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BALANCED LOADS IN INFINITE NETWORKS1

BY BRUCE HAJEK

University of Illinois at Urbana-Champaign

A set of nodes and a set of consumers are given, and to each consumer

there corresponds a subset of the nodes. Each consumer has a demand,

which is a load to be distributed among the nodes corresponding to the

consumer. The load at a node is the sum of the loads placed on the node by

all consumers. The load is balanced if no single consumer can shift some

load from one node to another to reduce the absolute difference between

the total loads at the two nodes. The model provides a setting to study the

performance of load balancing as an allocation strategy in large systems.

The set of possible balanced load vectors is examined for infinite

networks with deterministic or random demands. The balanced load vec-

tor is shown to be unique for rectangular lattice networks, and a method

for computing the load distribution is explored for tree networks. An

FKG-type inequality is proved. The concept of load percolation is intro-

duced and is shown to be associated with infinite sets of nodes with

identical load.

1. Introduction. Two simple examples illustrate the concept of balanced

loads in infinite networks. Suppose that a unit load is associated with each

edge of an infinite tree graph, in which each node has d q 1 neighbors, as

pictured in Figure 1. Further, suppose that the load from each edge is

allocated to the two endpoints of the edge and that the total load at each node

is the sum of the loads assigned by the d q 1 incident edges. The resulting

load is said to be balanced if, for each edge, the absolute difference of the total

loads at the endpoints cannot be reduced by shifting some load from one

endpoint to the other. For example, suppose each edge allocates all of its load

to that one of its endpoints which is further from some designated reference

node D. This results in one unit of load at each node except D, and no load at

D. This load vector is not balanced. For example, a half unit of load could be

shifted from one of the neighbors of node D to node D, and then the absolute

difference between the load at the two nodes would be reduced from 1 to 0.

One might continue shifting loads in an effort to obtain a balanced load

vector. That process is load balancing and is an interesting topic in its own

right, but the topic of this paper is balanced loads, which are loads that

might be thought of as the output of a load balancing algorithm.

To continue with the example, suppose the original allocation is changed

by shifting all the load for each edge along an infinite chain of edges leading
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FIG. 1. Portion of an infinite tree graph for d s 2.

from D, as indicated in Figure 2. This produces one unit of load at every node.

Clearly, this is a balanced load vector. Is it unique? If d G 2 the answer is no.

Another load vector can be obtained by modifying the assignment just

described by shifting the load of every edge from one endpoint to the other.

This yields the load vector identically equal to d, which if d G 2 is a distinct

balanced load vector.

Ž . Ž .Let x v denote the total load at a node v. We have shown that x v ' 1
Ž . Žand x v ' d are each balanced load vectors with two different correspond-

.ing assignments . By taking a convex combination of the two assignments,
Ž .one observes that x v ' a is also a possible balanced load vector for any

w xa g 1, d . Intuitively speaking, the nonuniqueness of the balanced load is a

result of the effect of the boundary condition at `.

Is it possible that the load at a node can exceed d for a balanced load

vector? The answer is no. In fact, let us indicate why for any balanced load
Ž . w xvector the load x v at any node v is in the interval 1, d . In particular, the

balanced load vector is unique if d s 1 and is not unique if d G 2. To begin,
Ž .let F be a finite, connected subset of nodes. Then Ý x v is boundedv g F

Ž . Ž .above below by the number of edges with at least one with both endpoints

FIG. 2. A balancing assignment.
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in F. This yields the following bounds on the average load carried by nodes

in F:

k y 1 Ý x v kd q 1Ž .v g F
1.1 F F ,Ž .

k k k

where k is the cardinality of F. As k ª `, the lower and upper bounds in
Ž .1.1 tend to 1 and d, respectively. The fact that these two limits are distinct

reflects the fact that large sets of nodes in infinite tree graphs have relatively

large boundaries.

Ž . w xTo finish showing that x v g 1, d for all v, we argue by contradiction
� Ž . 4and suppose that there exists « ) 0 such that the set v: x v G d q « is

nonempty. By the observation in the previous paragraph, this set cannot have

arbitrarily large connected subsets. Therefore, it must have a finite compo-
Ž .nent where a component is a maximal connected subset , which we denote by

F. The definition of balanced load implies that any edge that connects F and

F c assigns its entire unit load to the node in F c
. Thus, the average load in F

Ž .is k y 1 rk, where k is the cardinality of F, which contradicts the assump-
Ž . Ž .tion that x v G d q « for v g F. Since « is arbitrary, x v F d for all v. A

Ž .similar argument shows that x v G 1 for all v, so that the coordinates of any
w xbalanced load vector lie within the interval 1, d .

w xThus, the interval 1, d is the set of possible values of the load at a given

node for a balanced load vector. The reader is invited to explore further the

set of all balanced load vectors}not all the vectors are constant. Roughly
Ž . Ž .speaking, the two extreme balanced load vectors x v ' 1 and x v ' d were

obtained by imposing minimal and maximal, respectively, boundary condi-

tions at `. Much more complex balanced load vectors exist for this example

and can be obtained by imposing mixed boundary conditions at `.

Henceforth, we shall call the amount of load to be assigned that is

associated with a given edge the demand for the edge. Thus, in our first

example the demand for each edge is deterministic and is one unit. In this

paper a method is given for computing the distribution of the total load at a

specified node in the infinite tree graph, with certain boundary conditions at

`, when the edge demands are independent and identically distributed. The

method works particularly well when the demand distribution is concen-

trated on the set of integer multiples of a positive number. For example, if the

demand at each edge is 1 with probability p and 0 otherwise, we find that the
Ždistribution of load at a node is not unique i.e., it depends on the boundary

.conditions at ` if and only if pd ) 1. As is well known from the theory of

branching processes, this condition is also necessary and sufficient for the

existence of infinite connected components in the subgraph formed by the

edges with unit demand. The method reduces to a simple one-dimensional

fixed-point equation in case the distribution of per-edge demand is the

exponential distribution. We find that for such demand distribution the

distribution of load at a node is not unique if and only if d G 6.

The second example of an infinite network which we present to illustrate

balanced loads in infinite networks is based on the d-dimensional rectangular
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lattice, for d G 1. The set of nodes is V s Zd and the edges are the pairs of

nodes at unit Euclidean distance from each other. Again, assuming one unit

of load is to be assigned for each edge, by assigning half of the load of each

edge to each of its endpoints, a balanced load vector is obtained with load
Ž .x v s d for all nodes v. Once again, our next question is, is the balanced load

vector unique?

To gain some insight into this question let us proceed as in the case of the
Ž dinfinite tree graph. If V is an n-cube i.e., a subset of n nodes which is an

� 4d .translation of 1, . . . , n , then the average load per node in V satisfies then

bounds

Ý x vd dŽ .v g Vn
1.2 d y F F d q .Ž .

< <n V nn

Ž .The lower resp., upper bound corresponds to assigning all load to the
c Ž . cendpoint in V resp., V for each edge bridging V and V . As n ª `, then n n n

Ž .bounds in 1.2 tend to the same limit, in contrast to the limiting behavior of
Ž .the bounds in 1.1 . This suggests that the balanced load vector is unique. In

fact, it is shown in this paper that the number of nodes in a graph with

distance n from some reference node must grow geometrically with n in
Ž .order for the load at the reference node for balanced load vectors to be

nonunique. The growth rate is only polynomial in n for rectangular lattice

networks, so that in such networks the balanced load vector is unique.

Roughly speaking, for rectangular lattice networks, the effect of boundary

conditions asymptotically vanishes as larger and larger sets of nodes are

considered.

The main questions addressed in this paper can be stated in broad terms

as follows. How can the set of balanced load vectors be characterized? It is not

difficult to show that balanced load vectors exist, but are they unique? What

is the distribution of the load at a given node for a balanced load vector when

the demand vector is random? Finally, the notion of balanced load concerns

local conditions. What ‘‘global’’ or long-range effects can be observed in

balanced load vectors?

Long-range effects are certainly evident for the infinite tree networks, for

the load at a node can depend on the boundary conditions at `. Long-range

effects for the d-dimensional rectangular lattice networks can still exist, but

they must be more subtle, given the uniqueness of balanced load vectors. For

example, given an n-cube V and unit demand vector, it is not difficult ton

Ž .show there exists a load vector such that x v s d y drn for all v g V , andn

Ž .another such that x v s d q drn for all v g V . The fact that these two loadn

vectors are distinct for any finite n indicates that the boundary condition has
Žan effect as long as n is finite. We call this condition load percolation defined

.more precisely in Section 3 . Load percolation occurs when there is more than

one balanced load vector, but, as this example shows, load percolation can

occur even if the balanced load vector is unique. It is shown in this paper that

if load percolation occurs, then there is a balanced load vector and an infinite
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connected set of nodes which have identical load. Intuitively, infinite compo-

nents are necessarily associated with load percolation since only when neigh-

boring nodes have identical loads can arbitrarily small changes in load at one

node negate the balance condition unless the load at a neighboring node is

also changed. Thus, the long-range dependence inherent in load percolation

can only be ‘‘transmitted’’ through infinite components of equal load.

This paper leaves open the problem of whether load percolation can occur

for some random, independent identically distributed loads on the edges of a

rectangular lattice network with d G 2. Some computer experiments are

described next which partially investigate this question. Let 0 F p F 1 and

suppose the per-edge demands are independent Bernoulli random variables

with parameter p. As indicated above, the balanced load vector x is unique

for each realization of the demands and if p s 1 load percolation occurs.

Whether load percolation occurs at a given node with positive probability for

some p strictly less that 1 is an open problem. Of course, p has to be large
Ž .enough p ) 0.5 if d s 2 so that there is positive probability of percolation

w xin the classical sense 4 . Simulation results concerning the problem are

presented here. One approach to simulation, motivated by the fact that

infinite components of identical load are associated with load percolation, is

to simulate a finite rectangular grid network with different boundary condi-

tions and vary them in order to maximize the size of the components of the

network with equal load. A similar approach, which we decided to use, is to

simulate the load on a torus, rather than on a finite two-dimensional grid.

Intuitively speaking, using a torus is similar to using a finite grid network

and imposing boundary conditions which favor the formation of large sets of

nodes with equal load.

Simulation data for a 60 = 60 torus is shown in Figures 3 to 5 for

p s 0.6, 0.75 and 0.90, respectively. The figures were produced as follows. A

demand vector was generated using a pseudo-random number generator, and

the balanced load vector was computed. The multiplicity of each load value

was determined, and the three values of highest multiplicity were identified.

Finally, the nodes with load values of the three highest multiplicities are

indicated in the three figures. For p s 0.6, note that only a small fraction of

the nodes have an identical load. This was observed in other simulations for

p - 0.6, if load values of 0 and 0.5 are neglected. These values are not

associated with load percolation but are quite frequent for small values of p.

At the other extreme, for p G 0.90, we find that the balanced load vector is

constant over a vast majority of the nodes, as shown in Figure 5. As p was

increased from 0.6 to 0.9, we observed the emergence and growth of clusters

of nodes having the same load values. Figure 4 is representative of this

intermediate range of values.

The simulation data lead to the conjecture that percolation of load occurs

for the infinite two-dimensional lattice with Bernoulli demands if p is

sufficiently close to 1.0. Moreover, the data suggest that for d s 2 there is a

corresponding cutoff value somewhere in the interval 0.75]0.90, but it seems

unwise to draw any definite conclusions. Let us endeavor to speculate even
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Ž .FIG. 3. Plot of balanced load vector for 60 = 60 torus network with Bernoulli p s 0.60

demands. The highest multiplicity values are 1.0000000, 1.3333333 and 1.2500000, with multi-

plicities 740, 303 and 140, respectively.

further. Load percolation is likely to occur for smaller values of p in higher

dimensions. The total load within a cube of side n and d dimensions has

standard deviation on the order of nd r2, whereas the number of edges

crossing the boundary of such a cube is on the order of ndy1
. In two

dimensions these are equal, so that, intuitively speaking, the balancing

capability of edges might just be able to smooth out load fluctuations,

Ž .FIG. 4. Plot of balanced load vector for 60 = 60 torus network with Bernoulli p s 0.75

demands. The highest multiplicity values are 1.5722121, 1.5865169 and 1.5000000, with multi-

plicities 547, 445 and 318, respectively.
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Ž .FIG. 5. Plot of balanced load vector for 60 = 60 torus network with Bernoulli p s 0.90

demands. The highest multiplicity values are 1.8059028, 1.7986348 and 1.8053097, with multi-

plicities 2880, 293 and 113, respectively.

whereas in three or more dimensions there seem to be more than enough

edges available to smooth the load over long ranges. Perhaps load percolation

does not occur for any p - 1 unless d G 3.

w xThe model in this paper was studied for finite networks in 5 . A motiva-

tion of this work is to determine the effectiveness of local balancing mecha-

nisms. The emergence of large, even infinite, sets of nodes with identical load

indicates that global balancing is induced by local adjustment. The present

paper deals with a static problem. Related dynamic problems studied for
w xfinite networks are the problem of computing a balanced load vector 5 and

the problem of dynamically allocating traffic in a loss network in a balanced
w xfashion 1, 3 .

The organization and other results of the paper are as follows. Sections 2

to 4 concern networks with deterministic demand vectors and Sections 5 and

6 concern networks with random demand vectors. Finite networks are consid-

ered in Section 2. First, the notation, including a more general model, is

given. In the examples above a demand is associated with an edge, which

allocates load to a set of two nodes, whereas in the more general model

introduced in Section 2 a demand is associated with a more general entity,

henceforth called a consumer, which is to allocate load among a finite set of

nodes. The model of Section 2 is more general also in that it provides for a

constraint on the maximum load that a consumer can assign to a node. It is

shown in Section 2 that balanced load vectors are unique for finite networks,

and are associated with solutions of a convex optimization problem. In

addition, the balanced load vectors are monotone in the demands.

General considerations for infinite networks, including the introduction of

boundary conditions and the definition of load percolation, are given in
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Section 3. It is shown, for example, that there is a minimal and maximal load

vector. Section 3 also contains the result, described above, that load percola-

tion implies the existence of infinite components of nodes with identical load.

Section 4 contains the proof that nonuniqueness of balanced load requires

geometric growth in the number of nodes within distance n of a given node.

General considerations for networks with random demand are given in

Section 5. Two results are given. First, the existence of minimal and maximal

load vectors for deterministic demand translates into the existence of mini-

mal and maximal distribution functions of balanced load at a given node, in

case the demands are random. Furthermore, any distribution function in

between the minimal and maximal distribution functions can arise as the

distribution of load at the node. Second, the monotonicity of loads with

demands described in Sections 3 and 4 immediately implies an FKG-type

inequality in case of independently distributed demands. Among other things,

the inequality implies that the load values at distinct nodes are positively

correlated. This result might be anticipated on the basis of everyday experi-

ence. For example, usually either all the tellers at a bank are busy or all are

lightly loaded. A similar statement may be observed for computer systems or

communication networks with dynamic load balancing.

Section 6 describes how to compute the distribution of load at a given node

in an infinite tree network when the per-edge demands are independent and

identically distributed, as described above. Open problems are given in

Section 7.

2. Notation and finite networks. A consumer-demand network is a
Ž .triple U, V, C where U and V are finite or countably infinite sets and

Ž . Ž .C s C : u g U, v g V , where 0 F C F q` for all u, v. Defining N u byu, v u, v

Ž . � 4 Ž .N u s v g V: C ) 0 , we assume that N u is finite for each u g U, andu, v

� 4similarly that u g U: C ) 0 is finite for each v g V. Elements of U areu, v

called consumers, elements of V are called nodes and C is an upper boundu, v

on the load of consumer u that can be assigned to node v. A demand vector m
Ž . Ž .for U, V, C has the form m s m : u g U where 0 F m F Ý C foru u v u, v

Ž . Ž .u g U, and a baseload vector b for U, V, C has the form b s b : v g V ,v

where b is real valued for each v.v

In the examples in Section 1, the edges of the graphs played the role of
Ž .consumers, and N u for a given edge was just the set consisting of the two

endpoints of the edge. The baseload vector was taken to be 0.

Ž .An admissible assignment vector is a vector f , f s f : u g U, v g V ,u, v

such that 0 F f F C . The interpretation is that f denotes the load atu, v u, v u, v

node v due to consumer u. An assignment vector f meets the demand if

2.1 f s m for u g U,Ž . Ý u , v u

vgV

Ž .and the total load at node v, x v , is given by

2.2 x v s b q f for v g V .Ž . Ž . Ýv u , v

ugU
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Use of the baseload vector is not a big generalization}it is nearly equivalent
Ž .to having more consumers, each with only one vertex in its set N u . It is not

exactly equivalent since the baseload values are allowed to be negative. The

notion of baseload vector is convenient for some of the proofs.

Ž Ž . .A vector x s x v : v g V so arising from an admissible assignment

vector f meeting the demand is called a load vector. A load vector x is said to

be balanced, if, for some corresponding f , the following conditions hold. For
Ž . Ž . Ž .all u g U and all v, v9 g V, f C y f s 0 whenever x v ) x v9 . Ifu, v u, v 9 u, v 9

these conditions are satisfied we say x is a balanced load vector and that f

balances. Intuitively, the condition that x is a balanced means that no

consumer u can shift some of its load from one node v to another node v9 to
< Ž . Ž . <reduce the absolute difference x v y x v9 of loads at the two nodes. Specif-

Ž . Ž .ically, assuming x v ) x v9 , either f s 0 so that u cannot reduce theu, v

load it assigns to v, or f s C so that u cannot increase the load itu, v 9 u, v 9

assigns to v9.

An example network is pictured in Figure 6. There are three consumers

and five nodes. Suppose that the baseloads b are all 0 and that thev

Ž .capacities C s 1 whenever v g N u . The upper picture in the figureu, v

shows an admissible assignment f and the resulting load vector. The assign-

ment f does not balance because, for example, the first consumer could shift
< Ž . Ž . <some load from node v to node v to reduce x v y x v . The lower2 1 2 1

˜picture in the figure shows an assignment vector f which balances the load.

Indeed, the balance conditions are satisfied for the first consumer, since
Ž . Ž . Ž .although x v is less than x v and x v , the first consumer cannot shift1 2 3

load to v since it already assigns load to v at the full unit capacity.1 1

FIG. 6. A consumer-demand network with given demand and two assignments.
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Similarly, the second consumer cannot shift more load to node v , and the4

third consumer cannot shift more load to v . Finally, the third consumer5

cannot shift load for v to v since it already assigns zero load to v . Note3 4 3

that there are other assignment vectors that balance. For example, the first

two consumers could each shift equal amounts of load between nodes v and2

v in opposite directions, yielding a new balancing assignment vector.3

Ž .If C G m for all u, v with v g N u , then all that is relevant about C isu, v u

Ž Ž . . Ž .summarized in the set of sets N s N u : u g U and we call U, V, N a

consumer-demand network with no capacity constraints. The examples of

Section 1 were of this type. The balancing condition can be simplified as
Ž . Ž . Ž .follows. For all u g U and all v, v9 g N u , f s 0 whenever x v ) x v9 .u, v

This completes the description of the model. The definitions above hold for

finite or infinite networks, but for the remainder of this section attention is

focused on finite consumer-demand networks. First, an optimization problem

is introduced which facilitates the proof that balanced load vectors are unique

for finite consumer-demand networks.

Ž .Let f be a convex function on the real line and define J f for an

assignment vector f by

J f s f x v ,Ž . Ž .Ž .Ý
vgV

Ž .where x is the load vector given by 2.2 . Define a convex optimization

problem P by

� Ž . 4PROBLEM P: min J f : f is an admissible assignment meeting demand m .

Ž .PROPOSITION 2.1. Assume U and V are finite. If f is a solution to problem

P for a strictly convex function f, then f balances. Conversely, if an assign-

ment vector f balances, it solves problem P. There exist a unique balanced load

vector x and any f corresponding to x balances. In the componentwise ordering

of vectors, the balanced load vector x is increasing in m

and b.

ŽPROOF. This result, except for the monotonicity part, was presented in
w x5 , but the proof given here is improved. The separable form assumed for J

can be weakened to the assumption that J is symmetric in its arguments
w x .1 . Suppose that f is strictly convex and that f is an admissible assignment

vector meeting the demand m. If f does not balance, then there are u g U
Ž . Ž .Xand v, v9 g V such that f ) 0, C ) f and x v ) x v9 . Hence, de-u, v u, v 9 u, v

creasing f by « and increasing f by « for a sufficiently small value of «u, v u, v 9

Ž .leads to an admissible assignment with a strictly smaller value of J f ,

implying that f does not solve P. Thus, if f does not balance, it does not solve

problem P. Equivalently, if f solves problem P, then f balances.

Conversely, suppose that f balances. It is shown next that f solves P if f
Ž .is not necessarily strictly convex. Since f can be approximated arbitrarily

closely, uniformly on bounded sets, by continuously differentiable convex
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functions and since the coordinates of x are bounded as f ranges over

assignments meeting the demand m, it is without loss of generality that we
Ž .assume f to be continuously differentiable. For each u g U define x u andˆ

Ž . � Ž . 4 Ž Ž .. wp by x u s max x v : v g V, f ) 0 and p s f9 x u . The constantsˆ ˆu u, v u

Ž . xp : u g U are Lagrange multipliers.u

Let f q h be any admissible assignment meeting the demand m. To prove
Ž . Ž . Ž .that J f q h G J f , since J f q « h is convex in « , it is enough to show

Ž Ž . Ž ..that the limit of J f q « h y J f r« as « decreases to 0 is nonnegative.

Ž Ž ..The limit is equal to Ý h f9 x v , which, since Ý h s 0 for u g U, isu, v u, v v u, v

equal to

2.3 h f9 x v y p .Ž . Ž .Ž .Ý u , v u

u , v

Consider first a pair u, v such that h ) 0. Then f - C since f q h isu, v u, v u, v

Ž . Ž .admissible, so that x u F x v since x is balanced, which, in turn, impliesˆ
Ž Ž ..that p F f9 x v . On the other hand, if h - 0, then f ) 0 since f q hu u, v u, v

Ž . Ž . Ž .is admissible, so that x u G x v by the definition of x u , which, in turn,ˆ ˆ
Ž Ž .. Ž .implies that p G f9 x v . Therefore, all terms of the sum in 2.3 areu

nonnegative. Thus, if f balances it solves P.

The function J in problem P depends on f only through the load vector x.

In addition, the set of load vectors, obtained as the image of all admissible

assignments f meeting the demand, is a compact, convex set. Thus, if f is

strictly convex and continuous, problem P is equivalent to maximizing a

strictly convex, continuous function over a compact, convex set. Thus, a

balanced load vector exists and it is unique. Any assignment f corresponding

to the balanced load vector solves P, and hence balances.

It remains to prove the claimed monotonicity. Suppose that x and x are˜
Ž .the balanced load vectors for demand vectors and baseloads m, b and

˜ ˜ ˜Ž .m, b , respectively, such that b F b and m F m. Let f and f denote corre-˜ ˜

sponding balancing assignments.

It must be shown that x F x. For the sake of argument by contradiction,˜
w Ž . Ž .x � Ž . Ž . 4suppose « s max x v y x v ) 0. Let F s v: x v y x v s « . Lemma˜ ˜v

2.1 below implies that, for u g U,

˜2.4 f F f .Ž . Ý Ýu , v u , v

vgF vgF

Ž .Summing each side of 2.4 over u g U and using the ordering of baseloads
Ž . Ž .yields Ý x v F Ý x v , which contradicts our assumption that « ) 0.˜v g F v g F

I

Ž .LEMMA 2.1. Fix u g U. Suppose x, f satisfies the following conditions: f
Ž . Ž .is an admissible assigment for U, V, C and f C y f s 0 wheneveru, v u, v 9 u, v 9

˜Ž . Ž . Ž . Ž .x v ) x v9 . The vector x need not be the load vector for f. Suppose x, f˜
˜satisfies the same conditions and that m s Ý f F m s Ý f . Given˜u v u, v u v u, v
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« G 0, suppose F is a set of nodes such that

x v y x v G « if v g F l N u ,Ž . Ž . Ž .˜

x v y x v - « if v g F c l N u .Ž . Ž . Ž .˜

˜Then Ý f F Ý f .v g F u, v v g F u, v

� Ž . 4PROOF. Let r s max x v : f ) 0 . The definitions of F and r imply theu, v

following two relations:

2.5 v g F c : x v - r l N u > v g F c : x v F r y « l N u ,� 4 � 4Ž . Ž . Ž . Ž . Ž .˜

2.6 v g F : x v F r l N u ; v g F : x v F r y « l N u .� 4 � 4Ž . Ž . Ž . Ž . Ž .˜

To complete the proof, the following three inequalities are justified below:

2.7 f F m y C n CŽ . Ý Ý Ýu , v u u , v u , vž / ž /
cvgF Ž . Ž .vgF : x v -r vgF : x v Fr

2.8 F m y C n CŽ . ˜ Ý Ýu u , v u , vž /ž /
c Ž .Ž . vgF : x v Fry«vgF : x v Fry« ˜˜

˜2.9 F f .Ž . Ý u , v

vgF

Ž .Inequality 2.7 follows from the definition of r and the balancing conditions
Ž . Ž . Ž .for x, f . Inequality 2.8 follows from the assumption m F m , 2.5 and˜u u

˜Ž . Ž . Ž .2.6 . Finally, inequality 2.9 follows from the balancing condition for x, f .˜

I

Given a threshold L and a load vector x, the load in excess of L is defined
Ž Ž . . Ž .by Ý x v y L , the maximum load is max x v and the minimum load isv q v

Ž .min x v .v

COROLLARY 2.1. The balanced load vector minimizes the load in excess of L

for any L. It also minimizes the maximum load and maximizes the minimum

load.

PROOF. The first assertion of the corollary follows from Proposition 2.1
Ž . Ž .q Ž .with the choice f z s z y L . Since the resulting value of J f is 0 if and

only if the maximum load is less than or equal to L, it follows that the

balanced load vector minimizes the maximum load. Similarly, since the
Ž . Ž .qbalanced load vector minimizes J for f z s L y z and any choice of L, it

must also maximize the minimum load. I

3. Boundary conditions, existence of balanced load vectors and
load percolation. A simple method to produce balanced load vectors for

consumer-demand networks with infinitely many nodes is to construct bal-

anced load vectors on finite subsets of nodes and then take convergent

subsequences. Different limits can sometimes result if different boundary
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conditions are placed on the finite subsets. Hence, a notion of boundary

conditions is presented before the existence of balanced load vectors is

considered. This approach is quite common in the theory of statistical me-

chanics. The section concludes with a notion of long-range influence, called

load percolation, and a demonstration that load percolation can occur only if

there are infinite sets of nodes with equal load for some balanced load vector.

Ž .Let U, V, C be a consumer-demand network with demand vector m and

baseload vector b. Let f be an admissible assignment vector satisfying the

demand m and let x denote the corresponding load vector. Given a subset V0

Ž .of V, we say that f balances in V with unspecified boundary condition if0

Žthe following condition holds: for all u g U and all v, v9 g V , f C y0 u, v u, v 9

. Ž . Ž .f s 0 whenever x v ) x v9 . We say that f balances in V with b-u, v 9 0

w xboundary condition for some b g y`, q` if: for all u g U and all v, v9 g V,
Ž .f C y f s 0 whenever one of the following three conditions holds:u, v u,v 9 u, v 9

x v ) x v9 and v , v9 g V ,Ž . Ž . 0

x v ) b , v g V and v9 g V c ,Ž . 0 o

b ) x v9 , v g V c and v9 g V .Ž . 0 0

Note that the second and third conditions are similar to the first, except if a

node is in V c, then the corresponding load value is replaced by b. Roughly0

speaking, the type of boundary condition we impose is similar to an infinite

heat bath in statistical physics, in which the nodes outside the finite set v0

are perceived to be held at the constant value b. If f balances the load in V0

with b-boundary condition, then x is said to be balanced in V with b-0

boundary condition.

LEMMA 3.1. Assume V is finite. There exists a load vector x b that0
b Ž bŽ .balances in V with b-boundary condition. The restriction of x to V , x v :0 0

. Ž .v g V , is unique for given b and is nondecreasing in m, b and b. If x is0
y`Ž . Ž .balanced in V with unspecified boundary condition, then x v F x v F0

q`Ž . w xx v and all v g V . For all v g V and b g y`, q` ,0 0

¡ q` q`x v , if x v F b ,Ž . Ž .
y` q`b ~b , if x v F b F x v ,Ž . Ž .3.1 x v sŽ . Ž . ¢ y` y`x v , if x v G b .Ž . Ž .
bŽ .In other words, for each v g V , x v is the point in the interval0

w y`Ž . q`Ž .xx v , x v nearest to b.

PROOF. Assume to begin that b is finite and define the function J byb, V0

Ž . Ž Ž . .2J f s Ý x v y b . This function is a strictly convex and continu-b , V v g V0 0

Ž Ž . . Ž Ž . .ous function of x v : v g V , and the set of possible values of x v : v g V0 0

as f varies is a compact, convex set. There thus exists a minimum, and the

resulting load vector restricted to V is unique. Reasoning as in the proof of0

Proposition 2.1, it can be shown that f balances the load in V with0

b-boundary condition if and only if f minimizes J over the set ofb, V0

admissible assignments meeting demand m . The existence of x b and theu
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Ž bŽ . .uniqueness of x v : v g V are established if b is finite. The balance0

conditions for b s q` are equivalent to the balance conditions for any finite

b larger than the maximum possible value of load for nodes in V , so0
q` Ž q`Ž . .therefore x exists and its restriction x v : v g V is unique and is0

Ž bŽ . . y`equal to x v : v g V for all sufficiently large b. Similarly, x exists and0

Ž y`Ž . .its restriction x v : v g V is unique.0

Let x be an arbitrary load vector that balances in V . To establish that0
y`Ž . Ž . y`x v F x v for v g V , we view the restrictions of x and x to V as0 0

balanced load vectors for a new network with set of nodes V . The demand0

vector m for x restricted to V is given by m s m y Ý c f , and the˜ ˜0 u u v g V u, v0

demand vector my` for xy` restricted to V is defined similarly. The base-˜ 0

loads for the two load vectors are the same: the restriction of b to V .0

The b-boundary conditions with b s y` imply that m F my` for all u, so˜ ˜u u
y`Ž . Ž .by Proposition 2.1 it follows that x v F x v for all v g V . The same0

Ž . q`Ž .argument shows that x v F x v for all v g V .0

A proof that x b is nondecreasing in m and b follows the proof of mono-

tonicity given for Proposition 2.1. Specifically, suppose that x and x are˜
˜Ž . Ž .balanced in V with b-boundary conditions for m, b and m, b , respec-˜0

˜ Ž . Ž .tively, where b F b and m F m. Modify x and x by setting x v s x v s b˜ ˜ ˜
c w Ž .for all v g V . Of course, the modified vectors may no longer satisfy 2.20

xunless v g V , but that is not important. It must be shown that x F x. The˜0

proof of this fact is word for word identical to the last two paragraphs of the

proof of Proposition 2.1. The proof that x b is nondecreasing in b follows from
Ž .3.1 , which is established below.

Ž . �It remains to establish 3.1 . Fix a finite value of b. Let V s v g V :1 0
bŽ . 4 b bx v ) b . The balancing conditions satisfied by x imply that x balances

in V with y `-boundary condition. By the part of the proposition already1
bŽ . Ž .proved, it follows that x v F x v for all v g V and any x that balances in1

V with unspecified boundary conditions. Taking x s xy` thus establishes1
bŽ . y`Ž . bŽ . y`Ž .that x v F x v for all v g V . On the other hand, x v G x v for all1

Ž . bŽ . y`Ž .v g V in fact for all v g V so that x v s x v for all v g V . The same1 0 1
bŽ . q`Ž . bŽ .argument shows that x v s x v for all v g V such that x v - b.0

Ž . bŽ . Ž .Thus, 3.1 is proven for all v g V such that x v / b. Relation 3.1 is also0
bŽ . y` q`true for v g V such that x v s b, by the extremality of x and x0

Ž .already proven. Thus, 3.1 is established for all v g V . I0

Ž .Throughout the remainder of this section, let V : n G 1 denote a sequencen

of finite subsets of V such that V p V, which, by definition, means thatn

V ; V for each n and D V s V. By Lemma 3.1, for each n there existn nq1 nG1 n

load vectors xy`, x b and xq` which are balanced in V with y`-boundaryn n n n

condition, b-boundary condition and q`-boundary condition, respectively.

Let fy`, f b and fq` denote the corresponding assignment vectors.n n n

Ž .PROPOSITION 3.1. Given a consumer-demand network U, V, C with de-

mand vector m and baseload vector b, there exist balanced load vectors xy`

and xq` such that, for any balanced load vector x, xy` F x F xq` coordinate-
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Ž . bwise. For any finite b relation 3.1 defines a balanced load vector x . The
b w xload vector x is nondecreasing in m, b and b. For any b g y`, q` and

bŽ . bŽ .v g V, lim x v s x v , and the convergence is monotone for largenª` n

enough n.

PROOF. Since 0 F f F m for each u, v and any admissible assignmentu, v u

vector f meeting demand m, there is a subsequence of n ª ` such that,

along the subsequence, each coordinate of the assignment vectors f
y`

, f b
n n

and f
q`

converges. Let f y`, f b and f q` denote the respective limits and letn

x
y`

, x b and xq` denote the corresponding load vectors. The balancing condi-

tions satisfied by f
y`

, f b and f
q`

for each n imply that the limits xy`, x b
n n n

and xq` are balanced load vectors with corresponding assignment vectors
y` b q` Ž .f , f and f . The load vectors obtained for V satisfy relation 3.1 forn

Ž . y` b q`v g V , so that 3.1 is satisfied by the limits x , x and x for all v g V.n

Similarly, the load vectors obtained for V , when restricted to V , aren n

nondecreasing in m and b, so that the limits xy`, x b and xq` are also
Ž . bmonotone in m and b. Equation 3.1 implies that x is also nondecreasing

as a function of b.

Let x be an arbitrary balanced load vector. The extremality properties of

xy` and xq` imply that xy` F x F xq` on V for each n. In the limit n ª `n n n n n

this yields xy` F x F xq` as desired.

The extremality properties of xy` and xq` imply that xy` G xy` on Vn n nq1 n n

and xq` F xq` on V . Thus, for v g V and for n large enough that v g V ,nq1 n n n
y`Ž . q`the sequence x v is nondecreasing in n and the sequence x is nonin-n n

Ž .creasing in n. These facts, together with 3.1 for set V , imply that, for anyn

w x bŽ . bŽ .b g y`, q` and v g V, lim x v s x v , and the convergence isnª` n

monotone for n large enough that v g V . Of course, the correspondingn

assignment vectors need not converge without passing to a subsequence. I

Ž .The concept of load percolation for the given network U, V, C , demand

vector m and baseload vector b is defined as follows. Load percolation is said
y`Ž . q`Ž .to occur at a fixed node v if x v - x v for all sufficiently large n0 n 0 n 0

Ž .equivalently, for all n such that v g V . A sufficient but not necessary0 n
y`Ž . q`Ž .condition for load percolation at v is x v - x v . The property of load0 0 0

Ž .percolation does not depend on which sequence of finite subsets V : n G 0 isn

Ž y`. Ž q`.used to define the sequences x and x . In fact, a condition equivalentn n
y`Ž . q`Ž .to load percolation at v is that x v - x v whenever A is a finite set0 A 0 A 0

of nodes containing v and xy` and xq` are load vectors that balance in A0 A A

with y`- and q`-boundary conditions, respectively.

In the remainder of this section, it is shown that, as described in the

Introduction, load percolation is associated with infinite sets of nodes with

identical loads. Some additional notation is introduced in order to state the
Ž .result. Nodes v and v9 are called neighbors if v, v9 g N u for some consumer

Ž .u. A path from v to v9 is a sequence s of nodes s s v , . . . , v so that1 < s <

< < < <v s v , v9 s v and v and v are neighbors for 1 F i F s y 1, and s1 < s < i iq1

denotes the length of the path. The distance between two nodes v and v9 is
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the minimum length of a path from v to v9, unless no path exists in which

case the distance is infinite. The boundary of a set V of nodes, written ­ V ,0 0

is defined by

� 4­ V s v9 g V y V : v9 is a neighbbor of v for some v g V .0 0 0

A set V is connected if, for any v, v9 g V , there is a path from v to v9.0 0

Finally, a component of a set V is a maximal connected subset of V .0 0

PROPOSITION 3.2. Suppose load percolation occurs at node v . Let b g0

w y`Ž . q`Ž .x � bŽ . 4x v , x v . Then the component of v: x v s b containing v is0 0 0

infinite.

PROOF. We prove the contrapositive. Let V U denote the component in

question and suppose that V U is finite. The goal is to establish that load

percolation does not occur at v . Consider the partition of ­ V U into two sets0

­ V U and ­ V U given byq y

3.2 ­ V U s v g ­ V U : x b v ) b ,� 4Ž . Ž .q

3.3 ­ V U s v g ­ V U : x b v - b .� 4Ž . Ž .y

Ž . q`Ž . bŽ . U y`Ž . bŽ .Note that, by relation 3.1 , x v s x v for v g ­ V and x v s x vy
U q`Ž . q`Ž .for v g ­ V . Since D V s V and x v ª x v as n ª ` for allq nG1 n n

U U q`Ž .v g V, if n is sufficiently large, then V j ­ V ; V and x v - b forn n

v g ­ V U
.y

q`Ž . bŽ . UWe argue that, for such n, x v s x v for v g V . On the one hand,n
q`Ž . bŽ . U q`x v G x v for v g V , in fact for v g V , since x dominates on V anyn n n n

load vector that balances on V . On the other hand, it will be shown at then

end of the proof that, for any u,

3.4 f F f b ,Ž . Ý Ýu , v u , v
U UvgV vgV

where f and f b denote assignment vectors corresponding to xq` and x b,n

Ž . q`Ž .Urespectively. Summing each side of 3.4 over u shows that Ý x v Fv g V n
bŽ . U q`Ž . bŽ . U

UÝ x v for v g V . This proves that x v s x v for v g V andv g V n

sufficiently large n.
y`Ž . bŽ . USimilarly, x v s x v for v g V and sufficiently large n. Therefore,n

q`Ž . y`Ž . Ux v s x v for sufficiently large n and all v g V , in particular, forn n

v s v . Thus, if V U is finite, load percolation does not occur at v .0 0

Ž .It remains to establish 3.4 for given u. Without loss of generality, sup-
Ž . U bpose N u l V / B. Since, f and f each satisfy the same demand,

3.5 f b y f s T q T y T b y T b ,Ž . Ž .Ý u , v u , v q y q y
UvgV

where

T s f , T s f ,Ý Ýq u , v y u , v
U Uvg­ V vg­ Vq y

T b s f b T b s f b
.Ý Ýq u , v y u , v

U Uvg­ V vg­ Vq y
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U U U q`Ž . bŽ .Note that if v g V j ­ V and v9 g ­ V , then x v G x v G b )q y n
q`Ž . bŽ . bŽ . b

Ux v9 and x v ) x v9 . Therefore, T s T s m n Ý C . Noten y y u v g ­ V u, vy
bŽ . bŽ . U U Ualso that x v ) x v9 is v g ­ V and v9 g V j ­ V . Therefore,q y

T G T b s m y C .Ýq q u u , vž /
U UvgV j­ Vy q

b b Ž . Ž .In summary, T s T and T G T which in view of 3.5 implies 3.4 . Iy y q q

The next corollary follows immediately from Proposition 3.2 and the fact

that x b ' x for all b if there is a unique balanced load vector x.

COROLLARY 3.1. If there is a unique balanced load vector x and if load
� Ž . Ž .4percolation occurs at a node v , then the component of v: x v s x v0 0

containing v is infinite.0

Ž .4. Necessary condition for nonuniqueness. Let U, V, C be a con-
< Ž . <sumer-demand network such that, for some constants A and B, N u F A

< � 4 <for u g U and u g U: C ) 0 F B for v g V. Suppose a demand vectoru, v

m is given with m G 0 for all u as usual. Throughout this section the base-u

load is taken to be 0. Fix a node v and let S denote the set of nodes at dis-0 n

Žtance less than or equal to n from v the notion of distance is defined just be-0

. Ž .fore Proposition 3.2 . Let x and x denote balanced load vectors for U, V, C˜

and m.

Ž . Ž .PROPOSITION 4.1. If x v ) x v , then there is a constant a ) 1 such that˜0 0

< < nS G a for all n.n

A plausibility argument for the proposition is given in the Introduction.

Our proof begins with the following lemma.

LEMMA 4.1. Proposition 4.1 is true under the additional assumption

m F L for all u g U for some L - `.u

Ž . Ž .PROOF. Let « s x v y x v , which, by assumption, is positive, and let˜0 0

� Ž . Ž . 4G denote the component of the set v: x v y x v G « containing v . For˜ 0

n G 1 set

s s x v y x v .Ž . Ž .˜Ýn

vgS lGn

By the relation between assignment vectors and load vectors,

˜4.1 s s f y f .Ž . Ý Ýn u , v u , vž /
u vgS lGn

Ž . Ž .Consider the sum in parentheses on the right-hand side of 4.1 . If N u l
Ž .S l G s B, the sum is 0, so consider u such that N u l S l G / B. Thenn n

Ž . Ž . cN u ; S l G j G , so the sum is less than or equal to 0 by Lemma 2.1n
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with F s S l G. For any u the sum is less than or equal to m , which is atn u

most L. Thus,

s F L u: N u l ­S l G / B� 4Ž .n n

< <F BL ­S l G .n

< < < < Ž . < <On the other hand, s G « S l G . Thus, ­S l G G «rBL S l G for alln n n n

< <n G 1. Since S is the union of the disjoint sets S and ­S , S l G Gnq1 n n nq1

Ž . < < < < < < Ž .n1 q «rBL S l G . By induction on n, S G S l G G 1 q «rBLn n n

for all n. I

Ž .Given D ) 0, define m s m n AD for u g U.u u

LEMMA 4.2. There exists a balanced load vector x for demand m such that
Ž . Ž .x v n D s x v n D for all v g V.

PROOF. Assume without loss of generality that V is connected so that
ˆŽ .S p V. First, a not necessarily balancing assignment vector f meetingn

ˆdemand m is specified. Consider u g U. If m F AD let f s f foru u, v u, v

ˆŽ . Ž .v g N u . Otherwise, let f s f n g for v g N u , where g is the uniqueu, v u, v u u

ˆ ˆnumber such that Ý f s AD. Observe that g G D. The vector f is anv g N Žu. u, v u

admissible assignment meeting demand m. Let x denote the load vector forˆ

f̂. Although x is not necessarily balanced, it satisfies x n D s x n D for allˆ ˆv v

� Ž . 4 Ž .v g V. Let F s v: x v G D . Note that if v, v9 g N u for some u and if
c ˆ ˆŽ . Ž .X X X Xv g F and v9 g F , then f C y f s f C y f s 0 since x isu, v u, v u, v 9 u, v u, v u, v 9

ˆ ˆbalanced, f G f and f s f .u, v u, v u, v 9 u, v 9

For n G 1 consider the finite network with set of nodes S l F, set ofn

Ž .consumers U, capacity vector equal to the restriction of C to U = S l Fn

Ž̂ .cand demand m y Ý f u, v for u g U. Note that x restricted toˆu v g ŽS l F .n

S l F is a load vector for the finite network. Let x Žn. be a balanced loadn

Ž .vector for the finite network. Since x satisfies x v G D for all v g S l F,ˆ ˆ n
Žn. Žthe same is true for x by the minimum maximizing property cf. Corollary

.2.1 of balanced load vectors for finite networks.

Let f Žn. denote the assignment vector for x Žn.
. Since each coordinate of f Žn.

is bounded uniformly in n, there is a subsequence of n ª ` such that, along

the subsequence, the vectors f Žn., and hence also the vectors x Žn., converge
Ž .coordinatewise. Denote the limits by f and x. Note that x v G D for v g F

Žn.Ž .since x v G D for all v g F l S . Extend f to an assignment vector forn
cˆŽ . Ž .U,V, C by setting f s f s f if v g F and extend x to be the loadu, v u, v u, v

vector for f. Then x is a balanced load vector and x n D s x n D for allu u

u g U. The lemma is proved. I

Ž . Ž . Ž .PROOF OF PROPOSITION 4.1. Choose D s x v . Then x v , x v F D so˜0 0 0

by Lemma 4.2, applied to both x and x, there exist two balanced load vectors˜
Ž . Ž .for U, V, C with demand m, one with load at v equal to x v and one with0 0

Ž .load at v equal to x v . Hence, by Lemma 4.1 with L s AD, there exists˜0 0

< < na ) 1 such that S G a for all n. In
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Ž .5. Randomly loaded networks. Let U, V, C denote a consumer-
Ž .demand network. Suppose that b s b : v g V is a random baseload vectorv

Ž .and that m s m : u g U is a random demand vector such that 0 F m Fu u

w xÝ C for all u with probability 1. Then for each b g y`, q` there is av g V u, v

balanced load vector x b, which is random. Fix a node v and let F b denote0
bŽ .the probability destribution function of s v . Write F $ G for two distribu-0

Ž . Ž .tion functions F and G if F c G G c for all real c.

PROPOSITION 5.1. A distribution function F is the distribution of load at
y` q` wv for some balanced load vector if and only if F $ F $ F assuming0

the probability space is large enough to support a uniform random vari-
Ž . x bŽ .able independent of m, b for the ‘‘if ’’ statement . In particular, F c s

q`Ž . y`Ž .F c I q F c I .�c- b 4 �cG b 4

Ž .PROOF. The fact that F is the distribution of x v for some balanced load0

vector only if Fy` $ F $ Fq` follows from the minimality of xy` and the

maximality of xq`
. Conversely, let F be any distribution function satisfying

Fy` $ F $ Fq`
. Then by the well-known connection between stochastic or-

dering and stochastic coupling, if the underlying probability space supports a
Ž .uniform random variable independent of m, b , there exists a random vari-

w y`Ž . q`Ž .xable B such that B g x v , x v with probability 1 and B has0 0

distribution functionF. Letting x B denote x b evaluated at B s b, we have
B BŽ .that x is a balanced load vector and x v s B with probability 1 so that0

BŽ .x v has distribution function F. The final statement in the proposition0

Ž .follows from relation 3.1 . I

The monotonicity property stated in Proposition 3.1 immediately implies

an FKG-type inequality for networks with independent demand and baseload

variables.

PROPOSITION 5.2. Suppose b , v g V, and m , u g U, are mutually inde-v u

w x Žpendent random variables. Fix b g y`, q` or let b be random and
.independent of m and b . Let g and h be nondecreasing, Borel measurable

V w Ž b .2 x w Ž b .2 xfunctions mapping R to R such that E g x and E h x are finite.

w Ž b . Ž b .x w Ž b .x w Ž b .xThen E g x h x G E g x E h x .

Ž . Ž . Ž . Ž .Taking g x s x v and h x s x v9 for two nodes v and v9, Proposition
Ž bŽ . bŽ ..5.2 yields that cov x v , x v9 G 0. Of course, if there is a unique balanced

load vector x with probability 1, then the FKG inequality holds for x b

replaced by x.

PROOF OF PROPOSITION 5.2. Since by Proposition 3.1 the balanced load

vector is a nondecreasing function of b, m and b, the random variables
Ž b . Ž b .g x and h x are also nondecreasing functions of b, m and b. The

proposition hence follows from the FKG inequality for nondecreasing func-
Ž w x w x .tions of independent random variables see 2 and 4 , Theorem 2.4 . I
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6. Tree networks with random demand. Tree networks as considered

in Section 1 are investigated in this section with independent random de-

mands on the edges. First, the notion of t-surplus of a node in a finite

network is introduced. Intuitively, the t-surplus is the quantity of load that
Žmust be ‘‘removed’’ from the node in order to make the load at the node for

.the new balanced load vector equal to t . It is shown that the t-surplus of

nodes for finite subsets with boundary conditions can be computed recur-

sively, yielding a method to compute numerically the distribution of load at a

given node for finite or infinite tree networks. The basic technique was
w xintroduced in 5 for analysis of a random tree network with Poisson degree

and unit demands. Two examples are investigated more closely, as outlined

in Section 1}Bernoulli loads and exponentially distributed loads.

Ž .The t-surplus of a node. Let U, V, C be a finite consumer-demand net-

work with demand vector m and baseload b. Given a real number t and a

node v g V, define the t-surplus of v to be the unique value y so that if the0 0

baseload b is changed to b y y, then the load at v for a balancedv v 00 0

assignment is t . The load at v under a balanced assignment for the original0

Ž .baseload vector b is greater than resp., less than, equal to t if and only if
Ž .the t-surplus of v is greater than resp., less than, equal to 0. Hence, the0

t-surplus of v for all t determines the load at v for a balanced assignment.0 0

Next suppose V is infinite. Fix a node v and take a sequence of finite0

Ž .subsets v : n G 0 with V p V. Consider the t-surplus at v for the balanc-n n 0
q` Ž y`.ing problem in V as n ª `. Specifically, Let Y resp., Y denote then t , n t , n

t-surplus of node v for the balancing problem in V with q`-boundary0 n

Ž . q` Ž y`.condition resp.,y `-boundary condition . The variables Y resp., Y aret , n t , n

Ž . y` Žnonincreasing resp., nondecreasing in n and are bounded. Let Y resp.,t
y`. q` q`Y denote the corresponding limits. We thus can write Y o Y andt t , n t
y` y` Ž .Y p Y , where the notation a o a resp., a p a denotes that the se-t , n t n n

Ž . Ž .quence a is nonincreasing resp., nondecreasing with limit a. Observe thatn

Yq` G Yy` for all n, so that Yq` G Yy`
.t , n t , n t t

PROPOSITION 6.1. For any finite t ,
q` q` q`6.1 P x v - t s P Y - 0 s lim P Y - 0 ,Ž . Ž .0 t t , n

nª`

y` y` y`6.2 P x v F t s P Y F 0 s lim P Y F 0 .Ž . Ž .0 t t , n
nª`

PROOF. As in the proof of Proposition 3.1, let xq` denote a load vectorn

that is balanced in V with q`-boundary condition. As discussed after then
q`Ž . q`Ž .proof of Proposition 3.1, x v o x v . We thus haven 0 0

xq` v - t p xq` v - t� 4 � 4Ž . Ž .n 0 0

and

xq` v - t s Yq` - 0 p Yq` - 0 .� 4 � 4� 4Ž .n 0 t , n t

q`Ž . q` � q` 4 � q` 4Consequently, x v -t if and only if Y -0, and Y -0 p Y -0 ,0 t t , n t

Ž . Ž .which implies 6.1 , and 6.2 is established similarly. I
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Ž . ŽCOROLLARY 6.1. The distribution of x v is not unique i.e., not the same0

.for all equilibrium load vectors x if and only if there exists an interval of
w q` x w y` xpositive length such that P Y - 0 - P Y F 0 for all t in the interval.t t

Ž .In particular, the distribution of x v is not unique if there exists an interval0

w q` x w y` xof positive length such that P Y - 0 - P Y - 0 for all t in the interval.t t

Ž . q`Ž .PROOF. The distribution of x v is unique if and only if x v and0 0
y`Ž .x v have the same distribution function. If they do have the same0

distribution function, then whenever t is not a point of discontinuity of the
w q` x w q`Ž . x w y`Ž . x w y` xfunction, P Y - 0 s P x v - t s P x v F t s P Y F 0 .t 0 0 t

Since a distribution function has at most countably many points of discon-
w q` xtinuity, there is no interval of positive length such that P Y - 0 -t

w y` x q`Ž . y`Ž .P Y F 0 for all t in the interval. Conversely, if x v and x v havet 0 0

different distribution functions, then there is an interval of positive length

such that the left-continuous modification of the distribution function of
q`Ž . y`Ž .x v lies strictly below the distribution function of x v throughout the0 0

w q` x w y` xinterval. Consequently, P Y - 0 - P Y F 0 for all t in that interval.t t

The first statement in the corollary is proved. The second statement in the
w y`corollary is an immediate consequence of the first and the fact that P Y -t

x w y` x0 F P Y F 0 for all t . It

The following lemma is useful for calculating the t-surplus of nodes in a

tree network. Roughly speaking, it shows that if the t-surplus of one specified

node in each of several distinct networks is known and if a new network is

formed by linking each of the specified nodes together to some new node, then

the t-surplus of the new node can be easily computed. The result applies to

tree networks in a straightforward manner, since larger and larger trees can

be formed by using this construction repeatedly.

Ž .LEMMA 6.1. Let U, V, C be a finite network with no capacity constraints.

�� 4 4Suppose there is a partition u , . . . , u , U , U , . . . , U of U and a partition1 d 1 2 d

�� 4 4 Ž . � 4v , V , V , . . . , V of V such that N u s v , v , where v g V for all i,0 1 2 d i 0 i i i

Ž .and N u ; V for all u g U and all i. Let t be a real number. Let y denotei i

Ž .the t-surplus of v relative to U, V and, for 1 F i F d, let y denote the0 i

Ž .t-surplus of the node v relative to the subnetwork U , V . For brevity, leti i i

m s m . Theni u i

d
m iw x6.3 y s b q y q m y t ,Ž . Ýv i i 00

is1

w x b w xwhere we use the notation x for the number in a, b closest to x.a

Ž .PROOF. Construct an assignment vector f for U, V, N meeting the de-

mand and balanced with baseload b defined by b s b y y and b s b forv v v v0 0

w x m i w x m i w x m iv / v , as follows. Set f s yy and f s m y yy s y q m0 u , v i 0 u , v i i 0 i 0i i i 0

for 1 F i F d. Choose f for u g U , v g V for each i so that the demand isu, v i i
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Žmet for each u g U and so that the load is balanced in V for each i withi i

.unspecified boundary conditions . We claim that f is a balanced assignment
Ž .for U, V, N . By construction, f is an admissible assignment vector that

meets the demand m. Since the load is balanced within V for each i, iti

remains to check the balance conditions for u , . . . , u . The load at node v1 d 0
d Ž .for assignment f and baseload b is b y y q Ý f , which by 6.3 isv is1 u , v0 i 0

Ž .equal to t . For each i one of the following three applies: 1 if y - 0, theni

Ž . Ž . Ž .f s 0 and x v ) t ; 2 if y - ym , then f s m and x v - t ; oru , v i i i u , v i ii i i i

Ž . Ž .3 if ym F y F 0, then x v s t . In any case, the balance condition holdsi i i

for u . Thus, f balances with baseload b and demand m as claimed, and thei

load at v is t . The proof of the lemma is complete. I0

Ž .For the remainder of this section, suppose U, V, C is a tree network with

degree d q 1 where d G 1. Suppose the baseload is 0 and that demand on

each edge has distribution function F and the demands on different edgesm

are mutually independent.

A generalized distribution function F corresponds to a probability measure
w xon the interval y`, q` . Such a function is assumed to be nondecreasing

Ž . w Ž .xand right continuous, and the limits lim F x and lim 1 y F xx ªy` x ªq`

must be nonnegative}the values of the limits are the probability assigned
Ž . Ž .to y` and q`, respectively. Write F $ G if F x G G x for all x. We write

Ž . Ž .I resp. I to denote the minimal resp. maximal generalized� x Fy`4 � x Fq`4

distribution function.

Given t G 0 and an integer d G 1, let G denote a mapping from thed, t

space of generalized distribution functions to the space of ordinary distribu-

tion functions defined as follows. Given a generalized distribution function F,

let G F denote the distribution function of Y, whered, t

d
m iw x6.4 Y s Y q m y t ,Ž . Ý i i 0

is1

m , . . . , m , Y , . . . , Y are mutually independent, and, for each i, m has1 d 1 d i

Ž .distribution function F and Y has distribution function F. Since Y in 6.4m i

is a nondecreasing, continuous function of Y for each i, it follows that thei

mapping G is monotone, in the sense that if F $ G, then G F $ G G.d, t d, t d, t

Also G is a continuous mapping if the space of generalized distributiond, t

functions is endowed with the usual weak topology. Thus, there is a unique

minimal solution and a unique maximal solution to the fixed-point equation

F s G F.d, t

Fix a node v g V and let V be the set of nodes at distance less than or0 n

equal to n from V . By Lemma 6.1 and induction on n, it follows that Yq`
0 t , n

has distribution function G G n) I , where G n) denotes the n-folddq1, t d, t � x Fq`4 d, t

composition of G with itself. The function I appears here since thed, t � x Fq`4

q`-boundary condition on V corresponds to t-surplus q` for all nodes inn

V c
. Let n converge to ` to obtain the following proposition.n
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PROPOSITION 6.2. For given t , Yq` has distribution G Fq`, where Fq`
t dq1, t

is the maximal solution to G F s F. Similarly, Yy` has distributiond, t t

G Fy`, where Fy` is the minimal solution to G F s F.dq1, t d, t

Trees with exponentially distributed loads. Suppose that the distribution

of the demand m for each edge u in the tree has the exponential distribu-u

Ž . yction with mean 1: F c s 1 y e for c G 0. The following relation is helpfulm

in determining the set of solutions F to the fixed-point equation F s G F. Ifd, t

m is exponentially distributed with mean 1 and Y is independent of m and

has an arbitrary distribution, then, for any c ) 0,

m m
<w x w x w xP Y q m G c s P Y q m G c Y G 0 P Y G 00 0

m
<w x w xq P Y q m G c 0 ) Y G ym P 0 ) Y G ym0

<w x w xs P m G c Y G 0 P Y G 0

<w x w xq P Y q m G c 0 ) Y G ym P 0 ) Y G ym

yc w xs e P Y G 0 or 0 ) Y G ym

yc w xs e P Y q m G 0 .

w x mThus, the distribution of Y q m depends on the distribution of Y only0

w xthrough the parameter q s P Y q m G 0 . If F is a sequence of distributionn

functions such that F s G F and if q n is the parameter q associatednq1 d, t n
nq1 Ž n.with F , then q s g q , wheren d, t

w xg q s P m q Z q ???q Z y r G 0 ,Ž .d , t 1 d

w x yc wZ , . . . , Z are random variables with P Z G c s qe for c ) 0 and P Z s1 d i i

x0 s 1 y q, m is an exponentially distributed random variable with mean 1

and m, Z , . . . , Z are mutually independent. If U denotes the number of i1 d

such that Z ) 0, then U has the binomial distribution with parameters di

and q. The probability that the sum of u q 1 exponentially distributed
w Ž . xrandom variables is greater than or equal to t is equal to P Poi t F u ,

Ž .where Poi t represents a Poisson random variable with mean t . Therefore,

g q s P Poi t F Bi d , q ,Ž . Ž . Ž .d , t

Ž .where Bi d, q represents a Poisson random variable with parameters d and
Ž .q which is independent of Poi t .

q` Ž y`. Ž .Let q resp., q denote the maximal resp., minimal fixed point of

g . Then qq` and qy` are the parameters associated with Fq` and Fy`,d, t

the maximal and minimal solutions to F s G F. Therefore, Yq` has thed, t t

same distribution as Z q Z q ???q Z y t , where Z , . . . , Z are inde-1 2 dq1 1 dq1

w x q` yc w xpendent random variables with P Z G c s q e for c ) 0 and P Z s 0i i

s 1 y qq`, so that

q` q`w xP Y - 0 s 1 y P Z q Z q ???q Z G t s 1 y g q ,Ž .t 1 2 dq1 dq1, t

where

g q s P Poi t - Bi d q 1, q .Ž . Ž . Ž .dq1, t
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Combining this and a similar equation for Yy` with Proposition 6.1 yieldst

the following corollary to Proposition 6.2.

COROLLARY 6.2. For a tree network with independent, exponentially dis-

tributed demands of mean 1 on the edges,

q` q`6.5 P x v - t s 1 y g q ,Ž . Ž . Ž .0 dq1, t

y` y`6.6 P x v F t s 1 y g q .Ž . Ž . Ž .0 dq1, t

q`Ž . y`Ž .Thus, the distributions of x v and x v are different if and only if the0 0

minimal and maximal fixed points of g are distinct for t in some interval ofd, t

nonzero length.

Fixed points of the function g are easily computed numerically for smalld, t

d and the qualitative behavior of the fixed points is easy to determine for

large d. The distribution functions are pictured in Figure 7 for 1 F d F 8, and

they shift to the right as d increases. For each integer d in the range

1 F d F 5, the upper and lower distributions are identical, and for d G 6 the

upper and lower distributions are different in some interval. A proof of this

fact by elementary numerical analysis is straightforward but tedious, and is

FIG. 7. Distribution functions of load for 1 F d F 8. For d s 6, 7, 8 the distribution functions for

both the minimal and maximal loads are shown, with dashed lines indicating where they diverge

from each other.
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omitted. The function g is pictured in Figures 8 and 9 for the twot , d

‘‘borderline’’ cases, d s 5 and d s 6, respectively, for selected values of t .

The derivative of the distribution function for d s 5 is less that 35 through-
w x Ž .out the interval 0, 1 . The function g q is decreasing in t for each value ofd, t

d and q fixed. There are either one, two or three fixed points of g for d, td, t

fixed.

Trees with Bernoulli loads. Suppose the demand m is 1 with probabilityu

p and 0 with probability 1 y p for all u, and that demands for distinct

consumers are independent.

COROLLARY 6.3. If pd F 1, then, with probability 1 there is a unique

balanced load vector and load percolation does not occur at any node. If

pd ) 1 then, for any fixed node v , the load at v is not unique with positive0 0

probability.

PROOF. If pd F 1, then the components of the graph induced by edges u

with m s 1 are all finite, with probability 1, as is well known from theu

theory of branching processes. Hence, the balanced load vector is unique and

load percolation does not occur, with probability 1. The first statement of the

proposition is proved.

FIG. 8. Graph of g for d s 5 and t s 3.0, 3.05, 3.10, 3.15, 3.20 and 3.25.t , d
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FIG. 9. Graph of g for d s 6 and t s 3.4, 3.5, 3.6 and 3.7.t , d

w y`Ž . xIt is shown next that P x v ) 1 s 0 for any node v and any value of0 0

Ž . � 4p with 0 F p F 1. If, in 6.4 , t s 1, Y F y1 and m g 0, 1 for 1 F i F d,i i

then Y s y1. Thus, the minimal solution to the equation F s G F for t s 1d, t
y`Ž . y` y` Ž .is F x s I . Moreover, F s G F . Therefore, by 6.2 and� x Gyt 4 dq1, t

w y`Ž . x y`Ž . ŽProposition 6.2, P x v F 1 s F 0 s 1, as was to be proved. Another0

proof of this result is the following. It was proved for p s 1 in Section 1, and

it can thus be proved for all p by exploiting the fact that xy` is stochastically
.increasing in p.

w q`Ž . xTo complete the proof of the proposition, we show that P x v ) 1 ) 00

Ž .if pd ) 1. Suppose that t s 2 t q 1 r2 t for some integer t, and d G 2. Define
˜ ˜a new mapping G as follows. Given a distribution function F, let G Fd, t d, t

˜denote the distribution function of Y, where

t q 1¡ m iw x0, if Y y m G for exactly two values of i ,i i 0 2 t

kq1 km iw x � 4y , if Y qm s1y for some i and some kg 0, . . . , t y 2~ i i 0Ỹ s 2 t 2 t

tm i
and Y q m F for j / i ,j j 0 2 t¢

yt , otherwise,
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and where m , . . . , m , Y , . . . , Y are the same as in the definition of G F.1 d 1 d d, t

˜ ˜Note that Y F Y for any value of m , . . . , m , Y , . . . , Y and that Y, like Y, is1 d 1 d

˜a nondecreasing function of Y , . . . , Y . Hence, if F $ G, then G F $ G G.1 d d, t d, t

˜ q̃` q̃`It follows that G has a maximal fixed point, F , and that F isd, t d, t d, t

stochastically smaller than the maximal fixed point of G . It will be shownd, t
q̃` q`Ž . w Ž . xthat F 0 ) 0 if pd ) 1 so that indeed P x v ) 1 ) 0 if pd ) 1.d, t 0

q̃`The probability mass corresponding to the distribution function F isd, t

� Ž . 4 � 4concentrated on the finite set 0, y1r2 t, . . . , y t y 1 r2 t j yt . Setting p j
q̃`equal to the probability mass assigned by F to yjr2 t, the fixed-pointd, t

˜equation of G becomesd, t

2 dy2d
6.7 p s ps 1 y ps ,Ž . Ž . Ž .0 ž /2

dy1
6.8 p s p dp 1 y ps , 0 F j F t y 2,Ž . Ž .jq1 j

6.9 s s p q ???q p .Ž . 0 ty1

Ž .dy1Solve for p , . . . , p in terms of p . Assume that dp 1 y ps / 1 and1 ty1 0

sum a partial geometric series to obtain

tdy1
1 y dp 1 y psŽ .

s s p .0dy1
1 y dp 1 y psŽ .

Ž .Using 6.7 to substitute in for p and canceling a factor of s, we obtain the0

following equation for s:

d2 dy2 dy1 t dy1Ž . Ž . � w Ž . x 4 Ž .6.10 sp 1 y ps 1 y dp 1 y ps s 1 y dp 1 y ps .ž /2
Ž . Ž .dy1Let s denote the unique value in the interval 0, 1 satisfying dp 1 y ps0 0

Ž .s 1. Such s exists assuming that dp ) 1. Then s s s is a solution to 6.10 .0 0

Ž . Ž .dy1However, in deriving 6.10 we assumed that dp 1 y ps / 1, so the value

s does not necessarily represent a solution to the original equations0

Ž . Ž . Ž .6.7 ] 6.9 . Let D resp. D denote the derivative of the quantity on theleft right

Ž . Ž .left-hand side resp. right-hand side of 6.10 , evaluated at s . The left-hand0

Ž .side of 6.10 is 0 at s s 0 and the right-hand side is negative at s s 0. Thus,
Ž .if D ) D , then there must exist a solution s to 6.10 in the intervalleft right

Ž .0, s . By straightforward calculation, find that D ) D if and only if0 left right

2 1 y s pŽ .0
6.11 t ) .Ž .

d y 1 s pŽ . 0

Ž . q`Thus, for t satisfying 6.11 , the maximal fixed point F of G , whered, t

Ž . w . w q`Ž .t s 2 t q 1 r2 t, assigns positive probability to 0, ` . Hence, P x v G0

x Ž . Ž .t ) 0 if dp ) 1 and t s 2 t q 1 r2 t where t satisfies 6.11 . I

7. Open problems. A number of questions arise. Is there a way to

compute the distribution of the load at node 0 in a d-dimensional lattice

network for some d G 2 and independent demands on edges with some
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interesting distribution? Does load percolation occur with positive probability

for a d-dimensional rectangular lattice and Bernoulli loads for some p - 1?

Whether or not load percolation occurs, what is the typical size or shape of

the connected components consisting of nodes with equal load for a balanced

load vector?

Some questions related to a d q 1-dimensional tree network with no

baseload and independent, identically distributed demands on edges are the

following. Is it true that for any d G 1 there is a distribution of demands0

w xsuch that the balanced load vector is unique for d F d ? Stephen Turner 60

of Cambridge University conjectures that for any given demand distribution

there is nonuniqueness for sufficiently large d. How can one characterize the

possible sets of fixed points of g as the demand distribution varies? Is thered, t

a simple test for when load percolation occurs in tree networks in cases where

the balanced load vector is unique, in particular, for exponentially distributed

demands with 2 F d F 5?
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