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ON INVARIANT MEASURES OF DISCRETE TIME FILTERS
IN THE CORRELATED SIGNAL–NOISE CASE1

BY A. BUDHIRAJA

University of North Carolina–Chapel Hill

The classical results on the ergodic properties of the nonlinear filter
previously have been proved under the crucial assumption that the signal
process and the observation noise are independent. This assumption is quite
restrictive and many important problems in engineering and stochastic control
correspond to filtering models with correlated signal and noise. Unlike
the case of independent signal and noise, the filter process in the general
correlated case may not be Markov even if the signal is a Markov process.
In this work a broad class of discrete time filtering problems with signal–
noise correlation is studied. It is shown that the pair process (Yj ,πj )j∈N0 is
a Feller–Markov process, where (Yj )j∈N0 is the observation process and πj
is the filter, that is, the conditional distribution of the signal: Xj given past
and current observations. It is shown that if the signal process (Xj ) has an
invariant measure, then so does (Yj ,πj ). Finally, it is proved that if (Xj )
has a unique invariant measure and the stationary flow corresponding to the
signal process is purely nondeterministic, then the pair (Yj ,πj ) has a unique
invariant measure.

1. Introduction. Stochastic nonlinear filtering is one of the central areas of
application of stochastic processes. The basic object of the study is a pair of
stochastic processes (Xj ,Yj )j∈N0 , where (Xj ) is called the signal process and (Yj )
the observation process. The central problem in nonlinear filtering is the study of
the measure valued process (πj ) which is the conditional distribution of Xj given
σ {Yk :k ∈ N0; k ≤ j}. This measure valued process is called the nonlinear filter.
In the classical setting of nonlinear filtering, the signal is taken to be a Markov
process with values in some Polish space E and the observations are given via the
relation

Yj = h(Xj )+ ηj ,(1.1)

where (ηj ) is an i.i.d. sequence of R
d valued random variables, referred to as the

observation noise sequence, and h is the observation function which is a map from
E → R

d . The study of ergodic properties of the nonlinear filter has generated
significant research in recent years [5, 9, 6, 10, 8, 1, 7, 2]. The pioneering work in
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this direction is by Kunita [5]. In this classic paper Kunita used the uniqueness
of the solution of the Kushner–Stratonovich equation, in the classical filtering
model with independent signal and noise, to study the Markov properties of the
filter. It was shown that if the signal is Feller–Markov with a compact, separable
Hausdorff state space E, then the optimal filter is also a Feller–Markov process
with state space P (E), where P (E) is the space of all probability measures
on E. Furthermore, [5] shows that if the signal in addition has a unique invariant
measure µ for which (4.6) holds, then the filter has a unique invariant measure. In
subsequent papers Kunita [6] and Stettner [9] extended the above results to the case
where the state space is a locally compact Polish space. In all the above papers [5,
6, 9] the observation function h is assumed to be bounded. In a recent paper [2] we
extend the results of Kunita and Stettner to the case of unbounded h and signals
with state space an arbitrary Polish space. The proofs in [2] are of independent
interest since unlike the arguments in [5, 6, 9] they do not rely on the uniqueness
of the solution to the Kushner–Stratonovich equation.

The analysis in the above-stated works is greatly simplified by the assumption
that the signal process and the observation noise are independent. In general,
however, the assumption of signal–noise independence is quite restrictive and
many important problems in engineering and stochastic control correspond to
filtering models with correlated signal and noise. In this work we show that the
techniques developed in [2] can be used to study Markov and ergodicity properties
for the nonlinear filter for quite general models with correlations as well. For the
sake of exposition we restrict ourselves to signals and observations evolving in
discrete time; however, similar techniques can be used to study the continuous
time problem.

In the classical setup [5, 9, 6, 2] if the signal is a Feller–Markov process, then so
is the filter. The first obstacle in the study of the correlated case is that, in general,
even if the signal is a Markov process, the filter need not be Markov. To see this
problem consider the following elementary filtering model. Suppose that the signal
(Xn)n∈N0 and the observations (Yn)n∈N0 are given as follows:

Xn =Xn−1 + Yn−1 + ξn, n ∈ N,

Yn =Xn + ηn, n ∈ N0,

where (ξn)n∈N and (ηn)n∈N0 are i.i.d. standard scalar normal random variables.
Suppose that X0 has a density with respect to the Lebesgue measure. Denote by ρn
the filtering density, that is, the conditional density of Xn given Yn =̇ (Y0, . . . , Yn).
For random vectors Z1, Z2 let fZ1|Z2 denote the conditional density of Z1 given
Z2. Then

ρn(x)= cfXn|Yn−1(x)fYn|(Yn−1,Xn=x)(Yn),
where c is the normalizing constant. Next, denoting the standard normal density
by φ, we have fYn|(Yn−1,Xn=x)(Yn)= φ(Yn − x) and

fXn|Yn−1(x)=
∫

R

fXn|(Yn−1,Xn−1=y)(x)ρn−1(y) dy.
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Next note that fXn|(Yn−1,Xn−1=y)(x) = φ(x − y − Yn−1). Combining the above
observations we have that

ρn(x)= φ(Yn − x)

∫
R

φ(x − y − Yn−1)ρn−1(y) dy.(1.2)

Thus the filter update formula for ρn, unlike the case of independent signal and
noise, in addition to using Yn and ρn−1, involves Yn−1. This destroys the Markov
property for (ρn)n∈N0 , since from (1.2) it follows that E(

∫
R
g(x)ρn(x) dx | Yn−1)

equals E(
∫
R
g(x)ρn(x) dx | ρn−1, Yn−1), where g is an appropriate test function.

In view of the above problem it is natural to consider instead the process
(Yn,πn), where πn is the conditional distribution of Xn given Yn. We show that
for a quite general class of discrete time filtering models (see Section 2 for the
precise setup) (Yn,πn) is Feller–Markov. The proof, as in [2] for the independent
signal–noise case, uses a change of measure technique. The change of measure
is such that, under the new measure X0, (Yn) and (ξn) are mutually independent
and the observation sequence has the same distribution as that of the observation
noise sequence under the original measure. The key step in the proof of the
Markov property is the filter update formula analogous to (1.2). This is obtained
in Proposition 3.1. The Markov property for (Yj ,πj ) (Corollary 3.4) is then a
consequence of Theorem 3.3. We next show that the above Markov process has
the Feller property. This is done in Theorem 3.5.

In Section 4 we study the problem of existence and uniqueness of invariant
measures for (Yj ,πj ). We show, in Theorem 4.4, that if the signal process has
an invariant measure, then so does the above pair process. Our final result is
that if the signal has a unique invariant measure and it satisfies Assumption 4.7,
then the pair (Yj ,πj ) has a unique invariant measure. The key steps in the
proof are Theorem 4.4 and Proposition 4.8. Once these are proved the result
follows immediately upon taking limits as m → ∞ in the inequality (4.7) and
noting that the two extreme terms in the limit inequality are identical in view of
Assumption 4.7.

We now list the common notation used in this paper. For a complete separable
metric space S, let BM(S) be the class of real valued bounded measurable
functions on S, let Cb(S) be the subclass of BM(S) of continuous functions on S,
let B(S) be the Borel σ -field on S, let P (S) be the space of probability measures
on (S,B(S)) endowed with the weak convergence topology and let M(S) be the
class of positive finite measures on (S,B(S))with the weak convergence topology.
For f ∈ BM(S) and ν ∈ P (S) we denote

∫
S f (x) dν(x) by ν(f ). The probability

measure on S which is concentrated at the single point x ∈ S is denoted by δx .
The indicator function of a set A is denoted by χA. If Z is an S valued random
variable on some probability space (",F ,P ), then the law of Z will be written
as PoZ−1.
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2. The filtering model. Let (",F ,P ) be a probability space. Let the filtering
model be given as

Xn = A(Xn−1, Yn−1, ξn), n ∈ N,

Yn = h(Xn)+ ηn, n ∈ N0,

where Xn takes values in a Polish space E and Yn takes values in R
d . In the above

model, (ξn)n≥1 is an i.i.d. sequence of E0 valued random variables with law µ1,
where E0 is another Polish space and (ηn)n≥0 is an i.i.d. sequence of R

d valued
random variables with a continuous and bounded density function g(·). We assume
that (X0, (ξn)n∈N, (ηn)n∈N0) are mutually independent. We denote the distribution
of X0 by p0. The maps h :E → R

d and A :E × R
d × E0 → E are taken to be

continuous.
The basic object of interest is the P (E) valued stochastic process

πn(A) =̇P (Xn ∈A | F Y
0,n), A ∈ B(E),

where for a sequence of random variables {Zn} we denote by F Z
m,k the σ -field

generated by {Zm,Zm+1, . . . ,Zk} for m ≤ k. It will be convenient to work with
the following canonical spaces. Denote by (Rd)N0 the space of all sequences
γ 1 ≡ (γ 1

n )n∈N0 in R
d . Also, denote by (E0)

N the space of all sequences γ 2 ≡
(γ 2
n )n∈N in E0. Endow the above spaces with the Borel σ -fields, corresponding

to the pointwise convergence topology, B1 and B2, respectively. Denote by Q1
the probability measure on ((Rd)N0,B1) under which the canonical coordinate
sequence is i.i.d. with probability density function g(·). Also, denote by Q2
the probability measure on ((E0)

N,B2) under which the canonical coordinate
sequence is i.i.d. with law µ1. Now for fixed ν ∈ P (E) consider the probability
space

("′,F ′,Rν) =̇ (
E × (Rd)N0 × (E0)

N,B(R)⊗ B1 ⊗ B2, ν ⊗Q1 ⊗Q2
)
.

A typical element of "′ will be denoted by γ ≡ (γ 0, γ 1, γ 2), and (βin) for i = 1,2
denotes the canonical processes on ("′,F ′) given as βin(γ ) =̇γ in . With an abuse of
notation, β1

n also denotes the canonical coordinate process on ((Rd)N0,B1). Now
we define a sequence (θn) of E valued random variables on the above probability
space as follows:

θn(γ ) =̇ A(θn−1, β
1
n−1, β

2
n)(γ ), n ∈ N,

θ0(γ ) =̇ γ 0.

For n ∈ N0, define Gn =̇σ {θ0, β
i
j ; j ≤ n; i = 1,2}. One of the key representation

formulas in nonlinear filtering is the so-called Kallianpur–Striebel formula
(see [4]), which we now present in our notation. Define, for 0 ≤m≤ n <∞,

Lm,n(γ ) =̇
n∏

i=m
L(i)(γ )(2.1)
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and for j ≥ 0, Lj (γ ) =̇L0,j (γ ), where

L(i)(γ ) =̇ g(β1
i − h(θi))

g(β1
i )

.

Note that with respect to the filtration {F β1

0,j ∨F
β2

0,j ∨F θ
0,0}, Lj is an Rν-martingale

with mean 1. Furthermore, if the probability measure R̃ν on ("′,F ′) is defined as

dR̃ν

dRν
=̇Ln on Gn, n ∈ N0,

then R̃νo({θn,β1
n}n∈N0)

−1 = Po({Xn,Yn}n∈N0)
−1.

For B ∈ B(E), ν ∈ M(E) and j ∈ N0 define

/j(ν,B)(γ
1) =̇

∫
E

∫
EN

0

χB
(
θj (γ )

)
Lj (γ ) dQ2(γ

2) dν(γ 0).

Finally, define for ν ∈ M(E), B ∈ B(E), 0j(ν,B) =̇/j(ν,B)//j (ν,E). For
notational convenience we sometimes write /j (ν, ·) and 0j(ν, ·) as /j(ν) and
0j(ν), respectively. Then the Kallianpur–Striebel formula in this notation states
that

0j(p0)
(
Y·(ω)

) = πj a.e. ω [P ].(2.2)

3. Feller–Markov property of the filter. In this section we prove that
((Yj ,πj ),F

Y
0,j )j∈N0 is a Markov chain with a Feller semigroup. The proof of the

Markov property for this pair process is similar to the proof of the Markov property
of the filter process, in the uncorrelated case, presented in [2] and so some details
are omitted. We also refer the reader to [3], where a different proof for the Markov
property is given. The key step in the proof is establishing the semigroup relation
in Proposition 3.1 below.

We begin with the following notation. Define for l ∈ N0 the map β1
l+· : (Rd)N0 →

(Rd)N0 by [
β1
l+·(γ 1)

]
(j) =̇γ 1

l+j , j ≥ 0, γ 1 ∈ (Rd)N0 .

For B ∈ B(E), ν ∈ M(E) and j ∈ N define

/̃j (ν,B)(γ
1) =̇

∫
E

∫
EN

0

χB
(
θj (γ )

)
L1,j (γ ) dQ2(γ

2) dν(γ 0).

Set /̃0(ν, ·)= ν. Also, for j, k ∈ N0, k ≤ j , let

/̃k,j (ν,B)(γ
1) =̇ /̃j−k(ν,B)

(
β1
k+·(γ 1)

)
.

Finally, define for ν ∈ M(E), B ∈ B(E),

0̃k,j (ν,B) =̇ /̃k,j (ν,B)

/̃k,j (ν,E)
.
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PROPOSITION 3.1. For ν ∈ M(E), B ∈ B(E) and j, k ∈ N0, k ≤ j ,

/j(ν,B)(γ
1)= /̃k,j

(
/k(ν)(γ

1),B
)
(γ 1) a.e. γ 1 [Q1].(3.1)

PROOF. Equation (3.1) holds trivially if j = k so henceforth we assume that

0 ≤ k < j . Note that both the left- and right-hand sides in (3.1) are F
β1

0,j -measur-

able. Define, for A ∈ F
β1

0,j ,

G(A,B) =̇
∫
(Rd )N0

/j(ν,B)(γ
1)χA(γ

1) dQ1(γ
1).

We need to show that

G(A,B)=
∫
(Rd )N0

/̃k,j
(
/k(ν)(γ

1),B
)
(γ 1)χA(γ

1) dQ1(γ
1).(3.2)

From (2.1) we have that Lj = LkLk+1,j and thus using the definition of /j(ν,B)
we have that

G(A,B)=
∫
(Rd)N0

∫
E

∫
EN

0

Lk(γ )χA(γ
1)

(
F(θk,β

1
k , . . . , β

1
j )

)
dRν(γ ),

where, for (x, γ 1
0 , . . . , γ

1
j−k) ∈E × (Rd)k ,

F(x, γ 1
0 , . . . , γ

1
j−k) =̇

∫
E

∫
EN

0

χB(θj−k)L1,j−k(γ ) dQ2(γ
2) dδx(γ

0)

and the last step follows on observing that, under Rν , {β2
k+1+s}s∈N0 is independent

of {F θ
0,k ∨F

β1

0,j } and Lk(γ )χA(γ 1) is {F θ
0,k ∨F

β1

0,j }-measurable. Also observe that,
for ν ∈ P (E), ∫

E
F (γ 0, γ 1

0 , . . . , γ
1
j−k) dν(γ 0)= /̃j−k(ν,B)(γ 1).(3.3)

Using the definition of /k(ν) once more we have that

G(A,B)=
∫
(Rd )N0

χA(γ
1)

(∫
E
F (x,β1

k , . . . , β
1
j )/k(ν, dx)

)
dQ1(γ

1)

=
∫
(Rd )N0

χA(γ
1)/̃k,j

(
/k(ν)(γ

1),B
)
(γ 1) dQ1(γ

1). �

Using the above semigroup property we have the following result, the proof of
which is similar to that of Theorem 4.3 of [2] and thus is omitted.

PROPOSITION 3.2. Let ν ∈ M(E) be arbitrary and let k, j ∈ N0, k < j . Let
ψ : Rd × M(E)→ R be such that

EQ1

∣∣ψ(
β1
j ,/j (ν)

)∣∣<∞.
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Then

EQ1

(
ψ

(
β1
j ,/j (ν)

) ∣∣F β1

0,k

)
=ψ1

(
β1
k ,/k(ν)

)
,

where, for z ∈ R
d and ν ∈ M(E),

ψ1(z, ν) =̇EQ1

[
ψ

(
β1
j−k, /̃j−k(ν)(z,β1

1+·)
)]
.(3.4)

We now introduce the probability measure on (Rd)N0 under which the canonical
sequence {β1

j } has the same law as the observation sequence. Given λ ∈ P (E)

define Q̃λ ∈ P ((Rd)N0) by the relation

dQ̃λ

dQ1
= /j(λ,E) on F

β1

0,j , j ∈ N0.

It can be easily verified that Q̃p0 is the probability measure induced by {Yj } on
(Rd)N0 , that is, Q̃p0 = Po({Yj }j∈N0)

−1. Thus in view of (2.2) we have that

Q̃p0o
({
β1
j ,0j (p0)

}
j∈N0

)−1 = Po
(
{Y 1

j , πj }j∈N0

)−1
.(3.5)

The Markov property of (Yj ,πj ) is a consequence of relation (3.5) and Theo-
rem 3.3 below.

THEOREM 3.3. Let λ ∈ P (E). Then ((β1
j ,0j (λ)),F

β1

0,j ) is a Markov process

on ((Rd)N0,B1, Q̃λ). Furthermore, for φ ∈ BM(Rd × P (E)) and j, k ∈ N0,
k < j , we have that

E
Q̃λ

[
φ

(
β1
j ,0j(λ)

) ∣∣F β1

0,k

]
= φ1

(
β1
k ,0k(λ)

)
,

where φ1 : Rd × P (E)→ R is defined as follows. For (z, λ1) ∈ R
d × P (E),

φ1(z, λ1) =̇EQ1

[
φ

(
β1
j−k, 0̃j−k(λ1)(z,β

1
1+·)

)
/̃j−k(λ1,E)(z,β

1
1+·)

]
.

PROOF. Fix j, k ∈ N0, k < j , and let A ∈ F
β1

0,k . Let φ be as in the statement
of the theorem. Then we have that∫

A
φ

(
β1
j ,0j(λ)

)
dQ̃λ =

∫
A
ψ

(
β1
j ,/j (λ)

)
dQ1,(3.6)

where ψ : Rd × M(E)→ R is defined as follows. For (z, ν1) ∈ R
d × M(E),

ψ(z, ν1) =̇φ

(
z,

ν1

ν1(E)

)
ν1(E).

Applying Proposition 3.2 we have that∫
A
ψ

(
β1
j ,/j (λ)

)
dQ1 =

∫
A
ψ1

(
β1
k ,/k(λ)

)
dQ1,(3.7)
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where ψ1 is as in (3.4). Next, as in the proof of Theorem 4.4 of [2], it follows that∫
A
ψ1

(
β1
k ,/k(λ)

)
dQ=

∫
A
f1

(
β1
k ,/k(λ)

)
dQ̃λ,(3.8)

where for (z, ν) ∈ E × M(E), f1(z, ν) =̇ ψ1(z,ν)
ν(E)

. Finally, using the definition of
ψ1 and ψ we have that

f1(z, ν)= EQ1

[
φ

(
β1
j−k, 0̃j−k(ν̂)(z, β1

1+·)
)
/̃j−k(ν̂,E)(z,β1

1+·)
]

(3.9)
= φ1(z, ν̂),

where ν̂ =̇ ν
ν(E)

and the equalities in the above display follow upon noting that,

for m ∈ N0, /̃m(ν̂, ·) = /̃m(ν, ·)/ν(E) and 0̃m(ν̂, ·) = 0̃m(ν, ·). The result now
follows on combining (3.6)–(3.9) and noting that /̂k(λ)=0k(λ). �

As an immediate consequence of the above theorem and (3.5) we have the
Markov property of (Yj ,πj ).

COROLLARY 3.4. {(Yj ,πj ),F Y
0,j }j≥0 is an R

d × P (E) valued Markov pro-
cess on (",F ,P ) with an associated semigroup {Tm} given as follows. For
φ ∈ BM(Rd × P (E)) and (z, λ) ∈ (Rd × P (E)),

(Tmφ)(z, λ)= EQ1

[
φ

(
β1
m, 0̃m(λ)(z,β

1
1+·)

)
/̃m(λ,E)(z,β

1
1+·)

]
.

We now prove the Feller property of the above Markov chain.

THEOREM 3.5. (Tm) is a Feller semigroup.

PROOF. Let φ ∈ Cb(R
d × P (E)). We need to show that T1φ ∈ Cb(R

d ×
P (E)). Let (zm,λm) be a sequence in R

d × P (E) converging to (z0, λ0) as
m→ ∞. Then, for m ∈ N0,

(T1φ)(zm,λm)= EQ1

[
φ

(
β1

1 , 0̃1(λm)(zm,β
1
1+·)

)
/̃1(λm,E)(zm,β

1
1+·)

]
.

To study the convergence of the above expression as m → ∞ we write it as an
expectation over a more convenient probability space.

Let ("1,F1,P1) be a probability space which supports E valued random
variables {X(m)}m∈N0 such that the law of X(m) is λm and X(m) converges a.s. to
X(0) as m → ∞. Let ("2,F2,P2) be another probability space which supports
independent random variables ξ1 and η1 which are mutually independent and
where ξ1 is E0 valued with law µ1 and η1 is R

d valued with density g. Define
the probability space

("∗,F ∗,P ∗) =̇ ("1 ×"2,F1 ⊗ F2,P1 ⊗ P2)
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and random variables on this space:

X
(m)
1 =̇ A

(
X
(m)
0 , zm, ξ1

);
X
(m)
0 =̇ X(m).

Also define the random variable

L(m) =̇ g(η1 − h(X
(m)
1 ))

g(η1)
.

Finally define M(E) valued random variable /̃(m)1 as follows. For B ∈ B(E),

/̃
(m)
1 (B) =̇EP ∗

[
χB

(
X
(m)
1

)
L(m) | η1

]
,

where EP ∗ denotes the expectation with respect to the probability measure P ∗,
and define 0̃(m)

1 (·) to be the normalized measure. Then in this notation,

(T1φ)(zm,λm)= EP ∗
[
φ

(
η1, 0̃

(m)
1

)
/̃
(m)
1 (E)

]
.(3.10)

Next note that by continuity of A we have that X(m)
i converges a.s. to X

(0)
i as

m→ ∞ for i = 0,1. Thus using the continuity of g we have that L(m) converges
a.s. to L(0) as m→ ∞. This, along with the fact that g is bounded, implies that, for
all f ∈ Cb(E), /̃

(m)
1 (f ) converges almost surely to /̃

(0)
1 (f ) as m → ∞. Thus in

particular, /̃(m)1 (E) converges almost surely to /̃(0)1 (E) and 0̃(m)
1 converges almost

surely to 0̃(0)
1 as m→ ∞.

Also note that EP ∗(/̃(m)1 (E))= 1 and so /̃(m)1 (E) is a sequence of nonnegative

random variables with mean 1 which converge a.s. to /̃
(0)
1 (E) as m → ∞ and

therefore also in L1, that is,

/̃
(m)
1 (E)

L1(P ∗)→ /̃
(0)
1 (E) as m→ ∞.(3.11)

Combining (3.10) with the above observations we have that

(T1φ)(zm,λm)→ (T1φ)(z0, λ0)

as m→ ∞. This proves the theorem. �

4. Ergodicity properties of the nonlinear filter. In this section we obtain
conditions for existence and uniqueness of (Tm) invariant measures. As in the
uncorrelated case the ergodicity properties of the filter process depend crucially
on that of the signal process. We begin by noting that, for n ∈ N,

Xn = A
(
Xn−1, h(Xn−1)+ ηn−1, ξn

)
=̇ A∗(Xn−1, ηn−1, ξn),
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where A∗ is a continuous map from E × R
d ×E0 to E. Hence {Xn}n≥0 is a time

homogeneous Markov chain. Denote the semigroup of the Markov chain (Xn) by
(Sn); that is, for f ∈ BM(E), x ∈E and n ∈ N,

(Snf )(x) =̇E
(
f (Xn)|X0 = x

)
.

One basic assumption in many results of this section is the following.

ASSUMPTION 4.1. There exists a unique (Sm) invariant measure µ.

We begin by showing that if there is an (Sm) invariant measure, then (Tm) also
admits an invariant measure. The proof will use the following lemma, whose proof
is standard and thus is omitted.

LEMMA 4.2. Let S be a Polish space and let (ζn)n≥0 be an S valued time
homogeneous Markov chain with a Feller semigroup (Tn). Suppose that for some
ν ∈ P (S) the measure νTn defined as

νTn(φ) =̇
∫
S
(Tnφ)(x)ν(dx).

converges weakly to ν0 as n→ ∞. Then ν0 is (Tn) invariant.

Now let µ be an (Sm) invariant measure. To show that there exists an (Tm)

invariant measure we show that there exist probability measures m(i)
1 on R

d ×
P (E), i = 1,2, such that m(i)

1 Tn converge weakly as n→ ∞. To introduce these
measures we find it convenient to work with a different probability space.

Note initially that (Xn, ηn, ξn+1)n∈N0 is an E × R
d ×E0 valued Markov chain

and µ ⊗ µg ⊗ µ1 is an invariant probability measure for this chain, where µg ∈
P (Rd) is defined as follows. For A ∈ B(Rd),

µg(A) =̇
∫
A
g(z) dz.

Let ("̃, F̃ , P̃ ) be a probability space which supports the stationary flow corre-
sponding to the above invariant measure; that is, there exist sequences which we
denote as (X̃n)n∈Z, (η̃n)n∈Z, (ξ̃n)n∈Z such that

(<n)n∈Z =̇ (X̃n, η̃n, ξ̃n+1)n∈Z

is a stationary Markov chain with the invariant law µ ⊗ µg ⊗ µ1 and the same
transition probability function as that of (Xn, ηn, ξn+1)n∈N.

Define

Ỹn =̇h(X̃n)+ η̃n, n ∈ Z.
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Clearly (X̃n, Ỹn)
∞
n=−∞ is a stationary Markov chain. Define for m,n ∈ Z, m < n,

the probability measure valued processesπ(i)m,n, i = 1,2, as follows. ForA ∈ B(E),

π(1)m,n(A) =̇ P̃
[
X̃n ∈A | F Ỹ

m,n

]

and

π(2)m,n(A) =̇ P̃
[
X̃n ∈A | F Ỹ

m,n ∨ σ(X̃m)
]
.

An application of the martingale convergence theorem shows that, for each fixed
n as m→ −∞, π(1)m,n converges almost surely to π(1)−∞,n, where

π
(1)
−∞,n(A) =̇ P̃

(
X̃n ∈A | F Ỹ−∞,n

)

and F Ỹ−∞,n =̇σ(
⋃n
m=−∞ F Ỹ

m,n). Also, using the Markov property of X̃ and an
application of the reverse martingale convergence theorem (cf. [2]) we have that,
for each fixed n, π(2)m,n converges almost surely to π(2)−∞,n, as m→ −∞, where

π
(2)
−∞,n(A) =̇ P̃

(
X̃n ∈A | F Ỹ−∞,n ∨ F X̃−∞,−∞

)

and F X̃−∞,−∞ =̇ ⋂∞
n=−∞ F X̃−∞,n. Furthermore since, for all k,

P̃ o(Ỹn,π
(i)
m,n)

−1 = P̃ o(Ỹn+k,π(i)m+k,n+k)
−1 =̇M

(i)
n−m

we have that the joint law of (Ỹn,π
(i)
−∞,n) does not depend on n. Denote this law

by M(i). We show in Theorem 4.4 that this probability measure, for i = 1,2,
is (Tm) invariant. To show this it suffices to show, in view of Lemma 4.2, that
M

(i)
k = m

(i)
1 Tk for some m(i)

1 ∈ P (Rd × P (E)). This is done in Proposition 4.3
below. Henceforth, denote the law of Ỹn by µY , the law of (X̃n, Ỹn) by µXY and
the law of (Ỹn,π

(1)
n,n) by µ1.

PROPOSITION 4.3. Define, for F ∈Cb(R
d × P (E)) and k ∈ N,

M
(1)
k (F ) =̇

∫
Rd×P (E)

(TkF )(z,π)µ1(dz, dπ)

and

M
(2)
k (F ) =̇

∫
E×Rd

(TkF )(z, δx)µXY (dx, dz).

Then M
(i)

k =M
(i)
k for i = 1,2.
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PROOF. Denote the expectation with respect to the probability measure P̃

by Ẽ. Then, for F ∈ Cb(R
d × P (E)),

Ẽ

[
F(Ỹk,π

(1)
0,k )

∣∣ Ỹ0 = z,π
(1)
0,0 = π

]
= E[φ(Yk,πk) | Y0 = z,π0 = π ]
= (TkF )(z,π).

Hence

M
(1)
k (F )= Ẽ

[
F(Ỹk,π

(1)
0,k)

]

= Ẽ
(
Ẽ

(
F(Ỹk,π

(1)
0,k ) | Ỹ0, π

(1)
0,0

))

=
∫

Rd
TkF (z,π)µ1(dz, dπ)

=M
(1)
k (F ).

Next note that

π
(2)
0,k(φ)= Ẽ

(
φ(X̃k) | F Ỹ

0,k ∨ σ(X̃0)
)

=G(X̃0, Ỹ0, . . . , Ỹk),

where G :E × (Rd)k → R is given as follows. For (γ 0, γ 1
0 , . . . , γ

1
k ) ∈E × (Rd)k ,

G(γ 0, γ 1
0 , . . . , γ

1
k )=

ERδ
γ 0

[φ(θk)Lk(γ ) | F
β1

0,k ]
ERδ

γ 0
[Lk(γ ) | F β1

0,k ]
=0k(δγ 0)(φ).

Hence

π
(2)
0,k (φ)=0k(δX̃0

)(Ỹ0+·)(φ).

Now

Ẽ
[
F(Ỹk,π

(2)
0,k) | Ỹ0 = z, X̃0 = x

]

= Ẽ

[
F

(
Ỹk,0k(δX̃0

)(Ỹ0+·)
) | Ỹ0 = z, X̃0 = x

]

= Ẽ

[
Ẽ

[
F

(
Ỹk,0k(δX̃0

)(Ỹ0+·)
) | Ỹ0 = z, X̃0 = x, 00(δX̃0

)
]∣∣∣ Ỹ0 = z, X̃0 = x

]

= Ẽ

[
TkF

(
z,00(δx)

) ∣∣ Ỹ0 = z, X̃0 = x
]

= TkF (z, δx),



1108 A. BUDHIRAJA

where the last equality follows on observing that 00(δx)= δx . Hence

M
(2)
k (F )=

∫
(TkF )(z, δx)µXY (dx, dz) =M

(2)
k (F ). �

THEOREM 4.4. Let µ be an (Sn) invariant measure. Then, for i = 1,2, M(i)
k

converges weakly to M(i) as k → ∞. Furthermore, both M(1) and M(2) are (Tm)
invariant.

PROOF. Note that M(i)
k is the law of (Ỹn,π

(i)
n−k,n). Also recall that, as k → ∞,

(Ỹn,π
(i)
n−k,n)→ (Ỹn,π

(i)
−∞,n) a.s., and hence in particular the law of (Ỹn,π

(i)
n−k,n),

namely M
(i)
k , converges to the law of (Ỹn,π

(i)
−∞,n), which is M(i). Next, from

Proposition 4.3, M(i)
k equals M

(i)

k and so M
(i)

k converges to M(i) as k → ∞.
Finally from Lemma 4.2 we have that both M(1) and M(2) are (Tm) invariant. �

We now present the following consistency property of (Tm) invariant measures,
which is used in Proposition 4.8, which in turn enables us to establish the
uniqueness of the (Tm) invariant measure.

PROPOSITION 4.5. Let > be a (Tm) invariant measure. Suppose that
Assumption 4.1 holds. Then, for all f ∈ BM(E) and φ ∈ BM(Rd),

∫
Rd×P (E)

ν(f )φ(y)>(dy, dν)=
∫
E×Rd

f (x)φ(y)µXY (dx, dy).(4.1)

PROOF. Denote the semigroup corresponding to the Markov chain (Xn,Yn)

by (Tm); that is, for F ∈ BM(E × R
d),

(TmF)(x, y)= E
[
F(Xm,Ym) |X0 = x,Y0 = y

]
.

From Assumption 4.1 we have that µXY is the unique (Tm) invariant measure.
Define µ̃XY ∈ P (E × R

d) as follows. For A ∈ B(E) and B ∈ B(Rd),

µ̃XY (A×B) =̇
∫
B×P (E)

ν(A)>(dy, dν).

Note that with this notation the left-hand side of (4.1) equals µ̃XY (f ⊗ φ). We
now show that µ̃XY is (Tm) invariant and thus equals µXY . This will clearly prove
the proposition. To show that µ̃XY is (Tm) invariant it suffices to show that, for
arbitrary f ∈Cb(E) and φ ∈ Cb(R

d),

µ̃XY (f ⊗ φ)= µ̃XY
(
T1(f ⊗ φ)

)
.(4.2)



FILTER ERGODICITY IN THE CORRELATED CASE 1109

Now note that

T1(f ⊗ φ)(x, y)= E
(
f (X1)φ(Y1) |X0 = x,Y0 = y

)

=
∫

Rd×E0

f
(
A(x, y,u)

)
φ

(
z1 + h

(
A(x, y,u)

))
g(z1) dz dµ1(u).

Hence µ̃XY (T1(f ⊗ φ))= ∫
Rd×P (E) <(y, ν) d>(y, ν), where

<(y, ν) =̇
∫

Rd×E0×E
f

(
A(x, y,u)

)
φ

(
z1 + h

(
A(x, y,u)

))
× g(z1) dz1 dµ1(u) dν(x).

(4.3)

Next, recalling that > is a (Tm) invariant measure, we have that

µ̃XY (f ⊗ φ)

=
∫

Rd×P (E)
ν(f )φ(y)>oT (dy, dν)

=
∫

Rd×P (E)
EQ1

[
φ(β1

1)0̃1(ν)(y,β
1
1 )(f )/̃1(ν,E)(y,β

1
1)

]
>(dy, dν).

(4.4)

Finally note that

EQ1

[
φ(β1

1 )0̃1(ν)(y,β
1
1 )(f )/̃1(ν,E)(y,β

1
1 )

]

= ERν

[
φ(β1

1 )f (θ1)
g(β1

1 − h(θ1))

g(β1
1 )

∣∣∣∣β1
0 = y

]

=
∫

Rd×E0×E
φ(z1)f

(
A(θ0, y, u)

)g(z1 − h(A(θ0, y, u)))

g(z1)× g(z1) dz1 dν(θ0) dµ1(u)

=
∫

Rd×E0×E
φ

(
z1 + h

(
A(θ0, y, u)

))
× f

(
A(θ0, y, u)

)
g(z1) dz1 dν(θ0) dµ1(u)

=<(y, ν).

(4.5)

Combining (4.3)–(4.5) we have (4.2). �

Let G be the class of all G ∈ Cb(R
d × P (E)) which are bounded from below

and are such that, for all x ∈ R
d , G(x, ·) is a convex function on P (E). It can be

shown that G is a probability measure determining class (cf. [6]).
The following extension of Jensen’s inequality, proved in [6], will be used in

the proof of Proposition 4.8.

LEMMA 4.6 [6]. Let π be a P (E) valued random variable on some
probability space ("1,F1,P1) and let F2 be a sub-σ -field of F1. The conditional
expectation of π with respect to F2, denoted by E[π | F2] is defined as a
P (E) valued random variable π ′ such that E[F(π) | F2] = F(π ′) holds for any
continuous affine function F on P (E). Let G ∈ G and let X be an F2 measurable,
R
d valued random variable. Then G(X,E[π | F2])≤E[G(X,π) | F2].
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Our basic condition for the uniqueness of a (Tm) invariant measure is the
following.

ASSUMPTION 4.7. For all f ∈ Cb(E),

lim
n→∞

∫
E

|Snf (x)−µ(f )|dµ(x)= 0.(4.6)

It is well known that this condition is equivalent to the statement that the σ -field
F X̃−∞,−∞ is trivial. Note that if the above condition holds, then π

(1)
−∞,n = π

(2)
−∞,n

a.s. and so M(1) equals M(2). The key step in showing that the above condition in
fact implies that there is exactly one (Tm) invariant measure is the following result.

PROPOSITION 4.8. Suppose that Assumption 4.1 holds. Let G ∈ G and let >
be a (Tm) invariant measure. Then, for all m≥ 1,

M(1)
m (G)≤

∫
Rd×P (E)

G(z, ν)>(dz, dν)≤M(2)
m (G).(4.7)

PROOF. Define P∗ ∈ P (Rd × P (E) × E) as follows. For A ∈ B(Rd), B ∈
B(P (E)) and C ∈ B(E),

P∗(A×B ×C) =̇
∫
A×B

ν(C)>(dz, dν).(4.8)

Note that, from Proposition 4.5,

P∗
(
R
d × P (E)×C

) =
∫
P (E)

ν(C)>(Rd , dν)=µ(C).

Next consider the space " =̇R
d × P (E)×E× (Rd)N × (E0)

N and endow it with
the natural product σ -field denoted by F . Let P be the probability measure on
(",F ) defined as

P =̇P∗ ⊗µ⊗N

g ⊗µ⊗N

1 .

The expectation with respect to the probability measure P is denoted by
E. Similarly as in Section 2 a typical element of " is denoted by ω =
(y, ν0, γ

0, γ 1, γ 2). Define the canonical sequences β
i
n(ω) =̇γ i

n, i = 1,2, n ∈ N.
Finally define

Xn =̇ A(Xn−1, Y n−1, β
2
n), n ∈ N, X0 =̇γ 0,

Y n =̇ h(Xn)+ β
1
n , n ∈ N, Y 0 =̇y.

From (4.8) we have that, for f ∈ Cb(E) and φ ∈ Cb(R
d),

E
[
f (X0)φ(Y 0)

] =
∫

Rd×P (E)
ν(f )φ(z) d>(z, ν)

=
∫
E×Rd

f (x)φ(y)µXY (dx, dy),



FILTER ERGODICITY IN THE CORRELATED CASE 1111

where the last step follows from Proposition 4.5. Thus we have shown that Po(X0,

Y 0)
−1 = P̃ o(X̃0, Ỹ0)

−1. This in particular implies that X0 and Y 0 − h(X0) are
independent with laws µ and µg respectively. Furthermore from (4.8) it follows
that

P
(
X0 ∈ · | ν0, Y 0

) = ν0(·).(4.9)

For n ∈ N define P (E) valued random variables

π (1)
n (·) =̇ P

[
Xn ∈ · | Y 0, . . . , Y n

]
,

π (2)
n (·) =̇ P

[
Xn ∈ · | Y 0, . . . , Y n,X0

]
and

π ∗
n (·) =̇P

[
Xn ∈ · | Y 0, . . . , Y n, ν0

]
.

Note that, by construction,

Po
({Yn,Xn}n≥0

)−1 = P̃ o
({Ỹn, X̃n}n≥0

)−1
,

and so, for i = 1,2,

Po
(
Yn,π

(i)
n

)−1 =M(i)
n .

Thus, from Proposition 4.3,

E

(
G

(
Yn,π

(1)
n

)) =
∫

Rd×P (E)
(TnG)(z,π)µ1(dz, dπ)(4.10)

and

E

(
G

(
Yn,π

(2)
n

)) =
∫
E×Rd

(TnG)(z, δx)µXY (dx, dz).(4.11)

Also note that, for φ ∈Cb(E),

π ∗
n (φ)= E

(
φ(Xn) | F Y

0,n ∨ σ(ν0)
)

=0n(ν0)(Y 0+·)(φ).

Next observe that

E
[
G(Yn,π

∗
n ) | Y 0 = z, ν0 = ν

] = E
[
G

(
Yn,0n(ν0)(Y 0+·)

) | Y 0 = z, ν0 = ν
]

= E
[
G(Yn,πn) | Y0 = z,π0 = ν

]
= (TnG)(z, ν),

where the second equality above is a consequence of (4.9). Therefore

E
(
G(Yn,π

∗
n )

) =
∫

Rd×P (E)
(TnG)(z, ν)>(dz, dν).(4.12)
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Finally in view of (4.10), (4.11) and (4.12) it suffices to show that

E
[
G(Yn,π

(1)
n )

] ≤ E
[
G(Yn,π

∗
n )

] ≤ E
[
G(Yn,π

(2)
n )

]
.(4.13)

Note that

E
[
π (2)
n

∣∣Y0 · · ·Yn, ν0
] = π ∗

n

and therefore by the assumed convexity properties of the function G and Lem-
ma 4.6 we have that

E
[
G(Yn,π

(2)
n )

] = E
[
E

[
G(Yn,π

(2)
n ) | Y 0, . . . , Y n, ν0

]]
≥ E

[
G

(
Yn,E[π (2)

n | Y 0, . . . , Y n, ν0])]
= E

[
G(Yn,π

∗
n )

]
.

This proves the second inequality in (4.13). The first inequality is proved in an
identical manner on using the observation that E[π ∗

n | Y 0 · · ·Yn] = π
(1)
n . �

We now come to our main result.

THEOREM 4.9. Suppose that Assumptions 4.1 and 4.7 hold. Then there exists
a unique (Tm) invariant measure.

PROOF. From Theorem 4.4 we have that there is at least one (Tm) invariant
measure. Now let > be an arbitrary (Tm) invariant measure and let G ∈ G. Then
from Proposition 4.8 we have that (4.7) holds for >. Taking the limit in (4.7) as
m→ ∞ we have from Theorem 4.4 that

M(1)(G)≤
∫

Rd×P (E)
G(z, ν)>(dz, dν)≤M(2)(G).

From Assumption 4.7 it now follows that M(1) equals M(2) and so

M(1)(G)=
∫

Rd×P (E)
G(z, ν)>(dz, dν).

Since G ∈ G is arbitrary and G is a measure determining class we have that
>=M(1). This proves the theorem. �
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