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PACKING RANDOM INTERVALS1

BY WANSOO T. RHEE AND MICHEL TALAGRAND

Ohio State University

w xA packing of a collection of subintervals of 0, 1 is a pairwise disjoint

subcollection of the intervals; its wasted space is the measure of the set of

points not covered by the packing.

Consider n random intervals, I , . . . , I , chosen by selecting endpoints1 n

independently from the uniform distribution. We strengthen and simplify

the results of Coffman, Poonen and Winkler, and we show that, for some

universal constant K and for each t G 1, with probability greater than or

equal to 1 y 1rnt, there is a packing with wasted space less than or equal
Ž .2to Kt log n rn.

1. Introduction. Packing problems are of fundamental importance, in
w xparticular, in computer science 1 . If I , . . . , I are intervals contained in1 n

w x w x0, 1 , a packing of these intervals in 0, 1 is a disjoint subcollection of these
w xintervals. The wasted space is the length of the part of 0, 1 that is not

covered by this subcollection. The optimal packing minimizes wasted spaces.

Ž w xSo, in other words, one tries to cover as much as possible of 0, 1 using
. w xdisjoint intervals of the given family. Coffman, Poonen and Winkler 2 prove

the remarkable fact that an optimal packing of n random intervals I , . . . , I1 n

w x Ž .2in 0, 1 wastes a space W of order log n rn. They prove that, for everyn

Ž .Ž .2
« ) 0, W G 1r8 y « log n rn with a probability that goes to 1 as n ª `,n

Ž . Ž .2and they prove that E W F K log n rn for some universal constant K. Inn

this paper, we strengthen this latter result and we prove the following

theorem.

Ž .3THEOREM 1. For all 1 F t F nr log n , we have

2 tlog n 1Ž .
1 P W G Kt F ,Ž . n ž /ž /n n

where K does not depend on n.

w xWhile the proof of 2 uses the second moment method via a rather delicate

computation, our approach is considerably more straightforward.

�Ž . w x2 42. Poissonization. Consider D s x, y g 0, 1 ; x F y . There is an
w xobvious bijection between the points of D and the subintervals of 0, 1 .
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Through this bijection, the intervals I , . . . , I appear as n points uniformly1 n

distributed over D. Following a well-known scheme, let us consider a homoge-

neous Poisson point process of uniform intensity l. The process generates a
w xfinite subset P of D, that is, a finite collection of intervals I , . . . , I of 0, 1 .1 r

w xWe denote by V the space wasted by an optimal packing of 0, 1 by these
l

intervals. We claim that, for each n,

2 P W G a F P V G a q P card P G n .Ž . Ž . Ž . Ž .n l

Indeed, if we condition with respect to the cardinal of P s m, V is dis-
l

Ž . Ž .tributed like W and considering only the first m intervals P W G a Fm n

Ž .P W G a when n G m.m

Ž .Now we fix l s nr2, so that as is well known

n
P card P G n F exp y .Ž . ž /K

ŽThere, as well as in the rest of the paper, K denotes a universal constant,
.not necessarily the same at each occurrence. Thus it suffices to prove that,

Ž .3for 1 F t F nr log n ,

2 tlog n 1Ž .
3 P V G Kt F ,Ž . l ž /ž /n n

where K does not depend on n.

? Ž .@3. The idea. Consider a parameter u and q s nr u log n . We divide
w x w Ž . w0, 1 into the q consecutive intervals krq, k q 1 rq , 0 F k - q, which for

y Ž q.simplicity we will call atoms. For an atom A, we denote by A resp. A the
Ž .atom to the left right when it exists.

? @We set m s log n . We divide the set of atoms into 3m q 2 consecutive1 1

blocks. The first and the last blocks consist, respectively, of the first m and1

the last m atoms. The q y 2m atoms left are divided into 3m blocks1 1 1

B , . . . , B of consecutive atoms, each of them containing either p s2 3m q11

?Ž . @ uŽ . vq y 2m r3m or p q 1 s q y 2m r3m atoms. Now, when u F1 1 1 1

Ž .2 Ž .nr3 log n and n is larger than some fixed integer n , we have p G0

Ž .2nr4u log n .

We now define, by induction over k, the set of atoms contained in the block

B that are alive. For k s 1, all the atoms contained in B are alive. Now wek k

say that an atom A contained in B is alive if there is an atom Akq1 0

contained in B that is alive and such that, among the intervals I , . . . , I , wek 1 r

can find one with endpoints in Aq and A.0

Thus an atom A of B is alive if, among I , . . . , I , we can find intervalskq1 1 r

J , . . . , J with the following properties:1 k

The left endpoint of J belongs to B .4Ž . 1 1

For 2 F l F k, the right endpoint of J and the leftly15Ž .
endpoint of J belongs to two consecutive atoms of B .l l
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What this means is that we have succeeded in constructing a ‘‘partial
w xpacking’’ J , . . . , J of 0, 1 starting at 0 and up to A. This partial packing is1 k

efficient in the sense that the following occurs:

Ž .2At most m rq F 2u log n rn space is not covered at the16Ž .
left of the left endpoint of J .1

The gap between J and J is at most 2rq.7Ž . l lq1

Ž .3Suppose now that we can prove the following for u G K, u F nr log n :

With probability at least 1 y 3 exp yu log nr K , theŽ .
˙number M of live intervals in B satisfies M G8Ž . k k k

ky1min 3 m , 2 pr3 for each k F 2m .� 41 1

Then we observe that 3ky1m G n for k G log n; thus M G 2 pr3 for k G1 k

w xlog n. This implies that, if we consider a block B near the center of 0, 1 , at
Ž .least approximately 2r3 of its atoms contain the right endpoint of the last

w Ž . Ž . xinterval of a partial efficient packing in the sense that 6 and 7 hold . Now

we could have constructed these partial efficient packings starting at the
w x Ž .right of 0, 1 rather than the left, and again at least 2r3 approximately of

Žthe atoms of B would contain the left endpoint of the last starting from the
.right interval of such a packing. So we can find an atom J of B that contains

the end of a partial efficient packing starting from the left, while Jq contains

the end of a partial efficient packing starting from the right. The union of

these two packings wastes at most

2 2
log n 3m log nŽ . Ž .1

4u q F Ku .
n q n

Ž . Ž .3Combining this with 8 shows that, for u F nr log n ,

2 urKlog n 1Ž .
P V G Ku F 4 .

l ž /ž /n n

Ž .This implies 1 .

4. End of the proof. Let us denote by b the right endpoint of B , andk k

Žw x w x.set P s P l 0, b = 0, 1 . We observe that the set of live atoms of Bk k k

Ž .depends on P only. First, we show that, to prove 8 , it suffices to proveky1

the following:

<� 49 P M G min 3M , 2 pr3 PŽ . Ž .kq1 k ky1

� 4G 1 y exp yu min 3M , 2 pr3 rK .Ž .k

Ž . � ky1 4Indeed, using 9 , we get, setting n s min 3 m , 2 pr3 , thatk 1

P M G n G P M G n y exp yn urK ,Ž . Ž . Ž .kq1 kq1 k k k

so that

P ; k F 2m , M G n G 1 y exp yn urKŽ . Ž .Ý1 k k l

lF2 m1
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Ž .and the latter sum is bounded by exp yum rK if u F Nrlog N. Thus the1

Ž .only task left is to prove 9 .

There is a set AA of atoms of B such that card AA G M y 1 G M r2 andk k k

that, whenever A g AA, Ay is alive. Consider for an atom B of B thekq1

Ž .random variable d that is equal to 1 if P l A = B / B, and is 0A B

otherwise. The set of atoms of B that are alive iskq1

� 4BB s B g B : ' A g AA, d s 1 .kq1 A B

Conditionally on P , the random variables d are independent andky1 A B

22P d s 0 s exp yl Area A = B F exp yu log n r 2n .Ž . Ž . Ž . Ž .Ž . Ž .A B

Thus

; B g B ,kq1

22<P B f BB P F exp yu log n M r 4n F exp yuM r 16 p [ t .Ž . Ž . Ž .Ž . Ž .Ž .ky1 k k

Thus, conditionally on P , the number of live atoms in B dominates theky1 kq1

Ž .number H p, 1 y t of outcomes of a sequence of p independent Bernoulli

trials, each with probability 1 y t of success. We need the following lemma
w xwhich is a very weak form of the Chernoff bounds 3 .

LEMMA 1. For some universal constant K , we have0

10 a G 3r4 « P H p , a F 2 pr3 F exp yprK ,Ž . Ž . Ž .Ž . 0

11 P H p , a F apr2 F exp yaprK .Ž . Ž . Ž .Ž . 0

We finish the proof. For clarity, we distinguish two cases.

Ž .CASE 1. In this case uM r 16 p G 2. Then 1 y t G 3r4, and the conclu-k

Ž .sion holds by 10 .

Ž . Ž .CASE 2. In this case uM r 16 p F 2. Here, we use that 1 y exp yx Gk

Ž . Ž . Ž .xr4 for x F 2 to get 1 y t G uM r 64 p . We use 11 with a s uM r 64p , sok k

that apr2 G 3M provided u G 384. Also, ap s uM r64, and 3M sk k k

Ž .min 3M , 2 pr3 since M F 32 pru. This completes the proof. Ik k
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