
based on an induction argument. Given that we already know the scenery on a
finite set A (for a special choice of A) we show how to extend this knowledge to
the points sitting next to A. The following three lemmas are the building blocks of
this induction. First we see that it suffices to exhibit an algorithm that reconstructs
the scenery with probability larger than 1/2 to be able to reconstruct the scenery
almost surely.

LEMMA 2.1. For all m ≥ 2 (where m designates the number of colors in ξ ),
if there exists a measurable map

A : {0, . . . ,m − 1}N → {0, . . . ,m − 1}Z
2
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such that

P
(
A(χ) ∼ ξ

)
> 1/2,

then there also exists a measurable

A : {0, . . . ,m − 1}N → {0, . . . ,m − 1}Z
2

with

P
(
A(χ) ∼ ξ

)= 1.

The proof of Lemma 2.1 is given in Section 3.
Lemma 2.1 will be useful, since we will soon see that with sufficiently many

colors we are able to reconstruct with large probability the scenery on finite regions
of Z

2 such as the integer circle of radius n denoted by

Bn := {
x ∈ Z

2 : ‖x‖ ≤ n
}
.

Here ‖·‖ stands for the standard Euclidean norm in Z
2. Moreover, in the following

we will frequently use the following notation: we will write f |B for the restriction
of f to a subset B of the domain of definition of f ; for example, ξ |B will be a
piece of scenery (i.e., the scenery restricted to some subset B of Z

2), while χ |B
will be a part of the observations (here B will be a subset of N).

The next two lemmas basically contain the induction. Lemma 2.2 below is
the start of the induction, while Lemma 2.3 contains the induction step. So, first
we show that we can reconstruct ξ |Bn for each finite n with arbitrarily large
probability, as long as the scenery contains sufficiently many colors.

LEMMA 2.2. Let n ∈ N and ε > 0. Then there exists m1 ∈ N such that if
m ≥ m1, there exists a measurable function

An : {0, . . . ,m − 1}N → {0, . . . ,m − 1}Bn

such that

P
(
An(χ) ∼ ξ |Bn

)≥ 1 − ε.

Lemma 2.2 is proven in the next section.
The next lemma is the induction step in the sense that it states that we

can reconstruct ξ |Bn+1 with large probability provided we know ξ |Bn up to
equivalence and the number of colors is large enough.

LEMMA 2.3. There exists m2 ∈ N (random) such that for m ≥ m2 there is a
sequence of measurable functions (Ãn)n∈N,

Ãn :
⋃
a∈Z2

{0, . . . ,m − 1}Bn+a × {0, . . . ,m − 1}N → {0, . . . ,m − 1}Bn+1
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such that, P -a.s.,

Ãn(ξ |Bn,χ) ∼ ξ |Bn+1

occurs for all but finitely many n.

REMARK 2.4. Note that given that m is large enough the critical n in
Lemma 2.3 from which the algorithms work, that is, from which

Ãn(ξ |Bn,χ) ∼ ξ |Bn+1,

is random.
Also note that Lemma 2.3 implies that for each ε > 0 we can find a number N

(nonrandom) such that the probability that all Ãn work for all n ≥ N is greater
than 1 − ε.

Roughly speaking, Lemma 2.3 means that the algorithm obtained by concate-
nating the different Ãn’s works well, in the sense that given ξ |Bn up to equivalence
and the observations χ it almost surely fails to reconstruct ξ |Bn+1 only for finitely
many n.

To explain the proof of the induction step, which is crucial to the whole proof of
Theorem 1.1, observe that the main difficulty in the reconstruction of sceneries is,
of course, that we do not exactly know precisely where the random walk is. This is
even more a problem in two dimensions than it is in one dimension as the random
walk in one dimension by time N has returned to the origin about

√
N times and

therefore produces a lot of information about the neighborhood of the origin. In
two dimensions the local time of the origin at time N is only about logN . Thus
we have to find an accurate method for guessing when the random walk is close
to the origin from the observations χ it produces. This will be achieved by using a
set of signal words, that is, sequences of subsequent colors in Bn. Their frequent
appearance in the observations will indicate that we really are in a neighborhood
of Bn.

This “guessing that the random walk is inside Bn” is the first step of the
reconstruction algorithm. More accurately, these words which will indicate that
we are inside Bn (the so called signal words) are horizontal, nonoverlapping words
inside Bn of length proportional to logn. The set of these words will be called Sn.
Whenever we read more than nβ words during a time interval of length n2 whose
endpoint is inside [0, enα ] (α and β are some numbers to be specified later), we
will “guess” that the walk is inside Bn2+n. The union of these time intervals will
be called τn and the reconstruction will only take place during τn. Note that τn

designates a random set.
More formally in the sequel let c1, c2, c3 > 0 be positive constants (not

depending on n) which we will specify later. For convenience we will assume
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that ci logn ∈ N for each i = 1,2,3 (which of course means the ci slightly depend
on n but this dependence is irrelevant). Let

Sn := {
w = (w1, . . . ,wc1 logn)

∣∣ ∃k ∈ Z and (x, y) ∈ Z
2: x = kc1 logn,

(x + s, y) ∈ Bn and ws = ξ((x + s, y)),

∀ 0 ≤ s ≤ c1 logn − 1
}
.

In other words Sn “partitions” ξ |Bn into disjoint horizontal words of length
c1 logn. Moreover let 1 < α < β < 2 be two real numbers close to 2 to be specified
later, let

Iα,β := {
I = [t, t + n2] ∣∣ t ≤ en

α − n2,

χ |I contains more than nβ different words from Sn
}
,

and

τn := τn
α,β := ⋃

I∈Iα,β

I.

As sketched above, the point is that during the times k ∈ τn we can be pretty
sure that the random walk is “close to Bn”, more precisely that it is inside Bn+n2

.
This will ensure that the reconstruction takes place at the boundary of Bn and not
anywhere else.

The probability for the random walk to go right through a given signal word is
equal to (1/4)c1 logn. Thus for c1 very small the random walk inside Bn typically
reads n2−ε1 signal words during a time interval of length n2. Here ε1 > 0 can
be made arbitrarily small. This is basically so because the random walk typically
visits about n2/ logn distinct points in a time window of length n2, and thus during
these time steps it would visit roughly about n2/ logn × (1/4)c1 logn ≥ n2−ε1 (for
c1 small enough) signal words.

Now, if the number of colors m is large enough, we can choose c1 small and the
signal words still will be typical of Bn [i.e., the probability of reading them in a
given ball Bn2

y (the ball of radius n2 centered in y) is small, as long as the ball does
not touch Bn]. Indeed, there are fewer than πn44c1 logn different paths of length
c1 logn inside Bn2

y . Thus by independence the probability for a given signal word

to appear in Bn2

y \ Bn is less than πn4(4/m)c1 logn, which is as small as we want,
if only m is large enough. Exploiting the independence of the signals in a large-
deviations argument we will be able to show that up to time en

α
the random walk in

a time interval of length n2 will only be able to read more than nβ (α,β as above)
signal words if it spends this time in Bn2+n and that the probability of reading so
many signals elsewhere is about e−nα . So, our test, to check when we are back
in Bn, will not fail until time roughly en

α
. However, by that time we will have

returned to the origin about nα−ε2 times (ε2 > 0, small). Now if m were so large
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that there were only different colors inside Bn, this would suffice to reconstruct ξ
on the boundary of Bn. We simply would have to follow the walk until it exits Bn

and read the first color outside as the color of a boundary point. If all colors were
different, we would clearly know where this boundary point was. Moreover, there
are on the order of n points in ∂Bn, so n1+ε3 (ε3 > 0) returns to the origin would
suffice to reconstruct the scenery on the boundary of Bn. As we already have seen
that we have about nα such returns, we would be done.

However, we are not allowed to choose m growing with n, so we cannot assume
that all colors inside Bn are different. So we have to employ more subtle methods
to reconstruct ξ on the boundary of Bn.

To describe this reconstruction part we have to introduce some more notation.
Let

∂Bn := {
z ∈ Bn | ∃y ∈ Z

2 \ Bn such that z and y are neighbors
}

be the inner boundary of Bn and let

∂Bn := Bn+1 \ Bn

be its outer boundary. Observe that ∂Bn may differ from the outer boundary of Bn

in the lattice topology. Indeed, there might points at distance 1 from Bn without
nearest neighbors in Bn. Moreover, using the lattice geometry of Z

2, it is easily
checked that all points in Bn+1 can be reached from a point in Bn by crossing
at most two edges. Since by definition Bn ∪ ∂Bn = Bn+1 it clearly suffices to
reconstruct ∂Bn with sufficiently large probability.

The strategy will be to guess the color of a point v in ∂Bn by extending a walk
to a neighboring point in ∂Bn by two further steps. Of course, we have to be very
careful both to walk to v ∈ ∂Bn and to extend the walk in the right direction. The
principal idea behind this reconstruction can be described quite easily. Draw a
straight (horizontal or vertical) line through v and suppose we know already the
colors of a line segment of length approximately logn inside Bn and containing
v as well as the colors of a line segment of about the same length outside Bn

at distance 2 from v. Then we could figure out the two missing colors between
these two segments by just waiting until the random walk first reads the colors
of the segment inside Bn (in the right order) and then after a waiting time of
2 the colors of the segment outside Bn. Except, if the walk is far away from v

(which we can exclude by the above arguments), the walk must have followed the
straight line supporting the two segments at least partially and thus the missing two
colors are the colors read between reading the colors of the two segments. Indeed,
the “following partially” part above needs a little more technical work. We could
deviate from the above line segment and just accidentally read the right colors. We
will get rid of this nuisance by characterizing the missing two points as the shortest
distance between two cones rather than between two line segments. This idea will
be made more precise below.
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Now a major difficulty is that we do not know the colors outside Bn. Thus we
have to think of another characterization of the segment outside Bn (supported by
the same line as the inner segment). It will turn out that it is useful to think of it
as the segment whose colors can be read in shorter time by starting with the inner
segment than by starting with any segment parallel to it.

To formalize this idea for v ∈ ∂Bn we define a segment σ(v) (the segment
associated with v) in the following way: Let σ(v) be the horizontal or vertical
segment of length (c2 + c3) logn with endpoints v and σ0(v) ∈ Bn, such that the
angle between this segment and the tangent to the circle of radius |v| centered on 0
at the point v is at least 45◦ (the latter is needed to ensure that the objects below
are well defined).

The first c2 logn lattice points [starting from σ0(v)] are called the root segment
of v and abbreviated as σ̂ (v); the rest of σ(v) is called the second root segment and
denoted by the symbol σ(v); the left and right neighboring segments of σ̂ (v) of
the same length c2 logn as σ̂ (v) [or the lower and upper segment next to the root
segment of v, if σ(v) is a horizontal segment, respectively] are named the side
segments of v. For these we reserve the symbols λ(v) and ρ(v), and their starting
points [next to σ0(v)] are denoted by λ0(v) and ρ0(v), respectively. Finally, the
segment of length c2 logn following σ(v) after one step when we keep following
the line supporting σ(v) is called the invisible segment associated with v and
denoted by ϕ(v). Its endpoints are called v2 and ϕ0(v). The words associated with
these segments are called the root word, second root word, side words and invisible
words, respectively. Finally, the lattice points we want to guess the color of, that
is, the points on ϕ(v) of distance 1 and 2 to v, are named v1 and v2.

All this is illustrated in Figure 1.
Let us now describe how this reconstruction works.
The idea behind the above setup is that, to read the color of v1 and v2, we take

a neighboring vertex v ∈ ∂Bn and read the color of v1 and v2 as the next colors
when we have read σ(v) from σ0(v) to v. To guarantee that indeed we read the
color of the right points we require that the algorithm picks a word w of length
c2 logn satisfying the following conditions:

1. w appears in χ |τn directly (one step) after the word supported by σ(v).
2. In χ |τn the shortest time for w to appear after the root word of v is exactly

equal to c3 logn + 1.
3. In χ |τn the shortest time for w to appear after the side word of v is exactly

c3 logn + 2.

Condition 2 assures that we do not run backward after having read the word
supported by σ(v); condition 3 guarantees that we have not deviated from the
segment from σ0(v) to v while reading the scenery.

Thus we estimate ξ(v2) to be the first color of w. The estimate for ξ(v1) will
be the the color between σ(v) and w, when they appear in χ |[0, enα ] one step
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FIG. 1.

apart from each other. If there is no word w satisfying the above conditions, we
let the algorithm terminate (our conditions imply that this will happen only with
extremely small probability).

To realize this idea, that is, to prove Theorem 1.1, we need some more
definitions, which we give now. For v ∈ ∂Bn the half-space associated with v

[which we denote by H(v)] is the half-space separating σ̂ (v) from σ(v)

orthogonal to σ(v) and with σ(v) in H(v). The first quarter-space Q1(v)

associated with v is the right-angular cone based on v2 with bisecting line along
ϕ(v) such that the major part of ϕ(v) is inside this cone. The second quarter-space
Q2(v) associated with v is the right-angular cone based on the line separating
H(v) from its complement such that σ̂ (v) is on its bisecting line and σ̂ (v) is in
this cone. The third quarter-space Q3(v) associated with v is defined as the right-
angular cone based on the line separating H(v) from its compliment such that λ(v)
is on its bisecting line and λ(v) is in this cone. Finally, the fourth quarter-space
Q4(v) associated with v is the right-angular cone based on the line separating
H(v) from its compliment such that ρ(v) is on its bisecting line and ρ(v) is in this
cone. The base points of Q3, Q2 and Q4, respectively, are denoted by a, b and c,
respectively.
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All this is illustrated in Figure 1. In this figure the points v, a, b, c, λ0(v), σ0(v)

and ρ0(v) are inside Bn, while v1, v2 and ϕ0(v) are outside Bn.
As can be seen from Figure 1:

1. Q1(v) contains the segment ϕ(v) which begins with v2 and ends at ϕ0(v);
2. Q2(v) contains the segment σ̂ (v) which begins with σ0(v) and ends at b;
3. Q3(v) contains the segment λ(v) which begins with λ0(v) and ends at a;
4. Q4(v) contains the segment ρ(v) which begins with ρ0(v) and ends at c;
5. σ(v) consists of σ̂ (v) and σ(v);
6. All of the segments ϕ(v), σ̂ (v), ρ(v) and λ(v) contain c2 logn lattice points,

while σ(v) contains c3 logn lattice points.

3. Proofs. In this section we give the proofs of Theorem 1.1 and Lemmas 2.1–
2.3. Let us start with the proof of Lemma 2.1.

PROOF OF LEMMA 2.1. Let X(l) be the indicator for the event that the
reconstruction algorithm A applied to the observations shifted by l give rise to a
scenery which is equivalent to the actual scenery, that is, X(l) = 1 if A(1l(χ)) ∼ ξ

and X(l) = 0 otherwise. Obviously, (X(l), l ∈ N) is stationary with

P
(
X(l) = 1

)= P
(
A(χ) ∼ ξ

)
> 1

2

for all l.
Furthermore let

2 = {
(+1,0), (−1,0), (0,+1), (0,−1)

}N × {0, . . . ,m − 1}Z
2

and let F be the standard σ -field on 2. Let θ :2 → 2 be defined in the following
way. For any

ω = (
(51,52, . . .),ψ

)
,

where

ψ ∈ {0, . . . ,m − 1}Z
2

and

5i ∈ {(+1,0), (−1,0), (0,+1), (0,−1)
}

for all i ∈ N,

we define

θ(ω) := (
(52,53, . . .),ψ + 51

)
.

Here ψ + 51 stands for 2D scenery ψ shifted by −51, that is,

ψ + 51(z) := ψ(51 + z).

Let 5i designate the ith increment of the random walk S, that is,

5i := S(i) − S(i − 1).
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Let µ be the measure describing the randomness of the object ((51,52, . . .), ξ).
This means (2,F ,µ) is a probability space. One easily verifies that θ is measure-
preserving on (2,F ,µ). Let Z(l) designate the random vector

Z(l) = (
(5l+1,5l+2, . . .), ξ + S(l)

)
.

Note that Z(l)= θl(Z(1)). Since θ is measure-preserving the sequenceZ(0),Z(1),
Z(2), . . . is measure-preserving. Now X(0),X(1),X(2), . . . is a stationary coding
of the sequence Z(0),Z(1),Z(2), . . . . By this we mean that there exists a measur-
able function F such that for all l ∈ N we have

F
(
Z(l)

)= X(l).

This implies stationarity of the sequence X(0),X(1),X(2), . . . . Now a stationary
coding of an ergodic sequence is ergodic again. Thus to prove that (X(l))l is
ergodic we will prove that Z(0),Z(1),Z(2), . . . is ergodic. To do so we will show
that Z(0),Z(1),Z(2), . . . is actually mixing. For this it is enough to see that for
any two A,B ∈ F that only depend on finitely many 5i we have

lim
k→∞µ(θ−kA ∩ B) = µ(A)µ(B).

Let σn denote the σ -algebra

σn = {
σ(51,52, . . . ,5n, ξ(z)) : z ∈ Bn

}
,

where

Bn := {z ∈ Z
2 : |z| ≤ n}.

Eventually let Cn,k denote the event that

Cn,k := {S(k) /∈ B2n}.
Assume that A,B ∈ σn. Then, conditional on Cn,k , the events θ−k(A) and B are
independent. Also note that θ−k(A) and Cn,k are independent. Thus we obtain

µ
(
θ−k(A) ∩ B|Cn,k

)= µ
(
θ−k(A)|Cn,k

)
µ(B|Cn,k) = µ

(
θ−k(A)

)
µ(B|Cn,k).

Hence

µ
(
θ−k(A) ∩ B ∩ Cn,k

)= µ
(
θ−k(A)

)
µ(B ∩ Cn,k).

This implies that

µ
(
θ−k(A) ∩ B

)= µ
(
θ−k(A) ∩ B ∩ Cc

n,k

)+ µ(A)
(
µ(B) − µ(B ∩ Cc

n,k)
)
.(3.1)

Keeping n fixed and taking k to infinity we obtain

lim
k→∞µ(Cc

n,k) = 0.

Hence also

lim
k→∞µ(B ∩ Cc

n,k) = lim
k→∞µ

(
θ−k(A) ∩ B ∩ Cc

n,k

)= 0.
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Thus (3.1) implies

µ
(
θ−k(A) ∩ B

)= µ(A)µ(B).

Hence the shift θ is mixing on (2,F ,µ) and thus also ergodic. Therefore
Z(0),Z(1), . . . is an ergodic sequence of random variables. Since X(0),X(1), . . .
is a stationary coding of Z(0),Z(1), . . . it inherits the property of ergodicity.

Hence by the ergodic theorem

X(1) + X(2) + · · · + X(l)

l

converges to a limit larger than 1/2 almost surely. Thus under the assumption that

P
(
A(χ) ∼ ξ

)
> 1

2

we can identify the equivalence class of ξ as the only equivalence class which
eventually is equivalent to the majority of the A(1l(χ))’s. �

Let us now prove Lemma 2.2.

PROOF OF LEMMA 2.2. The principal idea behind the proof of Lemma 2.2 is
that with enough colors within a large area a certain color is typical of the point
underlying it. This will help us to reconstruct the scenery on two basic shapes,
which will help to reconstruct the scenery on the points of a three-by-three square
and hence also on any other square. In a final step we will see this already suffices
to reconstruct the scenery within a large ball.

To be more precise, let

En
01 := ⋂

x �=y∈Bn

{ξ(x) �= ξ(y)},

and let

En
02 := ⋂

x,y∈Bn,
‖x−y‖=1

⋂
z∈Bn

⋂
v /∈Bn:

ξ(v)=ξ(z)

{(Sk)k passes from x to y

in one step before visiting v}.
In words the event En

01 says that all colors inside Bn are different, while En
02

states that all edges inside Bn are crossed by (Sk)k∈N before it visits a point outside
Bn having the same color as one of the points inside Bn.

We now show that under the condition that En
01 and En

02 hold, we can reconstruct
the scenery ξ |Bn. The reconstruction will be based on the following two important
cases.
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Case I. Let x, y, z, v ∈ Bn be the corners of a unit square with x and z (and,
as well, y and v) across the diagonal. Then, if En

01 and En
02 hold, and we know the

colors of x, y and z, we can figure out the color of v. The color of v is the first
color appearing, neighboring both the color of x and the color of z, and different
from the color of y. (Here and in the following we call two colors neighboring if
they are read at consecutive times.)

Case II. Let x1, x2, x3, x4, y ∈ Bn be a “cross” with center y; that is, x1, x2, x3,

x4, y are pairwise different and

|x1 − y| = |x2 − y| = |x3 − y| = |x4 − y| = 1.

Knowing that En
01 and En

02 hold as well as the colors of x1, x2, x3 and y we can
find the color of x4 as the only color neighboring ξ(y) different from ξ(x1), ξ(x2)

and ξ(x3).

We will now see that these two basic techniques suffice to reconstruct ξ |Bn, if
En

01 and En
02 hold. Indeed, denoting by Qj the (2j + 1)-by-(2j + 1) square with

center zero, we can first reconstruct ξ |Q1.
To this end we first recover the color of the origin (which is, of course, trivial)

and the colors of (1,0), (0,1), (−1,0) and (0,−1). Indeed, the colors themselves
are known from the observations. Note that the only information we need is the
relative positions of the colors of (1,0), (0,1), (−1,0) and (0,−1) to each other
because we only want to reconstruct up to equivalence. This means we only need
to know which of the colors{

ξ((1,0)), ξ((0,1)), ξ((−1,0)), ξ((0,−1))
}

are from points across (0,0) and which of them are not. [Here we say that (1,0)
and (−1,0) lie across (0,0) and that (0,1) and (0,−1) lie across (0,0), while the
other possible pairs do not.]

Now the following characterization holds:

Pairs from {
ξ((1,0)), ξ((0,1)), ξ((−1,0)), ξ((0,−1))

}
lie across (0,0) if and only if they have exactly one neighboring color (which is
ξ(0,0)), while the other pairs have exactly two neighboring colors.

Once we know ξ |{(1,0), (0,1), (−1,0), (0,−1)} up to equivalence we can
reconstruct the scenery on Q1 by applying Case I to the four corner points of Q1.

Now we can proceed inductively. Knowing ξ |Qj ∩ Bn, we want to reconstruct
ξ |Qj+1 ∩Bn; that is, we want to find the color of the boundary points of Qj+1 (as
far as they are inside Bn). For all points with at least one coordinate different from
j +1, j , −j −1 or −j , this can be done by applying the technique of Case II. Then
the color of the points with one coordinate equal to j or −j can be reconstructed
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by applying the technique of Case I. Finally the same technique yields the color of
the corner points of Qj+1.

This shows that under the condition that En
01 and En

02 hold we can reconstruct
ξ |Bn up to equivalence. It remains to understand that both En

01 and En
02 hold with

arbitrarily large probability for fixed n and large enough m. Indeed, this is not very
hard to see. For En

01, note that

P
(
(En

01)
c)≤ constn2 1

m
,

which can be made arbitrarily small by choosing m large.
Similar techniques apply to En

02. Note that by taking T sufficiently large the
random walk (Sk)k≤T up to time T has visited each point in Bn, at least L times
(L some number to be chosen soon; cf. [11] for similar results). Then the
probability that there is an edge in Bn the random walk does not visit up to time T

is bounded by

constn2(3
4

)L
,

which is arbitrarily small for L sufficiently large. If we now first choose L, then
take T as above and finally choose m so large that the probability that all colors in
BT are distinct (by the same techniques as above) is as large as we want, we see
that

P
(
(En

02)
c)≤ ε

for each ε > 0 if only m is sufficiently large. This completes the proof of
Lemma 2.2. �

Next we will prove Lemma 2.3, which is indeed the key ingredient of the proof
of Theorem 1.1.

PROOF OF LEMMA 2.3. Let En denote the event that given a piece of scenery
ψ with ψ ∼ ξ |Bn the “reconstruction algorithm at step n” A

n
produces a piece of

scenery A
n
(ψ,χ) with

A
n
(ψ,χ) ∼ ξ |Bn+1.

We need to show that with probability 1 En holds for all but a finite number of
n’s (in the following we will also say that an event holds for almost all n if it holds
for all but finitely many n).

To do so we decompose En for n ∈ N in such a way that

En ⊃ En
1 ∩ En

2 ∩ En
3 .

We will then show that each En
i , i = 1,2,3, holds for all but finitely many n’s.
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In the sequel whenever we say about some observations κ that “κ appears in
A with starting point x” or “κ appears in A with endpoint y”, respectively, where
κ ∈ {0, . . . ,m − 1}l for some l, A ⊆ Z

2 and x, y ∈ Z
2, we mean that

χ |T = κ

for some realization of the random walk Sn, some discrete time interval T =
[t0, t0 + l − 1] such that St0 = x (or St0+l−1 = y, respectively) and S|T ⊂ A. In
other words κ appears in A with starting point x (or endpoint y) if it can be
read inside A by a nearest neighbor walk starting at x (ending at y). Moreover
if, for one of the line segments σ(v), σ̂ (v), σ (v), ϕ(v) or λ(v), we refer to
ξ |L (L ∈ {σ(v), σ̂ (v), σ (v),ϕ(v), λ(v)}), we mean the observations obtained by
reading ξ along L from the center of Bn to the outside of Bn.

Now let

En
1 := ⋂

x∈Bexp(nα)

{
there are fewer than nβ different words from

Sn appearing in ξ |(Bn2

x \ Bn)
}
,

where Bn2

x stands for the discrete ball of radius n2 centered on x.

Observe that the definition of τn implies that on En
1 we have that Sk ∈ Bn+n2

for all k ∈ τn.
Moreover let

En
2 = En

21 ∩ En
22 ∩ En

23 ∩ En
24 ∩ En

25

with

En
21 := ⋂

v∈∂Bn

{
ξ |σ(v) appears in ξ |Bn2+n only with end point inside H(v)

}
,

En
22 := ⋂

v∈∂Bn

{
ξ |σ̂ (v) appears in ξ |Bn2+n only with endpoint x ∈ Q2(v)

}
,

En
23 := ⋂

v∈∂Bn

{
ξ |λ(v) appears in ξ |Bn2+n only with endpoint x ∈ Q3(v)

}
,

En
24 := ⋂

v∈∂Bn

{
ξ |ρ(v) appears in ξ |Bn2+n only with endpoint x ∈ Q4(v)

}
,

En
25 := ⋂

v∈∂Bn

{
ξ |ϕ(v) appears in ξ |Bn2+n only with starting point x ∈ Q1(v)

}
.

Finally let

En
3 = En

3,σ ∩ En
3,λ ∩ En

3,ρ,
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where

En
3,σ := ⋂

v∈∂Bn

{
all nearest neighbor walks of length (2c2 + c3) logn + 1

initially traversing σ̂ (v) are realized at least once during τn
}
,

En
3,λ := ⋂

v∈∂Bn

{
all nearest neighbor walks of length (2c2 + c3) logn + 1

initially traversing λ(v) are realized at least once during τn},
En

3,ρ := ⋂
v∈∂Bn

{
all nearest neighbor walks of length (2c2 + c3) logn + 1

initially traversing ρ(v) are realized at least once during τn}.
Before we show that En

1 ∩ En
2 ∩ En

3 indeed happens for all but a finite number
of n’s, let us see that this will actually imply the desired result; that is, let us see
that

En ⊃ En
1 ∩ En

2 ∩ En
3 .

For each event in En
1 we know that during τn we must be close to Bn; more

precisely, we know that during τn the walk is inside Bn2+n. Then En
3 ensures that

in this time τn we read each sequence of length (2c2 + c3) logn + 1 beginning
with either ξ |σ̂ (v), ξ |ρ(v) or ξ |λ(v) for each v ∈ ∂Bn at least once. En

2 now
guarantees that during these times the walk is close to the points a, b and c (of
the appropriate v). Finally En

2 together with En
3 ensures some of the walks actually

pass the points a, b and c, correspondingly. Therefore, we are able to read the color
of the vertices v1 and v2 next to v in the direction of σ(v).

Let us explain this in detail, since this step is, indeed, the core of the
reconstruction step. For fixed v ∈ ∂Bn at the boundary of Bn we need to prove
that the reconstruction method works correctly, that is, that the algorithm we give
below reveals the colors of the corresponding v1 and v2 [i.e., ξ(v1) and ξ(v2)]
correctly, if En

1 , En
2 and En

3 hold. Let us now define the reconstruction algorithm
properly.

The algorithm is given as input ξ |Bn, the scenery restricted to Bn, which we
assume to be known already.

ALGORITHM TO RECONSTRUCT v1 = v1(v) AND v2 = v2(v).

Step 1. Select all words w of length c3 logn in ξ ◦ S|τn with the following
properties:

(a) The shortest number of steps w appears after ξ |σ̂ in ξ ◦S|τn is c3 logn+ 1.
(b) The shortest number of steps w appears after ξ |λ in ξ ◦ S|τn is c3 logn+ 2.
(c) The shortest number of steps w appears after ξ |ρ in ξ ◦ S|τn is c3 logn+ 2.
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(d) A word of the form ξ |σ �υ�w (where υ is an arbitrary color and the
symbol � stands for the concatenation of two words) occurs in ξ |τn, that is, the
event that w is read precisely one step after ξ |σ occurs in τn.

Step 2. Take the first letter of w as an estimator of ξ(v2).
Step 3. Take an occurrence of a word ξ |σ �υ�w in τn. Estimate ξ(v1) with υ .

To prove that the above algorithm works and is well defined (Step 3) given that
En

1 , En
2 and En

3 hold, we will prove the following: for every word w selected by
our algorithm its first letter is read at position v2. This automatically implies both
that Step 2 of the above algorithm works and that Step 3 is well defined and works.

First assume that there is at least one word w selected by the first step of the
above algorithm. Call the lattice point at which the first letter of w is read x.
Assume that x is in H but not on the line supporting σ . Then there is a path
from either a or c to x which is strictly shorter than any path from any starting
point in Q2 to x (in particular it is shorter than a path from b to x). Now En

3 holds,
so in particular En

3,λ and En
3,ρ hold. Hence a path first reading λ (or ρ), crossing a

(or c) and then walking to x in the shortest possible way in order to produce w from
there will once be realized. Now En

1 holds, ensuring that during τn the random

walk is in Bn2+n. Thus En
22 holds. This guarantees that any time we read ξ |σ̂ in χ

we do this with an endpoint in Q2. Thus any time we read the word w (and still we
assume that x is not on the line supporting σ ) a time t ′ after having read ξ |σ̂ , this
time t ′ will be strictly larger than the time to read w after having read one of ξ |λ
or ξ |ρ. This contradicts our selection criteria.

Thus we can only select words w with a first letter read at x ∈ H , if x lies
on the line supporting σ . Now from En

3,σ we know that all paths of length
(2c2 + c3) logn + 1 are realized once during τn. From this together with the fact
that we have selected w such that the shortest it appears in the observations after
ξ |σ̂ is c3 logn+ 1, it follows that x is at distance c3 logn+ 1 from b; hence, given
that x ∈ H , we conclude that x = v2. It only remains to show that x cannot be
in Hc , but this is guaranteed by En

21.
It remains to show that Step 1 of the above algorithm selects at least one word.

However, as a consequence of En
1 , En

22, En
23, En

24, En
25 and En

3,σ Step 1 of the
above algorithm will select ξ |ϕ. Indeed, the shortest path from Q3 or Q4 to Q1 is
c3 logn+ 2 steps long, while Q1 can be reached from Q2 in c3 logn+ 1 steps. By
En

1 we know that we are in Bn2+n during τn. Thus by En
23, En

24 and En
25 we know

that the shortest possibility of reading ξ |ϕ after ξ |ρ or ξ |λ is after c3 logn+2 steps,
while the shortest possibility of reading ξ |ϕ after ξ |σ̂ is after c3 logn + 1 step.
Finally, En

3,σ ensures that we will observe at least once the sequence ξ |σ �υ� ξ |ϕ
for some color υ . Thus ξ |ϕ satisfies the selection criteria of Step 1 of the algorithm.

Hence we reconstruct the color of v1(v) and v2(v) if En
1 ∩En

2 ∩ En
3 is satisfied.

As this works for all v ∈ ∂Bn we are indeed able to reconstruct the scenery on
Bn+1, proving that

En ⊃ En
1 ∩ En

2 ∩ En
3 .
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It remains to show that En
1 ∩ En

2 ∩ En
3 is true for all but finitely many n, if we

choose α and β in the correct manner.

En
1 holds for all but finitely many n. Let ω ∈ Sn be any fixed signal word in Bn.

By this we mean that ω is the signal word between two fixed starting points; so
note that ω, although being fixed in this sense, will still be random. Let y /∈ Bn be
any potential starting point for ω outside Bn. By independence of the colors

P
(
ω appears in ξ |(Z2 \ Bn) with starting point y

)≤
(

4

m

)c1 logn

as there are 4c1 logn different walks of length c1 logn starting in y. Thus for any y

P
(
ω appears in ξ |(Bn2

y \ Bn)
)≤ πn4

(
4

m

)c1 logn

= πn4+c1(log 4−logm)

as there are πn4 different points inside Bn2
.

Now the indicators Iw for the event that the word w ∈ Sn appears in Bn2

y \ Bn

are conditionally independent (for different w) under P given ξ |(Bn2

y \ Bn) as the
different words have mutually disjoint support and therefore are independent. To
understand this point correctly it is important to recall that Sn is a random set
(under P). The independence claimed above would not be true for any fixed set of
words or if we did not condition on knowing ξ |(Bn2

y \ Bn).

Hence the number of w ∈ Sn appearing in Bn2

y \ Bn is stochastically bounded
by a binomial random variable with N = n2/c1 logn different trials and success
probability p = πn2+c1(log 4−logm). However, for n,m sufficiently large,

n2

c1 logn
≤ n2

as well as

p = πn2+c1(log 4−logm) ≤ 1

n2 .

However, then the number of w ∈ Sn appearing in Bn2

y \ Bn is stochastically
bounded by a Binomial random variable X with n2 different trials and success
probability 1

n2 . However, by Chebyshev’s exponential inequality

P(X ≥ nβ) ≤ e−nβ
EeX = e−nβ

(
1 + e − 1

n2

)n2

= O(e−nβ ).

It follows that

P[(En
1 )

c] = O(e2nα−nβ ),(3.2)

which is summable for β > α. By the Borel–Cantelli lemma this implies that En
1

holds for all but finitely many n.
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En
2 holds for all but a finite number of n. Since the proofs of that En

2i holds for
almost all n are very similar for each i, we just show the proof for En

22 and leave
the other proofs to the reader.

To this end consider any v ∈ ∂Bn and any oriented connected segment s in Z
2

of length c2 logn. Note that if the endpoint of s is not in Q2, the ith point of σ̂ (v)

is different from all the j th points of s, j ≤ i, and thus ξ(σ̂i(v)) is a “fresh random
variable”. Thus by conditional independence the probability of reading σ̂ (v) along
ξ |s is bounded by

P
(
ξ |s = ξ |σ̂ (v)

)=
(

1

m

)c2 logn

,

and therefore, for every fixed x ∈ Bn2+n \ Q2(v),

P
(
ξ |σ̂ (v) appears with endpoint x

)≤
(

4

m

)c2 logn

.

As there are at most π(n2 + n)2 points in Bn2+n and there are at most const × n

points v ∈ ∂Bn, we obtain

P
(
(En

22)
c
)≤

(
4

m

)c2 logn

const × nπ(n2 + n)2 ≤ nc2(log 4−logm)+6.

The right-hand side of this inequality becomes summable if we choose m

sufficiently large (depending on c2 or c3). More precisely, we choose m such that

c2(log 4 − logm) + 6 < −2.

Note that this choice does not depend on n. This choice of m will basically be the
proof of Theorem 1.1. Thus (again by a Borel–Cantelli argument) En

22 holds for
all but finitely many n.

Note that until now we have been free to choose c1, c2, c3.

En
3 holds for all but finitely many n. Again we only give the proof in detail for

one of the events, which will be En
3,σ . The proof for the other two events follows

the same lines.
We split this proof into several parts.
First let us prove that in a certain (stricter than usual) sense the random walk by

time en
α

has returned to the origin more than nγ times, where γ < α < β . A result
like this seems to be very much in the spirit of a result of Erdös and Taylor [5],
who showed that almost surely a random walk at time en has returned to the origin
between n/(logn)1+ε and (1 + ε)n log logn times for all but finitely many n and
every positive ε > 0. The reason we cannot simply refer to this result is that we
also want these returns to the origin to be at least n2 apart from each other. So,
more precisely, let us introduce a sequence ϑn

i of stopping times such that ϑn
0 = 0

for all n and ϑn
i+1 is the time of the first return of the random walk Sk to the origin
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after time ϑn
i + n2. This will ensure that in the meantime the random walk is able

to hit one of the boundary points of Bn. So we want to check that for γ < α < β

(γ appropriately chosen afterward) the event

En
31 := {ϑn

nγ ≤ en
α}

happens for all but finitely many n. Indeed, choosing δ = α−γ
2 the result of Erdös

and Taylor [5] quoted above states that the event

En
311 := {up to time en

α

there are more than nγ+δ returns to the origin}
holds almost surely for all but a finite number of n. Next we will show that the
same is true for the event

En
312 :=

nγ⋂
i=1

{
in the interval [ϑn

i ,ϑ
n
i + n2] there are fewer than nδ

returns to the origin
}
.

The probability of a simple random walk starting at the origin not returning for t

steps is bounded below by 2π
log t

for t large enough [3], [12], page 167. Applying
this yields

P(in the interval [ϑn
i ,ϑ

n
i + n2] there are more than nδ returns to the origin)

≤
(

1 − π

logn

)nδ

≤ e−nδ/2

for each i = 1, . . . , nγ and n, large sufficiently. Hence, by bounding the probability
of a union by the sum of the probabilities,

P
(
(En

312)
c
)≤ nγ e−nδ/2

,

which is finitely summable. Therefore En
312 holds for all but a finite number of n.

As En
311 and En

312 together imply En
31 also En

31 holds for almost all n.
Next we will show that many of the intervals [ϑn

i ,ϑ
n
i + n2] above are indeed

signal times; that is, we will show that we read more than nβ different signals in
all of these time intervals. To this end introduce random variables Yi which are
indicators for the event that the interval [ϑn

i ,ϑ
n
i + n2] is a signal time, that is, for

the event that there are more than nβ signal words read in [ϑn
i ,ϑ

n
i + n2]. To avoid

the dependence among reading different signal words we only concentrate on such
words as are “far apart” from each other. To this end we partition the inner part of
Bn, that is, Bn \ ∂(logn)3Bn, where

∂(logn)3B
n := {

x ∈ Bn,d(x, ∂Bn) ≤ (logn)3}
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and d(·, ·) is the lattice distance in Z
2, into boxes of lengths c1 logn and (logn)3.

Let

Wn
k,l := {

(x, y) ∈ Bn : c1k logn ≤ x < c1(k + 1) logn,

l(logn)3 ≤ y < (l + 1)(logn)3} (k, l ∈ Z).

For i = 1, . . . , nγ consider the following indicators: let I
1,n(i) be the indicator

for the event that Sϑn
i +n[(4+β)/3] ∈ Bn/ logn; let I

2,n(i) denote the indicator for the
event that the whole trajectory (Sk)k=ϑn

i ,...,ϑ
n
i +n[(4+β)/3] is contained in Bn; let

I
3,n(i) be one if the random walk visits more than n2(1+β)/3/(

2(1+β)
3 logn) distinct

points in [ϑn
i ,ϑ

n
i +n(4+β)/3] and zero otherwise; let I

4,n
k,l (i) be the indicator for the

event that in the time interval [ϑn
i ,ϑ

n
i + n(4+β)/3] the walk enters Wn

k,l and within
(logn)3 steps after the first entrance time touches one of the lines x = k logn or
x = (k + 1) logn, and finally follows the straight line supporting the the word
associated with the starting point it touched.

First consider the event {I1,n(i) = 0}. By concentration of measure (cf. [13]) we
have, for every fixed i,

P
(
I

1,n(i) = 0
)= P

(∥∥Sϑn
i +n(4+β)/3

∥∥≥ n

logn

)
≤ exp

[
−const

n(2−β)/3

(logn)2

]
.

Therefore, as β < 2 and γ < 2,

P

((⋂
i

{I1,n(i) = 1}
)c)

≤ n2 exp
[
−const

n(2−β)/3

(logn)2

]
,

which is finitely summable and thus
⋂

i{I1,n(i) = 1} holds for almost all n. Here
and in the following

⋂
i refers to the intersection over i = 1, . . . , nγ .

By the same argument

P
(
I

2,n(i) = 0
)= P

(∃ t ∈ [ϑn
i ,ϑ

n
i + n(4+β)/3] : ‖St‖ ≥ n

)
≤ n2

P
(∥∥Sϑn

i +n(4+β)/3
∥∥≥ n

)≤ n2e−const(n2−β)/3.

Thus, also
⋂

i{I2,n(i) = 0} holds for all but finitely many n.
To bound the probability that I

3,n(i) is equal to zero, first observe that the
number of distinct points Dt visited by a simple symmetric random walk starting
at the origin by time t satisfies (cf. [3, 4])

EDt ≥ 2t

log t

for all t sufficiently large. Moreover such a random walk clearly can only have
visited at most t points (i.e., Dt ≤ t) up to time t . Together these imply

P

(
Dt ≥ t

log t

)
≥ 1

log t
.(3.3)
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Partitioning the interval [ϑn
i ,ϑi + n(4+β)/3] into n(2−β)/3 intervals of length

n2[(1+β)/3] and applying (3.3) with t = n2[(1+β)/3] (observe that log t = 2 1+β
3 logn)

yields, for any fixed i ,

P
(
I

3,n(i) = 0
)≤

(
1 − const

logn

)n(2−β)/3

≤ exp
[
−const

n(2−β)/3

logn

]
.

Hence by the same summability argument as above
⋂

i{I3,n(i) = 1} holds for
almost all n.

Next let us have a closer look at {I4,n
k,l (i) = 1}. Suppose that we already know

that Sn enters the sector Wn
k,l within [ϑn

i ,ϑ
n
i + n(4+β)/3]. Considering just the

projection of the walk to the x-axes, we see a nearest neighbor random walk on
Z with holding probability 1/2. The points k logn and (k + 1) logn obtained by
projecting the vertical limiting lines of Wn

k,l may be considered absorbing barriers
for this random walk. As the expected hitting time of one of these barriers is of
order (logn)2, after time (logn)3 we will have hit one of the boundaries with a
probability bounded away from zero (in n). In other words, Sn conditioned on
its visiting Wn

k,l at all will touch one of its left and right boundary lines within
(logn)3 after the first entrance time into this sector with probability bounded away
from zero. As the word associated with this boundary point has length c1 logn

the probability that the walk touches a boundary point and then follows the walk
associated with it is bounded by const(1/4)c1 logn.

Note that the events {I4,n
k,l (i) = 1} are not independent for different choices of

(k, l) and the same i and n. First, due to the fact that (Sk) is a Markov chain the
event {I4,n

k,l (i) = 1} increases the chances that we also hit a square close to Wn
k,l .

However, also given that we visit both Wn
k,l and Wn

(k+1),l , for example, the events

{I4,n
k,l (i) = 1} and {I4,n

k+1,l(i) = 1} are dependent since reading a word associated
with a boundary point of Wn

k,n might easily coincide with touching a boundary
point of Wn

k+1,n fewer than (logn)3 steps after the first entrance time. To cope
with this effect we disregard every other square; that is, we consider the indicators

Î
4,n
k,l (i) := I

4,n
k,l (i)I(k, l),

where I(k, l) is +1 if k and l are even and 0 otherwise, instead.
Now observe that on {I2,n(i) = 1} ∩ {I3,n(i) = 1} the random walk visits more

than n2[(1+β)/3]/2(1+β)
3 logn distinct points within [ϑn

i ,ϑ
n
i + n(4+β)/3]—all of

them lying in Bn—and therefore, as each of the Wn
k,l has c1(logn)4 points, also

n2[(1+β)/3]/(2c1
1+β

3 (logn)5) distinct Wn
k,l’s. As one fourth of them will have both

k and l even Î
4,n
k,l (i) has a chance to become +1 for n2[(1+β)/3]/(8c1

1+β
3 (logn)5)

different choices of (k, l). Given the indices (k, l) for which this is true
the events {Î4,n

k,l (i) = 1} indeed are independent and have probability at least
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const(1/4)c1 logn. Hence again by moderate deviations or concentration of measure
on {I2,n(i) = 1} ∩ {I3,n(i) = 1}

P

(∑
k,l

Î
4,n
k,l (i) ≤ nβ

)
≤ exp

(
−const

n(1/3)(2−β)−c1 log 4

(logn)10

)
≤ e−nε

for some small ε, if c1 is sufficiently small (depending on how large we have
chosen β before). As e−nε is finitely summable even after multiplication with the
number of different ϑn

i , we obtain that on the event
⋂

i{{I2,n(i) = 1} ∩ {I3,n(i) =
1}} we have

∑
k,l Î

4,n
k,l (i) ≥ nβ for all i and all but finitely many n. As also⋂

i{{I2,n(i) = 1} ∩ {I3,n(i) = 1}} holds for almost all n,∑
k,l

Î
4,n
k,l (i) ≥ nβ

also is true for almost all n. Finally, as also
⋂

i{I1,n(i) = 1} for all but a finite
number of n, we arrive at ⋂

i

{{Yi = 1} ∩ {I1,n(i) = 1}}

for all but finitely many n. (Recall that the random variables Yi are the indicators
for the event that the interval [ϑn

i ,ϑ
n
i + n2] is a signal time, that is, for the event

that there are more than nβ signal words read in [ϑn
i ,ϑ

n
i + n2].)

Let us summarize what we know already. For almost all n the following holds:
Until time en

α
we have more than nγ (γ smaller than α) different intervals of

length n2 of signal times. The signals are read in the first n(4+β)/3 steps, after
which the random walks stops in a distance at most n/ logn from the origin.

Finally we have to show that in these time intervals [ϑn
i ,ϑ

n
i + n2] we also read

all words of length (2c2 +c3) logn beginning with either a root word or a side word
associated with any of the boundary points. To avoid trouble with independence
we will concentrate only on events where this happens in one of the time intervals
Jn
i := [ϑn

i + n(4+β)/3, ϑn
i + n2], i = 1,2, . . . .

To this end, first observe that on a time interval of length |Jn
i | the random walk

(Sk) deviates form its staring point by the variance of a sum |Jn
i | many independent

random variables with variance 1. This is immediately computed as√
n2 − n(4+β)/3 ≥ n

2
for n sufficiently large. Therefore and since “in the worst case” Sϑn

i +n(4+β)/3 = 0
with positive probability bounded away from zero (Sk) exits Bn during Ji . This
bound will be used to estimate the probability of hitting the beginning σ0(v)

of a root word for a boundary point v ∈ ∂Bn or the beginning of one of its
side words. This probability can be computed as the probability of hitting this
point conditioned on our hitting the (discrete) sphere it is contained in, times the
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probability that we hit this sphere at all. The latter probability is bounded from
below by a constant away from zero, by the above considerations. On the other
hand the probability of hitting a certain point in ∂Bn conditioned on our leaving
Bn is bounded below by κ

n
for some constant κ > 0 no matter where in Bn/ logn we

started. Of course, it suffices to understand that this is true for large n. However,
observing that, under the scaling Z

2 → 1
n
Z

2, the boundary ∂Bn converges to the
unit sphere, Bn/ logn shrinks to the origin and (Sk) converges (after also rescaling
the time axes, which is irrelevant for our argument) to Brownian motion W 0(t)

starting at the origin; moreover, taking into account that the harmonic measure on
the unit sphere (any sphere centered on zero) with respect to W 0(t) is the uniform
distribution on it, shows that the above bound indeed holds. So, as all starting
points of root words and side words lie in Bn2 \ Bn2−(c2+c3) logn we see that the
probability of hitting any fixed starting point is bounded from below by κ

′
n

for

some κ
′ > 0 (κ′ results from multiplying κ by the probability of exiting Bn2

in a
certain Ji ).

Now the probability of reading σ̂ (v) and after that any fixed continuation of
length (c2 + c3) logn given that we first read σ0(v) has (for any fixed v ∈ ∂Bn)
probability (1

4

)(2c2+c3) logn = n−(2c2+c3) log 4.

So the (unconditioned) probability of reading σ̂ (v) and after that any fixed
continuation of length (c2 + c3) logn is bounded from below by

κ

n

(
1

4

)(2c2+c3) logn

= κn−1−(2c2+c3) log 4.

On the other hand there are nγ different time intervals where we can read such
a word. So the probability of not reading σ̂ (v) and after that any fixed continuation
of length (c2 + c3) logn in all of these intervals behaves like(

1 − κn−1−(2c2+c3) log 4)nγ ≤ exp
(−κnγ−1−(2c2+c3) log 4).

As we can choose c2 and c3 as small as we want to and γ > 1 (and still γ,α) this
probability is smaller than e−nε for some ε > 0. The same holds for the probability
of reading a side word and then any fixed continuation of length (c2 + c3) logn

given that we read its first letter. As for fixed n there are only polynomially many
such nearest neighbor walk paths (more precisely, as there are fewer than

6πn4(c2+c3) logn = 6πn1+(c2+c3) log 4

such nearest neighbour walk paths) the probability of not reading all of them is
bounded by

6πn1+(c2+c3) log 4e−nε ,

which is finitely summable in n. Therefore, by the Borel–Cantelli lemma, E3
n also

holds for all but finitely many n. This completes the proof of Lemma 2.3. �
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The proof of the main theorem now consists only of choosing the constants in
the correct order.

PROOF OF THEOREM 1.1. To complete the proof we specify the order in
which we choose the constants. So first we choose α,β, γ with β > α [such that
right-hand side of (3.2) is finitely summable] and 1 < γ < α. Then we choose
c1, c2 and c3 to make the last part of the above proof of Lemma 2.3 work (note
that this part does not depend on the number of colors m). If we now choose m

larger than a certain number m2 (coming from the arguments which guarantee that
En

1 and En
2 hold for all but a finite number of n), this procedure ensures that the

reconstruction in Lemma 2.3 works with probability 1 for all but a finite number
of n.

Thus for 1/2 > ε > 0 we can choose N (nonrandom) such that the probability
that we have

Ãn(ξ |Bn,χ) ∼ ξ |Bn+1

for all n ≥ N is greater than 1 − ε
2 given m ≥ m2.

Now for N there exists m1 such that for m ≥ m1 the reconstruction algorithm
from Lemma 2.2, AN , ensures that we can reconstruct ξ |BN with probability
greater than 1 − ε

2 . If we now choose m ≥ max{m1,m2} and concatenate AN from
Lemma 2.2 with the different An for n ≥ N + 1 from Lemma 2.3, we obtain an
algorithm A which reconstructs ξ with probability greater than 1 − ε.

In view of Lemma 2.1 this suffices to prove Theorem 1.1. �
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