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SMOOTH GENERATORS OF INTEGRAL STOCHASTIC ORDERS
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Université Catholique de Louvain and University of Karlsruhe

The purpose of this paper is to show that many integral stochastic
orders have a generator consisting of infinitely differentiable functions. This
especially holds for all stochastic orders with characterizations via difference
operators. The usefulness of this result is demonstrated in two applications
relating to stochastic ordering of multivariate normal distributions and
ordering of random vectors in a random environment.

1. Introduction. Stochastic orders are binary relations defined on sets of
probability distributions, which formally describe intuitive ideas such as “being
larger,” “being more variable” or “being more dependent.” Such stochastic
order relations are now used in many areas of probability and statistics. For
a comprehensive treatment see, for example, Shaked and Shanthikumar (1994),
Müller and Stoyan (2002) or Szekli (1995).

Many of these orders have characterizations as so-called integral stochastic
orders, that is, there is a class F of measurable functions such that P ≤F Q holds
if, and only if,

∫
f dP ≤ ∫

f dQ for all f ∈ F . A general study of this type of
order has been given in Müller (1997). Typically there are several different classes
of functions which characterize a given order. There is always a largest one, called
maximal generator. This has been characterized in Theorem 3.7 of Müller (1997).
Such large generators are interesting for applications of the orders ≤F . However,
for verifying that an integral stochastic order holds it is desirable to have small
generators. In some cases (like the usual stochastic order ≤st on the real line) there
are nice small generators which make it easy to check the order. For some other
orders, however, no small generators are available. This especially applies to the
multivariate case.

For technical reasons, it is often helpful to know that it is sufficient to
check

∫
f dP ≤ ∫

f dQ for all f ∈ F which are sufficiently smooth. Indeed,
differentiability of test functions is assumed here and there in proofs without
justifying that this is allowed. Smoothness makes us able, for example, to use
integration by parts.

It is the aim of this paper to show that for all well-known integral stochastic
orders it is allowed to assume that the generator consists only of infinitely
differentiable functions. We derive our main theoretical results in Section 2, where
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it is shown that provided ≤F is closed under convolution and weak convergence,
its generator can be restricted to smooth functions. In Section 3 this will be applied
to a variety of integral stochastic orderings, especially to all orders with a generator
that can be characterized via difference operators. In Section 4, we show how these
results can be used for the comparison of multivariate normal distributions and for
the ordering of random vectors in a random environment.

2. Main result. Let us first fix the notation. We use the setting of Müller
(1997). Specifically, let (S,A) be an arbitrary measure space and let b : S →
[1,∞) be a measurable function, called weight function. We consider the set Bb

of b-bounded measurable functions f : S → R, for which

‖f ‖b := sup
s∈S

|f (s)|
b(s)

<∞.

Then any set of functions F ⊂ Bb defines an order relation ≤F on Pb, the set of all
probability measures on (S,A) with

∫
b dP <∞. RF shall be the corresponding

maximal generator, which according to Theorem 3.7 of Müller (1997) is the
closed convex cone (in the corresponding weak topology) spanned by F and the
constant functions. In the following S will always be some Euclidean space S = R

d

endowed with the Borel σ -algebra, and as usual C∞ shall denote the set of all
functions on S that are infinitely differentiable.

We will show that in all relevant cases RF ∩ C∞ is an alternative generator
of F . Typically this can be achieved by a two-step procedure as follows. First
show that the generator can be restricted to continuous functions. Then find for
an arbitrary continuous f ∈ RF a sequence {fn, n ∈ N} of infinitely differentiable
functions fn ∈ RF such that

lim
n→∞

∫
fn dP =

∫
f dP(1)

for all P ∈ Pb. In order to obtain the fn’s, we resort to the following well-known
construction. Let g be an infinitely differentiable probability density with a com-
pact support, and let gn(x)= nd · g(n · x). Then it is well known that the sequence

fn(x)= f ∗ gn(x) :=
∫
f (x − y)gn(y) dy(2)

satisfies (1); see, for example, Rudin (1987), Theorem 9.10. Thus it only remains
to be shown that fn ∈ RF . This question, however, is related to the question
whether or not ≤F is closed under convolution, which means that P1 ≤F P2
implies P1 ∗Q ≤F P2 ∗Q for all Q ∈ Pb. In fact, we have the following general
result.

THEOREM 2.1. Let ≤F be an integral stochastic order generated by
a class F of continuous functions. If ≤F is closed under convolution then there is
a generator G of this order relation which only consists of infinitely differentiable
functions. Especially, G = RF ∩ C∞ is such a generator.
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PROOF. We can assume without loss of generality that F consists of all
continuous functions in RF . Since ≤F is closed under convolution, it follows
from Theorem 4.2(e) in Müller (1997) that F is invariant under translations, and
therefore f (· − y) ∈ F for all y. Thus Theorem 3.6 in Müller (1997) ensures that
the function fn defined in (2) is in RF . Now define G = RF ∩C∞. Since G ⊂ RF

it is obvious that P ≤F Q implies P ≤G Q. On the other hand, we have just shown
that fn ∈ G for all f ∈ F . Hence P ≤G Q implies

∫
fn dP ≤ ∫

fn dQ and by
equation (1)

∫
f dP ≤ ∫

f dQ for all f ∈ F . Therefore we also have that P ≤G Q

implies P ≤F Q; that is, ≤F and ≤G are identical. �

Recall that a stochastic order ≤F is said to be closed under weak convergence,
if for weak convergent sequences {Pn, n ∈ N} and {Qn, n ∈ N} converging to P

and Q, respectively,

Pn ≤F Qn for all n ∈ N implies P ≤F Q.

In Theorem 4.2(f) of Müller (1997) it has been shown that an integral stochastic
order is closed under weak convergence if, and only if, it has a generator consisting
of bounded continuous functions. Hence we can derive the following corollary
from Theorem 2.1.

COROLLARY 2.2. If ≤F is closed under weak convergence and under
convolution then it has a generator G ⊂ C∞.

3. Stochastic orders defined by difference operators. A large number of
stochastic orders with a generator can be characterized in terms of difference
operators. Define for a function f : R

d → R, x ∈ R
d , i ∈ {1, . . . , d} and ε > 0

the difference operator �ε
i as

�ε
i f (x)= f (x + εei)− f (x),

where ei = (0, . . . ,0,1,0, . . . ,0) denotes the ith unit vector. In case d = 1 we
simply write

�εf (x)= f (x + ε)− f (x).

For a tuple ı = (i1, . . . , ik) of numbers ij ∈ {1, . . . , d} we define the generator Fı+
which shall consist of all functions such that

�
ε1
i1

· · ·�εk
ik
f (x)≥ 0 for all x ∈ R

d, ε1, . . . , εk > 0.

and let Fı− be the set of functions with

�
ε1
i1

· · ·�εk
ik
f (x)≤ 0 for all x ∈ R

d, ε1, . . . , εk > 0.

Given a set � of such “signed indices” let

F� = ⋂
ı∈�

Fı .
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Many integral stochastic orders that have been considered in the literature possess
a generator of the form F�, as it can be seen from the following examples.

Let us start with univariate stochastic orders, that is, the case d = 1. Denote by
ık = (1, . . . ,1) the tuple consisting of k repetitions of the number 1. Notice that

�εf (x)≥ 0 for all x ∈ R and all ε > 0

if and only if f is increasing. Hence Fı+1
is the set of all increasing function and

thus the generator of the (usual) stochastic order ≤st. Similarly,

�ε1�ε2f (x)≥ 0 for all x ∈ R and all ε1, ε2 > 0

if and only if f is convex. Hence Fı+2
generates the convex order ≤cx, and

taking the intersection yields that F�2 with �2 = {ı+1 , ı+2 } generates the increasing
convex order ≤icx. Similarly Fı−2

generates the concave order ≤cv, and the

increasing concave order ≤icv is obtained from �−
2 = {ı+1 , ı−2 }. Considering higher

differences yields the so-called s-convex orderings considered by Denuit, Lefèvre
and Shaked (1998). There the ordering generated by Fı+s is called ≤s-cx and

the ordering ≤s-icx has the generator F�s = {ı+1 , . . . , ı+s }. Another ordering with
such a characterization is the Laplace order ≤Lt which is defined as follows.
X ≤Lt Y holds if Ee−tX ≥ Ee−tY for all t > 0. At first sight there seems not
be a characterization of the kind described above. Reuter and Riedrich (1981),
however, have shown that the maximal generator of Laplace order consists of all
functions with

(−1)n+1�ε1 · · ·�εnf (x)≥ 0 for all x ∈ R, ε1, . . . , εn > 0

and all n= 1,2, . . . .

Thus it is generated by F� with � = {ı+1 , ı−2 , ı+3 , . . .}.
There are also numerous multivariate stochastic orders that can be characterized

in this way. Notice that a function f : R
d → R is increasing if and only if

�ε
i f (x)≥ 0 for all x ∈ R

d, ε > 0 and i = 1, . . . , d.

Hence the multivariate version of ≤st is generated by F�st for �st = {i+ : i =
1, . . . , d}.

A function f : R
d → R is said to be supermodular if

�ε
i �

δ
jf (x)≥ 0 for all x ∈ R

d, ε, δ > 0 and 1 ≤ i < j ≤ d.(3)

Properties and applications of the stochastic order generated by this class of func-
tions have been considered by Bäuerle (1997), Shaked and Shanthikumar (1997)
and Müller and Scarsini (2000), among others. It is easy to see that this supermo-
dular order (denoted by ≤sm) is generated by F�sm where �sm = {(i, j)+ : 1 ≤ i <

j ≤ d}. A similar concept is that of the directionally convex order ≤dcx which
has been shown to be useful, for example, in Bäuerle and Rolski (1998), Meester
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and Shanthikumar (1999) and Müller and Scarsini (2001). A function is called
directionally convex if it is supermodular and, in addition, convex in each ar-
gument, when the others are held fixed. Hence it is generated by F�dcx , where
�dcx = {(i, j)+ : i, j = 1, . . . , d}. Combining supermodularity respectively direc-
tional convexity with monotonicity yields the increasing supermodular order ≤ism

which is generated by F�sm ∩F�st and the increasing directional convex order ≤idcx
generated by F�dcx ∩ F�st .

Finally we want to mention the lower and upper orthant orders, defined as

X ≤uo Y if P (X1 > x1, . . . ,Xd > xd)≤ P (Y1 > x1, . . . , Yd > xd)

for all x1, . . . , xd

and

X ≤lo Y if P (X1 ≤ x1, . . . ,Xd ≤ xd)≥ P (Y1 ≤ x1, . . . , Yd ≤ xd)

for all x1, . . . , xd .

These orders both have generators defined by difference operators, too. In fact the
maximal generator of ≤uo is the set of all functions with

�
ε1
i1

· · ·�εk
ik
f (x)≥ 0 for all x ∈ R

d, ε1, . . . , εk > 0

and all distinct i1, . . . , ik , 1 ≤ k ≤ d . This result can be traced back to Rüschendorf
(1980). Hence ≤uo is generated by F�uo , where �uo = {(i1, . . . , ik)+ : i1, . . . , ik
distinct, 1 ≤ k ≤ d}. A similar characterization is possible for ≤lo as it is generated
by the class of all functions f such that f (−x) is in F�uo .

Now we will show that for all these orderings Theorem 2.1 applies. First observe
the following result.

THEOREM 3.1. Let � be an arbitrary set of signed indices and let ≤F� be
the stochastic order generated by the corresponding class F� of functions. Then
≤F� is closed under convolution.

PROOF. It is obvious from the definition that for a fixed index ı the sets Fı+
and Fı− are invariant under translations. Hence F� as an intersection of such sets is
again invariant under translations. Thus the assertion follows from Theorem 4.2(e)
in Müller (1997). �

Since all of the orders mentioned above are known to have generators consisting
only of continuous functions, we can apply Theorem 2.1 to show that all these
orders have a generator consisting of infinitely differentiable functions. The nice
feature of the next theorem is that it means that we can just translate the conditions
given in terms of differences into conditions given in terms of derivatives.
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Therefore, let us define for a given ı = (i1, . . . , ik) the set F ∞
ı+ (F ∞

ı− ) as the set
of all infinitely differentiable functions with the property that

∂k

∂xi1 · · · ∂xik
f (x)≥ (≤) 0 for all x ∈ R

d,

and for a given set � of such signed indices let

F ∞� = ⋂
ı∈�

F ∞
ı .

We get the following result.

THEOREM 3.2. Let F� be the generator of one of the stochastic orders ≤st,
≤s-cx, ≤s-icx, ≤s-cv, ≤s-icv, ≤Lt, ≤sm, ≤ism, ≤dcx, ≤idcx, ≤uo or ≤lo. Then ≤F� is
also generated by F ∞� which consists only of infinitely differentiable functions.

PROOF. In view of Theorem 2.1 we have to show that the mentioned
orders are closed under convolution and that there is a generator consisting of
continuous functions. The closure under convolution has been shown in general
in Theorem 3.1. Hence it remains to be shown that there is always a generator
consisting of continuous functions. For ≤st this is known since Kamae, Krengel
and O’Brien (1977). For the supermodular and increasing supermodular order this
has been shown in Müller and Scarsini (2000). A similar proof is possible for
the orthant order. In all other cases it is obvious that even the maximal generator
contains only continuous functions. �

We want to mention explicitly a few important examples that are contained in
Theorem 3.2. Given two d-dimensional random vectors X and Y:

1. X ≤sm Y if, and only if, Ef (X) ≤ Ef (Y) holds for all twice differentiable
functions f : R

d → R satisfying ∂2/∂xi∂xjf (x) ≥ 0 for all x ∈ R
d and all

1 ≤ i < j ≤ d .
2. X ≤ism Y if, and only if, Ef (X) ≤ Ef (Y) holds for all twice differentiable

functions f : R
d → R satisfying ∂/∂xif (x)≥ 0 for all x ∈ R

d and all 1 ≤ i ≤ d

and ∂2/∂xi∂xjf (x)≥ 0 for all x ∈ R
d and all 1 ≤ i < j ≤ d .

3. X ≤dcx Y if, and only if, Ef (X) ≤ Ef (Y) holds for all twice differentiable
functions f : R

d → R satisfying ∂2/∂xi∂xjf (x) ≥ 0 for all x ∈ R
d and all

1 ≤ i, j ≤ d .
4. X ≤idcx Y if, and only if, Ef (X) ≤ Ef (Y) holds for all twice differen-

tiable functions f : R
d → R satisfying ∂/∂xif (x) ≥ 0 for 1 ≤ i ≤ d and

∂2/∂xi∂xjf (x)≥ 0 for all x ∈ R
d and all 1 ≤ i, j ≤ d .

At the end of this section we want to mention that there are also stochastic
orders to which Theorem 2.1 applies though they cannot be characterized via
difference operators. The most important examples are the multivariate versions
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of the convex and increasing convex orders. Specifically, X is said to precede Y
in the multivariate convex order, written as X ≤cx Y, if Ef (X) ≤ Ef (Y) holds
for any convex function f : R

d → R, provided the expectations exist. In this
case, Theorem 2.1 applies, since a translation of a convex function again is
convex, and any convex function must be continuous. Hence X ≤cx Y holds if and
only if Ef (X) ≤ Ef (Y) holds for all twice differentiable functions f : R

d → R

with a positive semidefinite Hesse matrix. The same applies to the multivariate
increasing convex order, written as X ≤icx Y, which holds if Ef (X) ≤ Ef (Y)
holds for any nondecreasing and convex function f : R

d → R, provided the
expectations exist; in this case, Theorem 2.1 applies, too.

REMARK 3.3. A number of notions of positive dependence have been
introduced in the literature in an effort to mathematically describe the property
that “large values of the components of a random vector go together with large
values of the other components.” Many of these notions are defined by means of
some comparison of the random vector X with its independent version X⊥ (which
shall have the same marginals as X, but independent components); we refer the
interested reader to, for example, Szekli (1995) or Scarsini and Shaked (1996). For
instance, the upper orthant dependence is defined as X⊥ ≤uo X, the lower orthant
dependence as X ≤lo X⊥. All the results derived in this paper thus obviously apply
to dependence notions defined with the help of integral stochastic orderings.

4. Applications.

4.1. Ordering Gaussian vectors. As a first application the results of Section 3
can be used to characterize stochastic ordering of multivariate normal distributions;
such characterizations can be found in Müller (2001) and are based on the
following identity. Let X ∼ N (µ,�) and Y ∼ N (µ′,�′), and let φλ be the
density of N (λµ′ + (1 −λ)µ, λ�′ + (1 −λ)�), 0 ≤ λ≤ 1. Moreover, assume that
f : R

d → R is twice continuously differentiable and satisfies some polynomial
growth conditions. Then

Ef (Y)−Ef (X)=
∫ 1

0

∫ (
(µ′ − µ)T ∇f (x)+ 1

2 tr
(
(�′ − �)Hf (x)

))

×φλ(x) dx dλ,

(4)

where ∇f and Hf are the gradient and the Hessian of f , respectively, and tr(A)
denotes the trace of the matrix A.

This identity is then used to derive characterizations of the most important
integral stochastic orders. In the proofs it is tacitly assumed that it is allowed to
restrict the generators to twice differentiable functions. Thus Theorem 2.1 together
with Section 3 fills a little gap in the proofs there.
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4.2. Ordering random vectors in a random environment. Consider the fol-
lowing model of a d-dimensional random vector X = (X1, . . . ,Xd) depending on
a random environment � = (#1, . . . ,#d) in the following fashion:

1. Component Xi depends only on #i ; that is, given � = θ , the distribution of Xi

depends only on θi and is independent of θk for k �= i.
2. The components of X are conditionally independent; that is, given � = θ the

random variables X1, . . . ,Xd are independent.

Unconditionally, however, there may be dependence in the vector X =
(X1, . . . ,Xd) induced by the dependence structure of � = (#1, . . . ,#d). It is
an interesting question how the distribution of � affects the distribution of X,
especially how the dependence structure of X depends on the one of �. In the
language of stochastic orderings this question can be stated as follows: Let �
and �′ be two random environments, X and X′ the corresponding random
observations with the same conditional marginal distribution functions

Fi(x|θ)= P (Xi ≤ x|#i = θ)= P (X′
i ≤ x|#′

i = θ)

and let ≤F be a stochastic order of interest. Under what conditions does � ≤F �′
imply X ≤F X′?

Various problems of this type can be found in the recent literature. Bäuerle
[(1997), Lemma 3.4] shows such a result for the supermodular order in the context
of queueing systems in a random environment. Her proof is based on a coupling
argument. In the context of synchronized stochastic systems, Li and Xu (2000)
study so-called separable Markov chains which have transition kernels of this
type. In their Theorem 2.7 they prove results of the above-mentioned nature for
supermodular order and orthant orders. In actuarial sciences similar results have
recently been given by Hu and Pan (1999), Denuit, Genest and Marceau (2002)
and Lillo, Pellerey, Semeraro and Shaked (2000).

It is not surprising that the answer to the problem mentioned above is related
to stochastic monotonicity and stochastic convexity conditions on Fi(x|θ). Recall
that Xi is said to be stochastically increasing (resp. convex) in #i if the function

θ �→E[f (Xi)|#i = θ]
is increasing (resp. convex), whenever f is an increasing (resp. convex) function.
In the proof below we will use the well-known facts that Xi is stochastically
increasing in #i if, and only if,

θ �→ P (Xi > x|#i = θ)= 1 − Fi(x|θ)
is increasing for all x, and that it is stochastically convex if and only if θ �→
E[Xi |#i = θ] is linear and

θ �→ πi(x|θ)= E[(Xi − x)+|#i = θ] =
∫ ∞
x

[1 − Fi(y|θ)]dy
is convex; see, for example, Denuit and Lefèvre [(2001), Proposition 1] for a proof
of the latter claim.
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THEOREM 4.1. (a) Assume that Xi is stochastically increasing in #i for
all i = 1,2, . . . , d and let � be one of the stochastic orders ≤st, ≤sm, ≤ism, ≤uo
and ≤lo. Then the following implication holds:

� � � ⇒ X � Y.

(b) If Xi is stochastically convex in #i for all i = 1,2, . . . , d then

� ≤dcx � ⇒ X ≤dcx Y.

(c) If Xi is stochastically increasing and stochastically convex in #i for all
i = 1,2, . . . , d then

� ≤idcx � ⇒ X ≤idcx Y.

PROOF. Let us write

Ef (X)=
∫
E[f (X)|� = θ ]F�(dθ)=Ef ∗(�),

where

f ∗(θ)=
∫
f (x)

d⊗
k=1

Fk(dxk|θk).(5)

Here ⊗ denotes the product measure. According to the results derived in Section 3
it is sufficient to consider infinitely differentiable functions f . Moreover, we
assume without loss of generality that f has bounded derivatives of all orders.
For the supermodular order it has been shown in Müller and Scarsini (2000) that
this is sufficient and for the directional convex order in Müller and Scarsini (2001).
For all other orders in the theorem this is obvious.

Now the differentiability of f enables us to perform partial integrations to get
the following identities:

�ε
i f

∗(θ)=
∫

∂

∂xi
f (x){Fi(xi|θi)− Fi(xi|θi + ε)}⊗

k �=i

Fk(dxk|θk) dxi(6)

for all i = 1, . . . , d ,

�ε
i �

δ
jf

∗(θ)

=
∫

∂2

∂xi∂xj
f (x){Fi(xi|θi)− Fi(xi |θi + ε)}

× {Fj(xj |θj )− Fj (xj |θj + δ)} ⊗
k �=i,j

Fk(dxk|θk) dxi dxj
(7)

for all i, j = 1, . . . , d with i �= j , and

�
ε1
1 · · ·�εd

d f
∗(θ)

=
∫

∂d

∂x1 · · · ∂xd f (x)
d∏
i=1

(
Fi(xi |θi)− Fi(xi|θi + εi)

)
dx1 · · ·dxd.(8)
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From these equations part (a) immediately follows.
If Xi is stochastically convex in #i then E[Xi|#i = θ] is linear in θ ; that is,

E[Xi |#i = θ] = ai + biθ for all i = 1, . . . , d . Hence

lim
xi→−∞{πi(xi|θi + 2ε)− 2πi(xi |θi + ε)+ πi(xi|θi)}

=E[Xi |#i = θi + 2ε] − 2E[Xi|#i = θi + ε] +E[Xi |#i = θi] = 0.

Therefore applying another integration by parts to (6) yields

�ε
i �

ε
i f

∗(θ)=
∫

∂2

∂x2
i

f (x){πi(xi|θi + 2ε)− 2πi(xi|θi + ε)+ πi(xi|θi)}
⊗
k �=i

Fk(dxk|θk) dxi.
(9)

From this identity parts (b) and (c) follow immediately, too. �

Many parametric families of distributions fulfill the assumptions of Theo-
rem 4.1; see, for example, Chapter 6 of Shaked and Shanthikumar (1994).
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