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APPROXIMATING A LINE THROWN
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Throw a straight line at random into a plane, within which is in-

scribed a square grid. Color black each grid vertex that lies above the line,
and white each vertex below it. Now remove the line, and attempt to
reconstruct it from the pattern of vertex colors in an m x m section of the
grid. We show that for all e > 0, the line can be approximated to within
order m'1 (log 7?i)(loglog m)1+s, with probability 1, and that there is no
deterministic subsequence along which the best achievable rate is better
than (wlog m)"1 (loglog m)~l~s with positive probability. Both these
results fail if s — 0. More generally, we provide a complete characteriza-
tion of almost sure rates of approximation, in terms of the convergence or
divergence of an infinite series. Applying these results, we develop near-
optimal local linear approximations to general smooth boundaries. We
address the case where vertex color is a shade of gray, varying in the
continuum and subject to stochastic error.

1, Introduction. Suppose a line has been placed randomly into a plane,
within which is inscribed a regular grid. For definiteness we consider a
square grid, although our results hold also for other regular grids. Color black
those grid vertices that lie above the line, and white those below it. Now
remove the line, and attempt to reconstruct it from the pattern of vertex
colors within an m X m square in the grid. We show that, with probability 1
with respect to the distribution of the line, the position of the line may be
determined to within "approximately" O(m~l). More concisely, if L is a
positive, slowly varying function, then the line can be estimated with accu-
racy m™1(log m)/L(log m), with probability 1, if and only if

00

(1.1) Y,n~lL(n)<™*
71=1

and the best convergence rate along the most optimistically chosen deter-
ministic subsequence of values of m is, with probability 1, inferior to
(m log m)~1L(log m) if and only if (1.1) is violated. (The definition of random-
ness for the line can be very general. We require only that the distribution of
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its slope conditional on its intercept be absolutely continuous, for each
intercept in the support of the distribution of that quantity.)

We apply these results to produce accurate, local linear approximations to
twice-differentiable boundaries. That work is for general, monochromatic
images recorded in the continuum, with a boundary represented by a discon-
tinuity in a smoothly varying range of gray colors, observed with noise.
Depending on the number of moments assumed of the noise distribution, the
order of approximation provided by our local linear smoother can be very
close to the optimum for an idealized, black-or-white, noiseless image.

Aspects of this problem have received significant attention in literature on
the theory of digital imaging. In particular, optimal estimation of boundaries
from vertex data has been addressed at length by Korostelev and Tsybakov
(1993), although largely without discussion of the case of a regular grid.
Properties of boundary approximations computed from data on regular-grid
vertices are quite different from those where vertices arise randomly, for
example when they are points of a Poisson process in the plane. In particular,
if we wish to use vertex colors to approximate a line that is parallel to one of
the grid axes then, unless it passes through a vertex, the accuracy of our
approximation is limited solely by the edge width of the grid, and does not
depend on the amount of data observed. This means that results on minimax
efficiency, presented by Korostelev and Tsybakov (1993) for a random distri-
bution of vertices, do not extend to gridded data.

After a little consideration it is clear that estimation of a straight line with
any rational slope is fraught with the same difficulties that beset approxima-
tion of a line that is parallel to one or other of the coordinate axes. For a line
with rational slope, the best order of approximation, using the color pattern
in the whole plane, is 0(1) unless the line intersects a vertex. If the line is
chosen at random, however, according to the definition of "random" suggested
in the first paragraph, then its slope is irrational with probability 1, and so
these difficulties do not arise. Our technical arguments are founded on
methods from stochastic number theory, describing the accuracy of rational
approximations to randomly chosen irrationals.

The dichotomy of radically different rates of approximation for lines with
rational and irrational slopes is apparent in empirical studies. If one deter-
mines numerically the region «$?, within which a line must lie in order to
produce a given color pattern in a certain finite set 5? of vertices, and then
gradually alters the line's slope while fixing *$*, then the width of & fluctu-
ates erratically with slope. This reflects the fact that both the rationals and
irrationals are dense in the reals, and also the variability of the convergence
rate among irrational slopes.

Early work on methods for approximating boundaries using vertex color
patterns includes that of Kulpa (1977) and Profitt and Rosen (1979). Other
techniques, and their theoretical properties, have been discussed by (among
others) Dorst and Smeulders (1984, 1986, 1987), Hung (1985), Mcllroy (1985)
and Koplowitz and Bruckstein (1989). Brady and Asada (1984) and Landau
(1987) gave algorithms for approximating boundaries. See also Freeman
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(1970) and Groen and Verbeek (1978). The "Freeman code" provides a partic-
ularly effective technique for tracking a boundary past a sequence of colored
vertices. See Worring and Smeulders (1995) for recent applications.

Our basic results about orders of approximation to random lines will be
presented in Section 2. Their ramifications will be discussed in Section 3.
These include the accuracy of local linear approximations to general bound-
aries, and the effect of noise. Technical arguments will be included together
in Section 4.

2* Approximating a straight line.

2.1. Approximation to a linear boundary in gridded data, A straight line
& placed into a plane divides it into two halves, of which that above the line
we shall imagine to be colored black, and that below to be colored white. (It is
assumed that the line is not vertical.) Consider a square grid in the plane
whose vertices are at integer coordinate pairs, relative to a Cartesian system.
A vertex of the graph will be said to be black or white, depending on the half
of the plane in which it lies. Only lines with irrational slope are relevant to
our analysis, and of course such a line can pass through at most one vertex.
An arbitrary color (black, white or "colorless") may be assigned to this vertex
without affecting our results.

Let c5^ = ̂ (m) denote the set of all vertices within the square [ — f m, f m]
X [ — fm, fm], where m is an integer. From perfect knowledge of the colors
of vertices within S? we wish to approximate the position of &* Given a
specific black and white vertex pattern ̂  = g^Sf) within S?, produced by &>
let .S^C^O denote an approximation to .$?. (We suppress the dependence of ̂
and 2* on m.) For example, & might be constructed by a least-squares
method, of which there are several.

Next we introduce a measure of the distance between & and & within S?.
If & and & intersect, let & denote the line that passes ̂ through the point of
intersection and bisects the angle between & and &. If & and^J? are
parallel, let S? be the line that is equidistant from them. Let ^"(J?, J?y &*) be
the set of line segments that join 2? and J?, are perpendicular to J?, and are
contained within ̂ . Define D(J?, &\ the Hausdorff distance between those
parts of S? and & that lie within ,̂ to be the supremum of the lengths of
elements of ̂ 02", J^, &).

2.2. Approximation to irrational numbers by continued fractions. A real
number u that is not an integer may be uniquely expressed as a continued
fraction,

u = [a0;a1,a2,...] = a0 + ———————«————,
ax +

a2 + a3 + •••
where a0 is an integer and al9 a2 ?. . . are strictly positive integers, called the
partial denominators of u. The continued fraction expansion terminates if
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and only if u is rational. Up to the termination point (in the case of a
rational), or for all n (if u is irrational), the convergents of u are the numbers

PQ Pi 1 Pz— = a0, — — a0 -f —, — = =a0 +
<?0 <?1 al <?2 ax + —

a2

where pw and gw are positive and relatively prime integers. The reader is
referred to Khintchine (1963) for a discussion of continued fractions and their
properties.

We say that u is badly approximate (or BA, for short), if supn an(u) < °°.
The set of all BA numbers in (0,1) has cardinality equal to that of the
continuum [e.g., Schmidt (1980), page 231, but is of measure zero [e.g.,
Khintchine (1963), page 69]. All quadratic irrationals are BA.

2.3. Main results. Let W(^) denote the set of all lines 3? that produce
the observed pattern ̂  of vertex colors within <5 .̂ Each J? may be considered
an approximation to 3*. Let P denote probability measure with respect to any
given random distribution of ̂ , such that the distribution of slope condi-
tional on intercept is absolutely continuous.

THEOREM 2.1. (a) For any positive function L that is slowly varying at
infinity, the following three assertions are equivalent:

( A I logm \\
P{ sup D(jg>,^)=o __=———- -1,
Ue^) \mL(logm))l

( m log m A \
P( Jiminf ————» sup D(&,&) > 0 - 1,\m^ L(logm)^m f

CO

£ n~lL(n) < oo.
71=1

(b) If the gradient of 3? is a BA irrational then

(2.1) sup Z>(^,J?) =O(m*1),
^ef(^)

(2.2) liminfm sup D(&, '&) > 0.
m~*°° ^e^(^)

Furthermore, both (2.1) and (2.2) fail if the gradient is not a BA irrational.

REMARK 2.1. Theorem 2.1 might be interpreted as stating that "the best
achievable rate of approximation to S? by & is O(m~1).w This is exactly true
if and only if the gradient of & is a BA irrational. It is approximately true if
the gradient is chosen at random, in any continuum sense, from the set of all
irrational numbers. There, with probability 1 the best achievable rate along
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the best subsequences is no better than and no worse than

(wlog m)~1(loglog m)"1"* and (mlog m)~ (loglog m) +%

respectively, for all s > 0; and the best achievable rate along the worst
subsequences is no better than and no worse than

m^1 (log TO)(loglog m)1"^ and m^1 (log m)(loglog m) +s,

respectively, for all s > 0.

REMARK 2,2 (Nonsquare grids). The vast majority of grids used in practice
are square, but the Leitz texture analyzer (for which the mathematical theory
was developed by J. P. Serra) employs a hexagonal grid. Our results hold
without change for any regular grid (such as a hexagonal one) all points of
which are represented by a finite number of square subgrids.

3. Local linear approximation to general boundaries.

3.1. Model for a boundary on a fine grid. Given a Cartesian coordinate
system in the plane, construct a square grid with vertices at pairs of integer
multiples of /z^1, where n > 1 is an integer. Represent a boundary, if, in the
plane by an equation y = g(x), where g is a continuous function. Color black
or white those parts of the plane that lie above or below the boundary,
respectively. A vertex assumes the color of that part of the plane in which it is
situated. We are interested in the accuracy with which we can approximate
W from information on vertex colors, perhaps observed with noise, as n
increases.

3.2. Estimating a curved boundary on a fine grid. Suppose the function g
defining & is differentiable and gf enjoys a Lipschitz condition of order y — 1,
where 1 < y < 2. It may be proved that, for each a > 0, W can be estimated at
rate

n-ar/(r-n>{(log n)(loglog n)^*}y/^

by using a local linear approximation within a window. This result is stated
for approximation at a random point X and is valid with probability 1 with
respect to any continuous distribution of X.

3.3. Estimation of W in the presence of noise. The noiseless data dis-
cussed above may be written in the form Y(i/n, j/n) — I{j/n < g(i/n)},
where /(•) is an indicator function, Y(i/n, j/n) denotes the color of the vertex
at (i/nyj/n) (white is represented by 1 and black by 0), and the equation
y = g(x) represents the boundary §". In practice, due to a combination of
systematic and stochastic errors, the color of each vertex may be more
appropriately represented by a number between — o° and <». In particular, we
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may write

Y(i/n,j/n) =f(i/nj/n) + %•>

where /Xv) is a function with a fault-type discontinuity along the curve
y = g(x) and the independent and identically distributed stochastic errors e^
have zero mean and are independent of the random point X at which we
develop the approximation to if.

It will be assumed that f admits the representation

f ( x , y ) = f l ( x , y ) + f 2 ( x , y ) I { y < g ( x ) } J

where fl and /2 each have two uniformly bounded derivatives of all types
and f2 ig bounded away from zero. We call this condition (C^). Of g we
suppose that it has a derivative which satisfies a Lipschitz condition of order
1 in the interval [0,1], and that constants — ̂  < Cl < C2 < °° are known with
the property that Cl < g < C2 in [0,1]. These assumptions will be referred to
collectively as condition (Cg).

We shall introduce a local linear estimator of g which, when (C^) and (Cp
hold, comes close to achieving the convergence rate described in Section 3.2 in
the no-noise case. For example, the convergence rate is w-(4/3)+5

? for any
given 8 > 0, if the distribution of e^ has sufficiently many finite moments.
This rate is available with probability 1 with respect to the distributions of
the errors e^ and the point X at which g is estimated.

Our approach is first to compute a preliminary approximation, g and then
refine it using local linear smoothing within a window. We shall consider a
particularly simple preliminary estimator, based on kernel methods, as fol-
lows. Write in for the integer nearest to nX, let K be a nonnegative,
compactly supported, continuously differentiable function, let h1 equal a
constant multiple of n~2/3 and put

T(j) = (nhl)'1 £JT{(j - kMnh^Y^/nJ/n),
k

which is a statistical approximation to the first derivative of f(in/n, * ) at
j/ri. Let j denote a value which produces a global maximum of \T\ in the
range C-^n < j <, C2n. Our preliminary estimator of g(X) is g(X) = j/n.

Next we define an improved estimator. Let W be a square window of side
length h = h(n), with its centre at (in/n, j/n) and, for the sake of definite-
ness, its axes aligned with those of the grid. Temporarily make the assump-
tion that within W, / assumes a constant value on either side of a line 3?. We
fit & by least-squares in the class uf(C,3r) of all lines 5e that divide W into
two sets of vertices of which the larger has no more than C times the number
in the smaller (where C > 1 is arbitrary but fixed). Specifically, let J^
[respectively, J^] denote the set of vertex coordinates w = (i/n,j/n) in W
that lie above [below] jg", let E(0 denote the sum of Y(w) over all w e J% let
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Yi be the corresponding mean and put

so*)- EE^iYw-Yf.
i=l

Write & for a line that minimizes S(3f) among all straight lines in uf(C, W)
that do not pass through any vertices. (The minimum is of course not
uniquely attained, and any measurable approach to breaking ties allowed.)
Write g(X) for the ordinate of the point on & with abscissa X. In the
theorem we choose h to optimize performance of g.

THEOREM 3.1. Assume conditions (Cf) and (Cg\ that X has an absolutely
continuous distribution on [0,1] and that X is independent of the errors etj.
Let 0 < a < 4/3. If the error distribution satisfies E\sij\t < ̂  for some t >
4(3 — a)/(4 — 3a) and h is chosen to equal a constant multiple ofn~~a/2

? then
g(X) - g(X) = O(n~a) with probability 1.

A version of the theorem may be established in the case where the moment
generating function of the error distribution is finite in a neighborhood of the
origin. Then, g(X) - g(X) = O{n~4/3(log n)^+s} for all 8 > 0.

4. Proofs.

PROOF OF THEOREM 2.1. We may assume without loss of generality that J?
has gradient u^1 e (0,1). (If the gradient exceeds 1? we switch axes, and if it
is negative, we reflect in the y axis.) Translate the origin along the #-axis so
that the black grid vertex that is furthest to the right on that axis is at x = 0.
Let (u,Q) denote the place where a given line =5? intersects the x axis. By
choice of origin, 0 < v < 1. For an integer j > 1 let (Vj: + k1 + • • • +kj,j)
denote the coordinates of the point at which J? cuts the line given by y = j.
Here the kfs are integers and each 0 <Vj < 1. Our assumption that u > 1
means that the only values taken by kj are (u) > 1 and {u} + 1, where { - )
denotes the integer part function. Since 3* has equation x = uy + u, then the
kj's and VJ'B satisfy

j J
X) kt = (uj + v) and Vj + £ ki = uj + v.

i=l 1=1

Therefore, i;̂  = uj + v - (uj + o>, as illustrated in Figure 1.
In the special case where J& passes through the origin, there is a closely

related geometric representation [due to Klein (1907)] of the convergents
pn/qn of w, as follows. Referring to Figure 2, imagine that a thin black thread
lies along the line with equation y = ux, where u > 0. Tie one end of the
thread to the origin and the other to a point infinitely remote from the origin.
Move to the left that end of the thread at the origin. As it goes, the thread
will catch certain vertices above the line. These vertices are those with
coordinates (ql9 p^, (g3, p3),.... If we move the origin end of the thread to
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FIG. 1. Approximation within a section. The line ̂  is depicted in the case u = (yo + l)/2 and
v = u/16. The lengths of the horizontal dotted lines, joining vertices to &t are the values of
Vj = uj + v — (uj + v) forj = 1,..., 6.

the right, it will catch some of the vertices below the line; these have
coordinates ( Q f o ? J p 0 X ( < 3 r 2 > P 2 X * * * • Each of the two positions of the thread
defines a polygonal path which approximates the line increasingly closely as
we move further out.

Let 5^w denote the set of white vertices within <5 .̂ Then, for any 0 < cl <
c2 < oo, the horizontal distance from S? of that vertex in 5?y which is closest
to & and has y coordinate j satisfying c^m < j < c2m, is

(4.1) d(m,tt) = l- max (uj + v - (uj 4- y>) .
clm<j<c2ifn

[Of course, d(m, u) depends on cl9 c2 and v as well as m and u, but it is not
necessary to stress the former variables.] The validity of (4.1) is illustrated by
Figure 2 in the case cl = 1, c2 = 6, m = 1 and v = 0. On this occasion,
d(m, u) = pn - uqn.

Asymptotic properties of the maximum on the right-hand side of (4.1) are
determined by properties of rational approximations to the irrational number
u. As a prelude to deriving the rate of approximation, we list several
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FIG. 2. Klein diagram. The diagram is drawn in the case u = (^5 + l)/2, where the partial
denominators an = an(u) are all equal to 1. The line with this equation is represented by the
dotted line, and the positions of the thread (after movement to the left or right) by the unbroken
lines. Odd-numbered convergent®, above the line, are represented by circles with inscribed crosses,
and the even-numbered convergents, below the line, are represented by asterisks.

properties of convergents:

(4.2)
(4.3)

{<?„(?„ + 9 » + l ) } <|» - (Pn/9n)\ < (Qnln+l)

inf \u - (p/q}\ = u- (pn/qn)\,
p,\<q<qn

-1

(4.4) if p and q are relatively prime, and \u - (p/q)\< (2g2)^1,
then p/q is a convergent of u.

See, for example, Chapter 9 of Leveque (1956).
Let 0 < c 1 < c 2 < o o b e constants, let L be as in Theorem 2.1 and define

M^(u} =n2 inf{±[u -(p/q)]: c^n <*p <q ^ c2n and ±[u —(p/q)} ^ 0},

where the + and — signs are taken, respectively, and

Mn(u)- n̂" inf \u - (p/q)\.
p,Cin<q<c2n
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LEMMA 4.1. Assume c2/c1 > 2. The following three assertions are equiva-
lent, for any choice of the + and — signs:
(4.5) limsup(log n)~ L(log n)M^(u) < <» for almost all u,

n-+™

(4.6) liminf(log n){L(log n)} M^(u) > 0 for almost all u,
71~-»oo

00

(4.7) £ n-lL(n) <«.
n=l

LEMMA 4.2. Assume c2/c1 >2.Ifu is irrational, then the three following
assertions are equivalent, for any choice of the + and — signs:

limsupM^E) < oo( liminfMn
±(w) > 0, u is badly approximable.

7l-*oo n-^oo

We derive only the first lemma in detail, since it is the more difficult. And
in both cases, for brevity, we establish the version of the lemma for M*
replaced by Mn. A proof in the case of M* is similar, making use of the fact
that Pzn/Qzn^u while p^n + i/^n + i i u*> see Figure 4.2, and also Schmidt
(1980), page 11. For the case of M^ we do need more detailed versions of
certain results in number theory, in particular Theorem 30 of Khintchine
(1963), applying, respectively, to the even and odd subsequences of {an} (or,
virtually equivalently, of {qn+i/qn})- However, these may be derived by
modifying arguments used to established the results for the full sequence.

+ i-PROOF OF LEMMA 4.1. Suppose \u - (p/q)\ < (2g2) l and qn < q < qn
Then either p and q have a common factor, or p/q is a convergent of u [see
(4,4)]. In view of the range of values allowed for q the latter cannot be true,
and so (a) p and q have a greatest common divisor k > 1, and (b) with
pf = p/k and q' = q/k, p'/q1 is a convergent and q' < qn. Let p"/qfr denote
the next convergent; then q" < qn+l. Hence, by (4.2),

\u - (p/q) =|« - (P'/q')\ > (2gV)"1 > (2qnqn + iy\
Therefore,

i*f \u-(p/q)\ >(2qnqn + l)
P><ln«l«ln+i' \u-(p/q)\<(2q2)-1

-I

Using properties (4.2) and (4.3), we may extend this to all q <, qn:

(4.8) inf \u~(p/q)\>(2qnqri + iyl.
p,I<q<qn+1:\u-(p/q)\<(2q2rl

If p, q are integers such that p/q ¥> pn/qn then \pnq - pqn\ > 1, or equiv-
alently, \(pn/qn) - (P/Q.}\ ^ l/(wnX % property (4.2) of convergents, \u -
(Pn/Vn>\ < (QnVn + i)'1- Therefore, if p/q * pn/qn and 1 < q < qn + l9

u - (p/q)\ >\(pn/qn) - (p/q)\ - |M - (pn/qn)\

> (Wn)~l ~ (QnQn+iyl = («B + 1 ~ ?)/(W»ff»+l).
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It follows that for any s e (0,1),

(4.9) inf \u-(p/q)\>e(l-e)-l(qriqn^Yl.
p,l<q<(I-s)qn+1

Let el9 #2 e [0,1) with el + s2 < 1, and let m > qn be an integer. Pro-
vided m/qn > (1 — sl — «2)~1' *^e width of interval (^1/n/g?1,(l — B^m/q^
is strictly greater than 1, and so the interval contains at least one integer, k
say. Necessarily, e*jn < £gre < (1 — &2)m, and by (4.2), |u — (kpn/kqn)\ <
(g^n + i)'1-Hence,

(4.10) inf |u - (p/g)| < (qnqn + iyl.
p, e^m <<?<(!- s2)m

Additionally, by (4.2), (4.10) holds with £x = 1, s2 = 0 and m = qn.
Define if/(n) = n~lL(n). Recall that an = an(u) is the nth partial denomi-

nator in a continued fraction expansion of u: u = [a0; a1? a2 ? . . . ]. If along a
subsequence we have either qn+i/qn -» °° or an+1 -> °o? then qn + i/qn ~ «n + 1
along that subsequence; see for example Khintchine (1963), pages 12, 13.
Furthermore, neither qn+i/qn nor «ra + 1 is less than 1. Therefore, qn + i/qn x
art+1, and so
(4.11) limsup^(n)g^+1/g7J < oo

n->w

if and only if limsup^^ ^(n)an + l < <». For almost all a, the latter condition
is equivalent to £</K/0 < °°, that is, to (4.7); see, for example, Theorem 30 of
Khintchine [(1963), page 71], taking Khintchine's <$>(n) to be our ^(n)"1.
Furthermore, for almost all choices of u, log qn = log qn(u) ~ Cn, where
C = 7T2/(121og2) [Khintchine (1935), Levy (1937), page 320]. Therefore, for
almost all w, (4.11) is equivalent to

(4.12) HmsupiKloggJg^i/g,, < °°-
n-»co

Hence, it suffices to derive the version of Lemma 4.1 in which (4.7) is replaced
by (4.12) (and M^ is replaced by Mn).

First we prove the following result, which we call (A): for all irrational u9
condition (4.12) is implied by each of
(4.13) limsup^(log n)Mn < °o?

re-»co

(4.14) liminf ̂ (log n)"1 Afn > 0,
re-~>co

Now, condition (4.12) fails if and only if there exists a subsequence {nk}
diverging to infinity, such that

(4.15) *A(log qnk)qnk+i/Qnk ~* °°-

Taking mk equal to the integer part of Sqn +1/c2, where 0 < S < 1, and
applying (4,9) with 1 — s e (3,1), we see that (4.15) implies ^(log mk)Mmk ~>
oo. Therefore, (4.13) fails, Alternatively, taking mk equal to the smallest
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integer exceeding C2lqrlk, and applying the right-hand inequality at (4.2), we
deduce from (415) first that (qnk/qnk+i)if/(log mk)~l -> 0 and then that
(/Klog mk)~lMmk -» 0. Therefore, (4.14) fails. This proves result (A).

Next we establish a converse, which we call result (B): for all irrational &,
the failure of either (4.13) or (4.14) implies that of (4.12). If (4.13) fails then
we may choose mk —» °° such that
(4.16) ^(logm,)MM f e^oo.

Let nk be the largest integer such that qnk < c2mk. Then by (4.3), and the
right-hand inequality in (4,2), MMk = O(ml/qnkqnk + l). But qnk+l > c2mk,
and so Mmk = O(qnk + l/qni). Therefore, ijKlog mk)Mmh -» QQ implies that
Qnk + i/Qnk ~* °°- Let s e (0,1) be so small that c1 < (1 - s)c2, and let lk equal
the integer part of (1 - e)c%lqn +i. If mk < lk then (4.16) holds with lk

replacing mk. [To appreciate why, note that if mk < lk then (1) iff (log m^)m\
< 2if/(log lk)l% for all sufficiently large k; (2) by (4.10) with m = const. mk,
using (in the case qnk < cxm^) the fact that c2/cl > 2, we see that m^2M^mk
^ (Qniflnk + i) l> and ® by ^4-9)' (Qnflnk + i) l is dominated by a constant
multiple of l^2Mlk, It follows that */Klog mk)Mmk is dominated by a constant
multiple of $(loglk)Mlk, and so (4.16) implies the same result with lk
replacing mk} Therefore, we may assume without loss of generality that
lk < mk. In this case we have

Mmk < (mk/lkfM'h < [(c2-X + i)/{(l - *)c2-19B4 + i - 1}]X = °(M0'
where

M'h=ll inf \u-(p/q)\.
P,clmk<q<c^lk

The ratio of upper and lower end points of the interval over which the latter
infiinum is taken, is

e2 V(CI"IA) ~ (1 - ^)9»Jk + i/(cimJk)

> (1 - £r)^+i/(cic2"1g^+1) = (1 - *)c2/c! > 1.
Thus, in view of (4.10) with m = const. qnk+1,

M'lh = 0(ll/qnkqnk + l) = 0(qnk + 1/qnk).

Furthermore, since qn < c2mk then iff(logmk) ^ 2$(logqn ) for large k.
Therefore,

iff(logmk)Mmk = 0{$(logqnk)Mlk} « O{^(log^J^+1/gnJ.

Hence? (4.16) implies that

^(log^Jg^+i/^-^00,
and so (4.12) fails.

We complete the derivation of result (B) by showing that if (4.14) fails,
then so too does (4.12). When (4.14) fails, there exists a subsequence mk -» oo
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such that

(4.17) t(]agmkylMmt^Q.

In particular, Mm -» 0 and so

(4.18) ml inf |w - (p/g)|-X).
p, l<q<mk

Let n/e be the largest integer such that qn < c2mk. Result (4.17) implies that

ift(logmkylm2
k inf \u - (p/q)\ -» 0.

p,l<q<qnk+1

Thus, (4.8) and (4.18) give

^(logmkylml(qnkqni[ + iyl -> 0.

But mk > c%lqnk and so iff(logmk)~l > |^(logqnf)~l for large &. Therefore,
*ltQ-Ogqnk)~lqn /qn +l -> 0, implying that (4.12) fails and establishing result
(B).

Results (A) and (B) imply that for almost all u, (4.12), (4.13) and (4.14) are
equivalent. The latter two conditions are the versions of (4.5) and (4.6) when
Mn replaces M*. We have already shown that (4.12) is equivalent to (4.7)
and so we have established the version of Lemma 4.1 with the aforemen-
tioned interchange of Mn and Af^. D

PROOF OF LEMMA 4.2. Arguing as in the proof of Lemma 4.1, we may show
that each of the first two assertions in Lemma 4.2 is equivalent to
SUP« qn+i^u^/qn^u^ < °°* This in turn is equivalent to supn an(u) < °° [see,
e.g., Khintchine (1963), pages 12, 13], and so to u being BA.

Lemmas 4.1 and 4.2 are employed to derive parts (a) and (b), respectively,
of Theorem 2.1. We illustrate the argument by considering the case of part
(b). The first step in proving (2.1) is to derive the following result. L6t ^(0)

denote the set of vertices that have their y coordinates in [CJ/TI, c2m]. If
v = 0 (i.e., if the line S? passes through a black vertex), and if c2/Ci is
sufficiently large (the size depending only on w), then the white vertex in <5^(0)

nearest to & is distant O(m"1) from 3*. We call this result (-Rwhite)- Simi-
larly, the version (^biack) f°r black vertices is true when v = 1 (i.e., when the
line passes through a white vertex).

We derive only (BwhiteX which is equivalent to showing that

(4.19) d(m,u) =O(m-1)
in the special case where v = 0. Let Jf/c, u) denote the event that d(m,u) <
cm"1 for all but a finite number of values of m. Given cs > 0, c4 > 1 and an
integer 6 > 1, define

^(b,c3,c4)= u u f f - ^ ' f ) -
j^Ji^c^j i=j-L \-/l •/! •/! /
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For 1 < u < 6, let £?2(6, c3, c4, u) be the event that u e JJ(5, c3, c4) for all but
a finite number of values of j. Then, provided c3/cl < c and c4 < e2/ci>
Jf2(&? c3, c4, M) c fjCc, w). In view of Lemma 4.1, noting particularly the one-
sided character of M+ and M~, if u is BA and c4 > 0 is sufficiently large,
then u &jj(b, I,c4) for all sufficiently large j. Therefore, if c2/C! is suffi-
ciently large and c > l/c1? d(m, u) < cm^1 for all sufficiently large m. This
proves (Jfcwhite).

The next step in deriving (2.1) is to prove that (4.19) holds for general v.
Put c5 - (c2 4- Cj)/2 and let ^(1) and ̂ (2) denote the sets of vertices that
have their y coordinates in [c1m? c5m] and (c5m, e2m], respectively. Let V be
the black vertex in <y(0) that is nearest to &. (In this part of the proof we
shall measure all distances horizontally.) Without loss of generality, V e^(1),
Let 5? denote the line parallel to & and passing through V, let V be the
vertex in c5^(2) that is below £?' and nearest to &' of all vertices with this
property and let &" denote the line passing through V and parallel to ̂ . By
definition of V, the vertex V must be white, since otherwise it would be a
black vertex in ̂ (0) closer to S? than V. By construction of &' and ̂ \ &
lies between these lines. And by (Rwhiie), if c2/cl is sufficiently large (depend-
ing only on u, not on u), V must be within O(m"™1) of J?'. It follows from the
last of these three properties that &' and J?7" are O(m~1) apart and thence
from the second property that V is within O(m~l) of &. Therefore, there
exists a white vertex in «5^0) that lies within O(m~l) of S. Similar argu-
ments involving R^ia(± show that there exists a black vertex within the same
distance of ̂ {0l

Summarizing, if c2/cl is sufficiently large, then the black and white
vertices in <y(0) that are nearest to J? are distant O(m~1) from J?. Applying
this result to two small squares of size pm X pm (with 0 < p < 1) positioned
where 2? enters S? on the left or below, and leaves ̂  on the right or above,
respectively, we see that the greatest horizontal distance between those parts
of J^ and & that lie within 3* is of order m"1, and similarly for vertical
distances. This establishes (2.1).

We only outline the derivation of (2.2), since it is similar to that of (2.1). In
place of (Uwhite) we may Prove that if v = 0 then the white vertex in <5^(0)

nearest to S? is distant at least O(m~1) from J?. (Again, distance is measured
horizontally.) Using Lemma 4.1, for each BA irrational number u, one can
show that d(m9 u) >. const.X m~l. We call this result (-R'white) and its ana-
logue (^MaekX Next, define F, ¥', &' and JT' as in the proof of (2.1). By
(•RwhiteX the parallel lines &' and J?" are at least a constant multiple of m~~l

apart by their definition, there are no vertices in <y(0) that lie between them
and, as before, & lies between them. Hence, there exists a rectangular prism
with its long sides parallel to 3* and its short sides horizontal and of length
at least a constant multiple of m"1, such that any line S*n that passes
through the prism produces exactly the same vertex color pattern in ey?(0) as
did _g". This proves (2.2).

By working with subsequences, we may prove that both (2.1) and (2.2) fail
if u is not BA. D
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PROOF OF THEOREM 3.1. We condition on X = x, where x is chosen so that
a straight line J2? with gradient u = gf(x) may, in the context of Theorem 2.1,
be approximated with error O{m~l(log m)l+e} for all s > 0. Since the distri-
bution of X is continuous, then with probability 1, the value of X has this
property.

STEP 1 [Performance of g(x)}. The estimator g need only converge to g a
little faster than the square root of the rate of convergence of g: g(x) —
g(x)^o(n~a/2\
(4.20) g(x) -g(x)-0(n^B)
as n -> <», with probability 1.

We give this proof only in outline. Using the Taylor expansion and integral
approximation to series and observing that hl is of size n~2//3, it may be
shown that r(j) = ERT<J)\g} = r^j) + r(j), where

ri(J)^h^lf2{in/n9g(in/n)}K[{(j/n) -*(*B/n)}Ai],

r ( j ) = O{(nh*)~l + (n2*?)"1 + l} = Ofn1/8).

We note that, in case a > 0, E^jf < °° for some t > 3 and we employ a
strong approximation to partial sums of independent and identically dis-
tributed random variables [available from Shorack and Wellner (1986), pages
60, 61]. Using Euler's method of summation (the summation analogue of
integration by parts), we may prove that there exists a Gaussian process f,
defined on the integers, with zero mean and the same covariance structure as
T(j) conditional on g, such that for some 17 > 0,

sup|T(7) - r(j) - £ ( j ) \ = 0(n-*/3>-8fcr2) = O(n<*™-*),
j

with probability 1. Fernique's lemma [Marcus (1970)] may be applied to show
that

sup | fC/) l = 0\{(nhl)-llogn}l/2} = O{(nlog nf/2}
j L J

with probability 1. Combining the results so far in this paragraph, we see
that for some 17 > 0?

rO') = i-i(./) + o(«(2/3)-1').
Therefore, since K vanishes outside a compact interval, the value j that
maximizes |T(jOi satisfies g(in/n) — (j/n) = O(h^). However, by definition
of in and since g is differentiable, g(in/n) is within O(n~l) of g(x). Hence,
g(x) — (j/n) — OC/ij), which is equivalent to (4.20).

STEP 2 (Completion). Note that the window width h used to construct g
is taken to be the square root of the claimed convergence rate of g to g and
that, by Step 1, g converges to g at rate o(/i). Therefore, the point (in/n, g(x))
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lies asymptotically at the center of W, in the sense that its distance from the
true center to (in/n, g(x))9 divided by the width of W, converges to zero with
probability 1 as n -» °°.

Let J2\ denote a line across W which, in the absence of noise, would
minimize the sum of squares SC^O. (Then ^ is constrained to cross W
within a certain region; it is not uniquely defined,) Let J?2 be any other line
across W. We shall address the case where ̂  and «S*2 intersect inside W\ the
case where they do not intersect there is a little simpler.

The lines J2\ and J?2 divide W into four regions, ^11? «#12, «#21 and ^22,
with &n opposite &12 and «^21 opposite M^, and Jz^ divides 3T into two
regions ̂  and ̂ -2. Select notation so that (1) the area of M2l

 u^22 *s less

than or equal to that of &u U^f12 and (2) ̂  =^r
1- U^2?; and ̂  =^ii u

^2,3-r Let i\F^ denote the number of vertices in 5?^ let Ti (respectively, Dt)
be the sum of Y(w) over all vectors w of vertices in £%lt (&2i) and put
Y0.=^1(TJ. + D,).Then

S(^2)-S(^)

= JVu?^ + ̂ Fil - (NnYZ + N22Y2l]

(4.21) = (N2l -AT11)(JV112V21)-1rl
2 + (N^-N^N^N^Tl

+ (N12 +Nll)(N^Nll)^lDl - (N22+N21)(N2lN22ylDl
+ 2T1(2Vr1

1D1 - N^Da) + 2T2(N^lDl - N^D,),
Write Tz = ti + r,- and Di~di^-^i^ where ri and 5^ denote the respective
sums of errors s^, and tt and dz are the respective sums of terms involving f.
Then

S(^2) - S(^) = s(^i,^2) + rr(^i,^2),
where s(«S:?

1, =2"2) has the same formula as S(J?2) - SC-S^) except that (Ti9 Dt)
is replaced by (tt, dt) and cr(^1?^2) is defined as the difference.

Let v = v(^i, ̂ 2) denote the number of vertices in ^?21 U^22. Then for all
sufficiently large w? s(^1? J^) > B!^, where J51? JB2 , . . . are positive constants
depending on / and by (4.21),

k(^i,^2)l
<B2 £ [v^-2^ + l^rj) + AT^Irj} +^V-1(Sf + |dfSj) + |Sf|],

j= l

where AT equals the total number of vertices in W. (The assumptions in the
theorem and the result of Step 1 imply that for all sufficiently large n and for
each pair i, j, Ntj- does not exceed a constant multiple of N.) Therefore, since
IdJ < B3N and v < N,

P(VQ) =F{S(^2) -S(^i) < 0 for some Sf% with i/(^,^2) > i/0)

(4.22) < E E (P(|r,| > B4N) 4- P0S.-I > S4^)},
( ^ o > ^ = 1
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where £(„ •> and sup(l,o) denote, respectively, summation and supremum over
all the different partitions of vertices in W that arise from different choices of
J?2 such that v(J&i, ~S^2) > PQ. There are at most N2 summands addressed by
E(VO). and so

P(*o) < 2N* £ sup(,o){P(|r,| > B4N) + P(|SJ > B4v)}.
i=l

If El^/ < oo, then the right-hand side equals O(iV2V/2):

(4.23) p(^0)^Q(ATV/ 2).
Let h equal a constant multiple of n^a/2> choose

t > tQ = 4(3 - a)/(4 - 3a)
and define w = 3-(l — |a)""1 and ^0 to equal the integer part of (nh)u.
Then, by (4.23) and since N = O{(nh)2}, we have, for some 8 > 0,

p(*0) = 0{(nA)4-(lB)/2} = OfC/iA)4-"'10'2*-'} = OCiT1-').
Since this quantity is summable in n, we have by (4.22) and the Borel-Cantelli
lemma that

P{S(^2) - S(^) > 0 for all ̂ 2 with p(^1?^2) > i/0,
(4.24)

and all sufficiently large n] = 1.
Therefore, if ̂  minimizes S(0» then with probability 1 j>(-2i» ̂ ) ^ ^o ^or a^
sufficiently large n. Now, D(^3?)hn2 = O{^(^1?^)}? and so

D(3fi,&) = O{(n2hylv(^^)} = O^n2*)"1^} = O(n~a),
with probability 1. Hence, g(x) (the ordinate of the point on & with abscissa
x) is O(/i~"a) from the point on J^ with abscissa x. A simpler, geometric
argument shows that the latter point is O(h2) = O(n~~a) from g(x)> and so
g(x) - g(x) = O(n~a) with probability 1, as had to be proved. D
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