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A CONSISTENT MODEL SELECTION PROCEDURE
FOR MARKOV RANDOM FIELDS BASED

ON PENALIZED PSEUDOLIKELIHOOD
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Motivated by applications in texture synthesis, we propose a model

selection procedure for Markov random fields based on penalized pseudo-

likelihood. The procedure is shown to be consistent for choosing the true

model, even for Gibbs random fields with phase transitions. As a by-prod-

uct, rates for the restricted mean-square error and moderate deviation

probabilities are derived for the maximum pseudolikelihood estimator.

Some simulation results are presented for the selection procedure.

1. Introduction. Markov random fields are widely used as models in
w Ž . Ž .xstatistical image analysis cf. Karr 1991 and Rosenfeld 1993 . Since

Ž . Ž .Hassner and Sklansky 1980 and Cross and Jain 1983 first used isotropic

Markov random fields to generate synthetic textures, others have explored

different types of Markov random fields for texture synthesis. How does one

choose a model from a collection of Markov random fields such that its typical

sample resembles an observed texture? In this paper we present a model

selection procedure based on penalized pseudolikelihood for Markov random

fields in the form of an exponential family. It is shown that, asymptotically,

this procedure chooses the correct model under very general conditions.

Little has been done to address selection of Markov random fields. Kashyap
Ž .and Chellappa 1983 first proposed a method of selection based on linear

Ž .combinations of gray levels plus Gaussian noise. Smith and Miller 1990

proposed a selection procedure which is based on the stochastic complexity of
Ž .Rissanen 1984 and is similar to the one presented here. Seymour and Ji

Ž . w Ž . Ž .x1996 derived two Bayesian selection criteria Akaike 1978 ; Schwarz 1978 .

The first is based on the maximum likelihood estimate; it is of theoretical

interest, but is intractable for random fields. The other criterion uses the

Markov chain Monte Carlo approximation to the likelihood developed by
Ž .Geyer and Thompson 1992 . Although Markov chain Monte Carlo criterion is

viable, it is difficult to implement for images and requires that the random

field exhibit weak spatial dependence.

In Section 2, the required random field framework is briefly introduced.

Section 3 gives the formulation of the model selection problem and the main
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results. The selection procedure presented is based on the maximum pseudo-
Ž .likelihood estimate of Besag 1974 . Although the criterion is similar to the

Bayes criteria discussed above, it is not a Bayesian criterion. Even so, it has

distinct advantages over the Bayes criteria; our criterion is much easier to

compute and asymptotically it is shown to give a consistent choice of model,

whether the spatial dependence is weak or strong. Since the spatial depen-

dence involved in texture modelling may vary from short range to long range,

the pseudolikelihood procedure has more extensive applications.

Because model selection and parameter estimation are closely related, the

maximum pseudolikelihood parameter estimate and existing asymptotic re-

sults for this estimate are discussed in Section 4. In addition, two new

lemmas are proven which provide rates for the restricted mean-square error

and moderate deviation probabilities for the maximum pseudolikelihood esti-

mate.

Section 5 presents and discusses some highlights of a simulation study of

model selection via pseudolikelihood. Some concluding remarks are made in

Section 6. All technical proofs are in the Appendix.

2. Random field framework. We consider Gibbs random fields induced

by translation-invariant pair-potentials of finite range. The extensions to

other finite-range translation-invariant potentials is straightforward but in-

volves heavy notation. For a more general discussion of Gibbs random fields,
Ž .see Georgii 1988 .

With each site i g Z
2, associate a random variable X taking values in ai

� 24finite set S. Then X s X , i g Z is a random field with configuration spacei
Z

2
� 24V s S . Let x s x , i g Z g V denote a realization of X. For a regioni

2 L �L ; Z , the subconfiguration space is given by V s S , so write X s X ,L L i

4 � 4i g L for the random field on L and x s x , i g L g V for a realizationL i L

of X .L

� Ž . Ž . 24Let the potential U s hU x , b U x , x : x , x g S; j g Z , with o1 o j 2 o j o j

representing the origin, be a collection of functions such that U : S ª R and1

Ž . Ž . Ž . ŽU : S = S ª R are known and U s, t s U t, s . The term hU ? though2 2 2 1

.not usually employed may be used to model large-scale spatial trends, where
Ž .h g R the external field coefficient is an unknown parameter. The term

Ž . 2b U ?, ? is a pair-potential of range R ) 0: the parameters b g R, j g Zj 2 j

Ž .the coupling coefficients are also unknown and are such that b s b ; jj yj

< < < < 2and b s 0 ; j with j ) R, where ? is a norm on Z . In particular, b s 0.j o

Let u denote the vector parameter with components being the external field

and coupling coefficients.

The following examples are just two of the potentials that have been used

for modelling with Markov random fields.

Ž .EXAMPLE 1. Consider the general Ising models, where U x s x ,1 i i

Ž . � 4 < <U x , x s x x and S s y1, 1 . If b s b ) 0 for j s 1 and b s 0 other-2 i j i j j j

wise, then we have the well-known two-dimensional Ising model.
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Ž . Ž . w Ž .2 xEXAMPLE 2. Let U x ' 0 and U x , x s 1r 1 q s x y x , where1 i 2 i j i j

Ž .s ) 0 is a constant. This potential is used in Geman and Graffigne 1986 .

Ž .A Gibbs measure Gibbs random field induced by a potential U is a

probability measure P on V such that for every x g V and any finite L g Z
2,

exp yH xŽ .L
< c c2.1 P X s x X s x s ,Ž . Ž .L L L L

ZZL

where the energy associated with x on L is given by

1H x syh U x y b U x , x y b U x , xŽ . Ž . Ž . Ž .Ý Ý ÝL 1 i jyi 2 i j jyi 2 i j2

igL i , jgL igL
jfL< <0- jyi FR

< <jyi FR

and the normalizing factor, called the partition function, is given by

cZZ s ZZ x s exp yH x .Ž . Ž .ÝL L L L

xL

� Ž < . 4The conditional probabilities P X s x X s x , x g V , are called the locali i i i
2 � 4 � 4characteristics at site i g Z , where X s X , j / i and x s x , j / i .i j i j

Ž .Indeed, the left-hand side of 2.1 is determined by the local characteristics at
w Ž .xall i g L Geman 1991 .

Ž .Under our assumptions on U, the set GG U of Gibbs random fields induced
Žby U is always non-empty, but need not be a singleton in which case there

are phase transitions of the Gibbs random field and in which case the
.random field exhibits spatial long-range dependence .

� Ž . 24 Ž . 2A neighborhood system N is a collection NN i : i g Z , where NN i ; Z
2 Ž . Ž . Ž .is the set of neighbors of i g Z satisfying i f NN i and i g NN j m j g NN i

; i, j g Z
2. Define the boundary of a finite region L ; Z

2 by L s
Ž Ž .. Ž .D NN i _ L. Then every P g GG U is a Markov random field with respectig L

to a neighborhood system N in the sense that for every x g V and any finite

L ; Z
2,

< <c cP X s x X s x s P X s x x s xŽ . Ž .L L L L L L L L

Ž . � 2 4with NN i s j g Z : b / 0 for every i. In fact, a Markov random field onjyi

wa finite lattice has a Gibbs representation Hammersley]Clifford theorem in
Ž .xGeman 1991 .

We will be referring to the following examples, which illustrate the simi-

larities and differences in specifying both the neighborhood and the parame-
Ž . Ž .ter dimension. For these examples, let U x ' 0, U x , x s x x and1 i 2 i j i j

� 4S s y1, 1 .

EXAMPLE 3. The neighborhood system depicted in Figure 1, denoted m1,

is for the two-dimensional Ising model. Each site i has four nearest neigh-
Ž . Ž .bors. The same coupling coefficient b is imposed for each pair i, j , j g NN i .
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FIG. 1. Model m1. FIG. 2. Model m2. FIG. 3. Model m3.

EXAMPLE 4. For the model in Figure 2, denoted m2, every site i again has

four nearest neighbors. However, two parameters b and b are used forV H

‘‘vertical pair’’ and ‘‘horizontal pair’’ interactions, respectively.

EXAMPLE 5. For the model in Figure 3, denoted m3, each site i has 12

neighbors that can be subdivided into two layers. The parameters b and g

are associated with the inner layer and the outer layer, respectively.

� Ž . 24Write p x; u , x g V, i g Z for the local characteristics with param-i

eter u .

Ž .DEFINITION 1. The parameter u is said to be identifiable if p x; u /o

Ž .p x; u 9 for some x g V whenever u / u 9.o

REMARK. Identifiability may also be imposed via conditions on the poten-
w Ž . Ž .x Ž . w Ž .xtials Georgii 1988 ; Gidas 1993 or by conditions on GG U Comets 1992 .´

Ž . Ž .For an n = n square lattice L n , let x s x n denote a single realiza-LŽn.

Ž . Ž .tion of X s X n , where X has a distribution P g GG U . Write P for P toLŽn. u

Ž .indicate the parameterization and write E ? for the expectation with respectu

Ž . 2to P . Extend the observation x n to a configuration x on Z by periodiza-˜u

w Ž .xtion, or tiling toroidal edge correction; Ripley 1981 , as illustrated in
˜Figure 4. Correspondingly, let X denote the periodic random field based on

X .LŽn.

w Ž .xDefine the pseudolikelihood function Besag 1974 , a product of the local
Ž .characteristics of the sites of L n , as

<PP LL x n , u s P X s x X s x .Ž .Ž . ˜ ˜Ž .Ł u i i i i
Ž .igL n

Ž . Ž Ž . .Any measurable function of x n which maximizes PP LL x n , ? is called a
Ž .maximum pseudolikelihood estimate of u based on x n . We denote this

˜estimate by u .

There are several motivating factors for using the maximum pseudolikeli-

hood estimate of u . A practical one is that the local characteristics are quickly
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FIG. 4. Tiling .

and easily computed. An intuitive one is that the local geometry of an image

may be reasonably summarized by the local characteristics. A theoretical one

is that its existence, uniqueness and consistency have been proven by Geman
Ž . Ž . Ž .and Graffigne 1986 ; independently, Gidas 1988 and Comets 1992 have´

established its consistency.

3. The model selection problem and a consistency result. Specifi-
Ž .cation of a potential i.e., selecting a Markov random field model consists of

the interconnected parts of specifying both the neighborhood system N and

the dimension of the parameter u .

Let Q s R
K be the parameter space of interest, decomposed as the disjoint

union Q s D
M Q , Q l Q s B ; m / m9, where each Q correspondsms 0 M m m9 m

Ž . k mto a candidate model i.e., a potential parameterized by an element of R .
KWe assume that every closure Q is a k -dimensional linear subspace of R ,m m

w Ž .xm s 0, 1, . . . , M cf. Schwarz 1978 . In particular, Q corresponds to the0

completely specified model with no unknown parameter. Denote the set of all
� 4candidate models by MM s 0, 1, . . . , M and let N be the neighborhoodm

system for the model m g MM.

In Examples 3, 4 and 5, one sees that N s N / N and that k sm1 m2 m3 m1

1, while k s k s 2. Several synthetic textures generated from m1, m2m2 m3

w Ž .xand m3 by the Gibbs sampler Geman and Geman 1984 are shown in

Figures 5]10. The coupling coefficients are assigned different values to

produce different imaginary patterns of both weak and strong spatial depen-
Ž . Ž . Ž .dence: ‘‘sands’’ Figure 5 , ‘‘clouds’’ Figure 6 , ‘‘wood grain’’ Figure 8 and
Ž .‘‘wall papers’’ Figures 7, 9 and 10 . Note that samples from such simple

models are far from resembling real textures.

In general, starting from u g Q, a different model can be obtained either
Žby equating some components in u e.g., letting b s b J b in m2 to obtainV H

. Žm1 or by setting some components to zero e.g., letting g s 0 in m3 to obtain

.m1 . In this way the pseudolikelihood, when written in the form of an
wexponential family, may be reduced to its minimal form cf. Barndorff-Nielsen

Ž . Ž .x1978 ; Brown 1986 .
˜For each m g MM, let u be the maximum pseudolikelihood estimate re-m

Ž .stricted to Q . Let PP LL ?, ? denote the pseudolikelihood for model m g MM inm m

Ž Ž . . � < Ž . <w T Ž .x4minimal form: PP LL x n , u s exp L n u V y g u , where V andm m m m

Ž .g ? denote functions analogous to the sufficient statistic and cumulantm
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FIG. 5. Model m1, b s 0.1.

generating function, respectively. Define the information criterion as

km
Q s sup log PP LL x n , q y log L n .Ž . Ž .Ž .m m

2
qgQm

Then the pseudolikelihood selection procedure is to choose the model m g MMˆ
which maximizes Q .m

Ž . � 4 Ž .Decompose the collection of candidate models as MM s MM p j p j MM p ,1 2

where p g MM is the true model, u g Q is the true parameter which isp

Ž . Ž . � 4assumed to be identifiable see Definition 1 , MM p s m g MM: u f Q and1 m

Ž . � 4 Ž .MM p s m g MM : Q ; Q . Here MM p corresponds to an underparameter-2 p m 1

ized choice of model or to an incorrect specification of neighborhood system
Ždifferent neighborhoods will correspond to different subspaces which may
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FIG. 6. Model m1, b s 1.0.

. Ž .have the same dimension , while MM p corresponds to an overparameterized2

Ž .choice. Note particularly that Q is a proper subset of Q if m g MM p andp m 2

that our decomposition of MM leaves out no choice of model, since we have

decomposed the parameter space Q into a disjoint union of subspaces Q ,m

m g MM, earlier in this section.

Ž .Denote the selection procedure which chooses a model m based on x n byˆ
Ž Ž ..m s d x n , where d: V ª MM denotes the decision function.ˆ LŽn.

Ž .DEFINITION 2. A selection procedure d ? is said to be consistent if
Ž Ž Ž .. . Ž .lim P d X n s p s 1, where X n is a sample from P , u g Q ,nª` u u p

p g MM.
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FIG. 7. Model m1, b s y1.0.

The following two propositions give decay rates for the probabilities of
Ž . Ž .choosing an incorrect model in MM p and in MM p , respectively.1 2

Ž Ž .. Ž c.PROPOSITION 1. There exists c ) 0 such that P m g MM p F exp ynˆu 1

for sufficiently large n.

Ž Ž .. Ž ya .PROPOSITION 2. There exists a ) 0 such that P m g MM p s O n asˆu 2

n ª `.

The following theorem is an immediate consequence of Propositions 1

and 2.

THEOREM 1. The selection procedure based on Q is consistent.m
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FIG. 8. Model m2, b s 1.0, b s 0.1.1 2

4. Some properties of the maximum pseudolikelihood estimator.
Because parameter estimation is such an important part of model selection,

some asymptotic properties of the maximum pseudolikelihood estimator are

discussed in this section. In particular, Lemmas 3 and 4 in this section

provide some asymptotic orders of consistency for the maximum pseudolikeli-

hood estimator; these are crucial in proving the consistency for the selection

procedure.

Fix a model m g MM and a parameter u g Q and suppress the notationm

indicating the model in this section and in the corresponding proofs in the

Appendix. Recall the pseudolikelihood in exponential family form: the ‘‘suffi-

cient statistic’’ is given by

1
V s Z x , x˜ ˜Ž .Ý i NN Ž i.

L nŽ . Ž .igL n
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FIG. 9. Model m2, b s 1.0, b s y1.0.1 2

Ž .for some function Z ?, ? of the appropriate potentials, and the ‘‘cumulant

generating function’’ is given by

1
Tg u s log exp u Z s, x .Ž . ˜� 4Ž .Ý Ý NN Ž i.

L nŽ . Ž . sgSigL n

Ž .The gradient of g q with respect to q is given by

1
<=g q s E Z x ,Ž . ˜Ž .Ý q NN Ž i.

L nŽ . Ž .igL n

where q specifically denotes a variable.

Ž . Ž . Ž . Ž .For each i g L n , let L i, R be the 2 R q 1 = 2 R q 1 square lattice

centered at i, where R is the range of the Gibbs distribution. In particular,
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FIG. 10. Model m3, b s 1.0, g s y1.0.

Ž . Ž .denote L o, R s L 2 R q 1 . Let j g S and h g V , so that the com-LŽo, R ._�o4

bined configuration is j [ h g V . DefineLŽ2 Rq1.

I j [ h s 1 ,Ž . ˜i �X sj[h4LŽ i , R .

I h s 1 for i g L nŽ . Ž .˜i �X sh4LŽ i , R ._�i4

and

N j [ h s I j [ h ,Ž . Ž .Ýn i

Ž .igL n

N h s I h .Ž . Ž .Ýn i

Ž .igL n
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Define the event

N j [ hŽ .n
AA n s x n g V : G l ; j [ h g VŽ . Ž . LŽn. LŽ2 Rq1.½ 5L nŽ .

on which the empirical probabilities for all configurations in V areLŽn.

bounded away from 0. The complement of this set is negligible for large n.

LEMMA 1. There exist positive constants l, c and C such that

N j [ hŽ .n
P - l F C exp ycnŽ .u ž /L nŽ .

for all large n and all j [ h g V .LŽ2 Rq1.

Ž .Hence, the following lemma is restricted to AA n .

T 2 Ž .LEMMA 2. There exist c, C ) 0 such that c F v = g q v F C for all unit
k m Ž . Ž .vectors v g R , all q g Q in a neighborhood of u , all x n g AA n and allm

large n.

REMARK. The following is a simple argument for the existence and

uniqueness of the maximum pseudolikelihood estimator. The ‘‘pseudolikeli-
Ž . k mhood’’ equation is given by V s =g q . Now, for all q g R , it can be shown

w Ž .x Ž .that E V y =g q s 0, so that by Theorem 14.A8 of Georgii 1988 , we haveq

4.1 lim V y =g u s 0, P -a.s.Ž . Ž . u
nª`

Ž .By Lemma 2, there exists a small neighborhood of u , say OO, on which =g ? is
Ž . Ž .a homeomorphism. Then, for large n, we have V g =g OO by 4.1 . Thus there

Ž .exists v g OO satisfying the pseudolikelihood equation, V s =g v , P -a.s.u

Ž . w Ž .Since g ? is globally convex see A.1 in the proof of Lemma 2 in the
xAppendix and locally strictly convex by Lemma 2, the solution v is the

˜unique maximum pseudolikelihood estimate u .

The next two lemmas provide asymptotic orders for the restricted mean

squared error and moderate deviation probabilities for the maximum pseudo-

likelihood estimate.

˜ 2 y1�5 5 4 Ž < Ž . < .LEMMA 3. E u y u 1 s O L n as n ª `.u AAŽn.

REMARK. Theorem 1 may also be proven by Proposition 1, Lemma 3 and

the Chebyshev inequality. However, the decay rate of the probability of

choosing an incorrect model produced by this method can only be of the order

1rlog n}a rate inferior to the one inferred by using Propositions 1 and 2.
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LEMMA 4. For every « ) 0 there exists a ) 0 such that

2 ya˜5 5P L n u y u ) « log n s O nŽ . Ž .Ž .u

as n ª `.

REMARK. It is noteworthy that the constant a in Lemma 4, which is the

same a as in Proposition 2, cannot be made greater than 1 in general. This

precludes the use of the Borel]Cantelli lemma in an effort to prove the strong
w Ž .consistency of the pseudolikelihood selection procedure. A procedure d ? is

Ž Ž .. Ž .said to be strongly consistent if d X n ª p , P -a.s. as n ª `, where X nu

xis a sample from P , u g Q , p g MM. This observation is supported by theu p

exact order of moderate deviation probabilities in the i.i.d. case given in
Ž .Rubin and Sethuraman 1965 .

5. Some simulation results. Although there is an extensive literature

in various Markov chain simulation algorithms, we use the Gibbs sampler
w Ž .xGeman and Geman 1984 for simulating textures. In our simulation stud-

ies, we have used the three models m1, m2 and m3 which were introduced in

Section 3. For convenience, we have omitted including a ‘‘largest’’ model
Ž .among the candidates cf. Proof of Proposition 1 in the Appendix . We study

the pseudolikelihood procedure for 500 = 500 random fields with the neigh-

borhood interactions varying from weak to strong. In the tables we present,

b corresponds to b for m1 and m3 and b for m2, while b corresponds to1 V 2

b for m2 and g for m3. The symbol )) indicates the chosen model.H

The pseudolikelihood procedure seems to work well in all cases, given the

similarity of the candidate models. When neighborhood interactions are

weak, as in Table 1, there are no phase transitions and an identifying

structure cannot be discerned in a realization. In such cases, the pseudolikeli-

hood procedure tends to overparametrize}in fact, the values of Q do notm

vary much among the models. Also, the sample from the true model was

practically indistinguishable from a sample from m1 with no phase transi-
Ž .tions indeed, m1 is a special case of both . On the other hand, when

neighborhood interactions are stronger, phase transitions are possible. The
Žprocedure still tends to overparametrize when the true model is m1 seen in

.Table 2 , but the chosen model is close to the true model and Q again doesm

not vary much. As seen in Table 3, the pseudolikelihood procedure worked

extremely well when structures unique to the model are easily discernible,
Ž .making a clear i.e., one value of Q is much larger than the others andm

correct choice over all other candidates.

wREMARK. These same phenomena may be observed for m3 Seymour
Ž .x1993 .

6. Concluding remarks. The model selection procedure proposed in

this paper has a similar expression to that of the Bayesian information
w Ž . Ž .xcriterion Schwarz 1978 ; Akaike 1978 with the likelihood replaced by the
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TABLE 1

Weak neighborhood interactions

˜ ˜Model b b Q1 2 m

b s 0.1

1 0.09880 } y167024

2 0.10120 0.09651 y167028

))3 0.09921 y0.00108 y165694

b s 0.01, b s 0.1V H

1 0.05414 } y170461

2 0.01175 0.09568 y169606

))3 0.05403 y0.00153 y169099

b s 0.1, b s 0.01V H

1 0.05557 } y170388

2 0.10343 0.00657 y169255

))3 0.05554 y0.00229 y169032

TABLE 2

Strong neighborhood interactions m1

˜ ˜Model b b Q1 2 m

b s 1

1 1.0176 } y2523

2 1.0325 1.0027 y2529

))3 1.0676 y0.02667 y2485

b s y1

1 y1.0242 } y2702

2 y1.0053 y1.0425 y2708

))3 y0.97953 y0.02614 y2678

b s 2

1 1.9805 } y1206

2 6.3686 1.7551 y1210

))3 1.9371 0.04030 y1201

pseudolikelihood in the first term and the same penalty for overparameteri-

zation in the second term. A similar modification of Akaike’s information
w Ž .xcriterion Akaike 1974 may be considered. In the i.i.d. case, Woodroofe

Ž .1982 pointed out that Akaike’s criterion is superior to the Bayesian criterion

asymptotically when the dimensionality of the parameter tends to infinity at

an appropriate rate as the sample size tends to infinity. We expect that a

similar result will hold for Markov random field texture models if we let the

range of the potential R s R ª `; however, more delicate asymptotics aren

Ž .needed to accomplish this, and the result in Ji 1990 may be helpful.
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TABLE 3

Strong neighborhood interactions m2

˜ ˜Model b b Q1 2 m

b s 0.1, b s 1V H

1 0.54126 } y64924

))2 0.09975 1.0074 y44670

3 0.74073 y0.12326 y60873

b s 1, b s 0.1V H

1 0.54077 } y65320

))2 1.0010 0.10003 y45135

3 0.73140 y0.11896 y61489

b s 1, b s y1V H

1 y0.01349 } y171907

))2 0.97933 y1.0521 y2379

3 y0.01865 y0.18243 y169900

b s y1, b s 1V H

1 y0.02736 } y171902

))2 y0.98039 1.0469 y2398

3 y0.03704 y0.19437 y169833

The asymptotic distributions for the indices Q , m g MM, may also bem

Ž .investigated. The need for such was demonstrated in Woodroofe 1982 , in

which the distribution of the number of superfluous parameters contained in

the selected model was found. Such a result could be used to make numerical

comparisons between different models. The derivation may not be too difficult
wunder Dobrushin’s uniqueness condition for Gibbs random fields Georgii

Ž .x1988 . However, the derivation is very challenging under the assumptions

we have made in this paper due to the lack of a central limit theorem for

Gibbs random fields under phase transitions.

Extensive simulation studies are still being done for real texture synthesis,

and many issues remain open. A rich class of candidate potentials is required

for using Markov random field models for texture synthesis. Our approach in

this paper has been to consider a great variety of neighborhood systems. The
Ž .recent approach of Kunsch, Geman and Kehagias 1995 is to code each site¨

variable in a complex manner while restricting to the nearest neighbors. Both

of these approaches involve extremely intense computation. Current research

still has yet to achieve the ideal of a convenient statistical method for

replicating real textures.

APPENDIX

Ž .LEMMA A.1. Let R be the range of the Gibbs random field. Let BB 1 , . . . ,
Ž . 2 Ž .BB T be bounded regions in Z , T g N, with the distances between BB t and
Ž . 2 Ž T Ž ..BB t9 greater than R for all t / t9. Also, let CC s Z _ D BB t be thets1
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corridor between these regions. Then for any collection of bounded measurable

functions f : V ª R, t s 1, . . . , T, we havet BBŽ t .

T T

E f X x s E f X xŽ . Ž .Ł Łu t BBŽ t . CC u t BBŽ t . CC½ 5
ts1 ts1

Ž < .uniformly for all corridor configurations x g V , where E ? x is the
CC CC u CC

Ž < .conditional expectation with respect to P ? x .u CC

PROOF. This result follows from the Markov property of X. I

Ž .PROOF OF LEMMA 1. Assume without loss of generality that 3R q 1
Ž . Ž . T Ž .divides n. Partition L n as a union of disjoint tiles L n s D D t , so thatts1

Ž . Ž . Ž . weach tile D t is a 3R q 1 = 3R q 1 square lattice. Then T s nr
Ž .x23R q 1 .

Ž . D
Ž3 Rq1.2

Ž . Ž .Also, write the decomposition L n s G k , where every G kks1

contains exactly T sites with the same relative positions in the disjoint tiles
Ž . Ž .D t , t s 1, . . . , T. For instance, one G k may consist of the centers of the T

Ž .tiles, while another G k may consist of all upper left corners of the T tiles.

Ž . Ž3 Rq1.2
Ž .Therefore, N j [ h s Ý Ý I j [ h and for every j [ h g Vn ks1 ig GŽk . i LŽ2 R .

we have

2Ž .3 Rq1N j [ h 1Ž .n
P - l F exp yln E exp y I j [ h .Ž . Ž .Ý Ýu u i½ 5ž /L n nŽ . ks1 Ž .igG k

Ž . 2 Ž Ž ..For a fixed index k, let CC k s Z _ D L i, R be the corridor dividingig GŽk .

Ž . Ž .the regions L i, R , i g G k . Then

1 c1
E exp y I j [ h x F 1 yŽ .u i CC Žk .½ 5n n

for some c ) 0 and all large n. Therefore, employing Lemma A.1,1

N j [ hŽ .n
P - l F C exp ycnŽ .u ž /L nŽ .

for some C ) 0 and some c ) 0. I

PROOF OF LEMMA 2. Define

T < <y1
K q , n s q V y g q s L n log PP LL x n , q .Ž . Ž . Ž . Ž .Ž .

Ž < .Let p j h; q be the local characteristic at the origin, where j [ h go

V , j g S is the value at the origin o and h g V . Then, viaLŽ2 Rq1. LŽ2 Rq1._�o4

translation invariance, we may write

N h N j [ hŽ . Ž .n n
<K q , n s log p j h ; q .Ž . Ž .Ý Ý o

L n N hŽ . Ž .nh j
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Write the local characteristic at the origin in exponential family form

exp q Tf j [ h� 4Ž .
<p j h ; q s ,Ž .o TÝ exp q f s [ h� 4Ž .s

k m Ž .where q g R and f ? is an appropriate vector-valued function. Because
Ž . Ž .Ý N j [ h s N h for fixed h, we havej n n

N hŽ .n2 <y= K q , n s E f X [ h y E f X [ h hŽ . Ž . Ž .Ž .Ý q o q o
L nŽ .h

T
<= f X [ h y E f X [ h h h ,Ž . Ž .Ž .o q o

Ž < . Ž < .where Eq ? h is the conditional expectation with respect to p ? h; q . Henceo

for v g R
k m, we have

vT =2 g q vŽ .
T 2s yv = K q , n vŽ .

A.1Ž .
N hŽ . 2n T <s E v f X [ h y E f X [ h h h .Ž . Ž .Ž .Ý ½ 5q o q o
L nŽ .h

Since this expectation is bounded and there are only finitely many h g
T 2 Ž .V , we see that v = g q v F C for some C ) 0.LŽ2 Rq1._�o4

On the other hand, the identifiability of u guarantees that the ‘‘outside’’

expectation is strictly positive for at least one of the h-configurations. Also,
Ž . Ž .for fixed j g S and h g V , it should be clear that N h G N j [ h .LŽ2 Rq1._�o4 n n

Ž .Then on AA n ,

N h N j [ hŽ . Ž .n n
G G l ) 0

L n L nŽ . Ž .

T 2 Ž .for all h-configurations. Therefore, v = g q v G c for some c ) 0. I

˜Ž .PROOF OF LEMMA 3. The Taylor expansion of =K q , n about u gives

˜ 2 ˜=K u , n s =K u , n q = K q 9, n u y uŽ . Ž .Ž . Ž .

2 ˜s y= g q 9 u y uŽ . Ž .

˜ ˜5 5 5 5for some q 9 satisfying q 9 y u F u y u . By Lemma 2,

22˜5 5A.2 u y u F C =K u , nŽ . Ž .

˜ 2 2Ž . �5 5 4 �5 Ž .5 4on AA n for some C ) 0. Thus E u y u 1 F CE =K u , n . Rewriteu AAŽn. u

Ž .K u , n as

1
<K u , n s I j [ h log p j h ; uŽ . Ž . Ž .Ý Ý i ož /L nŽ . Ž . j[higL n
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so that

1
A.3 =K u , n s W ,Ž . Ž . Ý i

L nŽ . Ž .igL n

where W is the vectori

<W s I h f X [ h y E f X [ h h .Ž . Ž . Ž .Ž .Ýi i i u i

h

Ž .For each i g L n , all of the components of W are bounded. Let w denote ani i

arbitrary component of W . Then it is sufficient to showi

2

E w s O L n .Ž .Ž .Ýu iž /½ 5
Ž .igL n

Ž .Using the decompositions of L n from the proof of Lemma 1, it is enough to

show

2

E w s O L nŽ .Ž .Ýu iž /½ 5
Ž .igG k

Ž . Ž .for each G k . Let CC k be a corridor as constructed in the proof of Lemma 1.

Ž < .Then E W x s 0 for i g G and every configuration x . Since theu i CC Žk . k CC Žk .

elements w are bounded, Lemma A.1 givesi

2

< <E w F C GÝu i kž /½ 5
Ž .igG k

< Ž . < < Ž . <Ž .y2for some C ) 0. Because G k s L n 3R q 1 , the result clearly follows.

I

Ž .PROOF OF LEMMA 4. By A.2 and Lemma 1, it suffices to show that for

every « ) 0,

2 yaP L n =K u , n ) « log n s O n .Ž . Ž . Ž .Ž .u

Using the notation in the proof of Lemma 3, it is enough to show that for

every « ) 0,

yaA.4 P w ) «t s O nŽ . Ž .Ýu i nž /
Ž .igG k

< <'for some a ) 0, where t s L n log n .Ž .n

Consider the two cases for the absolute value, studying first the positive
Ž .case. For r ) 0 to be specified ,

r wi
P w ) «t F exp yr« t E exp .'Ý Ýž /u i n n už / ž /t' nŽ . Ž .igG k igG k
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Ž .Using Lemma A.1 and the construction of the corridor CC k in the proof of

Lemma 1,

r w r wi i
E exp s E E exp X .Ý Łu u u CC Žk .ž / ž /½ 5t t' 'Ž .igG kn nŽ .igG k

Ž < .From the proof of Lemma 3, E w x s 0 for every corridor configurationu i CC Žk .

x , so that
CC Žk .

2a 9r G kŽ .
P w ) «t F exp yr« t exp'Ý ž /u i n nž / ž /tnŽ .igG k

Ž .2 < Ž . < < Ž . <for some a 9 ) 0. Let a 0 s a 9r 3R q 1 and recall that G k s L n r
Ž .2 y1r2Ž .3r4Ž .y1 < Ž . < 23R q 1 . Set r s « n log n 2a 0 and note that L n s n . Then

P w ) «t s O nyaŽ .Ýu i nž /
Ž .igG k

with a s « 2r4a 0.

For the negative case,

P y w ) «t s O nyaŽ .Ýu i nž /
Ž .igG k

Ž .can be derived in the same way. Hence A.4 follows. I

Ž .PROOF OF PROPOSITION 1. Note that for all q g Q and all m g MM p ,m 1

5 5there exists « ) 0 such that u y q G 3« . Let M be the ‘‘largest’’ model1 1

Ž .i.e., the model which can be reduced to any of the other candidate models , so
Kthat Q : Q for all m g MM. Note here that Q s Q s R and that we maym M M

˜ ˜ ˜write u for u since u is a ‘‘global’’ maximum pseudolikelihood estimateM M

over the set MM.
˜Ž . � Ž . 5 5 4Let DD n s x n g V : u y u F « . Then, applying Lemma 1 toLŽn. 1

c ˜ cŽ Ž . . w Ž .x Ž Ž . .P AA n and the exponential consistency of u Comets 1992 to P DD n ,´u u

Ž� Ž . Ž .4c. Ž a1.we have P AA n l DD n F exp yn for some a ) 0 and for all large n.u 1

Ž . Ž .Hence we restrict our attention to AA n l DD n .

Ž .Let m g MM p , where m denotes the chosen model. Recall from the proofˆ ˆ1

Ž . T Ž . T Ž .of Lemma 2 that K q , n s q V y g q s q V y g q . Recall also thatM M

˜Ž .K q , n is globally concave and locally strictly concave so that u is the unique

maximum pseudolikelihood estimate. Since the true parameter u is some

positive distance away from Q , there exists d ) 0 such thatm

˜Ž . Ž .sup K q , n F K u , n y d for all large n, P -a.s. Then Q y Q Gq g Q u M mm

< Ž . < Ž .a L n for some a ) 0 and for all m g MM p so that2 2 1

P m g MM p F P Q y Q ) 0 F exp yncŽ . Ž .Ž .Ž .ˆu 1 u m Mˆ

as n ª ` for some c ) 0. I
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˜ 2Ž . � Ž . < Ž . < 5 5PROOF OF PROPOSITION 2. Let FF n s x n g V : L n u y u FLŽn. m

4 Ž Ž .c. Ž ya .« log n for all m g MM , so that by Lemma 4, P FF n s O n for someu

Ž . Ž .a ) 0. Hence we restrict our attention to AA n l FF n .

Ž . Ž .On AA n , for a chosen model m g MM p , we haveˆ 2

˜ ˜Q y Q s L n K u , n y K u , n y k y k log n.Ž . Ž .Ž . Ž .p m p p m m p mˆ ˆ ˆ ˆ

Hence, we have

˜ ˜ ˜ 2 ˜ 25 5 5 5K u , n y K u , n G yC u y u q u y uŽ . Ž . ž /p p m m p mˆ ˆ ˆ

for some C ) 0, so that

2 2˜ ˜5 5 5 5Q y Q G L n yC u y u q u y u y k y k log n.Ž . Ž .ž /p m m p p mˆ ˆ ˆ

Ž . Ž .Then on AA n l FF n ,

Q y Q G a log n ,p m 1ˆ

where a s k y k y 2C« ) 0, provided « is sufficiently small. Hence,1 m pˆ

P m g MM p F P Q y Q ) 0 s O nyaŽ . Ž .Ž .Ž .ˆu 2 u m pˆ

as n ª ` for some a ) 0. I
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