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A MARKOVIAN STORAGE MODEL

BY ANTONIO PACHECO AND N. U. PRABHU´

Technical University of Lisbon and Cornell University

We investigate a storage model where the input and the demand are

additive functionals on a Markov chain J. The storage policy is to meet

the largest possible portion of the demand. We first derive results for the

net input process embedded at the epochs of transitions of J, which is a

Markov random walk. Our analysis is based on a Wiener]Hopf factoriza-

tion for this random walk; this also gives results for the busy period of the

storage process. The properties of the storage level and the unsatisfied

demand are then derived.

1. Introduction. In this paper we investigate the storage model in
Ž . Ž .which the storage level Z t at time t satisfies almost surely a.s. the

integral equation

t t
1 Z t s Z 0 q a J s ds y r Z s , J s ds,Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .H H

0 0

where

d j , x ) 0,Ž .
2 r x , j sŽ . Ž . ½min a j , d j , x F 0,Ž . Ž .Ž .

Ž . � Ž . 4with the condition Z 0 G 0. Here J s J t , t G 0 is a nonexplosive Markov

chain on a countable state space E, and a and d are nonnegative functions
Ž .on E. Equation 1 states that when the Markov chain J is in state j at time

Ž . Ž .t, input into the storage buffer occurs at rate a j , while the demand occurs
Ž .at rate d j and the storage policy is to meet the largest possible portion of

this demand. Let us denote by

t t
3 A t s a J s ds, D t s d J s dsŽ . Ž . Ž . Ž . Ž .Ž . Ž .H H

0 0

Ž . Ž xthe input and the actual demand during a time interval 0, t . It can be
Ž . �Ž .Ž . 4 Ž . �Ž .Ž . 4proved that A, J s A, J t , t G 0 and D, J s D, J t , t G 0 are

Ž .Markov additive processes MAPs on the state space R = E. A storageq
Ž .model with a more general input process X, J of the Markov additive type

w x Ž .has been investigated in 11 . Here X t consists of jumps of positive size as
Ž . Ž .well as a cumulative drift A t . However, the analysis of that paper cannot

w xbe applied in the present model because in 11 it is assumed that

4 a j - d j for j g E.Ž . Ž . Ž .
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A MARKOVIAN STORAGE MODEL 77

Ž .This assumption will make 1 trivial since then the storage level is decreas-

ing so that it will eventually reach 0 after a random length of time and
Ž .remain at 0 after that. Therefore in this paper we do not assume 4 and use a

completely different approach to analyze our model. We denote

5 E s j g E : a j F d j , E s j g E : a j ) d j .� 4 � 4Ž . Ž . Ž . Ž . Ž .1 0

Ž .The model represented by 1 occurs in data communication systems.

w xVirtamo and Norros 17 have investigated a model in which a buffer receives

input of data from an MrMr1 queueing system at a constant rate c so long0

Ž .as the system is busy, and transmits these data at a maximum rate c - c .1 0

Ž . Ž .Denoting by J t the queue length, we can represent the buffer content Z t

at time t by

t t
6 Z t s Z 0 q c 1 ds y c 1 ds.Ž . Ž . Ž . H H0 �J Ž s.) 04 1 �w J Ž s.) 0x k w ZŽ s.) 0x4

0 0

Ž .This equation is of type 1 with

c , j ) 0,0
a j s d j s c , j G 0.Ž . Ž . 1½ 0, j s 0,

Ž . Ž . Ž . Ž . � 4Clearly, a 0 - d 0 , but a j ) d j for j ) 0. Thus E s 1, 2, . . . and E s0 1

� 4 Ž x Ž .0 . The input during 0, t is given by c B t , where0

t
B t s 1 ds,Ž . H �J Ž s.) 04

0

Ž xthis being the part of the time interval 0, t during which the server is busy.

For a survey of earlier storage models of data communication systems
Ž . w xsatisfying 1 , see 11 . A brief description of two of these models follows.

w xAnick, Mitra and Sondhi 2 study a model for a data-handling system with
Ž .N sources and a single transmission channel. The input rate is a j s j,

where j is the number of sources that are ‘‘on,’’ and the maximum output rate
Ž . �w x w x 4is a constant c, so that d j s c. We see in this case E s c q 1, c q 2, . . .0

� w x4and E s 0, 1, . . . , c .1

w xGaver and Lehoczky 5 investigate a model for an integrated circuit and

packet switching multiplexer, with input of data and voice calls. There are

s q u output channels, of which s are for data transmission, while the
Žremaining u are shared by data and voice calls with calls having preemptive

.priority over data . Here calls arrive in a Poisson process and have exponen-
Ž .tially distributed holding times. The model gives rise to 1 for the data buffer

Ž .content Z t with

a j s c , d j s c s q j , j s 0, 1, . . . , u ,Ž . Ž . Ž .0 2

where j is the number of channels out of u not occupied by calls, c is the0

Ž .constant data arrival rate and c is the output rate capacity per channel.2

Ž .The net input of our model X t is given by

t
7 X t s A t y D t s x J s ds,Ž . Ž . Ž . Ž . Ž .Ž .H

0
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with x s a y d. The net input process is thus an MAP which is nonincreas-

ing during periods in which the environment J is in E and is increasing1

when J is in E . Its sample functions are continuous a.s. and differentiable0

everywhere except at the transition epochs T , n G 0, of the Markov chain J.n

Since

t
r Z s , J s dsŽ . Ž .Ž .H

0

t t
s d J s ds q min a J s y d J s , 0 1 ds,� 4Ž . Ž . Ž .Ž . Ž . Ž .H H �ZŽ s.F 04

0 0

Ž .we can rewrite 1 in the form

t y
8 Z t s Z 0 q X t q x J s 1 ds,Ž . Ž . Ž . Ž . Ž .Ž .H �ZŽ s.F 04

0

y � 4where y s max yy, 0 . Here the integral

t y
9 I t s x J s 1 dsŽ . Ž . Ž .Ž .H �ZŽ s.F 04

0

Ž xrepresents the amount of unsatisfied demand during 0, t . If we let J sn

Ž . Ž .J T , then from 8 we obtain, for T F t F T ,n n nq1

ty
10 Z t s Z T q x J t y T q x J 1 dsŽ . Ž . Ž . Ž . Ž . Ž . Hn n n n �ZŽ s.F 04

Tn

Ž .and from 9

ty
11 I t s I T q x J 1 ds.Ž . Ž . Ž . Ž . Hn n �ZŽ s.F 04

Tn

Ž .This shows that in order to study the process Z, I, J it may be of interest to
Ž . Ž . Ž ..first study the properties of the embedded process Z T , I T , J T .n n n

The following is a brief summary of the results of this paper. In Section 2
Ž .we give the solution of the integral equation 8 ; a particular consequence of

Ž . Ž .the solution is that Z T and I T may be identified as functionals on then n

Ž Ž . Ž .. Žprocess T , X T , J T , which is a Markov random walk MRW}then n n

.discrete-time analog of an MAP . So the properties of this MRW are investi-

gated in Section 3, the key result being a Wiener]Hopf factorization due to
w x w x w xPresman 14 ; see 12 and 13 . In Section 4 the results of Section 3 are used

to study the properties of the storage level and the unsatisfied demand.

w xRogers 15 investigates the model we consider, with the Markov chain

having finite state space. His analysis is based on the Wiener]Hopf factoriza-

tion of finite Markov chains, from which the invariant distribution of the

storage level is derived. Methods for computing the invariant law of the
w x w xstorage level are discussed by Rogers and Shi 16 . Asmussen 3 and

w xKarandikar and Kulkarni 7 investigate a storage process identified as the
Ž .reflected Brownian motion BM modulated by a finite state Markov chain. In

the case where the variance components of this BM are all 0 their storage

process reduces to that of our paper.
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Our analysis allows for the Markov chain to have infinite state space, but
w x w x w xin 15 , 3 and 7 this space is finite. We believe that some results in the

w x w xpaper by Asmussen 3 and especially in the paper by Rogers 15 could be

generalized, without much effort, to the infinite state space case. The same is

not true for numerical methods to compute the storage quantities of interest.

In fact, the development of efficient numerical methods when the Markov

chain has infinite state space is likely to be the subject of future research in
w x w x w xthe area of communication systems. In 15 , 3 and 7 , only the steady-state

behavior of the storage level is studied, whereas we derive the time-

dependent, as well as the steady-state, behavior of both the storage level and
Ž .the unsatisfied demand see Examples 1 and 2 . It should also be noted that

Ž .the specificity of our net input namely, piecewise linearity is not too

relevant for our analysis, so the techniques of the paper can be applied to

other net inputs. This makes our approach potentially more powerful.
Ž .We shall denote by N s n the generator matrix of J and assume that Jjk

Ž .has a stationary distribution p , j g E . For analytical convenience wej

Ž .assume that x j / 0 for j g E.

Ž .2. Preliminary results. We start by solving the integral equation 8 .

w xProceeding as in the proof of Theorem 1 in 11 , we have the following result.

LEMMA 1. We are given a stochastic process J, as defined above, on a
Ž .probability space V, FF, PP , and additive functionals A and D on J as given

Ž . Ž . Ž .in 3 . The integral equation 8 with Z 0 G 0 a.s. has PP-a.s. the unique

solution

12 Z t s Z 0 q X t q I t ,Ž . Ž . Ž . Ž . Ž .
where

yy
13 I t s Z 0 q m t s Z 0 q inf X t .Ž . Ž . Ž . Ž . Ž . Ž .

0FtFt

Ž . Ž .One of the consequences of the solution 12 is 10 since
q

14 Z t s max Z 0 q X t , X t y m t G Z 0 q X t G 0.� 4Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .

We next prove some preliminary results concerning the embedded process
Ž . Ž . Ž .Z T , I T , J T . We letn n n

15Ž . Z sZ T , I sI T , S s X T , X s S y S ,Ž . Ž . Ž .n n n n n n nq1 nq1 n

Ž .Ž .so that X s x J T y T .nq1 n nq1 n

LEMMA 2. For T F t F T we haven nq1

q
Z t s Z q x J t y T ,Ž . Ž . Ž .n n n

16Ž . y
I t s I q Z q x J t y T ,Ž . Ž . Ž .n n n n

where
yyw x17 Z s Z q S q I , I s Z q m s Z q min S .Ž . n 0 n n n 0 n 0 r

0FrFn
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Ž .PROOF. Using 10 , we may conclude that

w xZ t s max 0, Z q x J t y T , n G 0, t g T , T ,� 4Ž . Ž . Ž .n n n n nq1

Ž . � 4which proves 16 . As a consequence, Z s max 0, Z q X for n G 0,nq1 n nq1

Ž . Žwhich implies 17 in view of a result familiar in queueing systems e.g.,
w x .Theorem 8 in 10 , Chapter 2 . I

Ž .Lemma 2 shows that in order to study the process Z , I , J it suffices ton n n

Ž .investigate the MRW T , S , J , which we do in the next section. We noten n n

Ž . Ž .Ž . Ž .that, if T F t F T , then X t s S q x J t y T . Thus min S , Sn nq1 n n n n nq1

Ž . Ž . Ž .F X t F max S , S , which, in turn, implies that a.s. lim inf X t sn nq1

Ž .lim inf S and lim sup X t s lim sup S . Similarly, if we denote, for t G 0n n

and n s 0, 1, . . . ,

18 M t s sup X t , M s max S ,Ž . Ž . Ž . n r
0FrFn0FtFt

we may conclude that

19 lim M t s lim M s M F q`,Ž . Ž . n
nª`tª`

20 lim m t s lim m s m G y`.Ž . Ž . n
nª`tª`

These statements show that some conclusions about the fluctuation behavior
Ž .of the net input process may be drawn from the associated MRW S , J .n n

This, in turn, has implications for the storage level and unsatisfied demand
Ž U .since these processes depend on the net input. We denote by p , j g E thej

Ž .stationary distribution of J , so thatn

yn pŽ .j j jU21 p s .Ž . j Ý yn pŽ .k g E k k k

Ž .Also, define the net input rate x s Ý p x j , where we assume the sumjg E j

exists, but may be infinite. We then have the following.

w Ž .xTHEOREM 1 Fluctuation behavior of X t . We have a.s.:

Ž . Ž .i X t rt ª x.

Ž . Ž .ii If x ) 0, then lim X t s q`, m ) y` and M s q`.

Ž . Ž . Ž .iii If x s 0, then lim inf X t s y`, lim sup X t s q`, m s y` and

M s q`.

Ž . Ž .iv If x - 0, then lim X t s y`, m s y` and M - q`.

Ž .PROOF. The proof of i is standard, but is given here for completeness. We

have

X t 1 1Ž . t t q y
22 s x J s ds s x J s y x J s ds.Ž . Ž . Ž . Ž .Ž . Ž . Ž .� 4H H

t t t0 0
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Now since J is ergodic,

q
1 x jŽ .t tq q

x J s ds s 1 ds ª x j pŽ . Ž .Ž . Ý ÝH H �J Ž s.s j4 j23Ž . t t0 0jgE jgE

as t ª `, a.s.,

Ž . tw Ž Ž ..xy w Ž .xyand similarly 1rt H x J s ds ª Ý x j p a.s. as t ª `, so that,0 jg E j

Ž . Ž .using 22 , we conclude that lim X t rt s x a.s. Define the mean incre-t ª`

Ž .ment in the MRW S , J :n n

U <24 m* s p E X J s j .Ž . Ý j 1 0

jgE

w < x Ž . Ž . Ž .Since E X J s j s x j r yn , it follows that x s m*Ý yn p .1 0 j j k g E k k k

Ž . Ž . Ž . Ž .Statements ii ] iv follow from this and 19 and 20 , by using Proposition 2
w x w xof Prabhu and Tang 12 and Theorem 8 of Prabhu, Tang and Zhu 13 . These

Ž .last two results describe the fluctuation behavior of the MRW S , J . In n

( )3. The MRW T , S , J . In this section we investigate the properties
n n n

Ž .of the MRW T , S , J . We note that the conditional distribution of then n n

Ž .increments T y T , S y S , given J , is singular, since X s S yn ny1 n ny1 ny1 n n

Ž .Ž . Ž .S s x J T y T a.s. The distribution of T , X , J is best describedny1 n n ny1 1 1 1

by the transform matrix

<25 F u , v s f u , v s E exp yuT q iv X ; J s k J s jŽ . Ž . Ž . Ž .Ž .Ž .jk 1 1 1 0

'for u ) 0, v real and i s y 1 . We find that

F u , v s f u , v s a u , v pŽ . Ž . Ž .Ž . Ž .jk j jk

s a u , v d p s a u , v P ,Ž . Ž . Ž .Ž .j jk jk

26Ž .

where

yn nj j jk
a u , v s , p s ,Ž .j jkyn q u y iv x j ynŽ . Ž .j j j j27Ž .

k / j, p s 0.j j

ˆ ˆ ˆŽ .For the time-reversed MRW T , S , J corresponding to the given MRW, wen n n

have

ˆ ˆ ˆ ˆ ˆ ˆ<F u , v s f u , v s E exp yuT q iv X ; J s k J s jŽ . Ž . ž /ž /jk 1 1 1 0ž /
p U

k ˆ<s E exp yuT q iv X ; J s j J s k s Pa u , v ,Ž . Ž .1 1 1 0Už /p j

28Ž .

ˆ ˆwhere P is the transition probability matrix of the time-reversed chain J,

namely,

p U
kˆ29 P s p s p .Ž . ˆŽ .jk k jUž /p j
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Since the T are nondecreasing a.s., the fluctuating theory of the MRWn

Ž . Ž .T ,S , J is adequately described by S . We now define the descendingn n n n

Ž .ladder epoch N of the MRW T , S , J and the ascending ladder epoch N ofn n n

ˆ ˆ ˆŽ .the time-reversed MRW T , S , J :n n n

ˆ� 430 N s min n: S - 0 , N s min n: S ) 0 .Ž . � 4n n

Ž .Here we adopt the convention that the minimum of an empty set is q`. It

should be noted that both N and N are strong ladder epochs, which is
ˆreasonable since the increments of S and S in each case have an absolutelyn n

ˆcontinuous distribution. The random variables S and S are the ladderN N

Žheights corresponding to N and N. We also denote the transforms in matrix
.form

31Ž .
N <x s x z , u , v s E z exp yuT q ivS ; J s k J s j ,Ž . Ž .Ž . ž /jk N N N 0

32Ž .
Up k N ˆ ˆ ˆ ˆ<x s x z , u , v s E z exp yuT q ivS ; J s j J s k ,Ž .Ž . ž /jk N N N 0Už /p j

'where 0 - z - 1, u ) 0, i s y 1 and v is real. Connecting these two

transforms is the Wiener]Hopf factorization, first established by Presman
w x14 analytically and interpreted in terms of the ladder variables defined

w xabove by Prabhu, Tang and Zhu 13 . The result is the following:

Ž . Ž .LEMMA 3 Wiener]Hopf factorization . For the MRW T , S , J withn n n

0 - z - 1, u ) 0 and v real,

33 I y zF u , v s I y x z , u , v I y x z , u , v .Ž . Ž . Ž . Ž .

We shall use this factorization and the special structure of our MRW to

indicate how the transforms x and x can be computed in the general case. It

turns out that our results contain information concerning the descending
Ž .ladder epoch T of the net input process X, J and the ascending ladder

ˆ ˆŽ .epoch T of the time-reversed process X, J , which is defined as follows:

t
ˆ ˆ ˆ ˆ ˆ ˆ34 J t s J , T - t F T , X t s x J s ds.Ž . Ž . Ž . Ž .Ž .Hn ny1 n

0

Thus

ˆ35 T s inf t ) 0: X t F 0 , T s inf t ) 0: X t G 0 .� 4Ž . Ž . Ž .� 4
ˆŽ . Ž .We note that X T s 0 and X T s 0 a.s. For 0 - z - 1, u ) 0 we define the

transforms

N yu T <36 z s z z , u s E z e ; J T s k J 0 s j ,Ž . Ž . Ž . Ž .Ž . ž /jk

Up k N yu T ˆ ˆ<37 h s h z , u s E z e ; J T s j J 0 s k .Ž . Ž . Ž . Ž .Ž .jk Už /p j
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THEOREM 2. For 0 - z - 1, u ) 0 and v real, we have

38 x z , u , v s z z , u F u , v , x z , u , v s a u , v h z , u .Ž . Ž . Ž . Ž . Ž . Ž . Ž .

Ž .PROOF. An inspection of the sample paths of X, J will show that
Ž .J T s J andNy1

SN
T y T s a.s.N

x J TŽ .Ž .
Ž . Ž . Ž Ž ..Since T is a stopping time for X, J , we see that, given J T s l, S rx J TN

is independent of T and has the same distribution as T , given J s l.1 0

Therefore

x z , u , vŽ .jk

SNN <s E z exp yu Tq q ivS ; J s l , J sk J s jÝ N Ny1 N 0ž /x JŽ .Ny1lgE

N yu T <s E z e ; J T s l J s jŽ .Ý 0

lgE

SN
<= E exp yu q ivS ; J s k J y 1 s lN N Nž /x JŽ .Ny1

<s z z , u E exp yuT q iv X ; J s k J s lŽ . Ž .Ý jl 1 1 1 0

lgE

s z z , u f u , v .Ž . Ž .Ý jl lk

lgE

Ž . Ž . Ž . Ž . Ž . Ž .Thus x z, u , v s z z, u F u , v . The proof of x z, u , v s a u , v h z, u is

similar. I

Ž < < < <.In general, for an E = E matrix A we block-partition A in the form

A A00 01
A s ,ž /A A10 11

with the rows and columns of A corresponding to the states in E . We now00 0

have

0 z I 0h h01 0000 0139 z s , h s , I s ,Ž . ž /ž / ž /0 z 0 I0 011 11

Ž .where I is the identity matrix. From 33 and Theorem 2 we have the

following.

THEOREM 3. We have, for 0 - z - 1, u ) 0 and v real,

z F z Fa h a h 01 10 01 1100 00 00 0140 x s , x sŽ . ž / ž /zF zF0 0 10 11
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and

y1
41 I y x s I y x I y zF y zx F ,Ž . Ž . Ž .00 00 00 00 00 00 01 10

y1
42 x s I y x zF y x I y zF ,Ž . Ž . Ž .01 00 00 01 01 11 11

where the inverse exists in the specified domain.

We note that if we let

N <43 g s g z , u s E z exp yuT ; J s k J s j ,Ž . Ž . Ž .Ž . ž /jk N Ny 1 0

Up k N ˆ ˆ ˆ<44 g s g z , u s E z exp yuT ; J s j J s k ,Ž . Ž .Ž . Ž .jk N N 0Už /p j

u Ž w x.then, with I s yd n r yn q u ,jk j j j j

u u45 g s z I , g s I h ,Ž .

Ž . Ž . Ž .with, due to 45 , the results for z , h being equivalent to those for g , g . As

a matter of convenience we express some of the remaining results of this
Ž .section in terms of g , g .

Ž Ž .. Ž < Ž . < wCOROLLARY 1. For 0 - z - 1, u ) 0, with R s r u s d x j r ynjk jk j j

x.qu , we have

u u46 g q I y g g P s z I P q g I P ,Ž . Ž .00 00 00 01 10 00 00 01 11 10

u u47 g q I y g g P s z I P q g I P ,Ž . Ž .01 00 00 01 11 00 01 01 11 11

u48 R g P q I y g g R P s zg R I P ,Ž . Ž .00 01 10 00 00 01 11 10 01 11 11 10

u49 R g P q I y g g R P s zg R I P .Ž . Ž .00 01 11 00 00 01 11 11 01 11 11 11

Ž .PROOF. We equate the real parts of the identity 41 and put v s 0. This
Ž . Ž .yields 46 . We also equate the imaginary parts of 41 , divide by v and let

Ž . Ž . Ž . Ž .v ª 0. This yields 48 , in view of 46 . The proof of 47 and 49 is similar,
Ž .starting with the identity 42 . I

Theorem 3 shows that the submatrices x and x are determined by x00 01 00

and x . Corollary 1 can be used in some important cases to reduce the01

Ž .computation to a single matrix equation for g , as we will show in the fol-01

Ž . < < Ž .lowing. Case i arises in models with E ) 1, while case ii covers the1

< <situation with E s 1. Details of the computations are omitted.1

Ž .Case i . If the submatrix P has an inverse, then11

u y150 g s zI P q R g R P ,Ž . 00 00 00 00 01 11 10

u y151 g s zI P q R g R P ,Ž . 01 00 01 00 01 11 11
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where g satisfies the equation01

y1 y1 u y1 ug R P g y R I y zI P g q g R I y zP IŽ . Ž .01 11 10 01 00 00 00 00 01 01 11 11 11 11
52Ž .

2 y1 u uqz R I P I s 0.00 00 01 11

Ž . Ž . uCase ii . If P s 0 and r u s r , j g E , then11 j j 1 1

1
u u53 g s zI P q R g P , g s zI P ,Ž . 00 00 00 00 01 10 01 00 01ur1

2 u y1 ug P y r R I y zI P q I g PŽ . Ž .Ž .01 10 1 00 00 00 00 00 01 10
54Ž .

q z 2 r uRy1Iu P Iu P s 0.1 00 00 01 11 10

w xEXAMPLE 1. Consider the Gaver]Lehoczky 5 model with a single output
Žchannel, in which the channel is shared by data and voice calls with calls

. Ž .having preemptive priority over data . Here J t s 0 if a call is in progress at
Ž . Ž .time t i.e., the channel is not available for data transmission , and J t s 1

� 4otherwise. Thus J has a two-state space 0, 1 and

a 0 s a 1 s c , d 0 s 0, d 1 s c , c - c ,Ž . Ž . Ž . Ž .0 2 0 2

� 4 � 4 Ž . Ž .so that E s 0 , E s 1 , x 0 s c and x 1 s c y c s yc . Let the ar-0 1 0 0 2 1

rival rate and service rate of calls be denoted by l and m, respectively. Then

ym m0 1
P s , N s n s .Ž .jkž / ž /1 0 l yl

Ž . Ž . Ž .We may now use 45 , 53 and 54 to conclude that

s1
h s z , h s z ,01 00 01

s0

1 1
2 2s z y s q s q q u z q z s s 0,Ž .1 01 0 1 01 0ž /c c0 1

where s s mrc and s s lrc . This implies that0 0 1 1

y1
z z , u s 2s s q s q 1rc q 1rc uŽ . Ž . Ž . Ž .01 1 0 1 0 1

55Ž .
2 2'y s q s q 1rc q 1rc u y 4 z s s .Ž . Ž .0 1 0 1 0 1

For an MrMr1 queue with arrival and service rates s and s , respectively,1 0

we denote the busy period by T* and the number of customers served during
Ž . Žthe busy period by N*. From 55 we have the following see Section 2.8 of

w x.9 :

N <z z , u s E z exp yuT ; J T s 1 J 0 s 0Ž . Ž . Ž . Ž .01

1 1U2 Ns E z exp yu q T* .ž /ž /c c0 1
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w x Ž .EXAMPLE 2. Consider the Virtamo]Norros 17 model, given by 6 .

Denote c s c rc and r s lrm, in which case 0 - c - 1 and r ) 0. Equation1 0

Ž .54 holds for this model and may be proved to be equivalent to

cm q l q m
z z yn0 10

l 1 y cŽ .
zc

w xy z q rz s 0, n G 1.ny1, 0 nq1, 0
r 1 y cŽ .

56Ž .

Ž . w xIf J 0 s 1, it is known from Aalto 1 that T is equal to the busy period of an

MrMr1 queue with arrival rate l and service rate cm. Thus

2cm q l q u cm q l q u cm
57 z 1, u s y y .Ž . Ž . (10 ž /2l 2l l

Ž .Using 56 , the transforms

yu T <z 1, u s E e J 0 s n , n G 1,Ž . Ž .Ž .n0

Ž . Ž .may be computed recursively, starting with z 1, u as given in 57 .10

Ž .4. The main results. With the properties for the MRW T , S , Jn n n

established in Section 3, we are now in a position to derive the main results

of the paper. We first state the following results for the embedded process
Ž .Z , I , J , which follow easily from Theorems 3 and 4 of Prabhu and Tangn n n

w x12 .

LEMMA 4. If Z s 0 a.s., then, for u ) 0 and v , v real, we have0 1 2

y1`

<E exp yuT q iv Z q iv I ; J s k J s jŽ .Ý n 1 n 2 n n 0ž /58Ž . ns0

s I y x z , u , v I y x z , u , yv .Ž . Ž .1 2

Ž . Ž U U .LEMMA 5. Suppose that m* - 0. Then Z , J ª Z , J as n ª `, forn n DD ` `
U Ž .all initial distributions, where J is the stationary version of J and` n

Ž w Ž U . U x.E exp ivZ ; J s k is the kth element of the row vector` `

p * I y x 1, 0, 0 I y x 1, 0, v ,Ž . Ž .

Ž U .where p * s p , j g E .j

Ž Ž . Ž . Ž .. Ž .For finite t, the distribution of Z t , I t , J t can be found from 16
� Ž . 4using Lemma 4. We note that since T s inf t ) 0: X t F 0 we have

<59 T s inf t ) 0: Z t s 0 Z 0 s 0 .� 4Ž . Ž . Ž .

Ž Ž .. Ž .Thus T is the busy period of the storage. The transform of T, J T is z 1, u

given by

yu T <60 z 1, u s z 1, u s E e ; J T s k J 0 s j .Ž . Ž . Ž . Ž . Ž .Ž . ž /jk
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In Section 3 it was shown how this transform can be computed. We recall that

x is the net input rate.

Ž .THEOREM 4. The busy period T defined by 59 has the following proper-

ties:

Ž . Ž .i Given J 0 g E , T s 0 a.s.1

Ž .ii If x - 0, then T - ` a.s.

Ž . Ž .PROOF. i The statement follows immediately from the fact that x j - 0

for j g E .1

Ž . w Ž .xii Since x - 0 we have m* - 0 see the proof of Theorem 1 ii . This
Ž .implies that the descending ladder epoch of the MRW T , S , J is finiten n n

Ž . w xN - ` a.s. by virtue of Proposition 2 of Prabhu and Tang 12 . This, in turn,

implies that T - ` a.s. The statement now follows since T F T . IN N

Ž Ž . Ž . Ž ..The limit behavior of the process Z t , I t , J t as t ª ` can also be
Ž .obtained from that of the embedded process Z , I , J as n ª `, by usingn n n

Lemma 5. The following theorems characterize this limit behavior.

Ž . Ž . Ž ..THEOREM 5. The process Z t , I t , J t has the following properties:

yŽ . Ž . Ž Ž . . Ž .i If x ) 0, then I t ª Z 0 q m - q` and Z t rt ª x a.s.; in partic-
Ž .ular, Z t ª q` a.s.

Ž . Ž . Ž .ii If x s 0, then I t ª q` and lim sup Z t s q` a.s.

Ž . Ž . Ž . Ž .iii If x - 0, then I t rt ª yx and Z t rt ª 0 a.s.; in particular, I t ª

q` a.s.

Ž . Ž . Ž .PROOF. i We first note that I t converges as indicated by Theorem 1 ii
Ž . Ž . Ž .and 13 . The rest of the statement follows directly from Theorem 1 i and 1 .

Ž . Ž . Ž . Ž . Ž Ž . .yii From Theorem 1 iii and 13 , I t ª Z 0 q m s q`. Also, from
Ž . Ž . Ž . Ž . Ž . Ž .12 , since I t is nonnegative, Z t G Z 0 q X t . Using Theorem 1 iii , we

obtain

lim sup Z t G lim sup Z 0 q X t s q`.Ž . Ž . Ž .
Ž . Ž . Ž .iii Since X t has continuous sample functions and X t rt ª x - 0, by

Ž .Theorem 1 i , standard analytical arguments show that

m t X tŽ . Ž .
lim s lim s x - 0.

t t

Ž . Ž .The desired results now follow from 13 and 14 . I

U UŽ .THEOREM 6. If x - 0, then, for z , z G 0 and j, k g E and with Z , J0 ` `

Ž .being the limit distribution of Z , J as given in Lemma 5,n n

<lim P Z t F z ; J t s k Z 0 s z , J 0 s j� 4Ž . Ž . Ž . Ž .0
tª`

`
U U< <s p P Z g dv J s k P X F z y v J 0 s k .� 4 � 4Ž .Hk ` ` 1

0y

61Ž .
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Ž . � 4PROOF. Let N t s sup n: T F t . We haven

<P Z t F z ; J t s k Z 0 s z , J 0 s j� 4Ž . Ž . Ž . Ž .0

`
<s P Z g dv ; J s k Z s z , J s j� 4H N Ž t . N Ž t . 0 0 0

0y

<=P Z t F z Z T s v , J T s k , Z 0 s z , J 0 s jŽ . Ž . Ž .� 4Ž . Ž .N Ž t . N Ž t . 0

`
< <s P J s k J s j P Z g dv Z s z , J s k , J s j� 4 � 4HN Ž t . 0 N Ž t . 0 0 N Ž t . 0

0y

<=P Z t F z Z T s v , J T s kŽ .� 4Ž . Ž .N Ž t . N Ž t .

`
< <sP J t sk J 0 s j P Z g dv Z sz , J sk , J s j� 4Ž . Ž . � 4H N Ž t . 0 0 N Ž t . 0

0y

q
<=P v q x k t y T F z J T s k .Ž . Ž . Ž .½ 5N Ž t . N Ž t .

� Ž . < Ž . 4Since P J t s k J 0 s j ª p a.s. as t ª `, the statement follows fromk

Ž .the fact that as t ª ` the following two results hold. Given J T s k,N Ž t .

Ž . Ž .t y T has the distribution of T in the limit, given J 0 s k, so thatN Ž t . 1

q
<P v q x k t y T F z J T s kŽ . Ž . Ž .½ 5N Ž t . N Ž t .

q
<w xª P v q X F z J 0 s kŽ .� 41

<s P X F z y v J 0 s k .� 4Ž .1

Ž .Since x - 0 we have m* - 0 and N t ª `; thus, using Lemma 5, we

conclude that

< U < UP Z g dv Z s z , J s k , J s j ª P Z g dv J s k . I� 4� 4N Ž t . 0 0 N Ž t . 0 ` `

Ž . Ž .Ž .In case x - 0, we denote by Z , J the limit random variable of Z, J t ,` `

which, in view of Theorem 6, is independent of the initial distribution.

COROLLARY 2. If x - 0, we have the following:

Ž .i For z G 0 we have

<P Z F z J s k� 4` `

U < Us P Z F z J s k� 4` `
62Ž .

nk k U U U
= 1 y E exp y Z y z Z F z , J s k , k g E ,Ž .` ` ` 0ž /ž /x kŽ .

<P Z ) z J s k� 4` `

U < Us P Z ) z J s k� 4` `
63Ž .

nk k U U U
= 1 y E exp y Z y z Z ) z , J s k , k g E .Ž .` ` ` 1ž /ž /x kŽ .
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Ž .ii We have

0, k g E ,¡ 0

~64Ž . n<P Z s 0 J s k s� 4 k k U U` ` E exp y Z J s k , k g E .` ` 1ž /¢ x kŽ .

Ž . Ž .PROOF. i Let z G 0 and k g E . From 61 we have0

<P Z F z J s k� 4` `

z
U U< <s P Z g dv J s k P X F z y v J 0 s k� 4 � 4Ž .H ` ` 1

0y

z nk kU U<s P Z g dv J s k 1 y exp z y v� 4 Ž .H ` ` ž /ž /x kŽ .0y

U < Us P Z F z J s k� 4` `

z nk kU U U<= 1 y P Z g dv Z F z , J s k exp y v y z� 4 Ž .H ` ` ` ž /ž /x kŽ .0y

nk kU U U U U<s P Z F z J s k 1 y E exp y Z y z Z F z , J s k .� 4 Ž .` ` ` ` `ž /ž /x kŽ .

Ž . Ž .This gives 62 . The proof of 63 is similar.

Ž . Ž .ii The statement follows from the fact that, using 61 , we have

`
U U< < <P Z s 0 J s k s P Z g dv J s k P X F yv J 0 s k . I� 4 � 4 � 4Ž .H` ` ` ` 1

0y

Ž . Ž xWe denote by I t the unsatisfied demand in state k during 0, t , so thatk

t ty yŽ . Ž . Ž Ž .. Ž .65 I t s x J s 1 ds s x k 1 ds.H Hk �ZŽ s.s0, J Ž s.sk4 �ZŽ s.s0, J Ž s.sk4
0 0

Ž .y Ž .If k g E , then x k s 0 and I t s 0. If k g E , we have the following0 k 1

important result for the performance analysis of the system.

COROLLARY 3. If x - 0 and k g E , then1

I t nŽ .k k k U U66 lim s yx k p E exp y Z J s kŽ . Ž . k ` `ž /t x ktª` Ž .

and

U U<I t x k p E exp y n rx k Z J s kŽ . Ž . Ž .Ž .Ž .k k k k ` `
67 lim s .Ž .

U U<I ttª` Ž . Ý x j p E exp y n rx j Z J s jŽ . Ž .Ž .Ž .jg E j j j ` `1

PROOF. Using Theorem 6, we conclude that

1 t
� 41 ds ª P Z s 0, J s k .H �ZŽ s.s0, J Ž s.sk4 ` `

t 0
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Ž . Ž . Ž . Ž . Ž . Ž .This implies 66 in view of 64 and 65 . Also, since I t s Ý I t , 67jg E j1

Ž .follows by using 66 . I

Ž . U U Ž .EXAMPLE 1 Continuation . We note that p s p s 1r2, z 1, 0 s 1,0 1 01

Ž . Ž .h 1, 0 s 1 and h 1, 0 s r, with r s s rs . We now assume r - 1. Since01 00 1 0

y1
p * 1 y x 1, 0, 0 I y x 1, 0, vŽ . Ž .

1 s y s s y s0 1 0 1
s 1 y r q r ,Ž .

2 s y s y iv s y s y ivŽ . Ž .0 1 0 1

� U < U 4 Ž Ž . .we conclude from Lemma 5 that P Z ) z J s0 sr exp y s ys z for` ` 0 1

� U < U 4 Ž Ž . .z G 0, and similarly P Z ) z J s 1 s exp y s y s z . With p s lr` ` 0 1 0

Ž . Ž .l q m and p s mr l q m we conclude, using Theorem 6, that, for z G 0,1

� 4P Z ) z ; J s 0 s p exp y s y s z ,Ž .Ž .` ` 0 0 1

� 4P Z ) z ; J s 1 s p r exp y s y s z .Ž .Ž .` ` 1 0 1

Finally, using Corollary 3, we conclude that a.s.

I tŽ .1
I t s 0 ; t and lim s c p 1 y r .Ž . Ž .0 1 1

ttª`

w xWe note that this example has been considered also by Chen and Yao 4 ,
w x w x ŽGaver and Miller 6 and Kella and Whitt 8 in the context of storage models

.for which the net input is alternatingly nonincreasing and nondecreasing
w x Ž .and by Karandikar and Kulkarni 7 Case 1 of Example 1, Section 6 with

the storage level being a particular case of a Markov-modulated reflected

Brownian motion.
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