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THE RSW THEOREM FOR CONTINUUM PERCOLATION

AND THE CLT FOR EUCLIDEAN MINIMAL

SPANNING TREES1

BY KENNETH S. ALEXANDER

University of Southern California

We prove a central limit theorem for the length of the minimal
w x2spanning tree of the set of sites of a Poisson process of intensity l in 0, 1

as l ª `. As observed previously by Ramey, the main difficulty is the

dependency between the contributions to this length from different re-
w x2gions of 0, 1 ; a percolation-theoretic result on circuits surrounding a

fixed site can be used to control this dependency. We prove such a result

via a continuum percolation version of the Russo]Seymour]Welsh theo-

rem for occupied crossings of a rectangle. This RSW theorem also yields a

variety of results for two-dimensional fixed-radius continuum percolation

already well known for lattice models, including a finite-box criterion for

percolation and absence of percolation at the critical point.

1. Introduction. For a finite set V ; R
d, a Euclidean minimal span-

Ž .ning tree MST of V is a tree with site set V and minimal total length of all
Žbonds. Here we use percolation terminology, that is, site s vertex and bond
. Ž . Ž .s edge. Let LL V denote this total length; the behavior of LL V for random

site sets V has been an object of considerable study, particularly its limiting
< < w x dbehavior as the cardinality V ª `. For X , X , . . . iid uniform in 0, 1 and1 2

Ž . Ž .N l an independent Poisson l r.v., let

� 4LL [ LL X , . . . , X ,Ž .n 1 n

Ž .so that LL is LL V for V the set of sites of a Poisson process of intensity lN Žl.

w x d w xin 0, 1 . Beardwood, Halton and Hammersley 6 proved a strong law for the
Ž .‘‘Steiner tree’’ analog of the functional LL V , in which the site set need only

contain V: for some 0 - b - `,d

lim LL rnŽdy1.r d s b a.s.n d
n

wThey actually only prove this for a different ‘‘traveling salesman’’ functional
Ž . xLL ? , but, as they point out, the proof for the Steiner tree is similar. Steele

w x28 established similar results for the large class of all subadditive Euclidean
w x w xfunctionals, and in 30 he proved the strong law for the MST. Steele 30 and
w xAldous and Steele 1 replaced the length of an edge with a power of that

length and considered analogous results. For the MST andror related func-
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CONTINUUM PERCOLATION AND MST 467

w xtionals, Rhee and Talagrand 23 established exponential bounds on the tails
w x w x w xof LL , and Alexander 2 , Jaillet 14 , Redmond and Yukich 21 and Rheen

w x Ždy1.r d22 considered the rate of convergence of E LL rn to b .n d

After proving their strong law, Beardwood, Halton and Hammersley sug-
Ž .gested that there should be a central limit theorem CLT for LL . SimilarN Žl.

w xspeculation appears in the paper of Avram and Bertsimas 4 , which contains
Ž .CLT’s for some other natural functionals LL ? of geometric probability, and in

w x w xSteele 30 . Ramey 20 proved that, for d s 2, the CLT was true subject to

the validity of a certain percolation-theoretic conjecture. Our main purpose in

this paper is essentially to prove Ramey’s conjecture, and thereby to prove

the CLT for LL . Thus we restrict ourselves henceforth to d s 2. We do notN Žl.

prove the CLT for the non-Poissonized quantity LL , and it does not seem to ben

any easy consequence of the CLT for LL .N Žl.

w xSince the completion of the present work, Kesten and Lee 16 have proved

the CLT for both LL and LL in all dimensions, using techniques com-n N Žl.

pletely different from those employed here.

Our proof of Ramey’s conjecture is based on another result of independent
Ž .interest: the Russo]Seymour]Welsh RSW theorem for occupied crossings in

Ža certain continuum percolation model. The original RSW theorem see
w x w x.25 ] 27 was proved for Bernoulli bond percolation on the square lattice,

where each bond is independently occupied with some probability p and

vacant with probability 1 y p. This theorem relates the probability of a

horizontal crossing by occupied bonds for an L = L square to that for a
Ž .3Lr2 = L rectangle. Crossings are called short-way or long-way depending

on the relative lengths of the sides of the rectangle. Roughly, the RSW
Ž x Ž x Ž .theorem says that, for some function f : 0, 1 ª 0, 1 with f p ª 1 as

p ª 1, if the probability is at least p for crossing the square, then it is at
Ž .least f p for a long-way crossing of the rectangle, and the result is uniform

in L. This theorem is the foundation for a wide variety of results about

two-dimensional percolation, including the existence of a finite-box criterion

for percolation, continuity of the percolation probability, nonpercolation at

the critical point, noncoexistence of vacant and occupied infinite clusters for
w x w xfixed p and uniqueness of the critical point, among others; see 7 or 11 . We

will establish here some analogous consequences of the RSW theorem in the
w xcontinuum case. For general background on continuum percolation, see 17 .

To formulate the theorem for continuum percolation, let X be a Poisson

process in R
2 with intensity l. For A ; R

2 and r G 0 we let

Ar [ x g R
2 : d x , A F r ,� 4Ž .

Ž . Ž . � Ž . 4where d ?, ? denotes Euclidean distance and d x, A s inf d x, y : y g A ;
� 4 r r rfor a single point z we abbreviate z as z . The set X is called the

Ž r .coccupied space at level r ; its complement X is called the vacant space at

level r. This describes the fixed-radius case of the standard Poisson blob, or

Boolean, model of continuum percolation. We say there is a horizontal

occupied crossing of a rectangle R at level r if there is a path in X r l R from

the left side of R to the right side of R. Occupied or vacant percolation
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means the existence of an unbounded component in the occupied or vacant

space, respectively.

w xKesten 15 generalized the lattice RSW theorem in a way that allows the

square to be replaced with a cL = L rectangle, with c - 1. This generaliza-
Ž .tion means roughly that one need only establish a nonnegligible or high

Žprobability of some short-way crossings in order to prove a nonnegligible or
.high probability of a long-way crossing of a larger rectangle. The correspond-

ing result for continuum models is more difficult, because there is more
w x Ž w x.dependence. Roy 24 see also 17 proved an RSW theorem, incorporating

Kesten’s modifications, for vacant crossings in the bounded-radius Poisson
Ž .blob model, but without the analog of the property that f p ª 1 as p ª 1.

As a consequence, Roy obtained the equality of various critical points for the

Poisson blob model. In broad outline Roy’s proof of his RSW theorem is

similar to Kesten’s lattice proof, but adapting the lattice proof to continuum

vacant crossings requires numerous new techniques. Roy’s techniques for

adapting the lattice proof to vacant crossings do not extend naturally to

occupied crossings. Roy considered bounded random radii; we consider only

the fixed-radius case.

2. The RSW theorem for occupied crossings. Let X be a Poisson

process in R
2 with intensity l; we identify X with the corresopnding set of

Ž .sites. We assume X is defined on a probability space V, AA, P ; we call each

v g V a configuration. For A ; R
2 and r G 0 we let

A- r [ x g R
2 : d x , A - r .� 4Ž .

Ž .Let B x denote the closed ball of radius r centered at x. We say there is ar

w x w xhorizontal occupied crossing of a rectangle R s a, b = c, d at level r if
r � 4 w x � 4 w xthere is a path in X l R from a = c, d to b = c, d ; a vertical occupied

crossing is defined similarly. A horizontal vacant crossing and vertical vacant

crossing are define analogously. Define events

w xH R [ there exists a horizontal occupied crossing of R at level r ,Ž .occ, r

w xH R [ there exists a horizontal vacant crossing of R at level r ,Ž .vac, r

w xV R [ there exists a vertical occupied crossing of R at level r ,Ž .occ, r

w xV R [ there exists a vertical vacant crossing of R at level r .Ž .vac, r

Then

c c
2.1 H R s V R and V R s H R .Ž . Ž . Ž . Ž . Ž .occ, r vac, r occ, r vac, r

The following theorem, the main result of this section, is the analog for
w xoccupied crossings of the RSW theorem of Roy 24 for vacant crossings in

continuum percolation; the techniques we use to adapt the lattice proof are

quite different from those of Roy.

THEOREM 2.1. Let X be a Poisson process in R
2 with intensity l. Suppose

Ž 2 .r ) 0, l ) 0, l G b ) lr2 q 2r and h ) 4r. Then, for some constant K lr )
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Ž .0, with K ? nondecreasing, and a [ b y lr2 q r,

w x w xP H 0, b q a = 0, h y 2rŽ .Ž .occ, r

42 w x w xG K lr P H 0, b q r = 0, h y 4rŽ . Ž .Ž .occ, r2.2Ž .
2w x w x= P V 0, l = 0, h q 3r .Ž .Ž .occ, r

Ž . Ž 2 .The most important thing about 2.2 is that the factor K lr does not

depend on the scale of the rectangles, that is, on b, h or l.

The closest analog of the original RSW theorem comparing the crossing
Ž .probability for an L = L square to that of a 3Lr2 = L rectangle is obtained

by taking b s L y 3r, l s L q 5r and h s L q 2r, yielding

w x w xP H 0, 3Lr2 y 15rr2 = 0, LŽ .Ž .occ, r

4 22 22 w x w xG K lr P H 0, L y 2r P V 0, L q 5r ,Ž . Ž . Ž .ž / ž /occ, r occ, r

2.3Ž .

which is somewhat similar except for the addedrsubtracted terms 15rr2, 2r
Ž 2 . Ž .and 5r and the factor K lr . Of course, in the last two probabilities in 2.3 ,

H and V are interchangeable since the rectangles are squares.occ, r occ, r

By forming equivalence classes if necessary, we may assume that the
Ž .random process X s X v is a one-to-one function on V. The ordering of the

Ž .sets X v , v g V, by inclusion then induces an ordering of V; an event H is

called increasing if v g H, v F v9 imply v9 g H. The existence of an occu-

pied crossing of a given rectangle is clearly an increasing event. As noted by
w x w xRoy 24 , the FKG inequality of Harris 12 extends straightforwardly to the

continuum case, yielding the following result.

LEMMA 2.2. Any two increasing events have nonnegative correlation.

Though the following proof is, in principle, self-contained, familiarity with
Žw xRusso’s proof for the lattice case will be invaluable; see the original work 25

w x. w xand 26 or see Lemma 9.73 of 11 .

PROOF OF THEOREM 2.1.

Step 1. We begin with a description of some of the geometry associated

with occupied crossings and some related definitions.

w x w xGiven a rectangle R s a, b = c, d , we define the following modifica-

tions:

˜ w x w xR [ a y r , b q r = c, d q 5r ,

R [ a y r , b q r = c q r , d y r ,Ž . Ž .sup

w x w xR [ a y r , b q r = c y r , d q r ,aug

w x w xR [ a y r , b q r = c, d ,wide

w xR [ a, b = c q r , d y r .Ž .trunc
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Observe that any occupied crossing of a rectangle R is contained in
Ž .rX l R . Letaug

w x � 4R [ a, b = d ,top

w x � 4R [ a, b = c ,bot

X R [ X l R .Ž .sup sup

We call a horizontal occupied crossing of R at level r supported if it is
Ž .r Ž .contained in X R . Loosely, this means that none of the balls B xsup r

necessary for the crossing intersect the bottom or the top of the rectangle.

The relevant ‘‘vacant space’’ in a rectangle when supported crossings are

considered is
r

S R [ R _ X R .Ž . Ž .sup sup

We define the event

s w xH R [ there is a supported horizontal occupied crossing of R at level r .Ž .occ, r

Clearly,

w x w x s w x w x2.4 H a, b = c, d ; H a, b = c y 2r , d q 2rŽ . Ž . Ž .occ, r occ, r

and

2.5 H s R ; H R .Ž . Ž . Ž .occ, r occ, r trunc

We say B ª C in A if there is a path g from some point x g B to some point
� 4 � 4y g C with g _ x ; A; for a point x, x ª B means x ª B. Define

L R [ x g R : x ª R in S R ;Ž . Ž .� 4bot sup

see Figure 1. It is clear that

2.6 L R is a connected set containing R .Ž . Ž . bot

Now let

Y R [ x g X R : ­B x l ­ L R / B .Ž . Ž . Ž . Ž .� 4sup r

w xSuppose there is a supported horizontal occupied crossing of R s a, b =
w x Ž .c, d . Then the boundary of L R consists of R , portions of the left andbot

Ž . Ž .right sides of R and some arcs of the circles ­ B x , x g Y R . Definer

r
U R [ x g R : x ª R in R _ Y R ,Ž . Ž .½ 5top

Z R [ x g Y R : ­ B x l ­U R / B� 4Ž . Ž . Ž . Ž .r

r
s x g Y R : ­B x ª R in R _ Y R .Ž . Ž . Ž .½ 5r top

Ž . Ž .r Ž .Loosely, U R is the region above Y R in R; see Figure 1. Note that U R
Ž . Ž .rand L R are separated since Y R contains an occupied crossing. The

Ž .boundary of U R consists of R , portions of the left and right sides of Rtop

Ž . Ž .and some arcs of the circles ­ B x , x g Z R . Let u and u denote ther lt rt

Ž .lowest points of U R on the left and right sides of R, respectively; then
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FIG. 1. Typical configuration with a supported horizontal occupied crossing. In this example,

z s z but z / z .0 1 nq1 n

Ž .­U R includes a horizontal occupied crossing g of R from u touUŽR . lt rt

Ž . Ž .consisting entirely of arcs of the circles ­ B x , x g Z R . To each such arc inr

Ž .g there corresponds a center in Z R of the corresponding r-ball; theUŽR.

sequence of arcs comprising g thus gives rise to a sequence z , . . . , z inUŽR . 1 n

Ž . Ž . Ž .Z R of ball centers. From the definition of Z R , each point of Z R appears
Ž . � 4 Žat least once in this sequence; that is, Z R s z , . . . , z as sets. In fact, it1 n

is easy to show that each point appears exactly once, but we will not make
.use of this fact. Let h and h denote the vertical coordinates of z and z ,lt rt 1 n

respectively, and let

z , if z f R ,1 1
z [0 ½ a, h , if z g R ,Ž .lt 1

z [ a y r , h ,Ž .y1 lt

and similarly

z , if z f R ,n n
z [nq1 ½ b , h , if z g R ,Ž .rt n

z [ b q r , h .Ž .nq2 rt

We can then define the canonical low occupied crossing, denoted g*, to be the

piecewise linear path z ª z ª ??? ª z . It is clear that g* contains a0 1 nq1

horizontal crossing of R; let us verify that this crossing is indeed occupied.

For 1 F i - n, it follows from the definition of the sequence z , . . . , z that1 n

< <2.7 z y z F 2r ;Ž . iq1 i



K. S. ALEXANDER472

therefore, the line segment from z to z is contained in the occupied space.i iq1

Ž .The same definition also yields that B z meets the left side of R, so ther 1

line segment from z to z is also contained in the occupied space, and0 1

similarly for the segment from z to z . Define the stripsn nq1

w x w x w x w xS a, b = c, d [ a y r , a = c, d ,Ž .lt

w x w x w x w xS a, b = c, d [ b , b q r = c, d .Ž .rt

The extended canonical low crossing, denoted g**, is the piecewise linear
Ž .path z ª z ª ??? ª z , which is a crossing of R s S R j R jy1 0 nq2 wide lt

Ž .S R , not necessarily entirely occupied.rt

We have seen that if there is a supported horizontal occupied crossing of
Ž .rR, then there is a canonical one g* contained in Z R . Here g* will play

roughly the role for us that the ‘‘lowest occupied crossing’’ plays in the proof

of the lattice RSW theorem.

Ž . Ž .We write L R, v for L R when we wish to designate the underlying
Ž .configuration v giving rise to the set L R , and similarly for other random

sets. Let V be the event that there do not exist two sites x, y g X with0

< < Ž . Ž . Ž .x y y s 2r, nor three sites x, y, z g X with ­ B x l ­ B y l ­ B z / B.r r r

Ž .Then P V s 1; we tacitly henceforth assume that all configurations come0

from V .0

Step 2. We give a description of the conditioning that occurs when some of

the sets L, Y, U and Z are specified.

Ž . Ž .Let XX , YY and ZZ denote the ranges of the functions X R, ? , Y R, ?sup sup

Ž .and Z R, ? on V , respectively. We obtain topologies on XX , YY and ZZ by0 sup

Ž . Ž . Ž .viewing X R , Y R and Z R as elements of the disjoint unionsup

Ž .k Ž . Ž . Ž .D R ; this makes Y R and Z R continuous functions of X R atk G 0 sup sup

Ž .- revery v g V . For configurations in V one can determine L R from0 0

Ž . Ž Ž ..Y R ; more precisely, there exists a map L: YY ª LL such that L Y R, v s
Ž .- rL R, v for all v g V .0

Ž .- rSuppose that, for some set D and configurations v, v9, we have L R, v
Ž . Ž .s D and X R, v l D s X R, v9 l D. Here D denotes the closure ofsup sup

Ž .- r Ž .- rD. It is easy to see that then D s L R, v s L R, v9 as well, with also
Ž .- r Ž .rthe equality for Y, U and Z in place of L ? . We therefore call L R l Rsup

Ž .rthe conditioned region, because changes to X outside L R l R do notsup

affect the values of L, Y, U and Z. It follows that

- r cŽ . Ž Ž .. Ž .given L R s D, or given L Y R s D, X l D l Rsup2.8Ž .
cŽ .remains a Poisson process in D l R with intensity l.sup

Ž . Ž .r Ž .Observe also that the only sites of X R inside L R are the sites in Y R ,sup

that is,
r

X R l L R s Y R .Ž . Ž . Ž .sup

Ž . Ž .Step 3. Note that the conditioned region may intersect U R or S R orlt

Ž .S R , in contrast to the lattice analog; see Figures 1 and 2. We need to showrt

that this intersection is not too big. More precisely, suppose, for the remain-
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Ž .FIG. 2. Detail of an example in which the conditioned region intersects U R ; the intersection is

vertically striped and is part of an r-ball centered at w.

der of Step 3, that there is a horizontal supported occupied crossing of R, and

define

'2 2 r˜ ˜ ˜ ˜U R [ x g R : x ª R in R _ Z R ,Ž . Ž .½ 5top

˜ ˜ ˜ ˜L R [ x g R : x ¢ R in R _ g** .Ž . ½ 5top

'2 2 r˜ ˜Ž . Ž .Loosely, U R is the region above Z R in a slight enlargement R of R,
˜ ˜Ž .and L R is the region below g** in R. Since g* is occupied, from the

˜Ž . Ž . Ž . w x Ž .definition of L R we have L R ; L R . Let x, y denote the closed line
Ž xsegment with endpoints x and y, and analogously for x, y and so on. Now

suppose the following:

1 2 ˜ 1 2Ž . Ž . Ž .x s x , x g U R , z s z , z is the closest point
2.9 Ž . Ž .Ž . to x in Z R with ties broken arbitrarily , y s

1 2Ž . w x < <y , y g x, z with y y z G 31rr16

Ž .see Figure 3 . We claim that

r
2.10 d y , L R ) 17rr16 and therefore B y l L R s B.Ž . Ž . Ž . Ž .Ž . rr16

Ž .For fixed x, z and a finite number of sites y as in 2.9 , sites in the balls
Ž .B y can be used to create an occupied path from x to z; see Figure 4.rr16

Ž .The latter part of 2.10 ensures that the probability of the existence of such
Ž .sites does not depend on Y R . To connect x to z, at least one such site must

Ž . Ž . Ž .be in B z , but, under 2.9 and 2.10 , that is not a problem since 31rr16 q2 r

Ž .rr16 s 2r. The proof of 2.10 is fairly straightforward when x and y are in
Ž . Ž .R, but since x andror y can be in S R or S R , a number of cases andlt rt

subcases must be covered separately. We will make use of the following

preliminary results.
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Ž . Ž .FIG. 3. Illustration for 2.9 and 2.10 . The figure is not drawn to scale.

FIG. 4. Illustration for Steps 4 and 5. The entire rectangle is Ryy . The point x is a close finalaug

Ž .visible site. The sites in the dashed path from x to x are hidden sites in X v which do notj n 2

Ž . Ž . Ž .rappear in X v . The shaded region at the lower right, partly covered by L R , is L R l R .sup

The figure is not drawn to scale.



CONTINUUM PERCOLATION AND MST 475

˜ ˜Ž . Ž . Ž .CLAIM 1. g** separates U R from L R , and hence also from L R .

Ž .2 rThis is an easy consequence of the fact that g** ; Z R .

2 < < < < w xCLAIM 2. If p, q, s, t g R , p y q F 17rr16, s y t F 2r and p, q l
w x Ž < < < <.s, t / B, then min p y s , p y t F 3rr2.

Ž . w x w xThis is proved by noting that if s, t f B p and p, q l s, t / B,3rr2

w x Ž .then s, t includes a chord of the circle ­ B p of length less than 2r, for3rr2

which the distance from the chord to the circle center is less than 17rr16.
2 2'This is impossible since 17rr16 q r - 3rr2.Ž .

Ž 1 2 . 1 Ž .For q s q , q with b F q F b q r, let q [ b q r, q .rt 2

1 w xCLAIM 3. If y G b, then y, y l g* s B.rt

1 w x Ž Ž ..By Claim 2, if y G b and y, y l g* / B, then d y, Z R F 3rr2,rt

Ž .contradicting 2.9 .

Ž . Ž .Let w be the closest point to y in L R breaking ties arbitrarily.

< < w xCLAIM 4. If y y w F 17rr16, then y, w l g* s B. The proof is the

same as that of Claim 3.

Let u denote the closest point to y in g**, breaking ties arbitrarily. Let Glt

w x � 4 w x � 4and G denote the line segments a y r, a = h and b, b q r = h ,rt lt rt

respectively. Observe that

w x2.11 d x , y , Z R s d y , Z R G 31rr16,Ž . Ž . Ž .Ž . Ž .

< < < <so, since z y z F 2r and z y z F 2r,n nq2 1 y1

w xx, y l g**, if nonempty, is a single point in the

outer 1r16 part of G or G . If this point is in G ,2.12Ž . lt rt rt

then z g R.n

Ž . � 4 Ž .Since w g L R , there is a path s from w to R with s _ w ; S R .bot sup

From Claims 3 and 4,

1 < <if y G b and y y w F 17rr16,
2.13Ž . Ž w x w x.then s j w, y j y, y l g* s B.rt

w x w x w x w xSince s j w, y j y, y separates y , b q r = c, y from z whenrt 1 2 0
1 Ž .y G b, it follows from 2.13 that

1 < <if y G b and y y w F 17rr16,
2.14Ž . 1 2w x w x Ž .then y , b q r = c, y l Z R s B.

Ž .We now proceed with the various cases and subcases needed to prove 2.10 .
˜ ˜Ž . Ž . Ž .Case 1. y g L R j g**. Then since, by Claim 1, x f L R , by 2.12 ,

˜w x w . Ž .x, y l g** must be a single point q in G or G and x, q l L R s Blt rt

˜ 2 2Ž x Ž . < <while q, y ; L R , so y must be below x, that is, y - x . Suppose y y w
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2 2 Ž . Ž .F 17rr16 and q g G ; then x ) h G y and, by 2.12 and 2.14 , we mustrt rt
1 1 1 1 Ž .have x ) q G y ) z i.e., x above and right of y and z and z g R.n

2'< < Ž .Therefore, since x y z G 2 2 r we have x y h G 2r, so, using 2.11 ,n rt

22< < < < < <x y z G x y q q y y zŽ .
22 2< <G x y h q 2 y y z x y hŽ . Ž .rt rt

2 22) x y h q 2rŽ .Ž .rt

2 22 1 1G x y h q x y zŽ . Ž .rt n

< < 2s x y z ,n

< <which contradicts the definition of z. Similarly, we cannot have y y w F
< < Ž .17rr16 and q g G . Thus y y w ) 17rr16, proving 2.10 .lt

˜Ž . Ž . w x Ž .Case 2. u g Z R and y f L R j g**. Then y, w l g** / B since L R
˜Ž . Ž . < < < < Ž .; L R , so, by 2.9 , y y w G y y u G 31rr16, proving 2.10 .

˜Ž . Ž .Case 3. u f Z R and y f L R j g**. There then exists i, y1 F i F
w xn q 1, for which u g z , z , and y y u is perpendicular to z y z .i iq1 iq1 i

< < < <Further, we have y y w G y y u , so we may assume

< <2.15 y y u F 17rr16.Ž .

� 4 Ž .Case 3a. 0 F i F n. Let v denote the closest point to u in z , z l Z R ,i iq1

< < < < 2 < < 2 < < 2breaking ties arbitrarily. Then u y v F r, so y y w G y y u s y y v
< < 2 Ž .2 2 Ž .2 Ž .y u y v G 31rr16 y r ) 17rr16 and 2.10 follows.

1 1 ˜Ž .Case 3b. i s n q 1. Then y s u G b; since y f L R j g**, by Claim 3
Ž .and 2.15 , it follows that

2.16 h q 17rr16 ) y ) h .Ž . rt 2 rt

2 r ˜Ž . Ž .By Claim 1 and the fact that g** ; Z R , we have x f L R j g**. Hence,
Ž .by 2.12 ,

w x2.17 x , y l g** s B.Ž .

Ž . 1 1 2 2 Ž . < <Case 3b i . z G y and z F y . Then, by 2.14 , we have y y w ) 17rr16
Ž .and 2.10 follows.

Ž . 1 1 2 2 Ž . Ž .Case 3b ii . z - y and z ) y . Then, from 2.17 and 2.15 , we have

1 2 w x w xx g y , b q r = h , y ; b , b q r = h , h q 17rr16 ; B z ,Ž .rt rt rt 5rr2 n

Ž .contradicting 2.9 .
1 1 2 2 ˜Ž . Ž .Case 3b iii . z G y and z ) y . Since x g U R there is a path t from x

'2 2 r˜ ˜� 4 Ž . w x w xto R with t _ x ; R _ Z R . Then t l z, z s B so t j x, y jtop rt

˜w x w x w xy, y separates z from z in R, so g* must cross t j x, y j y, y . But,rt 0 rt

Ž . Ž w x w x.by Claim 3 and 2.17 , t j x, y j y, y l g** s B, so we have a contra-rt

diction.

Ž . 1 1 2 2Case 3b iv . z - y and z F y . Then

1 2 2 2'< <2.18 x G b , x G y ) h and x y z G 2 2 r , so x G h q 2r .Ž . rt n rt
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'wThis last conclusion is the reason for choosing the constant 2 2 in the
˜Ž . xdefinition of U R .

Ž .Since z g B x , it is easy to see that the minimum possible value for< xyz <n
2 'Ž . Žy under 2.18 is h q 2r y 2 2 r q 31rr16, achieved when z s b yrt n

'. Ž . Ž . Žr, h , x s b q r, h q 2r , z s b q r, h q 2r y 2 2 r and y s b qrt rt rt

' '.r, h q 2r y 2 2 r q 31rr16 . Since h q 2r y 2 2 r q 31rr16 ) h qrt rt rt

Ž .17rr16, this contradicts 2.16 .

Case 3c. i s y1. This is equivalent to Case 3b by reflection.

Ž .This completes the proof of 2.10 in all cases. Let us next show that

˜2.19 d U R , g** ) r ;Ž . Ž .Ž .

Ž .by Claim 1 a consequence of 2.19 is that

r˜2.20 U R l L R s B.Ž . Ž . Ž .

˜Ž . Ž .To prove 2.19 , suppose x g R and d x, g** F r. Let u be the closest point
< < w xto x ing**, so x y u F r, and fix y1 F i F n q 1 such that u g z , z .i iq1

˜Ž . Ž Ž .. Ž . Ž .If u g Z R , then d x, Z R F r so x f U R . If u f Z R , then x y u

is perpendicular to z y z . Defining z to be z if 1 F i F n, z if i si iq1 i n

Ž . < < < < 2n q 1 and z if i s y1 or 0, we have z g Z R and z y u F 2r, so x y z s1
2 2 2 2 2 ˜'< < < < Ž . Ž . Ž . Ž .x y u q u y z F r q 2r - 2 2 r , so again x f U R . Thus 2.19 is

proved.
˜Step 4. Given a region A ; R, let A denote the reflection of A acrossref

ˆ� 4the line a y r = R and let A [ A j A .ref

Ž . Ž .It follows from 2.8 and 2.20 that we may use the following special
˜ 3rŽ . Ž . Ž . Ž .construction of the process X. Let V R [ U R _ Z R and let W R [

˜ 3rŽ . Ž .U R l Z R . Then let

cr ˆ ˆQ R [ L R l R j W R j V R ;Ž . Ž . Ž . Ž .ž /sup

Ž .see Figure 4. It follows easily from 2.20 that

r 2ˆ ˆV R , L R l R , W R and Q R form a partition of R .Ž . Ž . Ž . Ž .sup

Ž .Let v , v and v be independent configurations and let v s v , v , v .1 2 3 1 2 3

Let C be an event, to be specified later, in the s-algebra generated by
ˆ sŽ . Ž . Ž . w Ž .xY R, v and X v l V R, v , with C ; v g H R . Then define1 2 1 1 occ, r

r r¡ ˆX v l L R , v l R j X v l V R , vŽ . Ž . Ž . Ž .Ž .ž /1 1 sup 2 1

ˆj X v l W R , v j X v l Q R , v , if v g C ,Ž . Ž . Ž . Ž .Ž .Ž .3 1 3 1

r rˆX v l L R , v l R j X v l V R , vŽ . Ž . Ž . Ž .Ž .ž /1 1 sup 2 1~X v [Ž .
ˆj X v l W R , v j X v l Q R , v ,Ž . Ž . Ž . Ž .Ž .Ž .2 1 3 1

sif v g v g H R _ C ,Ž .1 occ, r

s¢X v , if v f H R .Ž . Ž .1 1 occ, r
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Ž . Ž .Roughly, this means that, to form X v , we first look at X v to determine1

Ž .the region L R, v . Provided there is a supported horizontal occupied cross-1

ˆŽ .ing of R, this immediately determines the four disjoint regions V R, v ,1
r ˆ 2Ž . Ž . Ž .L R, v l R , W R, v and Q R, v into which R is divided, but it1 sup 1 1

Ž .rdoes not in any way condition sites outside L R, v l R . We can there-1 sup

ˆŽ . Ž . Ž . Ž .fore use X v in the region V R, v and X v in the region Q R, v . The2 1 3 1

ˆŽ . Ž . Ž .sites of X v in the region V R, v then determine whether X v or2 1 2

ˆŽ . Ž .X v is used in the region W R, v .3 1

ˆŽ . Ž . Ž .We call the sites of X v in V R, v visible, and call other sites of X v2 1 2

Ž . Ž .hidden; thus visible sites of X v always appear in X v . Hidden sites of2

ˆŽ . Ž . w Ž .xX v in W R, v are uncovered i.e., are sites of X v when the event2 1

w s Ž .xv g H R _ C occurs.1 occ, r

w x w x yStep 5. Let a [ b y lr2 q r. We now consider R s a, b = 0, h , R [
w x w x yy w x w x q w x0, b q r = r, h y r , R [ b y l, b = r, h q 4r , R [ a y r, a q b

w x qq w x w x w x w= r, h y r , R [ a, a q l = r, h q 4r and R [ b y l, a q l = 0,0

xh q 4r . If r s 0, one can visualize these rectangles as follows: dividing the

rectangle R into five blocks using vertical lines at 0, a, b, and b q a, R is0

the center block, Ry consists of the center and left center blocks, Ryy

consists of the three leftmost blocks, Rq consists of the center and right

center blocks and Rqq consists of the three rightmost blocks; see Figure 5.

The picture for r ) 0 is a slight modification of this. Roughly, we wish to

build a horizontal crossing of the three central blocks out of the canonical low

crossing of R, horizontal crossings of Ry and Rq and vertical crossings of
yy qq ˆ yyŽ . Ž .R and R . Note that V R ; R ; in fact see Figure 4 , the left edge ofaug

ˆ yy ˜ yyŽ .V R is part of the left edge of R . Also, R is the right half of R .aug aug

Ž .Let E denote the event that there exist i a horizontal occupied crossing g
� 4 w x � 4 w xof R with initial point in a = 0, hr2 and final point in b = 0, hr2 ,trunc

Ž . yy yy yy Ž .ii an occupied path b from g to R in R and iii an occupied pathtop wide

FIG. 5. Illustration of occupied paths in the event E l Gyl Gq. The shaded rectangle is Ry; the

dotted rectangle which it partly covers is Ryy. Note that ay does not meet byy, but this forces

byy to cross the vertical line at 0. In contrast, bqq does not cross the vertical line at b q a, but
q w xdoes meet a . The five paths together include a horizontal occupied crossing of 0, b q a =

w xr, h y r .
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bqq from g to Rqq in Rqq ; see Figure 5. Suppose ay is a horizontaltop wide

occupied crossing of Ry. Following ay from the left to right side of Ry, let
Ž yŽ y.. y � 4 w xa, y a be the last point of a in the vertical line a = r, h y r . Let

y y yŽ y.G denote the event that there exists such crossing a with y a G hr2.
q q Ž qŽ q..Similarly, for a a right-to-left crossing of R , we let b, y a be the last

q � 4 w x qpoint of a in the vertical line b = r, h y r , and let G denote the event
qŽ q. y qthat there exists such a crossing with y a G hr2. When E l G l G

occurs, the path ay may or may not meet g j byy, but if it does not, then
yy � 4 w xb must cross the line 0 = r, h y r ; either way, g is connected by an

� 4 w x yoccupied path to the left side 0 = r, h y r of R . Similarly, g is connected
� 4 w x qto the right side b q a = r, h y r of R ; see Figure 5. Thus, using Lemma

2.2, we have

P H Ryj Rq G P E P Gy P Gq .Ž . Ž . Ž . Ž .Ž .occ, r

Ž y. Ž Ž y.. qFrom symmetry we have P G G P H R r2, and similarly for G , soocc, r

it follows that

2y q y2.21 P H R j R G P E P H R r4.Ž . Ž . Ž . Ž .Ž . Ž .occ, r occ,

Ž .We thus need to obtain a lower bound for P E . Using the methods of the

lattice case, it is not difficult to obtain paths ‘‘almost like’’ byy and bqq, with

sufficient probability, which come close to the path g ; the problem comes in

actually connecting the three paths together without difficulties related to

conditioning.

Ž . < <If x , . . . , x are sites in X v with x y x - 2r for all i - j, we call1 j 2 iq1 i

the corresponding piecewise linear path x ª ??? ª x an occupied PL-path.1 j

ˆŽ . Ž .If there is an occupied PL-path x ª ??? ª x in V R, v such that B x1 j 1 r 1
'yy Ž2 2 q2.rŽ̂ .intersects R and x g Z R, v , we call x a frontier site; seetop j 1 j

Figure 4.
s Ž . Ž .r yySuppose v g H R and there is an occupied path in X v l R1 occ, r 2

yy yy ˆ ˆ˜ ˜Ž . w Ž .from a point u of R to a point v of R _ U R, v . Note that U R, v stop 1 1

ˆ ˆŽ . Ž . xW R, v j V R, v ; see Figure 4. Corresponding to such a path, there is1 1

Ž . yyan occupied PL-path x ª ??? ª x , with all sites in X v l R , such1 n 2 aug
ˆ̃Ž . Ž . Ž . wthat u g B x and v g B x . Since v f U R, v and since usingr 1 r n 1

yy ˆ yyŽ . x Ž Ž . .Z R, v ; R we have d R _ V R, v , R ) r, we conclude that1 sup aug 1 top

ˆŽ . � 4x g V R, v . Therefore, there exists a largest index j such that x , . . . , x1 1 1 j

ˆŽ . Ž .; V R, v ; we call x a final visible site of X v . A final visible site is1 j 2

ˆ 5rŽ . Ž .necessarily in Z R, v . If j - n we call x a first hidden site of X v ;1 jq1 2

ˆ 3rŽ .necessarily x g Z R, v , and, for such j,jq1 1

Ž .'2 2 q2 rˆ ˆ2.22 x f Z R , v implies x g W R , v .Ž . Ž . Ž .j 1 jq1 1

'Ž2 2 q2.rŽ̂ .We call a final visible site close if it lies in Z R, v , and distant1

otherwise. A close final visible site is thus a special case of a frontier site.
s Ž .We can now specify C of Step 3 to be the event that v g H R and1 occ, r

ˆŽ . Ž .there exists a frontier site of X v in V R, v . Let D be the event that2 1
s Ž .v g H R and C does not occur, but there exists a distant final visible1 occ, r
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ˆŽ . Ž . Ž .site of X v in V R, v and a first hidden site of X v , necessarily in2 1 2

ˆŽ . Ž .W R, v by 2.22 . Thus, when D occurs, the first hidden site is uncovered. If1
yy Ž .rthere is a vertical occupied crossing of R in X v , then there is an2

yy ˆ yy˜Ž . Ž . Ž Ž . .occupied PL-path with d x , R F r. Since, by 2.19 , d U R, v , R Gn bot 1 bot
yy ˆ̃Ž . Ž .d g**, R q r ) r, we then have x f U R, v , so there must then be abot n 1

final visible site with index j - n; see Figure 4. Thus we have

s yy2.23 v g H R l v g V R ; C j D.Ž . Ž . Ž .1 occ, r 2 occ, r

Ž .If C occurs and x is a frontier site of X v , or if D occurs and x is a2

Ž . Ž .necessarily uncovered first hidden site of X v , then we call x a terminal2

Ž . Ž . Ž .site of X v . Let C resp. D denote the event that C resp. D occurs with2 rt rt

˜ yyŽ .a terminal site of X v in R, the right half of R . From symmetry, on the2 aug

w s Ž .xevent v g H R ,1 occ, r

< <2.24 P C j D X v G P C j D X v r2 a.s.Ž . Ž . Ž .Ž . Ž .rt rt 1 1

˜ ˜Ž . Ž . Ž .If x is a terminal site of X v in R, then x is a site of X v , x g U R, v2 1

ˆ' 'Ž Ž .. Ž .and 2 2 r - d x, Z R F 2 2 q 2 r.
˜Ž .Suppose v g C j D , x is a terminal site of X v in R and z is art rt 2

Ž . Žclosest site to x in Z R ; see Figure 4. If there is more than one such x, we
.take the first one in lexicographic order, to be concrete. Suppose first

thatv g C and this x is a frontier site. Let y and y be points on the linert 1 2

< < < <segment from x to z with y y z s 47rr16 and y y z s 31rr16. We have2 1

ˆŽ . Ž . Ž . Ž .v g C and, by 2.10 , B y ; Q R, v j W R, v , sorr16 i 1 1

2.25 X v l B y s X v l B y , i s 1, 2;Ž . Ž . Ž . Ž . Ž .rr16 i 3 rr16 i

Ž . Ž . w Ž .that is, the sites in B y come from X v . Note that B y ;rr16 i 3 rr16 2

ˆŽ . Ž . Ž .W R, v , so 2.25 would be false if we uncovered the sites of X v in1 2

ˆŽ .W R, v when v g C; this is the reason for making the distinction between1

˜ ˜xv g C and v f C in Step 4. Further, since x, z g R we have y g R and thei

˜ 2 XŽ .area of B y l R is at least p r r1024. Letting C denote the eventrr16 i rt

˜ ˜w Ž . Ž . x w Ž . Ž . xC l X v l B y l R / B l X v l B y l R / B , it fol-rt 3 rr16 1 3 rr16 2

lows that

X <P C X v , X vŽ . Ž .Ž .rt 1 2

22G 1 y exp ylp r r1024 a.s. on the event C .Ž .Ž . rt

2.26Ž .

Ž . Ž . X
We call sites of X v l B y auxiliary sites. Letting y denote such an3 rr16 i i

'< < < < < < Ž .auxiliary site for i s 1, 2, we have x y y s x y z y y y z F 2 2 q 22 2

r y 47rr16 - 31rr16 and therefore

< X < < X X < < X <2.27 x y y - 2r , y y y - 2r , y y z - 2r .Ž . 2 2 1 1

Note that this computation might fail if x were a distant final visible
< < < X <site; x y z could then be as large as 5r, so obtaining x y y - 2r would2

X X ˆ< < Ž .require that y y z be at least 3r, which places y in the region V R, v2 2 1

Ž . Ž . Ž .where sites come from X v , causing 2.25 and therefore perhaps 2.262

Ž .to fail. This again is the reason for ‘‘uncovering’’ the sites of X v in2
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ˆŽ .W R, v , but only when there is no frontier site, in the special construction1

of X in Step 4}we need to find a terminal site closer than a distant final

visible site.

Similarly, suppose alternatively that v g D and x is a first uncoveredrt

< <site. Again let y be a point on the line segment from x to z with y y z s1 1

w s Ž .x Ž . Ž .31rr16. We have v g v g H R _ C and, by 2.10 , B y ;1 occ, r rr16 1

Ž . Ž . Ž . Ž . Ž .Q R, v , so X v l B y s X v l B y ; that is, the sites in1 rr16 1 3 rr16 1

Ž . Ž . X wB y again come from X v . Letting D denote the event D l Xrr16 1 3 rt rt

˜Ž . Ž . xv l B y l R / B , it follows that3 rr16 1

X <P D X v , X vŽ . Ž .Ž .rt 1 2
2.28Ž .

G 1 y exp ylp r 2r1024 a.s. on the event D .Ž . rt

X < < < < < <If y is an auxiliary site, we have x y y s x y z y z y y F 3r y 31rr1 1 1

16 - 31rr16 and therefore

< X < < X <2.29 x y y - 2r and y y z - 2r .Ž . 1 1

Ž . Ž . X X
Because of 2.27 and 2.29 , occurrence of the event C j D implies thatrt rt

Ž Ž . Ž Ž .r .c.r Ž .r yythere exists an occupied path in X v l L R, v from Z R to R1 top
yy Ž Ž .inside R . The fact that the paths in these events are in X v lwide

Ž Ž .r .c.r Ž . Ž .rL R, v means that the relevant sites of X v are all outside L R, v1 1

Ž . Ž .so are from X v j X v . Define the events2 3

rcryy sJ [ H R l there exists an occupied path in X l L RŽ . Ž .Ž .ž /occ, r

r yy yyfrom Z R to R inside R ,Ž . top wide

rcrqq sJ [ H R l there exists an occupied path in X l L RŽ . Ž .Ž .ž /occ, r

r qq qqfrom Z R to R inside R .Ž . top wide

s Ž .For v g H R we then have, using Lemma 2.2,1 occ, r

yy qq < yy < qq <P J l J X v G P J X v P J X vŽ . Ž . Ž .Ž . Ž . Ž .1 1 1
2.30Ž .

2yy <s P J X v a.s.,Ž .Ž .1

Ž . Ž .while, by 2.26 and 2.28 , on the event C j D ,rt rt

yy < X X <P J X v , X v G P C j D X v , X vŽ . Ž . Ž . Ž .Ž . Ž .1 2 rt rt 1 2

22G 1 y exp ylp r r1024 a.s.Ž .Ž .
Ž . Ž . w s Ž .xTherefore, by 2.23 and 2.24 , on the event v g H R ,1 occ, r

yy <P J X vŽ .Ž .1

22 <G 1 y exp ylp r r1024 P C j D X vŽ .Ž .Ž .Ž . rt rt 1

22 <G 1 y exp ylp r r1024 P C j D X v r2Ž .Ž .Ž .Ž . 1

2.31Ž .

22 yyG 1 y exp ylp r r1024 P v g V R r2 a.s.Ž .Ž .Ž .Ž . 2 occ, r
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Let F denote the event that there exists a supported horizontal occupied

crossing of R starting in the lower half of the left side of R and ending in the
Ž . Ž .lower half of the right side of R. Then, by 2.30 and 2.31 , integrating over

w xthe event v g F ,1

P E G P Jyyl Jqql FŽ . Ž .
4 22 yyG 1 y exp ylp r r1024 P V R P F r4.Ž . Ž .Ž .Ž .Ž . occ, r

2.32Ž .

Ž . Ž .To bound P F from below, let F F denote the event that there ex-lt rt

Ž .ists a supported horizontal occupied crossing of R starting ending in
Ž .the lower half of the left right side of R. Then F and F are increasinglt rt

Ž .events, and, from 2.4 and symmetry,

P F s P F G P H s R r2 G P H Ry r2,Ž . Ž . Ž . Ž .Ž . Ž .lt rt occ, r occ, r trunc

so, by Lemma 2.2,

2yP F G P F l F G P H R r4.Ž . Ž . Ž .Ž .lt rt occ, r trunc

Ž . Ž . Ž . Ž Ž ..4Therefore, by 2.32 and 2.4 , for K t s 1 y exp yp tr1024 r16,

222 yy yP E G K lr P V R P H R .Ž . Ž . Ž . Ž .Ž . Ž .occ, r occ, r trunc

Ž .With 2.21 this shows

42y q 2 yy yP H R j R G K lr P V R P H R ,Ž . Ž . Ž . Ž .Ž . Ž . Ž .occ, r occ, r occ, r trunc

which is equivalent to the conclusion of the theorem. I

3. Consequences of the RSW theorem. The RSW theorem on a lattice
w xhas a variety of by-now-standard consequences; see Chapter 9 of 11 or see

w x7 . For most of these consequences, the extension to the present continuum

case is reasonably straightforward, but some technicalities do arise due to the

presence of the constant K in Theorem 2.1. In addition to these standard

consequences, we will derive a new result from the RSW theorem}essen-
w xtially Ramey’s conjecture 18 }which will be applied in the proof of the CLT

for minimal spanning trees.

Let x denote the least integer greater than or equal to x.u v

LEMMA 3.1. Let r, l ) 0 and suppose a ) d ) 0 and k G ard . Then theu v
following conclusions hold:

Ž . Ž Žw Ž . x w x.. Ž Žw Ž . x w x..2 ky1i P H 0, 1 q a l = 0, l G P H 0, 1 q d l = 0, l .occ, r occ, r

Ž . Ž . Ž Žw Ž . xii If l ) 2r, 0 - « F 1r 2k y 1 , b G 3 and P H 0, 1 q d l =occ, r

w x.0, l ) 1 y « , then

2w xP H 0, 1 q a l = 0, b l ) 1 y 2k y 1 « G 1 y « .Ž . Ž .Ž .Ž .Ž .occ, r

The same conclusions hold with ‘‘occ’’ replaced throughout by ‘‘vac.’’
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PROOF. If there are horizontal occupied crossings of each of the rectangles
w Ž Ž . . x w xjd l, 1 q j q 1 d l = 0, l , 0 F j F k y 1, and vertical occupied crossings

w Ž . x w Ž . xof each of the rectangles jd l, 1 q jd rl = 0, 1 q d l , 1 F j F k y 1,

then there is necessarily a horizontal occupied crossing of the rectangle
w Ž . x w x0, a q 1 l = 0, l . Each of these 2k y 1 crossings has the probability on

Ž . Ž .the right-hand side of i . This and Lemma 2.2 prove i .

Ž . Žw Ž . xTurning to ii , since l ) 2r and b G 3, the events H 0, 1 q a l =occ, r

w x. Žw Ž . x wŽ . x.0, l and H 0, 1 q a l = b y 1 l, b l are independent. Statementocc, r

Ž .ii now follows from the fact that the union of these two events is contained
Žw Ž . x w x. Ž .in H 0, 1 q a l = 0, b l , while, by i , each of these two events hasocc, r

Ž .probability at least 1 y 2k y 1 « . I

Given L and « , we will later wish to choose a value of r so that
Ž Žw x w x..P H 0, L = 0, 3L s « . This motivates the following two results.occ, r

LEMMA 3.2. Suppose 0 - « - 1r363, 0 - 2r - l F Lr3 and d G 1r7.

Then the following conclusions hold:

Ž .i If

w x3.1 P H 0, 1 q d l = 0, l ) 1 y « ,Ž . Ž .Ž .Ž .vac, r

Ž Žw x w x..then P H 0, 3L = 0, L ) 1 y « .vac, r

Ž .ii If

w x w x3.2 P H 0, L = 0, 3L s « ,Ž . Ž .Ž .occ, r

Ž Žw x w Ž . x..then P H 0, l = 0, 1 q d l G « .occ, r

The same results are valid with ‘‘occ’’ and ‘‘vac’’ interchanged throughout.

Ž . yjPROOF. Suppose first that 3.1 holds with d s 2 and l s 3 L for some
Ž .j G 0. If j s 0 there is nothing to prove. If j G 1, then applying Lemma 3.1 ii

with the a , d and b there assigned to be 8, 2 and 3, respectively, we see
Ž . yjq1that 3.1 is also true with these same a , d and b for l s 3 L. Iterat-

Ž . yŽ jq2.ing on j then proves i . For general d and l, define j G 0 by 3 L - l F
3yŽ jq1.L. Set b [ 3yjLrl, so 3 F b - 9, and define a by 1 q a s 3yjq1Lrl,

Ž .so 8 F a - 26 and ard - 182. By Lemma 3.1 ii with k s 182, we have
Ž Žw yjq1 x w yj x.. Ž .P H 0, 3 L = 0, 3 L ) 1 y « . But this is just 3.1 with d s 2vac, r

yj Ž .and l s 3 L, which are hypotheses under which we have already proved i ,
Ž .so the proof of i is complete.

Ž . Ž .Because of the duality relation 2.1 and rotational invariance, ii is
Ž .essentially just the contrapositive of i . I

Ž .LEMMA 3.3. Suppose r, L and « satisfy 3.2 , suppose 0 - « - 1r363 and

suppose 45r F s - Lr3 y 5r. Then

272 6w x w xP H 0, 3s = 0, s G K lr « .Ž .Ž .Ž . Ž .occ, r
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PROOF. Define b, h, t and a by

s s 8br7 q 22rr7,

h s 8br7 q 36rr7 equivalently, h y 4r s 8 b q r r7 ,Ž .

t s 64br49 q 456rr49 equivalently, t s 8 h q 3r r7 ,Ž .

a s b y tr2 q r .

Ž .Then b ) 36r and t G b ) tr2 q 2r. Applying Lemma 3.2 ii with l s b q r
Ž .and 1 q d l s h y 4r, we see that d s 1r7 and

w x w xP H 0, b q r = 0, h y 4r G « .Ž .Ž .occ, r

Ž . Ž .Similarly, applying Lemma 3.2 ii with l s h q 3r and 1 q d l s t and

using rotational invariance, we obtain

w x w xP V 0, t = 0, h q 3r G « .Ž .Ž .occ, r

Ž .Since b ) 36r, we have b q a G 8 h y 2r r7 s 8sr7. Therefore, by Theorem

2.1,

w x w xP H 0, 8sr7 = 0, sŽ .Ž .occ, r

w x w x 2 6G P H 0, b q a = 0, h y 2r G K lr « .Ž .Ž .Ž .occ, r

Ž .Lemma 3.1 i , with a s 2, d s 1r7and k s 14, now completes the proof. I

THEOREM 3.4. There exists u ) 0 such that, for each r ) 0, the following

are equivalent:

Ž .i There is occupied percolation at level r.

Ž . Ž Žw x w x..ii lim P H 0, L = 0, L s 1.Lª` occ, r

Ž . Ž Žw x w x..iii lim P H 0, 3L = 0, L s 1.Lª` occ, r

Ž . Ž Žw x w x..iv There exists L ) 2r such that P H 0, 3L = 0, L ) 1 y u .occ, r

The same result is valid with ‘‘occ’’ replaced throughout by ‘‘vac.’’

Ž . Ž . Ž . Ž . Ž .PROOF. We show first that i « iii and ii « iii . Suppose iii is false;
Ž Žw x w x..that is, there exists « ) 0 such that P H 0, 3L = 0, L F 1 y « forocc, r

arbitrarily large values of L. We may assume « - 1r363; then, by Lemma
Ž . Ž Žw x w x..3.2 i , we have P H 0, 8lr7 = 0, l F 1 y « or, equivalently,occ, r

Ž Žw x w x..P H 0, l = 0, 8lr7 G « for all l ) 2r. We now apply Roy’s RSWvac, r

w xtheorem for vacant crossings 24 , with Roy’s l , l and l set to be 7lr8, l1 2 3

and 8lr7, respectively, and Roy’s k s 24r7. This yields

w x w x 23.3 P H 0, 3l = 0, l G K lr f « for all l ) 5r ,Ž . Ž . Ž .Ž .Ž .vac, r k

Ž . Ž 2 .where f « is a constant not depending on l, r or l and K lr is a constantk

which does not depend on « or l. This means that the probability there is a
Ž .2 w x2 Ž .2vacant circuit surrounding 0, l in the annulus yl, 2 l _ 0, l is at least

Ž Ž 2 . Ž ..4K lr f « , so, with probability 1, such circuits exist for arbitrarily largek

Ž .l. This means that there is no occupied percolation; that is, i is false. From
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Ž . Ž Žw x w x.. Ž 2 . Ž .3.3 we also obtain that P H 0, l = 0, l G K lr f « for all l ) 5r,vac, r k

Ž . Ž . Ž . Ž . Ž .so that ii is false. Thus we have shown i « iii and ii « iii .

Ž . Ž . Ž . Ž . Ž .Clearly, iii implies ii and iv . That iv implies i for sufficiently small u

follows from a Peierls-type argument using renormalized bonds of size 3L = L;
w xdetails are similar to the proof of Proposition 3.1 of 13 .

The proof for vacant percolation and vacant crossings is similar, using
w xTheorem 2.1 in place of Roy’s RSW theorem 24 and Lemma 3.3 in place of

Ž .3.3 . I

Ž .By monotonicity in r, there exists a constant r l such that there isc

Ž .occupied percolation a.s. when r ) r l , and a.s. no occupied percolationc

Ž . w x Ž .when r - r l . Zuev and Sidorenko 31 proved that 0 - r l - `.c c

There is a natural extension of the notion of a Euclidean minimal spanning
w xtree to the notion of a ‘‘minimal spanning forest’’ of an infinite site set; see 1

w x w xor 3 . The following corollary is applied in 3 to show that, for the set of sites

of a Poisson process in R
2, this minimal spanning forest actually consists of a

single infinite tree with one topological end.

Ž .COROLLARY 3.5. At level r s r l , there is a.s. neither occupied nor vacantc

percolation.

Ž Žw x w x..PROOF. Clearly, P H 0, 3L = 0, L is a continuous function of rocc, r

Ž .for fixed L. It follows that the set of r for which iv of Theorem 3.4 is

satisfied is open. The same is true with ‘‘occ’’ replaced by ‘‘vac.’’ I

We say a set B surrounds a set A if B ; Ac but every path from A to ` in

R
2 intersects B. For A ; L ; R

2, and V a subset of R
2, we say a finite set

D ; V is a barrier set in V around A in L at level r if D r is connected, D r

surrounds A and the connected component of D r in V r is contained in L. We

will see in Section 4 that the existence of such a barrier set essentially means

that the portion of a minimal spanning tree inside D r is not affected by the

sites outside L. It is easy to see that if there is an occupied path g in L which

surrounds Ar and is not connected to ­L in the occupied space V r, then there
w xmust be a barrier set in V around A in L. In 20 a structure similar to a

barrier set was called a magic circle, and the following result was conjectured.

Ž .PROPOSITION 3.6. For each « ) 0 there exists L ) 0 not depending on l
2 Ž .such that, for each x g R and for r s r l ,c

P there exists a barrier set in X around x r in xž
2' 'q yLr l , Lr l at level r G 1 y « .Ž . /

PROOF. By rescaling we may assume l s 1. By Corollary 3.5 there is no

vacant percolation at level r, so there exists a.s. a finite D ; X such that D r

surrounds x r; we may choose D r with D r connected. Since there is also no
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occupied percolation a.s., the connected component of D r in X r is bounded.

Therefore, with probability 1, for sufficiently large L there exists a barrier set
1 Ž .2in X around x in x q yL, L at level r, and the proposition follows. I

4. The CLT for the minimal spanning tree. If all interpoint distances

in a finite set V are distinct, then the Euclidean minimal spanning tree of V
Ž .is unique, and we denote it MST V . Of course, this is the case a.s. if V is the

Ž .set of sites of a Poisson process. Note that MST V is a subgraph of the
Ž . Ž . ² :complete graph CG V on V; CG V has a bond, denoted x, y , between

each pair of distinct sites x, y g V. There are a number of standard charac-
Ž . Ž . w xterizations describing which bonds of CG V are in MST V ; see 18 and

w x19 . To describe the ones we need, we begin with some definitions. By a path

in a graph G we implicitly mean a self-avoiding one, that is, a sequence of
² :distinct sites v , . . . , v such that v , v g G for all i - n. We also identify1 n i iq1

² :a path with the corresponding sequence of bonds v , v . For sites u and vi iq1

Ž .of a path g in CG V , we let g denote the segment of g from u to v. We calluv

g locally minimax if, for every pair u, v of sites in g and every path a in
Ž .CG V from u to v,

< < ² : < < ² :� 4max x y y : x , y g g F max x y y : x , y g a .� 4uv

By viewing the radius r as representing time, one may think of V r as a

growing set. At certain times r, one component of V r ‘‘bumps into’’ another

one and they merge into a single component. With this picture in mind, for x
² :and y distinct sites in V, we call x, y a contact bond for V if, for

< < sr s x y y r2, x and y are in distinct components of V for all s - r, but are

in the same component of V r.

PROPOSITION 4.1. Let V be a finite subset of R
2 with all interpoint

distances distinct, and let x, y g V. The following are equivalent:

² :4.1 x , y g MST V .Ž . Ž .

² :4.2 For some A ; V , x , y is the shortest bond from A to V _ A.Ž .

There exists no path from x to y in CG V with all bondsŽ .
4.3Ž . ² :strictly shorter than x , y .

² :4.4 x , y is a bond in some locally minimax path in CG V .Ž . Ž .

² :4.5 x , y is a contact bond for V .Ž .

Further,

4.6 every path in MST V is locally minimax.Ž . Ž .

Ž . Ž . Ž .PROOF. Statement 4.6 and the equivalence of 4.1 ] 4.4 are well known,
w x w x w xwith portions appearing in 18 and 19 ; a full proof is given in 3 . The

Ž . Ž .equivalence of 4.5 and 4.3 is straightforward. I
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The construction of the MST as the set of all contact bonds is equivalent to
w xthe standard ‘‘greedy algorithm’’; see 18 .

Though many of the details have been changed, the general outline of the
w xremaining results in this section appeared in the dissertation of Ramey 20 .

Ž .In view of the characterization 4.5 , the following two results underlie the

relation between barrier sets and the MST.

LEMMA 4.2. Let V be a finite subset of R
2 with all interpoint distances

distinct. Suppose r ) 0, A ; V, x g V, y g V and Ar, x r and y r are disjoint.
r r r ² :If A surrounds x but not y , then x, y is not a contact bond for V.

PROOF. Let D ; A be such that D r is connected and surrounds x r. Then
Ž r . Ž r . < < Ž r . Ž r .r - d x, D - d x, y s x y y y r and r - d y, D - d y, x s

< < Ž Ž . Ž .. < <x y y y r, so, for s [ max d x, D , d y, D r2, we have r - s - x y y r2

and x, y and D are all part of the same connected component of V s. Thus the

lemma follows. I

Given V a finite subset of R
2 and D ; V, let

� r r 4S s S V , D [ x g V : x is surrounded by D ,Ž .

� r 4C s C V , D [ x g V _ S : x is connected to D in V ,Ž .

E s E V , D [ V _ S j C .Ž . Ž .

Consider also the set

r˜ ˜C s C V , D [ x g V _ S : x is connected to D in V _ S .Ž . Ž .� 4

˜ r r ŽClearly, C ; C. If x g C with x l y / B for some y g D, then using
r ˜. Ž .x, y f S the straight line from x to y is in V _ S , so we have x g C. On

the other hand, if x g C with x r l D r s B, then D r separates x from S r, so
˜ ˜again x g C. Thus C ; C, so we have

˜C s C.

LEMMA 4.3. Let V be a finite subset of R
2 with all interpoint distances

distinct, and let D ; V be a set of sites such that D r is connected. Then, for C,

S and E as above,

Ž . ² : Ž . ² : Ž .i for x, y g C j S, x, y g MST V if and only if x, y g MST C j S ;
Ž . ² : Ž . ² :ii for x g E and y g C j E, x, y g MST V if and only if x, y g

Ž .MST C j E .

Ž . ² : Ž .PROOF. We begin with i . If x, y g MST V , then it follows from the
Ž . ² : Ž . ² :characterization 4.3 that x, y g MST C j S . Thus suppose x, y f

Ž . Ž . < <MST V . Then, by 4.3 , there exists t - x y y r2 such that there is a path g
Ž . Ž .from x to y in CG V in which every bond has length at most 2 t. By 4.4 and

Ž . Ž .4.6 , we may assume g is a path in MST V . We claim that there is a path
Ž .from x to y in CG C j S in which every bond has length at most 2 t.
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Suppose g contains a site z g E; if not, then the claim is proved. Let v be the

first site in g such that all sites in g are in C j S, and let u be the sitez y v y

² : Ž .immediately preceding v in g . Then u g E and u, v g MST V so, by
Ž .Lemma 4.2, v f S and hence v g C. Thus g is a path in CG C j S from Cv y

to y in which every bond has length at most 2 t. Similarly, there is a path gx w

Ž .in CG C j S from x to some w g C in which every bond has length at most
˜r r rŽ .2 t. Now C s C is connected since D is, so there is a path a from w to v

Ž . < <in CG C in which every bond has length at most 2r. Further, u y v ) 2r
< < ² :since u g E and v g C, while u y v F 2 t since u, v g g . Therefore, r - t,

Ž .so g j a j g is a path in CG C j S in which every bond has length atx w v y

Ž . ² : Ž . Ž .most 2 t, proving the claim. Thus, by 4.3 , x, y f MST C j S , and i is

proved.

Ž .The proof of ii is similar with S and E interchanged, except that v and w

are now the first and last sites of g which are in C j S. I

COROLLARY 4.4. Suppose V is a finite subset of R
2 with all interpoint

distances distinct, r ) 0, x g L ; R
2 and there is a barrier set in V around x r

in L at level r. Then, for W [ V l L,

� 4 � 4LL V j x y LL V s LL W j x y LL W .Ž . Ž .Ž . Ž .

PROOF. Let D be the barrier set. Then

� 4 � 4S V j x , D s S V , D j x ,Ž .Ž .

� 4C V j x , D s C V , D ,Ž .Ž .

� 4E V j x , D s E V , DŽ .Ž .

and

4.7 C W , D s C V , D , S W , D s S V , D .Ž . Ž . Ž . Ž . Ž .

Ž . Ž .Hence, by Lemma 4.3 i and ii ,

² :MST V l z , y : z g E V , D , y g C V , D j E V , D� 4Ž . Ž . Ž . Ž .

² :� 4s MST V j x l z , y : z g E V , D , y g C V , D j E V , D� 4Ž . Ž . Ž .Ž .

and

² :MST V l z , y : z , y g C V , D j S V , D� 4Ž . Ž . Ž .

s MST C V , D j S V , D ,Ž . Ž .Ž .

² :� 4 � 4 � 4MST V j x l z , y : z , y g C V j x , D j S V j x , D� 4Ž . Ž . Ž .

� 4s MST C V , D j S V , D j x ,Ž . Ž .Ž .

while, by Lemma 4.2,

² :MST V l z , y : z g S V , D , y g E V , D� 4Ž . Ž . Ž .

² :� 4 � 4 � 4s MST V j x l z , y : z g S V j x , D , y g E V j x , D� 4Ž . Ž . Ž .

s B,
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so

� 4LL V j x y LL VŽ .Ž .

� 4s LL C V , D j S V , D j xŽ . Ž .Ž .4.8Ž .

y LL C V , D j S V , D .Ž . Ž .Ž .

Ž . Ž .By the same argument, 4.8 is true with V replaced by W. But, by 4.7 , the
Ž .right-hand side of 4.8 remains the same when V is replaced by W, and the

corollary follows. I

a Ž .2 aLEMMA 4.5. The sequence n E LL y LL , n G 2, is bounded for eachn ny1

a ) 0.

Ž� 4.PROOF. Let U denote the total length of all bonds in MST X , . . . , Xn 1 n

for which X is an endpoint, and let i be such that X is the closest site ton i

� 4 Ž . ² : Ž� 4. < <X in X , . . . , X . By 4.2 , X , X g MST X , . . . , X , so X y X Fn 1 ny1 n i 1 n n i

Ž� 4. �² :4 � 4U . Since MST X , . . . , X j X , X spans X , . . . , X , we haven 1 ny1 n i 1 n

< <4.9 LL F LL q X y X F LL q U .Ž . n ny1 n i ny1 n

� ² : Ž� 4.4In the opposite direction, let J [ j F n y 1: X , X g MST X , . . . , X .n j 1 n

² : Ž� 4. ² :Deleting X and X , X from MST X , . . . , X and replacing X , Xn n i 1 n n j

² : � 4with X , X for each j g J yields a graph which spans X , . . . , X fori j 1 ny1

< < < <which the total length of all bonds is at most LL q J X y X F LL q U .n n i n n

Ž .Hence LL F LL q U , which with 4.9 yieldsny1 n n

< <4.10 LL y LL F U .Ž . ny1 n n

� < < 4 ² : Ž� 4.Let R [ max X y X : j g J . If X , X g MST X , . . . , X , it isn n j n j 1 n

² :well known that X , X is a bond in the Delaunay triangulation ofn j

� 4 Ž w x .X , . . . , X see 18 for the definition and this result , and for each point u1 n

² : � 4of X , X , the closest site to u among X , . . . , X is either X or X , orn j 1 n n j

Žboth. In particular, X and X are the closest sites to the midpoint X qn j n

.X r2. Therefore, for the open ball, denoted B , which has X and X asj n j n j

diameter endpoints,

� 44.11 X , . . . , X l B s B.Ž . 1 ny1 n j

w x2 kGiven k G 1, we can divide 0, 1 into a collection CC of 4 squares of sidek
yk '2 , with disjoint interiors. Given 0 - t - 2 , let k be the least integer such

that tr9 G 2yk , and let C denote the square in CC which contains X .nk k n

Consider a 5 = 5 array AA of squares of side 2yk with C as the centernk nk

< <square. Suppose X y X ) t for some j g J. Then the line from X to Xn j n j

passes through at least one of the squares of CC on the outer perimeter of thek

Ž . Ž .array; let Q be such a square see Figure 6 . Note X q X r2 is outsiden jk n j

the 5 = 5 array on this same line, since tr9 G 2yk . It follows easily that
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FIG. 6. Illustration for the proof of Lemma 4.5. The squares C and Q are shaded.nk n jk

Ž . � 4Q ; B , so, by 4.11 , we have X , . . . , X l Q s B. Thusn jk n j 1 n n jk

< <� 4P R ) t X F P X , . . . , X l Q s B for some Q g AA XŽ . Ž .n n 1 ny1 nk n

ny1ykF 25 1 y 4Ž .

F 25 exp y n y 1 t 2r576 ,Ž .Ž .
� a 2 a 4 w x w xso n ER , n G 2 is bounded. But, as observed in 20 and 30 , the anglen

between two MST bonds emanating from the same site cannot be less than
Ž .608, so, from 4.10 ,

< < < <LL y LL F J R F 6R ,ny1 n n n

and the lemma follows. I

Ž .We next define an approximation to LL ? for which the CLT is relatively
w .2 � 24easy to prove. For k G 1, divide 0, 1 into a k = k array G , i F k ofi

w . w . Ž .equal-sized squares, each of the form a, b = c, d . Let I n, k be such that
w x2X g G . Now, for V a finite subset of 0, 1 , definen IŽn, k .

˜ � 4LL [ LL X , . . . , X l G .Ž .Ýk , n 1 n i
2iFk

Ž . Ž . Ž 1r2 .Let k l ª ` with k l s o l . Note that
2 y1˜ 24.12 LL is the sum of k l independent copies of k l LL .Ž . Ž . Ž .k Žl. , N Žl. N Žlr k Žl. .

w xBy a result of Few 10 , there exists a constant c such that0

21r2< < w x4.13 LL V F c V for every finite V ; 0, 1 .Ž . Ž . 0

Ž .It follows readily from 4.12 that

˜ 1r24.14 LL F c n for all n , k G 1.Ž . k , n 0

ŽLEMMA 4.6. There exist constants r ) 0 such that inf P there existsn nG l r2

� 4 rn .a barrier set in X , . . . , X around X in G at level r ª 1 as1 ny1 n IŽn, k Žl.. n

l ª `.
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Ž Ž .y2 .PROOF. Let « , l ) 0 and n G lr2. Let M be Binomial n y 1, k l and
ŽŽ . Ž .2 .let M* be Poisson n y 1 rk l . If l is large, then M and M* can be

coupled so that

4.15 P M / M* - « ;Ž . Ž .

w xsee 5 . Let Y , Y , . . . be iid uniform in G , independent of X , M and1 2 IŽn, k Žl.. n

M*. Then

� 4 � 44.16 Y , . . . , Y s X , . . . , X l G in distribution.Ž . 1 M 1 ny1 IŽn , k Žl..

By Proposition 3.6, there exist L ) 0 and r ) 0 such that, for n G lr2 andn

l large,

� 4 rnP there does not exist a barrier set in Y , . . . , Y around XŽ 1 M * n

in G at level r .IŽn , k Žl.. n

2' 'F P X q yLr n y 1, Lr n y 1 o G q «Ž .n IŽn , k Žl..ž /
F 2« ,

' Ž Ž .. Ž . Ž .since Lr n y 1 s o 1rk l . Since « is arbitrary, with 4.15 and 4.16 this

proves the lemma. I

Ž .We next use the results on barrier sets Corollary 4.4 and Lemma 4.6 to
˜show that LL is indeed a good approximation to LL .k Žl., N Žl. N Žl.

˜Ž . Ž .LEMMA 4.7. i sup Var LL y LL ª 0 as l ª `.nG lr2 k Žl., n n

˜Ž . Ž .ii Var LL y LL ª 0 as l ª `.k Žl., N Žl. N Žl.

Ž .PROOF. i Fix l and let

˜H [ LL y LL .n , l k Žl. , n n

w xBy the Efron]Stein 9 inequality, we have

2
4.17 Var H F nE H y H .Ž . Ž . Ž .ny1, l n , l ny1, l

� Ž .2 4By Lemma 4.5, n LL y LL , n G 2 is uniformly integrable. By the samen ny1

˜ ˜ 2� Ž . 4proof, n LL y LL , n G 2, k G 1 is uniformly integrable. Hencek , n k , ny1

� Ž .2 4n H y H , n G 2, l ) 0 is uniformly integrable. But, by Corollaryn, l ny1, l

4.4, applied with x s X and L s G , when the event in Lemma 4.6n IŽn, k Žl..

occurs, we have

˜ ˜H y H s LL y LL y LL y LL s 0,Ž .ž /n , l ny1, l k , n k , ny1 n ny1

so, by Lemma 4.6 and uniform integrability,

2
4.18 sup nE H y H ª 0 as l ª `.Ž . Ž .n , l ny1, l

nGlr2

Ž .The result now follows from 4.17 .
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Ž .ii Observe that

˜ <c n [ E L y L N l s n s EH ,Ž . Ž .ž /l k Žl. , N Žl. N Žl. n , l

˜ <w n [ Var L y L N l s n s Var H .Ž . Ž . Ž .ž /l k Žl. , N Žl. N Žl. n , l

Therefore,

˜4.19 Var LL y LL s Ew N l q var c N l .Ž . Ž . Ž .Ž . Ž .Ž .ž /k Žl. , N Žl. N Žl. l l

Ž . Ž . Ž . 2 Ž .By 4.13 and 4.14 , we have w n F 4c n for all n, while, by part i ,l 0

Ž .sup w n ª 0 as l ª `. It follows easily thatnG l r2 l

Ew N l ª 0 as l ª `.Ž .Ž .l

Ž . Ž . Ž . 1r2 Ž .By 4.13 and 4.14 again, we have c n F 2c n , while, by 4.18 , we havel 0

1r2 < <« [ sup n c n y c n y 1 ª 0 as l ª `.Ž . Ž .l l l
nGlr2

It follows easily that

2
var c N l F E c N l y c lŽ . Ž . ? @Ž . Ž . Ž .Ž . Ž .l l l

2y1 2F l « E N l y l q o 1Ž . ? @ Ž .Ž .l

ª 0 as l ª `,

Ž .so the lemma follows from 4.19 . I

Ž . Ž .In the next lemma, part ii is motivated by 4.12 .

Ž . Ž .LEMMA 4.8. i There exists v ) 0 such that Var LL G v for all n G 1,n

˜Ž . Ž .and Var LL G v and Var LL G v for all l G 1.N Žl. k Žl., N Žl.
3

y12 ˜Ž . Ž . 2 2ii k l E k l LL y E LL r Var LL ª 0Ž . 'Ž . ž /N Žl r k Žl. . N Žl r k Žl. . k Žl. , N Žl.

as l ª `.

Ž . Ž .PROOF. i The lower bound for Var LL is essentially similar to the proofn

w x w xof Proposition 5 of 4 ; a full proof appears in 20 . The lower bound for
˜Ž . Ž .Var LL is an easy consequence, and the lower bound for Var LLN Žl. k Žl., N Žl.

Ž .then follows from 4.12 .

Ž . Ž . < < 3ii By part i , it is sufficient to show that E LL y E LL is boundedN Ž b . N Ž b .

w xin b. By Lemma 4.5 and the proof of Theorem 3 in 29 , there exists c such

that

< < 34.20 k n [ E LL y E LL F c for all n.Ž . Ž . n n

Ž . Ž Ž .. < < 3 < < 3Let t n [ E LL . Then, using Et N b s E LL and a q b F 8 a qn N Ž b .

< < 38 b , we obtain

< < 3E LL y E LLN Ž b . N Ž b .

< < 3 < < 3F 8 E LL y t N b q 8 E t N b y Et N bŽ . Ž . Ž .Ž . Ž . Ž .N Ž b .4.21Ž .

< < 3s 8 Ek N b q 8 E t N b y Et N b .Ž . Ž . Ž .Ž . Ž . Ž .
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Ž . Ž .Let N9 b be an independent copy of N b ; then

< < 3 < < 34.22 E t N b y Et N b F E t N b y t N9 b .Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž . Ž .
'< Ž . Ž . <By Lemma 4.5, there exists c such that t n y t n y 1 F c r n for all n,1 1

'Ž . Ž .while, by 4.13 , t n F c n for all n. Therefore, for some constant c ,0 2

< < 3E t N b y t N9 bŽ . Ž .Ž . Ž .
3 3 3r2< <'F 2c r b E N b y N9 b q c b P N b - br4 ,Ž . Ž . Ž .Ž .Ž .1 2

Ž . Ž .which is bounded in b. Combining this with 4.20 ] 4.22 proves the result.

I

The following is our main result.

THEOREM 4.9. The quantity LL y E LL r Var LL converges inŽ . Ž .'N Žl. N Žl. N Žl.

Ž .distribution to a standard normal N 0, 1 as l ª `.

Ž . Ž . Ž w xPROOF. From 4.12 , Lemma 4.8 ii and Liapounov’s CLT see 8 , page

˜ ˜ ˜.200 , it follows that LL y E LL r Var LL converges in' ž /ž /k Žl. , N Žl. k Žl. , N Žl. k Žl. , N Žl.

Ž . Ž .distribution to a standard normal. By Lemmas 4.8 i and 4.7 ii ,

˜Var LL rVar LL ª 1,Ž .ž /k Žl. , N Žl. N Žl.

while

˜ ˜ ˜LL y E LL y LL y E LL r Var LL ª 0'Ž . ž /ž /k Žl. , N Žl. k Žl. , N Žl. N Žl. N Žl. k Žl. , N Žl.

in probability, and the theorem follows. I
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