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BRANCHING PROCESSES WITH LOCAL DEPENDENCIES

BY PETER OLOFSSON

Chalmers University of Technology

A general multitype branching process with sibling dependencies is

considered. The dependencies within a group of siblings are described by a

joint probability measure, determined by the structure of that particular

group. The process is analyzed by means of the embedded macro process,

consisting of sibling groups. It is shown that the regular asymptotic

behavior of the sibling-dependent process is guaranteed by conditions on

the individual reproductions, and that these conditions are exactly the

same as those normally required for an ordinary independent process that

has the same individual marginals. Convergence results for the expected

population size as well as the actual population size are given, and the

stable population is described. The sibling-dependent process and the

ordinary independent process with the same marginals are compared;

some simple examples illustrate the differences and similarities. The

results are extended to more general dependencies that are local in the

family tree.

1. Introduction. Most branching process theory relies on some funda-

mental independence assumption; individuals’ reproductions are independent

or, in the multitype case, conditionally independent given their types. Both

for theoretical reasons and from the point of view of applications it would,

however, be interesting to investigate different kinds of dependencies, for

instance, dependencies that are local in the family tree. In biology the term

kin selection is well known, meaning that individuals put effort into helping

their close relatives. This would suggest some kind of negative correlation

structure between, for instance, siblings.

In cell kinetics, positive correlations between the life lengths of sister cells
Ž . Ž .are well known, at least since Powell 1955 . Kubitschek 1967 found similar

correlations also between first cousins and second cousins. A branching

process approach to sister correlations was performed by Crump and Mode
Ž .1969 ; the model in that paper did not, however, permit further dependen-

Ž .cies. In Broberg 1987 , general single-type branching processes with a spe-
Ž .cial kind of sibling dependency are treated. Olofsson 1994 , on which this

paper is based, deals with general local dependencies in multitype popula-

tions. For an overview of some principal problems with dependencies in
Ž .general, the reader is referred to Jagers 1995 .

Received July 1994; revised October 1995.

AMS 1991 subject classifications. Primary 60J80; secondary 60F25.

Key words and phrases. General branching process, multitype, sibling dependencies, local

dependencies, macro process, stable population.

238



LOCAL DEPENDENCIES 239

In this paper we first deal with a general multitype process with sibling

dependencies and then extend the results to more general dependencies that

are local in the family tree.

To make it reasonably self-contained, before dealing with the dependen-

cies, we give a quick description of general multitype branching processes; for
Ž .a comprehensive treatment the reader is referred to Jagers 1989, 1992 .

A possible life career, v, of an individual is an element of the life space
Ž .V, AA . Individual properties of interest are then considered as random

elements on the life space. Fundamental such elements are the consecutive
Ž . Ž . Ž .Ž .ages at childbearing t 1 F t 2 F ??? F `, where t i v is the age of an

Ž .individual with life career v when she begets her ith child, t i being ` if the

individual begets less than i children.

Ž .At birth each individual gets a type from the type space S, SS , where the

s-algebra SS is assumed countably generated. The ith child of an individual
Ž .Ž .with life career v gets type s i v . The birth times and types together form

the reproduction process

j v , A = B s a i : s i v g A , t i v g B ,� 4Ž . Ž . Ž . Ž . Ž .

Ž .where A g SS and B g BB, the Borel s-algebra. The notation j v and
Ž .j A = B will be used depending on the context.

Identify individuals by descent: 0 denotes the ancestor, the individual
Ž .x , . . . , x is the x th child of the x th child of . . . of the x th child of the1 n n ny1 1

ancestor. Hence an individual is an element of the Ulam]Harris space
`

kI s N .D
ks0

The notation xy is used for the individual whose first coordinates are those of

x, the last those of y. For instance, xk, k s 1, 2, . . . , are x ’s children. The

population space is then S = V I, an outcome of which consists of the ances-

tor’s type and a life career for each individual in I. The projection U :x

S = V I
ª V singles out the life career of the individual x and enables us to

lift entities defined on the life space into the population space. For instance,

the reproduction process of an individual x is defined through

j s j (U ,x x

other random elements being defined similarly. An element of the population
Ž .space is denoted s, v , and generally the notation v is used for the set ofI M

lives of the individuals in M : I. In particular, v s v (U , the life of thex I x

individual x.

� Ž . 4Assume a set of probability kernels P r, ? : r g S on V is given and that
Ž .an individual of type s chooses life career according to the kernel P s, ?

independently of all other individuals. For each starting type s g S, there is

then a unique probability measure P on S = V I.s

To count or measure the population, random characteristics are intro-

duced. These are random processes

x : S = V I = R ª R ,q
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Ž .where x s, v , t gives the contribution at age t of an s-type individual withI

life and progeny’s lives described by v . We assume that x vanishes forI

Ž . Ž .negative times t. A simple example of such a characteristic is x t s 1 tRq

which is 1 if t G 0, that is, if you are born, and 0 otherwise. Note that x may

depend on an individual’s whole progeny.

Ž .With t denoting the birth time of the individual x and x t y t denotingx x x

the x-value of the individual x at age t y t , the x-counted population isx

defined as

z x s x t y tŽ .Ýt x x

xgI

adding the contributions of all individuals born up to time t at their proper

ages. The characteristic 1 mentioned above will then count the number ofRq

individuals born up to time t. The main objective of general branching
w x xprocesses is to study the asymptotics of E z , the expectation of thes t

x-counted population with respect to P , as well as of z x itself.s t

2. Why sibling dependencies? In this section we give a few simple

examples which illustrate some of the principal problems that arise from

sibling dependencies. The basic idea of how to deal with the dependencies is

also described and developed in a Galton]Watson context. In later sections

this will all be done at a much more general, but also less accessible level, so

this section serves the purpose of giving the reader some insight about what

is going on. A first example will show what impact sibling dependencies have

on three standard issues in branching process theory: extinction, growth and

composition.

EXAMPLE 2.1. Consider a sibling-dependent Galton]Watson process where

an individual can beget zero or three children, and where the dependencies

are such that, in a group of three siblings, two will always reproduce while

the third never will. All individuals are equally likely to be among the
� 43reproducing ones. Thus there is a joint probability measure on 0, 3 which

Ž . Ž . Ž .gives equal probabilities to the points 0, 3, 3 , 3, 0, 3 and 3, 3, 0 and has the

marginals p s 1r3 and p s 2r3. Clearly, there are sibling dependencies; if0 3

we, for instance, know that an individual has no children, we also know that

her sisters have three children each.

Let us now compare this process to an ordinary independent Galton]

Watson process which has the same individual marginals. The expected

number of children is 2, and there is a positive probability of nonextinction,

in which case the generation size tends to `. Indeed, the extinction probabil-

ity may be computed explicitly as the smallest nonnegative solution of the
3 'Ž . Ž .equation s s 1r3 q 2r3 s , which turns out to be 3 y 1 r2.

The dependent process will have a deterministic generation size of 3 ? 2 n

Ž .individuals in the nth generation if it starts from a full group of siblings

and hence it never becomes extinct. In this example, introducing sibling
'Ž .dependencies thus brings the extinction probability from 3 y 1 r2 down

to 0!
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To describe the growth rates, let z be the number of individuals in then

nth generation in the independent process and z the corresponding variablen

in the dependent process. If the processes both start from a group of three

siblings, we have, for some random variable w,

zn
ª w ,

n2

which follows from classical results for Galton]Watson processes, and

zn
' 3,

n2

so that the growth rates are the same in the two processes. Another well-

known fact from classical theory is that although the population size tends to
Ž .` if extinction is avoided , the composition stabilizes in the sense that

proportions of individuals with various properties converge to constants as

n ª `. This fact is made precise in a quite general context in the so-called
Ž .stable population, described in Jagers 1992 . Having explored extinction and

growth, let us finally see how the asymptotic composition may be affected by

sibling dependencies.

Let A be the event that an individual has no children and define z A andn

z A as the numbers of individuals without children in the independentn

population and the dependent population, respectively. The probability of A

is 1r3 in both populations and hence

z A 1n
ª

z 3n

and

z A 1n
' .

z 3n

The asymptotic proportion of childless individuals is thus the same in the two

populations. Now let B be the event that an individual has no grandchildren.

In the dependent population B is obviously the same event as A, whereas in
Ž .Ž .3the independent population B has probability 1r3 q 2r3 1r3 s 29r81.

Hence

z B 29n
ª ,

z 81n

so that the asymptotic proportion of individuals without grandchildren is not

the same in the two populations. A more drastic example is to consider

individuals who have children but no grandchildren since such individuals do

not exist at all in the dependent population, but appear with probability 2r81

in the independent population.

It is also interesting to note that although the distribution of the number

of grandchildren obviously differs, the expected number of grandchildren

remains the same in the two populations.
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We have seen an example where sibling dependencies affect the extinction

probability, as compared with an independent process, but the growth rate

remains the same. The asymptotic proportion of individuals without children

is the same, whereas the asymptotic proportion differs if instead individuals

without grandchildren are considered. This example illustrates the general

objectives of this paper: to show that the growth rate is never affected by

sibling, or more general local, dependencies, that the asymptotic composition
Žremains the same when individual properties are considered actually more

.than this holds}see Section 12 , but that this composition may differ for

other properties. We will also show that no extra conditions are required

because of the dependencies; the conditions are all on the individual marginal

reproductions and are thus the same as in an ordinary independent process

that has these marginals.

The basic idea for a theory that allows sibling dependencies is to embed

another process, the macro process, into the sibling-dependent process. This
Ž .macro process, introduced in Broberg 1987 , consists of sibling groups, to be

called macro individuals. The point is, of course, that while individuals do

not reproduce independently, macro individuals do, since the only dependen-

cies are within the sibling groups.

Generally, if it is assumed that the reproduction and dependence structure
Ž .of a sibling group of size k is described by a joint probability measure P k, ?

on N k, the macro process may be considered as multitype, the type of a

macro individual being the number of siblings in that group.

Hence classical theory for multitype Galton]Watson processes applies to

the macro process. Since what is interesting is still the individual process,

this whole setting would be useless if it were not possible to count individuals

by instead counting macro individuals. But, indeed, with z denoting then

Ž .number of individuals in the nth generation and Z k denoting the numbern

of macro individuals of type k of the nth generation, it holds that
`

z s kZ k ,Ž .Ýn n

ks1

Ž .which in Example 2.1, of course, reduces to z s 3Z 3 .n n

FIG. 1. A Galton]Watson process with encircled sibling groups and the corresponding macro

process with its types.
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EXAMPLE 2.2. Consider a population where an individual can beget 0, 1 or

2 children. In a group of 2, one individual always splits into 2, the other

begets either 0 or 1 child with equal probabilities. The 2 siblings are equally

likely to be the splitting one. A single individual begets 0, 1 or 2 children with

probabilities 17r32, 8r32 and 7r32, respectively. In the setting above we
Ž .thus have the joint probability measures P k, ? , k s 1, 2, given by

P 1, 0 s 17r32, P 1, 1 s 8r32, P 1, 2 s 7r32Ž . Ž . Ž .

and

P 2, 0, 2 s P 2, 1, 2 s P 2, 2, 0 s P 2, 2, 1 s 1r4.Ž . Ž . Ž . Ž .Ž . Ž . Ž . Ž .

� 4The macro process has type space 1, 2 and reproduction matrix

8r32 7r32
M s ,

1r2 1

Ž .where the entry i, j is the expected number of j-type macro children of an

i-type macro mother. The growth rate is determined by the spectral radius of

M, that is, M ’s largest eigenvalue, denoted by r. Solving the characteristic

equation for M yields r s 9r8, so that we have

n
Z k ; 9r8 W k ,Ž . Ž . Ž .n

Ž .where the W k are random variables for k s 1, 2. Again, we wish to compare

with the corresponding independent process that has the same marginals.

Now an individual’s reproduction law depends on whether she has a sibling

or not, so actually the individual process is also multitype with type space
� 41, 2 . The type of an individual is the number of siblings in her sibling group.

The reproduction matrix for the ordinary independent multitype Galton]

Watson process we want to compare with is

8r32 14r32
m s ,

1r4 1

which also has r s 9r8; that is, the two processes have the same growth
Žrates. The extinction probabilities are again different; the dependent process

.will, for instance, never die out if it starts from a 2-group.

Indeed, if we have a population where an individual can beget at most r
Ž .children and the sibling dependencies are described by the measures P k, ? ,

k s 1, . . . , r, with marginals

p j s the probability that an individual of type i begets j children,Ž .i

Ž . Ž .we will have M s ip j and m s jp j for the macro process and thei j i i j i

Žindividual process, respectively recall that the type of an individual is the

number of individuals in her sibling group; i.e., if an individual begets j
.children, they will all be of type j . The relation

i
2.1 M s mŽ . i j i j

j
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Ž . Ž .ensures that det M y lI s det m y lI , so that M and m actually have the

same eigenvalues and hence the same spectral radii. Another condition for

the convergence of multitype Galton]Watson processes is that the reproduc-

tion matrix is positive, that is, that some power of it has all entries positive.

Ž .From 2.1 it follows that

i
n nM s mi j i j

j

for all n and positivity is equivalent for the two matrices. Again, we see that

the only conditions needed are on the individual marginals and that no

further conditions must be inferred due to the dependencies.

In the last example we assumed that the individual marginals are the

same within each sibling group. This may be a natural assumption for

splitting populations but is by no means necessary and for more general

reproduction patterns is clearly unsatisfactory. If the reproduction takes

place according to some point process, it would obviously be desirable to allow

different individuals to have different marginals also within the same sibling

group. It would also be desirable to let the whole reproduction process, rather

than just the number of siblings, determine the reproduction and dependence

structure. The construction above suggests that, in such a case, the type of a

macro individual should be the particular realization of the reproduction

process that describes that sibling group, and the type of an individual the

particular realization of the reproduction process that she was born in,

together with her rank. In the next section we will start building a theory for

general multitype branching processes with sibling dependencies.

3. The macro process. Now consider a general multitype population

where individuals who are siblings have dependent reproductions, whereas

individuals who are not siblings reproduce independently of each other.

To describe the sibling dependencies, assume that the individuals born in a

particular realization, g , of a point process on S = R choose their livesq

Ž . Ž g ŽS=Rq. g ŽS=Rq. .according to a joint probability measure P g , ? on V , AA ,

independently of all other individuals. For the sake of convenience, view
Ž . Ž ` `.P g , ? as a measure on V , AA , simply by choosing the v in somek

Ž .arbitrary way for k ) g S = R . The process of interest will be that ofq

individuals starting from one group of siblings, with dependencies described
Ž .by the P g , ? . As in the previous section, call sibling groups macro individu-

als.

Let the life of a macro individual simply be the vector of the individual

lives of that particular group of siblings. A macro individual’s life is thus an
` `Ž .element in V s V and of the form v s v . Let the type of macrok ks1

individual be the realization that describes how that particular group of
Ž .siblings was born. Therefore, with NN S = R denoting the set of realizationsq

Ž .of point processes or counting measures on S = R , take the type space G toq

be

g g NN S = R : 0 - g S = R - ` ,� 4Ž . Ž .q q



LOCAL DEPENDENCIES 245

equipped with some suitable s-algebra GG. Thus we rule out the possibility of

infinitely many children, which is a natural restriction; see, for instance,
Ž . Ž .Theorem 3 in Jagers 1989 . Of course, the condition g S = R ) 0 justq

means that we disregard empty groups of siblings. Following the construction
I IŽ .in Section 1, the macro population space is G = V , GG = AA , an outcome of

Ž .which is denoted g , v and consists of the type of the macro ancestor andI

� Ž . 4the lives of all conceivable macro individuals. The set P g , ? , g g G now
I IŽ . Ž .defines a unique probability measure P ? on G = V , GG = AA for eachg

starting type g g G.

Individuals thus choose lives according to the marginals of P . Generally,g

the ith individual in a group of siblings with type g chooses her life according

to the marginal

˜ ˜Q g , A s 1 v P g , dvŽ . Ž . Ž .Hi A i
V

for A g AA. We will assume that an individual’s marginal reproduction only
Ž Ž . Ž ..depends on her type, so if the ith point in g is s g , t g we havei i

˜ ˜Q g , ? s Q s g , ? ,Ž . Ž .Ž .i i

˜� Ž . 4where Q s, ? , s g S is a set of probability kernels. This means that, given

an individual’s type, her marginal reproduction does not depend on anything

that has to do with her siblings. There are still dependencies between the

actual reproductions though, so that, given some information about your

siblings’ number of children, for instance, your marginals will change. This

assumption is actually not a restriction since we can always redefine the
Ž .types to consist of the pairs g , i .

˜As will be seen later, it is convenient to transform Q into a probability

measure on G, so we define

˜ <� 4 � 4Q s, A s Q s, j g A j g G , A g GG .Ž . Ž .

The population of individuals started from a single individual ancestor of

type s then follows the marginal

˜3.1 Q dv s P dv Q s, dv .Ž . Ž . Ž .Ž .s I j Žv . I 00

w Ž .Recall that v is the individual ancestor’s life and v s v , v since the0 I 0 I

xmacro process starts from the children of the individual ancestor.

A macro individual is considered born with the individual mother of that

group of siblings if she begets any children. Then we can define birth times for

the macro individual recursively:

0, if g S = R ) 0,Ž .X qt s0 ½ `, otherwise,

t
X
q t j , if j S = R ) 0,Ž . Ž .X x i x x i qt sx i ½ `, otherwise.

Note that by this we do not allow empty groups of siblings to be born in finite

time. We also see that if the individual x begets any children, then t
X
s t .x x
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The macro reproduction process becomes

w xh g , v , A = 0, t s a i : j v g A , t g F t ,� 4Ž . Ž .Ž . i i

where A g SS and t G 0.

The macro reproduction kernel, that is, the expectation of h with respect to
˜Ž .the measure P g , ? , is then

w x w xM g , A = 0, t s E h A = 0, tŽ . Ž .g

`

s Q s g , A 1 ,Ž .Ž .Ý i �t Žg .F t4i

is1

the number of macro individuals with types in A born before t. Hence, with

d denoting the unit point mass in x,x

`
X X

3.2 M g , dg = dt s Q s g , dg d dt .Ž . Ž . Ž . Ž .Ž .Ý i t Žg .i

is1

EXAMPLE 3.1. As a special case we mention the model of Crump and Mode
Ž . Ž1969 . They consider a Bellman]Harris process i.e., a process where individ-

.uals have random lifespans and reproduce by splitting at death that allows

for sibling dependencies in the following way. The lifespans L , . . . , L of a1 k

collection of k siblings are assumed to be exchangeable and have joint

distribution function G . The probability that these siblings have n , . . . , nk 1 k

offspring is p ; also the numbers of children are assumed exchangeable.n , . . . , n1 k

Otherwise the independence assumptions of the Bellman]Harris process

hold. Denote the one-dimensional marginal of G by F and the probabilityk k

Ž .that an individual in a k-group begets j children by p j .k

A macro type thus consists of a lifespan and a number of children. If
Ž . w x � 4 Ž .g s l, k and A s 0, u = j , u G 0, j G 1, 3.2 yields

w xM g , A = 0, t s kF u p j 1 ,Ž . Ž .Ž . k k �lF t4

Ž .since t g s l for i s 1, 2, . . . , k.i

So now a macro process has been constructed; it is an ordinary multitype

branching process but would not be of much use unless it could measure the

same aspects of the population as the individual, sibling-dependent, process

does. The next objective is to show that the macro process is indeed useful in

this way. Recall the x-counted population from Section 1. We will show that

there exists a macro characteristic x
X

that measures exactly the same thing

as the individual characteristic x . This macro characteristic is defined through
`

X
3.3 x t s x t y t ,Ž . Ž . Ž .Ý i i

is1

where

x g , v , t y t s x s g , v , t y t g ,Ž . Ž .Ž . Ž .i I i i i I

� 4v denoting the lives of the individuals in the set iI s ix . Hence thei I x g I

macro characteristic adds the contributions of the individuals in each sibling

group and the following lemma is obvious.
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X Ž .LEMMA 3.1. Let x be defined through 3.3 and

Z x
X

s x
X

t y t
X

.Ž .Ýt x x

xgI

Then

z x s x t q Z x
X

.Ž .t 0 t

Note that Z x
X

starts counting from the children of the ancestor.t

4. Some Markov renewal theory. The asymptotics of the expected

population size are analyzed by means of Markov renewal theory, and we will
Ž .give the definitions needed for this purpose, following Shurenkov 1992 ,

Ž . Ž .which is an English version of Shurenkov 1989 . Let E, EE be a measurable
Ž .space with EE countably generated and K x, dy = dt a nonnegative kernel

Ž .on E = R , EE = BB , x g E and BB the Borel s-algebra on R .q q

ˆ Ž .For any real l define K x, dy throughl

`
yl tK̂ x , dy s e K x , dy = dtŽ . Ž .Hl

0

and

ˆn ˆny1 ˆK x , dy s K x , dz K z , dy .Ž . Ž . Ž .Hl l l
E

By convention we put

ˆ0K x , dy s d dy ,Ž . Ž .l x

placing a unit point mass at x.
ˆA kernel K is called s-finite if there exists an EE = EE-measurable, strictlyl

positive function f such that

ˆf x , y K x , dy - `Ž . Ž .H l
E

for each x g E.

ˆ ˆŽ .DEFINITION 4.1. The Perron root of K , denoted by r K , is definedl l

through

1
n nˆs sup c G 0: c K is s-finite .Ý l½ 5ˆr KŽ . nG0l

ˆDEFINITION 4.2. The kernel K is called conservative if there exists al

Ž .s-finite nonzero measure m on E, EE such that

1
nˆm A ) 0 « K x , A s `, A g EE ,Ž . Ž .Ý lnrnG0

for all x g E.

5. Mean convergence. Since the expectation of z x is the expectation oft

a sum, it will not be affected by the sibling dependencies. The asymptotic
w x x xresults that can be obtained are valid since E z , the expectation of zs t t
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when the ancestor has type s, satisfies a Markov renewal equation, sibling

dependencies or not. These asymptotics are determined by the reproduction

kernel m, defined as

w x w xm s, A = 0, t s E j A = 0, t ,Ž . Ž .s

the expected number of children with types in A an s-type individual begets

before age t. The Malthusian parameter, a , is now defined so that m hasˆa

Perron root 1. Once a has been fixed we omit it in the subscript, writing m̂

rather than m . We only consider the supercritical case, that is, when a ) 0.ˆa

If the kernel m is conservative it determines an invariant function h andˆ
an invariant measure p such that

h s s h r m s, drŽ . Ž . Ž .ˆH
S

and

p ds s m r , ds p dr ,Ž . Ž . Ž .ˆH
S

Ž .with the interpretations that h s is the reproductive value of the type s and

p the stable-type distribution. To guarantee that p can be normed to a
1w xprobability measure, the assumptions h g L p and inf h ) 0 are made. If

there exists an a ) 0 such that

w xsup m s, S = 0, a - 1Ž .
s

and the stable age of child-bearing, b, defined through

b s eya th r m s, dr = dt p dsŽ . Ž . Ž .H
S=S=Rq

is positive and finite, the process is called strictly Malthusian.

The kernel m is also assumed nonlattice, latticeness meaning that there
w xexists a number d ) 0 and a function c: E ª 0, d such that m is concen-

trated on the lattice

t , r g R = S : t s c s y c r q nd for some n s 0, 1, . . .� 4Ž . Ž . Ž .q

for p-almost all s g S.

Finally, an integrability requirement on x is needed and for that purpose

we give the following definition:

DEFINITION 5.1. A function g: S = R ª R is called directly Riemannq q

Ž .integrable p if

sup g s, t p ds - `Ž . Ž .Ý H
S nFtFnq1nG0

and

d sup g s, t y inf g s, t p ds ª 0 as d ª 0 q .Ž . Ž . Ž .Ý H ž /
Ž .ndFtF nq1 dS Ž .ndFtF nq1 dnG0
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Under these conditions the general Markov renewal theorem of Shurenkov
Ž . Ž . ` ya t Ž .1992 can be applied. Let x a s H ae x t dt and let E denote expecta-ˆ 0 p

tion when the type is not fixed but distributed according to p .

THEOREM 5.2. Consider a nonlattice, strictly Malthusian branching pro-
ya t w Ž .xcess with sibling dependencies. Let x be bounded and the function e E x ts

directly Riemann integrable. Then

E x aŽ .ˆpya t x5.1 E e z ª h sŽ . Ž .s t
ab

as t ª ` for p-almost all s g S.

Ž .PROOF. As for Theorem 3 in Jagers 1992 . I

Note that the theorem looks exactly as its independent analog. One way of

expressing this is that introducing sibling dependencies qualitatively does

not change the asymptotics. The difference is rather quantitative, since the
w Ž .x Ž .constant E x a may differ recall Example 2.1 . When we turn to theˆp

x Ž 1 .asymptotics of z itself L -convergence is what will be considered , thingst

will be more complicated. We will then work directly with the macro process

and must for that purpose explore how the individual process and the macro

process relate to each other.

6. The Malthusian parameter. To investigate the Markov renewal
n ˆ nproperties, a connection between m and M needs to be established. Firstˆl l

note that

`
yl tm s, dr s e E j dr = dtŽ . Ž .ˆ Hl s

0

`
X X

Xs exp ylt g d dr Q s, dgŽ . Ž . Ž .Ž .Ý H i s Žg .i
Gis1

6.1Ž .

Ž .and, by 3.2 ,

`
X X

M̂ g , dg s exp yat g Q s g , dg ,Ž . Ž . Ž .Ž . Ž .Ý i i

is1

which yields the connection

`
X Xn ny1ˆ6.2 M g , dg s exp ylt g m s g , ds Q s, dgŽ . Ž . Ž . Ž . Ž .Ž . Ž .ˆÝ Hl i l i

Sis1

ˆ ˆ 0 X Xw Ž . Ž .xfor n G 1, between M and m M g , dg s d dg . Now it is possible toˆl l l g

ˆprove that m and M define the same Malthusian parameter.ˆl l
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ˆLEMMA 6.1. The reproduction kernel m has Perron root 1 if and only if Mˆl l

has Perron root 1.

ˆŽ . Ž .PROOF. We will show that r m s r M for any real l. First let c -ˆl l

Ž .1rr m . Then there exists a function f ) 0 such thatˆl

6.3 cn f s, r mn s, dr - `,Ž . Ž . Ž .ˆÝ H l
SnG0

Ž .where, by 6.1 ,

f s, r mn s, drŽ . Ž .ˆH l
S

`
X X Xny1s exp ylt g f s, s g m s, dr Q r , dgŽ . Ž . Ž . Ž .ˆŽ . Ž .Ý H j j l

S=Gjs1

6.4Ž .

for n G 1 and

f s, r m0 s, dr s f s, s .Ž . Ž . Ž .ˆH l
S

The question is if there exists a function F ) 0 such that

X ˆ n X
F g , g M g , dg - `Ž . Ž .Ý H l

GnG0

Ž .for all g g G. Therefore, take a g g G, fix an i F g S = R and note that, byq

Ž . Ž .6.3 and 6.4 ,

`
X X Xn nc exp ylt g f s g , s g m s g , dr Q r , dg - `Ž . Ž . Ž . Ž . Ž .Ž .ˆŽ . Ž .Ý Ý H j i j l i

S=GnG0 js1

and hence also

` `
X Xnc exp ylt g exp ylt g f s g , s gŽ . Ž . Ž . Ž .Ž . Ž . Ž .Ý Ý Ý H i j i j

S=GnG0 is1 js1

=mn s i g , dr Q r , dg
X

- `.Ž . Ž .Ž .ˆl

Now define

`
X X X

6.5 F g , g s exp ylt g f s g , s g ,Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ýi j i j

js1

so that

`
X Xn nc exp ylt g F g , g m s g , dr Q r , dg - `.Ž . Ž . Ž . Ž .Ž . Ž .ˆÝ Ý H i i l i

S=GnG0 is1

Ž .Since for each ggG there are a finite number of F , is1, 2, . . . , g S=Rq -i

`, we can define

6.6 F g , g
X

s min F g , g
XŽ . Ž . Ž .i

Ž .is1, 2, . . . , g `
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Ž .and, by 6.2 , obtain that

n X ˆ n X
c F g , g M g , dgŽ . Ž .Ý H l

GnG0

`
X Xn ny1s F g , g q c exp ylt g F g , g m s g , dr Q r , dgŽ . Ž . Ž . Ž . Ž .Ž . Ž .ˆÝ Ý H i l i

S=GnG1 is1

`
X Xn ny1F F g , g q c exp ylt g F g , g m s g , dr Q r , dgŽ . Ž . Ž . Ž . Ž .Ž . Ž .ˆÝ Ý H i i l i

S=GnG1 is1

- `.
n ˆ n ˆŽ . Ž . Ž .Hence Ý c M is s-finite if c - 1rr m and therefore r M G r m .ˆ ˆnG 0 l l l l

Ž .Next let c ) 1rr m . For all f ) 0 there exists an s g S such thatˆl

cn f s, r mn s, dr s `.Ž . Ž .ˆÝ H l
SnG0

The question is now if, given an F ) 0, there exists a g g G such that

n X ˆ n X
c F g , g M g , dg s `;Ž . Ž .Ý H l

GnG0

that is,
`

X Xn nF g , g q c F g , g exp ylt g m s g , dr Q r , dg s `.Ž . Ž . Ž . Ž . Ž .Ž . Ž .ˆÝ Ý H i l i
S=GnG0 is1

For an arbitrary F ) 0 let

g g , r s F g , g
X

Q r , dg
X

,Ž . Ž . Ž .H
G

Ž .which is strictly positive if we assume that all the Q r, G ) 0. This assump-

tion can be made since it will later follow from the fact that h ) 0. Now let

6.7 G s g g G : g S = R s 1, t g s 1 ,� 4Ž . Ž . Ž .1 q 1

Ž .so that every s g S corresponds to a unique g s g s in G . Define1

6.8 f s, r s g g s , r .Ž . Ž . Ž .Ž .

Then there exists an s g S such that0

cn f s , r mn s , dr s `.Ž . Ž .ˆÝ H 0 l 0
SnG0

Ž .Choose g s g s to obtain0 0

n X ˆ n X
c F g , g M g , dgŽ . Ž .Ý H 0 l 0

GnG0

`
n ns F g , g q c exp ylt g g g , r m s g , drŽ . Ž . Ž . Ž .Ž . Ž .ˆÝ Ý H0 0 i 0 0 l i 0

Sis1 nG0

s F g , g q exp y@t g cn f s , r mn s , dr s `.Ž . Ž . Ž . Ž .Ž . ˆÝ H0 0 l 0 0 l 0
SnG0
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n ˆ n Ž .It has been shown that Ý c M is not s-finite if c ) 1rr m . There-ˆnG 0 l l

ˆŽ . Ž .fore, r M F r m and the proof is complete. Iˆl l

7. The invariant functions and measures. First we treat the question

of conservativity.

ˆLEMMA 7.1. The reproduction kernel m is conservative if and only if M isˆ
conservative.

PROOF. Assume first that m is conservative. Then there exists a measureˆ
Ž .m on S, SS such that

m A ) 0 « mn s, A s `Ž . Ž .ˆÝ
nG0

Ž .for each s g S. We wish to find a measure l on G, GG such that

ˆ nM g , B s `Ž .Ý
nG0

Ž .for all g g G whenever l B ) 0. Such a measure is

l dg Q s, dg m ds .Ž . Ž . Ž .H
S

Ž .To see this, consider an A g GG with l A ) 0. Then there exist a subset B of
Ž . Ž .S and a number c ) 0 such that m B ) 0 and Q s, A G c when s g B.

Therefore, for any g g G,
`

nM̂ g , A G c exp yat g m s g , B s `Ž . Ž . Ž .Ž . Ž .ˆÝ Ý ÝH i i
SnG1 is1 nG0

Ž .since m B ) 0.
ˆNow assume that M is conservative. Then there exists a measure l on

Ž .G, GG such that

ˆ nM g , B s `Ž .Ý
nG0

Ž .for all g g G whenever l B ) 0. A measure exhibiting m as conservative isˆ
`

m ds s exp yat g d ds l dg .Ž . Ž . Ž . Ž .Ž .Ý H i s Žg .i
Gis1

Ž .Indeed, if m B ) 0, then there exist an A g GG and a number c ) 0 such
Ž . ` Ž Ž .. Ž Ž ..that l A ) 0 and Ý exp yat g 1 s g G c when g g A. Hence, byis1 i B i

Ž .6.1 ,
`

n nm s, B s exp yat g 1 s g m s, dr Q r , dgŽ . Ž . Ž . Ž . Ž .Ž . Ž .ˆ ˆÝ Ý Ý H i B i
S=GnG1 nG0 is1

G c mn s, dr Q r , A .Ž . Ž .ˆÝ H
SnG0

Ž .But, by 6.2 ,
`

n nM̂ g , A s exp yat g m s g , dr Q r , A s `Ž . Ž . Ž . Ž .Ž . Ž .ˆÝ Ý Ý H i i
SnG1 nG0 is1
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Ž .for every g g G since l A ) 0. In particular, it holds for all g in the set G1

Ž . Ž .defined in 6.7 . Therefore, fix an s g S and let g s be the corresponding
Ž . Ž Ž .. Ž Ž ..element of G so that g S = R s 1, t g s s 1 and s g s s s. By the1 q 1 1

above,

mn s, dr Q r , A s `Ž . Ž .ˆÝ H
SnG0

and hence

mn s, B s `Ž .ˆÝ
nG0

for all s g S and m is conservative. Iˆ

Hence we know that growth rate and conservativity are properties that are

equivalent for the individual process and the macro process, respectively, or

put another way, that there is no way to change these properties by introduc-

ing sibling dependencies into an ordinary multitype process with reproduc-

tion measure m.

We are now going to explore the connection between the two processes
ˆfurther. It has been shown that assuming m conservative implies that M alsoˆ

is conservative and there thus exists a function H and and a measure c such

that

X ˆ X
7.1 H g s H g M g , dgŽ . Ž . Ž . Ž .H

G

and

ˆ X X
7.2 c dg s M g , dg c dg .Ž . Ž . Ž . Ž .H

G

One might ask if more can be done than just giving an existence statement; is

it possible to make use of the relation between the individual process and the

macro process and give H and c explicitly in terms of h and p ? With the

notation

`
ya tg s e h s g ds = dt s exp yat g h s g ,Ž . Ž . Ž . Ž .Ž . Ž .ÝH i i

S=Rq is1

the affirmative answer is given in the following lemma.

LEMMA 7.2. If m has invariant measure p and invariant function h, thenˆ
M̂ has invariant measure c and invariant function H given by

7.3 H g s g ,Ž . Ž .

7.4 c dg s Q s, dg p ds .Ž . Ž . Ž . Ž .H
S

PROOF. Just insert the candidates for H and c in the defining relations
Ž . Ž .7.1 and 7.2 and make use of the invariance properties of h and p . I
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The expressions in Lemma 7.2 are intuitively obvious. The reproductive
Ž .value of a sibling group of type g , H g , weighs together the reproductive

values of the individuals in that group. The weights are exponentially de-

creasing functions of the birth times, thus taking into account that the earlier

you are born, the more time you have to contribute to the population.

Further, if an individual has type s, then her children will be born
Ž .according to the measure Q s, dg , and the expression for c follows.

It is also possible to give h and p in terms of H and c , as shown in the

following lemma.

ˆLEMMA 7.3. If M has invariant measure c and invariant function H, then

m has invariant measure p and invariant function h given byˆ

7.5 h s s H g Q s, dg ,Ž . Ž . Ž . Ž .H
G

`

7.6 p ds s exp yat g d ds c dg .Ž . Ž . Ž . Ž . Ž .Ž .Ý H i s Žg .i
Gis1

PROOF. Insert in the defining relations and use the invariance properties

of H and c . I

8. Convergence of the macro process. We will now show that the

remaining Markov renewal conditions mentioned in Section 5 carry over from

the individual process to the macro process. One such condition is latticeness.

Since individuals and macro individuals are born at the same time points, it

is intuitively clear that M is nonlattice if m is so. The technicalities that have

to do with almost everywhere qualifications with respect to p and c are
Ž .omitted here. They may be found in Olofsson 1994 .

Ž . X
By 3.3 , it is clear that x need not be bounded even if x is so. Neither

will the condition

w xsup m s, S = 0, a - 1Ž .
s

carry over to the macro process. These two conditions are, however, used only

to guarantee that
ya t xsup E e z - `s t

tG0

for all s g S, a condition needed for the Markov renewal theorem. For the

macro process we note that
`

X
ya t x x8.1 E e Z s exp yat g E exp ya t y t z iŽ . Ž . Ž . Ž .Ž . Ž .Ýg t i s Žg . i tyti i

is1

and therefore it also holds that
X

ya t x8.2 sup E e Z - `Ž . g t
tG0

for all g g G.
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It is quite easy to show also that the direct Riemann integrability carries

over to the macro process. We state this as a lemma; the proof may be found
Ž .in Olofsson 1994 .

ya t w Ž .x Ž .LEMMA 8.1. If e E x t is directly Riemann integrable p , thens
ya t w XŽ .x Ž .e E x t is directly Riemann integrable c .g

Since all the conditions needed for the Markov renewal theorem are

satisfied, we can state the following result.

THEOREM 8.2. Assume the conditions of Theorem 5.1 and let x
X

be defined
Ž .through 3.3 . Then, with B denoting the stable age of child-bearing in the

macro process,
X

E x aŽ .ˆX cya t xE e Z ª gg t
aB

as t ª ` for c-almost all g g G.

X Ž .It can be shown that B s b and that, if x is of the form 3.3 , then
X

E x a s E x a .Ž . Ž .ˆ ˆc p

9. The x log x condition. In the analysis of the actual population, the

x log x condition is of crucial importance. With

ya tj s e h r j dr = dt ,Ž . Ž .H
S=Rq

the x log x condition is

qE j log j - `.p

The corresponding condition for the macro process is

qE h log h - `,c

where, because of the special relationship between the individual process and

the macro process,
`

h s exp yat j j .Ž .Ž .Ý i 0 i

is1

It will now be shown that these two conditions are actually equivalent.

q qw x w xLEMMA 9.1. E j log j - ` m E h log h - `.p c

PROOF. The proof relies on the convexity of the function x logqx. First
qw xassume that E j log j - `, denotep

`

g a s exp yat gŽ . Ž .Ž .ˆ Ý i

is1
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and note that

`
q qE h log h s E h log exp yat g jŽ .Ž .Ýg g i iž /

is1

` exp yat gŽ .Ž .iqs E h log g a jŽ .ˆ Ýg iž /g aŽ .ˆis1

qF E h log g aŽ .ˆg

` `exp yat g exp yat gŽ . Ž .Ž . Ž .i iqq g a E j log jŽ .ˆ Ý Ýg i iž /g a g aŽ . Ž .ˆ ˆis1 is1

s I g q I g ,Ž . Ž .1 2

since logqab F logqa q logqb. Further

q qw xI g s E h log g a s g log g a .Ž . Ž . Ž .ˆ ˆ1 g

Since, with k s inf h ) 0,

` `

g s exp yat g h s g G k exp yat g s kg a ,Ž . Ž . Ž . Ž .Ž . Ž . Ž . ˆÝ Ýi i i

is1 is1

we obtain

g
qI g c dg F g log Q s, dg p dsŽ . Ž . Ž . Ž .H H1 ž /kG S=G

j j
q qs E j log p ds s E j log ,Ž .H s p

k kS

which is finite by assumption.

The function x logqx is convex and therefore

n n n
q ql x log l x F l x log xÝ Ý Ýi i i i i i iž /

is1 is1 is1

n Ž Ž .. Ž . wif Ý l s 1, l G 0. For a fixed g we take l s exp yat g rg a andˆis1 i i i i

Ž .xhave n s g S = R to obtainq

` exp yat gŽ .Ž .i qI g F g a E j log jŽ . Ž .ˆ Ý2 g i i
g aŽ .ˆis1

`
qs exp yat g E j log j .Ž .Ž .Ý i g i i

is1
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Hence

`
qI g c dg F exp yat g E j log j c dgŽ . Ž . Ž . Ž .Ž .ÝH H2 i g i i

G Gis1

`
qs exp yat g E j log j c dgŽ . Ž .Ž .Ý H i s Žg .i

Gis1

`
qs exp yat g d ds E j log j c dgŽ . Ž . Ž .Ž .Ý H i s Žg . si

G=Sis1

q qs E j log j p ds s E j log j - `Ž .H s p
G

q qw x w xand it is proved that E h log h - `. Now assume that E h log h - `.c c

Because of the convexity we can apply Jensen’s inequality which yields

q q qw x w xE h log h G E h log E h s H g log H g .Ž . Ž .g g g

Hence

q q` ) E h log h G H g log H g c dgŽ . Ž . Ž .Hc
G

qs g log g Q s, dg p dsŽ . Ž .H
G=G

q qs E j log j p ds s E j log jŽ .H s p
G

and the proof is complete. I

10. Convergence in L
1. The L1-convergence of the macro process is

Ž .explored by means of a certain martingale, introduced in Nerman 1984 . Let

mx denote x ’s mother and define

� X X 4II s x g I : t F t - t ,t m x x

the set of macro individuals whose macro mothers are born before t but who

themselves are born after t. The intrinsic martingale is

W s exp yat
X

H j .Ž . Ž .Ýt x x

xg IIt

Ž .From Jagers 1989 we know that the x log x condition implies that W ist

uniformly integrable and hence there exists a random variable W G 0 on the
I 1Ž .macro space G = V , such that W ª W in L P as t ª `, for c-almost allt g

g g G. The process will now be analyzed through the normed population size

eya tZ x
X

t
z s .t

H jŽ .0
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With II as above, we get, for any t - t,t 0

eya t H jŽ .xX
10.1 z s x t y t q z x exp yat ,Ž . Ž . Ž . Ž .Ý Ýt x x tyt xxH j H jŽ . Ž .0 0x- II xg IIt t0 0

Ž .where z x s z (S and x - II means that x strictly precedes II ,tyt tyt x t tx x 0 0

Ž .that is, has descendants in II but does not itself belong to it. With U g , vt x0

s v , the projection on the macro individual x ’s life, we define the s-algebrasx

FF s GG = s U : x - II ,Ž .t x t

that is, the s-algebras generated by the types and lives of the macro individu-

als strictly preceding II .t

The individual branching process is called uniformly integrable if y , thet

total number of individuals born up to time t, is uniformly integrable over its

starting type, that is, if

w xsup E y ; y ) c ª 0, c ª `,s t t
sgS

for any fixed t.

We are ready for the main convergence result.

THEOREM 10.1. Consider a uniformly integrable, strictly Malthusian
qw xbranching process with sibling dependencies such that E j log j - `. Letp

ya t w Ž .xx be bounded and the function e E x t directly Riemann integrable.s

Then there exists a random variable w on S = V I such that

E x aŽ .ˆpya t xe z ª wt
ab

1 ˜Ž .in L Q for p-almost all s g S.s

PROOF. We first work with the macro process started from the children of
ya t x

X

Ž w Ž .x .the ancestor and show that e Z converges to E x a rab W.ˆt p
XŽ . ` Ž .Let x t s Ý x t y t and assume that x is bounded by n. Defineis1 i i

nŽ . XŽ . Ž . n nx t s x t 1 t so that x vanishes for t G n. It is x that will be thew0, n x

Ž .characteristic under consideration. With t s t y n in 10.1 , we then have0

H jŽ .xX
X10.2 z s z x exp yat ,Ž . Ž . Ž .Ýt tyt xx H jŽ .0xg IItyn

since if x - II , then t y t
X
G n.tyn x

Ž .We will show that the z are uniformly integrable. From 8.2 we know thatt

w xthe E z are uniformly bounded, and it remains to be shown thatg t

w x Ž . Ž .sup E z ; A ª 0 as P A ª 0. With y x denoting the total number oft g t g t
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individuals at time t stemming from the individual x, we first note that

Ž . Ž .j t j t0 0
Xnx x xZ F Z s z i F n y iŽ . Ž .Ý Ýt t tyt Ž j . tyt Ž j .i 0 i 0

is1 is1

and hence

Ž X .j tytx xn
X

X Xz x F exp ya t y t y xi .Ž . Ž . Ž .Ž . Ýtyt x tyt yt Ž j .x x i xH jŽ .x is1

Ž .By 10.2 and the fact that

`

ˆH j s exp yat j h s j G kj a ,Ž . Ž . Ž . Ž .Ž . Ž .Ý i i

is1

it now holds that

X Ž X .j tytx xn exp ya t y t H jŽ . Ž .Ž .x xX
10.3 z F y xi exp yat ,Ž . Ž . Ž .Ý Ýt n xž /ˆk H jŽ .j aŽ . 0is1xg II xtyn

X
X Ž . Ž .since if x g II , then t y t F n and hence y x F y x .tyt yt Ž j .tyn x nx i x

Now let « ) 0 be given. By the uniform integrability of y , there exists an

d ) 0 such that

< <P A FF - d « sup E y xi ; A FF - « ,Ž .Ž .tyn n tyn
xg IItyn

where we also make use of the fact that if x g II , then the s aretyn x i

Žmeasurable with respect to FF the individual types s are determined bytyn x i

the type j of the macro individual x, and this type is determined by the lifex

.of x ’s macro mother which belongs to FF . From this we see thattyn

XX Ž .j tytx xexp ya t y tŽ .Ž .x
<E y xi ; A FFŽ .Ý n tyn

ĵ aŽ . is1x

X Ž X .j tytx xexp ya t y tŽ .Ž .x
<s E y xi ; A FFŽ .Ý n tyn

ĵ aŽ . is1x

exp ya t y t
X

j t y t
XŽ . Ž .Ž .x x x

- « F «
ĵ aŽ .x

Ž < .if P A FF - d , since, for any g g G,tyn

eya tg t 1Ž . t
ya Ž tyu. ya us e e g du F 1.Ž .H

g a g aŽ . Ž .ˆ ˆ 0

I Ž .Now fix a d and consider an A g SS = A with P A - d . With0 g 0

<B s P A FF - d ,� 4Ž .tyn
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we then get

dP B c F P A l B c F P A - dŽ . Ž . Ž .g g g 0

and

kH gŽ .
w xE z ; Ag t

n

exp ya t y tŽ .Ž .x
F E E exp yat H jŽ . Ž .Ýg x x

ĵ aŽ .xg II xtyn

Ž .j tytx x

<= y xi ; A FF ; BŽ .Ý n tyn

is1

exp ya t y tŽ .Ž .x
q E E exp yat H jŽ . Ž .Ýg x x

ĵ aŽ .xg II xtyn

Ž .j tytx x

c<= y xi ; A FF ; BŽ .Ý n tyn

is1

exp ya t y tŽ .Ž .x
F E exp yat H j EŽ . Ž .Ýg x x

ĵ aŽ .xg II xtyn

Ž .j tytx x

<= y xi ; A FF ; BŽ .Ý n tyn

is1

exp ya t y tŽ .Ž .x
q E exp yat H j EŽ . Ž .Ýg x x

ĵ aŽ .xg II xtyn

Ž .j tytx x

c<= y xi FF ; BŽ .Ý n tyn

is1

cw x w xF « E W q sup E y E W ; B ,g tyn s n g tyn
sgS

w x w x Ž . Žwhere the first term can be made small since E W s E W s H g Wg tyn g t

. Ž c.is a martingale , and by choosing d small enough P B will also be small0 g

Žand by the uniform integrability of W this is where the x log x conditiont

. w c xappears E W ; B will be uniformly small in t. Hence the z and therebyg tyn t

also the eya tZ x
X

are uniformly integrable. It can be proved thatt

<z y E z FF ª 0t t tyn

in P -probability for c-almost all g g G. This relies on the uniform integrabil-g

ity of the y and is done exactly as in the proof of Theorem 7.2 in Jagersn

Ž .1989 and is omitted here. With
nE x aŽ .ˆc

r s ,n
aB
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we have that

1
<E z FF y rt tyn n

H jŽ .0

r rn nX < <X w xF E z y W dg = du q W y W ,Ž .H g tyu tyn tyn
H j H jŽ . Ž .G=R 0 0q

where

W G s 1 j , t
X

exp yat
X

H j ,Ž . Ž . Ž . Ž .Ýt G x x x x

xg IIt

1Ž .G g SS = BB. We already know that W ª W in L P for c-almost all g g G,t g

which takes care of the second term. To deal with the first term, introduce the

special characteristic

`
X X XG a t ya ux t s e 1 g , u e H g h dg = duŽ . Ž . Ž . Ž .H H G

S t

for which it can be shown that

W G s eya tZ x G

;Ž .t t

Ž .see Nerman 1984 . It is an easy task to check that the Markov renewal
Ž .conditions are satisfied so that Theorem 3 in Shurenkov 1992 can be applied

and
GE x aŽ .ˆc

E W G ª H g .Ž . Ž .g t
aB

< w x < w Ž .XSince E z y r is bounded a consequence of 8.1 together with theg tyu n

w ya t x xfact that the E e z are bounded; see the proof of Theorem 3 in Jagerss t

Ž .x1992 ,

X< <X w xE z y r E W dg = duŽ .H g tyu n g tyn
G=Rq

c< <X w xF sup E z y r E W G q ME W G ,Ž . Ž .g tyu n g t g t
XŽ .g , u gG

which can be made small for t large by Egoroff’s theorem. Thus

W
z ª rt n

H jŽ .0

in P -probability for c-almost all g g G. Hence we have thatg

eya tZ x n

ª r Wt n

1Ž .in P -probability and, by the uniform integrability, also in L P for theg g
n w Ž . xcharacteristic x under consideration see, e.g., Ash 1972 , page 297 . Fi-
XŽ . ` Ž .nally, consider x t s Ý x t y t . Withis1 i i

E x aŽ .ˆp
r s ,

ab
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w XŽ .xit is easy to show that r s E x a raB and we have thatˆc

X X nya t x ya t x ya t x< < < <E e Z y rW F E e Z y e Zg t g t t

nya t x< < < <q E e Z y r H g q E r H g y rH g ,Ž . Ž . Ž .g t n g n

where the first and third terms can be made small by choice of n large and

monotone convergence, and the second term is the case just treated.

Now define w on S = V I through

w s, v s W j v , v .Ž . Ž .Ž .I 0

Ž .By 3.1 and Lemma 3.1 it is clear that

X
ya t x ya t ya t x< < < <E e z y w F E e x t q E e Z y rW Q s, dg .Ž . Ž .Hs t s 0 g t

G

Since

c A s Q s, A p ds ,Ž . Ž . Ž .H
S

Ž . Ž .it is clear that Q s, ? is absolutely continuous with respect to c ? for

p-almost all s g S. Therefore,

X
ya t x< <E e Z y r w Q s, dg ª 0Ž .H g t

G

for p-almost all s g S. I

By this theorem it is clear that the asymptotics of eya tz x are establishedt

Ž .through conditions on the marginal reproduction measures m s, dr = dt

alone. It is interesting to compare with an ordinary multitype process with

the same marginals. Entities determined by the marginals alone remain the

same; hence a , h and p are the same in the sibling-dependent population as
w Ž .xin the independent population. The constant E x a is the same at least asˆp

long as individual characteristics are considered, that is, characteristics that

only depend on an individual’s own type and life, not on its progeny. For
w Ž .xnonindividual characteristics, however, E x a may differ substantially inˆp

˜the two populations compared, since the measure Q clearly depends on thep

Ž .joint measures P recall Example 2.1 .g

11. The stable population measure. The result in Theorem 10.1 indi-

cates that the proportion of individuals counted by some characteristic x

stabilizes as time tends to `. This leads us to think of some kind of stable

population, infinitely old and large with a stable composition of individuals.

Such considerations lie behind the construction of the doubly infinite popula-

tion space, introduced for single-type populations in Nerman and Jagers
Ž . Ž .1984 . The multitype case is described in Jagers 1992 and, more exten-

Ž .sively, in Jagers and Nerman 1992 .

The doubly infinite population space is centered around an individual,

Ego, thought of as sampled from all those born in an old exponentially
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growing population. The life and progeny of Ego can be viewed as an ordinary
Ž .or sibling-dependent, if that is the case branching process with Ego as the

ancestor. But now Ego also has a mother, a grandmother and so on, and she

also has an age, thereby anchoring the population in real time. Therefore, let
� 4Z s 0, y1, y2, . . . , where Ego is 0, her mother y1 and so on. From Ego’sy

mother there will stem a population y1I and likewise for any individual yj.

Therefore, let J s Z = I and define the doubly infinite population space asy

V s R = N` = V J ,q

an element of which gives information about Ego’s age, ancestry and the lives

of all conceivable individuals in J. This space is endowed with the product

s-algebra denoted by CC. In order to describe the stable population measure
Ž .on V, CC , some random elements on this space are introduced.

Hence let T denote Ego’s age at sampling, S her type and R her rank.0 0 0

Also, T is Ego’s mother’s age when she gave birth to Ego, S her type, R1 1 1

her rank and so on backwards. The life and progeny of Ego are denoted by z ,0

z denotes the life and progeny of Ego’s mother except the life and progeny of1

Ego, z the life and progeny of Ego’s grandmother except Ego’s mother’s life2

and progeny and so on. Thus, after renumbering the population to tell which
Ž .one of yk ’s children has been removed in order to play the role of y k y 1 ,

z is the coordinate projection V ª Vyk I.k

DEFINITION 11.1. In an independent multitype branching process, the

stable population measure is determined by

P z g A , T g dt , S g ds , R s i , k s 0, . . . , nŽ .k k k k k k k k

s E exp yat ; s g dsŽ .p i i nn n

=E exp ya t ; A l s g ds , t g dt� 4Ž .s n n i ny1 i nn ny1 ny1
11.1Ž .

= ??? = E exp ya t ; A l s g ds , t g dt� 4Ž .s 1 1 i 0 i 11 0 0

= P A aexp ya t dt ,Ž . Ž .s 0 0 00

where A g AA
I.k

This definition has a number of consequences described in Jagers and
Ž .Nerman 1992 . For instance, the stable population measure gives Ego an age

Ž .which is exponentially a distributed and independent of everything else

and a type distributed according to p .

The main difference in a multitype sibling-dependent population is that

even if an individual’s marginal reproduction only depends on her type, there

are still dependencies between siblings; the conditional independence struc-

ture in independent multitype populations now only exists on the macro level.

We want to study the individual stable population but for this it is necessary

to invoke the macro process. Therefore, any defining relation of the stable

population measure should take into account the following two considera-
Ž .tions: 1 the whole reproduction processes should be used as information

Ž .carriers between generations, and 2 the lives and progenies of whole sibling
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groups should be considered rather than individuals. Hence let S , T , andk k

R be as above and define G as the reproduction process according to whichk 0

Ego was born and G the process according to which Ego’s mother was born1

and so on. Further let Z be the lives and progeny of Ego and her siblings, Z0 1

the lives and progeny of Ego’s mother and her siblings except the lives and

progeny of Ego and her siblings and so on.

DEFINITION 11.2. In a multitype branching process with sibling dependen-

cies, the stable population measure is determined by

P Z g B , T g dt , G g dg , R s i , k s 0, . . . , nŽ .k k k k k k k k

s exp yat g c dgŽ . Ž .Ž .i n nn

=E exp ya t ; B l j g dg , t j g dtŽ . � 4Ž .g n n i ny1 i i nn n ny1 n
11.2Ž .

= ??? = E exp ya t ; B l j g dg , t j g dtŽ . � 4Ž .g 1 1 i 0 i i 11 1 0 1

= P B a exp ya t dt ,Ž . Ž .g 0 0 00

where B g AA
I1.k

NOTE. Of course, this is how P looks also in an independent population

but then, because of the independencies, the P are equal to the products ofg

their marginals.

It can be shown that the stable population measure indeed appears as a

limit of averages in a growing population. This is done almost exactly as in,
Ž .for example, Jagers and Nerman 1992 , only with some care that has to be

taken because of the dependencies. The exact results and proofs may be found
Ž .in Olofsson 1994 . Here we only give a quick description of P through some of

its consequences.

12. Properties of the stable population measure. It is natural to

compare the stable population measure in a sibling-dependent population

with its independent analog, that is, the stable population measure that

arises from an ordinary independent multitype process with the same indi-

vidual marginals as the sibling-dependent one.

Ž .It is obvious from Definition 11.2 that T is still exponential a and0

independent of everything else. Some trivial calculations also yield that Ego’s

individual properties are the same in the two populations. Actually, even

more than this holds, for instance, the following two propositions which are

exactly the same as in the independent case.

PROPOSITION 12.1. The sequence S , S , . . . of types backwards from Ego is0 1

a Markov chain with transition probabilities

m s, drŽ .ˆ
<P S g ds S s r s p ds .Ž .Ž .nq1 n

p drŽ .
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PROPOSITION 12.2. The sequence of types and interbirth times backwards
Ž .`from Ego, S , T , is a Markov renewal process with transition kerneln n ns0

eya tm s, dr = dtŽ .
<P S g ds, T g dt S s r s p ds .Ž .Ž .nq1 nq1 n

p drŽ .

Hence a lot of properties of a population remain unaffected by sibling

dependencies. That a lot of properties are also affected is best realized by
Ž .considering Example 2.1 where, for instance, we have P B s 1r3 and

Ž c . Ž .P A l B s 2r81 in the independent population, but P B s 29r81 and
Ž c .P A l B s 0 in the sibling-dependent population.

13. General local dependencies. A natural extension is to allow depen-
wdencies also between first cousins, second cousins and so on see, e.g.,

Ž .xKubitschek 1967 . Let us start by introducing some terminology and conve-

nient notation. Call a branching process n-dependent if individuals who are

kth cousins reproduce independently if k G n but possibly dependently if

k - n. By convention, siblings are considered as 0th cousins. Then 0-

dependence means independence, 1-dependences means sibling dependence,

2-dependence means that individuals who are either siblings or first cousins

reproduce dependently and so forth. There are no dependencies between

generations other than through the types. The term ‘‘local’’ in the heading

obviously means local in the family tree. We will give a quick description of

how to treat local dependencies with the techniques from previous sections

without delving into the details.

There will be a hierarchy of macro individuals and we define a k-macro

individual to consist of a group of individuals each two of whom are jth

cousins for some j s 0, 1, . . . , k, where 0 F k F n.

There is now a sequence of life spaces V , V , . . . , where0 1

V s V` ,kq1 k

V being the individual life space. Likewise, there will be a sequence of type0

spaces, G , G , . . . , where0 1

G s NN G = R ,Ž .kq1 k q

and, in the previous notation, G s S and G s G. Let s : G ª G , k s0 1 i kq1 k

Ž .1, 2, . . . , so that s g is the type of the ith k-macro individual in ai kq1

Ž .k q 1 -macro individual. The sequence of probability measures P , P , . . . on0 1

Ž .V , V , . . . is then such that the ith k-macro individual in a k q 1 -macro0 1

individual reproduces according to the marginal

P s g , A s 1 p v P dv ,Ž . Ž . Ž .Ž . Ž .Hk i kq1 A i kq1 kq1 kq1
Vkq1

the projections p being defined in the obvious way. Again, it will be conve-i

nient to consider the measures induced by the reproduction processes. There-
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fore, define

k < kQ g , dg s P g , h g dg h g G ,Ž . � 4 � 4Ž .k k kq1 k k kq1 kq1

with the obvious notation h 0, h1, . . . , where h 0 s j . These measures give rise

to the sequence of reproduction kernels M , M , . . . , where M s m and0 1 0

M s M, and the next lemma is obvious.1

LEMMA 13.1. In an n-dependent branching process, the kernels M ,0

M , . . . , M all define the same Malthusian parameter. Further, the kernels1 n

ˆ ˆ ˆM , M , . . . , M are either all conservative or all not.0 1 n

Ž .Now let t : G ª R so that t g is the time point for the ith point in g .i k q i k k

Under conservativity assumptions, there will also be a sequence of functions

H , H , . . . , H and a sequence of measures c , c , . . . , c such that H and0 1 n 0 1 n k

c are invariant for M and such that, for instance,k k

`

H g s g s exp yat g H s g .Ž . Ž . Ž .Ž . Ž .Ýkq1 kq1 kq1 i kq1 k i kq1

is1

In the previous notation, H s h, H s H, c s p and c s c . The mean0 1 0 1

convergence is obvious; the problems of L1-convergence are twofold: only the

individual process is assumed uniformly integrable, and only the function

h s H is assumed to be bounded away from 0. Therefore, we cannot just0

copy the previous proofs by noting that a group of n-macro individuals can be
Ž .viewed as a sibling group consisting of n y 1 -macro individuals. However,

the proofs can be modified also to this setting.

We start by proving that all the x log x conditions are equivalent. For that

purpose note that

`
kq1 k13.1 h s exp yat h .Ž . Ž .Ý i i

is1

Here h k is the point process stemming from the ith k-macro individual, andi
k kh can be defined from h as h was defined from h. The x log x conditions

are

k q kE h log h - `ck

for k s 0, 1, 2, . . . , n, and we state the following result.

LEMMA 13.2. Either

k q kE h log h - `ck

for k s 0, 1, 2, . . . , n, or

k q kE h log h s `ck

for k s 0, 1, 2, . . . , n.
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PROOF. Let

f g s exp yat g exp yat s gŽ . Ž . Ž .Ž . Ž .Ý ž /k i k i i kky 1 ky2 ky1

i , . . . , iky1 0

= ??? = exp yat s ??? s g ???Ž .Ž .ž /ž /i i i k0 1 ky1

13.2Ž .

and note that
`

g s exp yat g H s gŽ . Ž .Ž . Ž .Ýk i y1 k ky1 i kk ky1

i s1ky1

s exp yat g exp yat s gŽ . Ž .Ž . Ž .Ý ž /i k i i kky 1 ky2 ky1

i , iky1 ky2

=H s s gŽ .Ž .ž /ky2 i i kky 2 ky1

s ??? s exp yat g exp yat s g kŽ . Ž .Ž . Ž .Ý ž /i k i iky 1 ky2 ky1

i , . . . , iky1 0

13.3Ž .

= ??? = exp yat s ??? s g ???Ž .Ž .ž /ž /i i i k0 1 ky1

=h s ??? s g ???Ž .Ž .ž / /i i k0 ky1

G k f g .Ž .k

Having established this inequality, the rest of the proof is carried out by

carefully copying the proof of Lemma 9.1. I

Finally, we state the analog of Theorem 10.1. The proof is essentially the
ˆŽ . Ž .same with the function f from 13.2 playing the role of j a . It is omitted

Ž .but may be found in Olofsson 1994 .

THEOREM 13.3. Consider an n-dependent nonlattice, uniformly integrable
qw xand strictly Malthusian branching process such that E j log j - `. Let xp

ya t w Ž .xbe bounded and the function e E x t directly Riemann integrable. Thens

there exists a random variable w such that

E x aŽ .ˆpya t xe z ª wt
ab

1 ˜Ž .as t ª ` in L Q for p-almost all starting types s g S.s
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