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The stability properties of the bandwidth allocation algorithm first fit are
analyzed for the distributions concentrated on three sizes for the requests.
We give the explicit expression of the ergodicity condition of this model;
it involves a quadratic functional of the input parameters. The stochastic
processes describing these systems are string valued Markov processes. The
notion of a smooth random state is introduced. Starting from a smooth
random state the fluid limits of the process can be investigated. The fluid
limits of interest are random dynamical systems in R

2 which are products of
random 2 × 2 matrices.
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1. Introduction. The model we consider here is a simplified description of
a bandwidth allocation scheme, that is, the allocation of different streams of
messages in a communication network. The arriving messages are of different
nature; to be transmitted they require different throughputs, that is, variable
portions of the offered bandwidth C of the network. The sum of throughputs
required by the messages being transmitted at a given time must be less than C.
If they are not being transmitted, the messages are stored in an infinite buffer in
their order of arrival. When a message has finished its transmission, messages in
the queue can be transmitted if there is enough room in the network; that is, if the
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FIG. 1. A departure for the First Fit algorithm.

unused bandwidth is large enough. The allocation algorithm considered here is the
First Fit algorithm: A message in the queue is allocated if its throughput is less
than the available bandwidth at that time and none of the other messages arrived
before it in the queue can be transmitted.

For convenience, bin packing terminology shall be used: The network is a bin of
size C, messages are items and the bandwidth required by a message is the size of
the item. See Coffman and Lueker [6] for a presentation of bin packing problems.
Items have the same distribution as some random variable S1. A stream of such
items arrives at rate λ at the bin and each item requires a service of mean 1. In
this setting the First Fit algorithm can be described as follows: The sum of the
items in the bin is less than C, the size of the bin. Following every event (arrival
or departure), the queue is scanned from the beginning in search of an item whose
size is smaller than the empty space left in the bin. This procedure is repeated until
the end of the queue is reached. An item in the bin is served at speed 1. As we shall
see, the probabilistic description of this model is not easy to handle; it involves an
infinite-dimensional vector space (a space of strings).

The problems investigated in this paper concern the stability properties of this
bandwidth allocation problem: Under some probabilistic assumptions on the sizes
of the items, what is the maximum input rate under which the size of the queue
converges in distribution?

Related models. A similar problem has been analyzed by Kipnis and Ro-
bert [21] with the FIFO algorithm: An item enters in the bin only if all the items
arrived before it have left the queue. In particular an item in the queue cannot
access the bin if it is not the first item in the queue. The stability problem is
simpler in this case: the vector of the sizes of the items in the bin and the size
of the first item in the queue is a Markov process. The lengths of the items in the
queue, the first one excepted, are i.i.d. random variables with distribution µ. To
study the maximal throughput of this model, it is sufficient to calculate the output
of the bin when the queue is saturated, that is, when it contains an infinite number
of items. For the First Fit algorithm the situation is quite different. Since the queue
is scanned to accommodate items in the bin, the sizes of the items in the queue
are unlikely to remain independent and with the same initial distribution µ. For
example, there should be fewer small items at the beginning of the queue than at
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the end. Furthermore, if we saturate the queue, the output will not give the maximal
output of the queue: If the size of the items are uniformly distributed on [0,1], an
infinite number of small items will be in the bin generating an infinite output.

Coffman and Stolyar [8] analyzed the stability of the algorithms First Fit and
Best Fit when the services are constant equal to 1. In this setting the problem
is related to static bin packing problems. They prove that the natural condition
λE(S1) < C is sufficient for stability in the case of a symmetrical distribution
of the sizes; in [7] the sufficiency for stability of the condition λE(S1) < C is
considered in a more complex communication network.

The First Fit algorithm with items having two possible sizes has been
analyzed in [11]. In that paper the stability condition has been established and,
more interesting, a curious transient behavior analyzed. The present paper is a
continuation of this work. The case analyzed here requires a more detailed analysis
of the evolution of the string structure than was necessary in [11].

Markov processes on strings occur also naturally in the multiclass queueing
networks. Rybko and Stolyar [30] analyzed a two-node network with FIFO
discipline. Due to clever arguments, the string structure is not really taken into
account in their analysis. Bramson [2, 3] also analyzed the transience of a two-
node network with a more complex interaction. In this case the stochastic process
involves two interacting strings. Transience is proved via a very careful control of
the process around a diverging path. Dumas [13] presented an analysis of some
fluid equations for the string structure of Bramson’s networks. Another set of
FIFO networks, a generalization of Kelly’s networks, has been analyzed in [4]. An
interesting entropy function is used to study the convergence of fluid limits under
the usual stability conditions. In this case, the FIFO discipline plays an important
role in writing a set of fluid equations.

In the same vein, Gaı̆rat, Malyshev, Men’shikov and Pelikh [18], Malyshev [25]
and Serfozo [32] (and the references therein) investigated quite general models
with strings but with a dynamic depending only on a finite number of components
at the end (or the beginning) of the string. For the string valued processes we
consider here, the dynamic depends, a priori, on all the components of the string
since the queue is scanned as long as there is an empty space in the bin.

An overview. In this paper we give a necessary and sufficient condition under
which the size of the queue converges in distribution (Theorems 14 and 15). If this
condition has some interesting features, it is expressed as a quadratic functional
of the input parameters; however, this is not the main point of the paper. The
string valued Markov processes describing these models are in general difficult to
analyze. The paper proposes an approach to analyze such processes. To keep the
presentation simple, the simplest of these complicated models has been chosen.
A companion paper [29] explores other aspects of these string processes.

To study the ergodicity properties of a finite-dimensional Markov process, a
standard approach is the following: The behavior of the process is analyzed when
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the initial state is such that a subset S of the coordinates is “large.” When all
the possible subsets S have been considered, the ergodicity condition generally
follows easily.

String valued processes can travel in infinitely many directions. To study the
stability properties of these processes, one cannot recursively exhaust all the
possibilities by inspection as is the case in a finite-dimensional setting. One
of the conclusions of the paper is that it is better to consider the evolution of
the distribution of the process at some random times rather than looking at the
evolution of the states that the process visits at some random times as is usually the
case. This is related, in some sense, to the case of continuous state space Markov
chains: The recurrence of the chain is defined not in term of the number of visits
to some specified states, but by the fact that, at some random times, the Markov
chain has a specified distribution. Notice that although our framework is discrete
(the state space is countable), these ideas are useful.

The framework of these Markov processes complicates technically the proofs
of the results, even in some “simple” cases. See, for example, Section 4 where the
ergodicity condition is quite intuitive, but its proof requires some discussion on the
possible bifurcations of the system. This situation seems unavoidable, especially
when the ergodicity condition is not natural at all (see Section 6).

The paper is organized as follows. We first prove that under some hypothesis,
the Markov process describing the First Fit algorithm is ergodic if the “natural”
condition is satisfied, that is, if the load of the system is less than 1 (see [11] for a
discussion on this condition). In the other cases, the analysis is more intricate. The
notion of smooth distribution on the state space is introduced. It is shown that at
some random time the distribution of the process is smooth. Section 6 studies the
fluid limits of the distributions of the process. The fluid limits can be described by
piecewise linear processes in R

2+. The associated dynamical system turns out to
be a product of random 2 × 2 matrices in R

2+; its stability properties are analyzed.
These results are then used to derive the ergodicity and transience conditions for
the Markov processes.

Our results concerning ergodicity use the formalism of fluid limits. The next
section recalls some of the results in this domain.

2. Fluid limits. In this section (X(t)) is an irreducible Markov process on
some countable space S embedded in a normed space. We assume that the bounded
subsets of S are finite. The rescaled process is defined by

Xx(t) = ‖X(t‖x‖)‖
‖x‖ ,(1)

since X(0) = x, ‖Xx‖(0) = 1. The time variable and the space variable are scaled
by a factor ‖x‖. The following theorem is the combination of two results, one due
to Filonov [17] and the other due to Rybko and Stolyar [30]; it gives an ergodicity
criterion.
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THEOREM 1. If there exist an integrable stopping time U , constants K and
ε > 0 such that

lim sup
‖x‖→+∞

Ex (‖X(U)‖)
‖x‖ ≤ 1 − ε,(2)

lim sup
‖x‖→+∞

Ex (U)

‖x‖ ≤ K,(3)

the Markov process (X(t)) is ergodic.
If the variable X(t) has a second moment for all t ≥ 0, for a fixed K ≥ 0

sufficiently large, the hitting time

H = inf
{
t ≥ 0 | ‖X(t)‖ ≤ K

}
,

has a second moment of order ‖x‖2, that is,

lim sup
‖x‖→+∞

Ex(H
2)

‖x‖2
< +∞.(4)

Condition (2) requires that at some random time, U/‖x‖, the norm of the
rescaled process (Xx(t)) is, on average, below its initial value. This suggests the
analysis of the sequences of processes (Xx(t)), when ‖x‖ tends to infinity. The
limit of one of its converging subsequences is called a fluid limit. If one can prove
that every fluid limit converges almost surely to 0 after some time T , then up to an
integrability argument, Theorem 1 can be applied.

These scaling ideas are difficult to trace. The origin of this criterion is the
Lyapounov stability test of ordinary differential equations (see [20] for the classical
results). Has’minskii [19] seems to have been the first to use this test in a stochastic
context to prove the stability of stochastic differential equations.

The discovery of some unexpected phenomena for the stability of queueing
systems by Bramson [2, 3], Dumas [12], Lu and Kumar [24], Kumar and
Seidman [22] and Rybko and Stolyar [30] among others, gave an impulse to the
studies in this domain recently. Chen and Mandelbaum [5] used fluid limits to
study Jackson networks. Dai [9] set a framework to apply these methods to prove
Harris ergodicity for some queueing networks. Concerning transience criteria,
Dai [10], Meyn [27] and Puhalskii and Rybko [28] obtained partial counterparts to
the ergodicity results. In the context of diffusions, related ideas are used to prove
the ergodicity of diffusions living in a domain with a boundary (see [14] and the
references therein).

Relations (2) and (3) imply that one “controls” the process in space and time
when it starts very far away from some fixed state. In a finite-dimensional context,
one has to consider the process when some of the coordinates of the initial state are
large. In general, Theorem 1 can then be applied when all the possibilities for the
large coordinates have been considered. Applying Theorem 1 for our process turns
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out to be more difficult since the process can go to infinity in infinitely many ways.
This is not strictly true as we shall see. We prove that the process may diverge only
along some “patterns.” We establish that, starting from any large arbitrary state,
the process will eventually travel along some smooth random states. (This notion
of smooth random state will be presented in detail later.)

3. The string valued Markov process. The items arrive according to a
Poisson process Nλ with parameter λ; for t ≥ 0, the quantity Nλ(]0, t]) denotes
the number of arrivals between 0 and t . The capacity of the bin C is equal to 4.

The sizes (Si) of the items form an i.i.d. sequence with a common distribution
F(dx) given by

F(dx) = pδ1 + qδ2 + rδ3,

where δx is the Dirac measure in x and p, q , r are nonnegative numbers such that
p + q + r = 1. An item of size s will also be called an item s.

The set of the possible sizes is denoted by T = {1,2,3} and T (N) is the set
of finite vectors with coordinates in T ; if x ∈ T (N), ‖x‖ denotes the number of
coordinates of x and ∅ is the empty vector.

The sojourn times of the items in the bin is an i.i.d. sequence with an exponential
distribution with parameter 1.

An element X of the state space S of the Markov process describing the storage
process can be written as X = (B,L), where L and B are elements of T (N), the
set of finite vectors with coordinates in T . The vector B = (bj ; j = 1, . . . ,‖B‖)
describes the sizes of the items in the bin, since these items fit in the bin,

b1 + b2 + · · · + b‖B‖ ≤ C,

and the vector L = (li; l = 1, . . . ,‖L‖) represents the state of the queue, since
the First Fit algorithm scans the queue from the beginning in search of an item
that may fit in the bin. Any item in the queue cannot fit in the bin, that is, for any
i = 1, . . . ,‖L‖ the following inequality holds:

li + b1 + b2 + · · · + b‖B‖ >C.

Since C = 4, the possible values of B are the following:

∅, (1), (1,1), (1,1,1), (1,1,1,1), (1,1,2), (1,2), (1,3), (2), (2,2), (3).

Notice that the order of the components in B has no importance for the dynamic
of the system; for this reason we shall consider B as a set. The order is important
for the vector L since the First Fit discipline checks if the first coordinate l1 fits in
the bin, then the coordinates l2, l3, and so on. The vector L is a string of 1, 2, 3.

If (X(t)) = ((B(t),L(t)) is the state of the system at time t , (X(t)) is a Markov
process with the following transitions:
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1. Arrival. At rate λ an item of size s arrives at the bin. If it does not fit in the bin,
the element s is concatenated at the end of the vector L(t).

2. Departure. At rate 1, each item in the bin leaves the bin. In the case of a
departure, the first element of the queue that fits, if any, is moved in the bin,
and then the second, and so on.

It is not difficult to show that (X(t)) is an irreducible Markov process on S.
We shall say that the model is stable when (X(t)) is an ergodic Markov process
on S. In [11] it has been proved that the condition λE(S1) ≤ C is necessary
for the stability of the system; that is, the Markov process (X(t)) is transient if
λE(S1) > C.

DEFINITION 2. The norm ‖X‖ of the state X = (B,L) ∈ S is the sum of the
‖B‖ and ‖L‖. The load W(X(t)) of (X(t)) = (B(t),L(t)) = ((bi(t)), (lj (t))) is
defined as

W
(
X(t)

) =
‖B(t)‖∑
i=1

biσ
0
i (t) +

‖L(t)‖∑
j=1

lj σj (t),

where, for i ∈ {1, . . . ,‖B‖} and j ∈ {1, . . . ,‖L‖}, σ 0
i (t) is the residual service time

of the item bi(t) and (σj (t)) the service time of the item lj (t).

Notice that the load of the system increases at rate λE(S1) in average and
decreases rate 4 at most.

4. When the natural condition is sufficient for ergodicity. We study a case
where it is not necessary to know much about the structure of the L-component
of the initial state. The following lemma gives an estimation of the wasted space
when there are only two possible sizes: 1 and 2.

LEMMA 3. Under the conditions λE(S1) < 4, if r = 0 (only items 1 and 2
arrive) and

τ = inf
{
t ≥ 0 | ‖L(t)‖ = 0

}
and D =

∫ τ

0
1{b1(t)+···+b‖B(t)‖(t)<4} dt,

then there exist some constants K1 and K2 such that

Ex(D) ≤ K1 log(1 + ‖x‖) + K2

for any x = (l, b) ∈ S.

PROOF. The variable D is the duration of time during which the bin is not full
during a busy period. Notice first that there is no waste of space as long as there are
items 1 in the L-component of (X(t)). We can therefore assume that l is a string of
items 2. In this context the only possibility to waste space with a nonempty queue
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is when the state (B(t)) of the bin is (1,1,1) or (2,1). We set A0 = l and T0 = 0
and by induction we define

Tn+1 = inf
{
t > Tn :C(t−) = 4, C(t) < 4,

and all the items 2 present at time Tn are served at time t
}

with C(s) = b1(s) + · · · + b‖B(s)‖(s) for s ≥ 0 and An = ‖L(Tn)‖ for n ≥ 1.
Notice that L(Tn) is necessarily a (possibly empty) string of items 2. The sequence
(B(Tn),An) is clearly a Markov chain.

If b, the initial state of the bin, is (1,1,1): As long as there is at least an
item 1 in the queue, because of the First Fit discipline, items 2 are ignored. Since
λp ≤ λE(S1) < 4, after an integrable amount of time not depending on ‖l‖, at least
two places will be vacant in the bin and consequently an item 2 will enter the bin.
In this situation the number of items 1 is the number of customers of an M/M/4
queue with parameter λp for the input rate and 1 for the service rate.

If b = (2,1), we have two cases to discuss.

1. λp < 2. This condition clearly implies that, with probability 1, at some time
there will no item 1 in the system and, consequently, a second item 2 will enter
the bin. The expected value of this duration of time is easily seen to be bounded
with respect to ‖l‖. Starting from that time, only items 2 are served as long as
the initial items 2 are present (since these items are located at the beginning of
the queue, the First Fit algorithm selects them). When the initial items 2 have
been served, the queue is an i.i.d. string of items 1 and 2. With probability 1,
at least two items 1 enter in the bin. Later, when the number of items 1 in the
system is 1, the system will waste some space; this is precisely the definition of
time T1. A1 is the number of items at that time.

2. λp > 2. This condition implies that, if the state of the bin does not change, the
arriving items 1 will saturate two places in the bin. In this case, the number of
items 1 is the number of customers of a transient M/M/2 queue starting with
one customer (in the bin at time 0). A change in the state of the bin may occur
only if this transient queue is empty.

(a) The M/M/2 queue never reaches the empty state. After some small
amount of time (i.e., its expected value is bounded with respect to ‖l‖), the
bin will be full with an item 2 and two items 1. The condition λE(S1) < 4
implies that λq < 1; therefore, with probability 1 after some period of time
the system will not contain any items 2. At that moment the state of the bin
will be (1,1,1,1). [Recall that λp ≤ λE(S1) < 4.] It is easily seen that, with
probability 1, the total number of items 1 will be less than 2. An item 2 will be
in the bin at that time; this is the starting situation.

(b) The queue reaches the empty state. Two items 2 occupy the bin. The
initial items 2 are served. In this situation, T1 is the next time there is some
wasted space.
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Notice that the case (a) occurs only a geometrically distributed number of times.
Hence, the duration of time between time 0 and T1 when the bin is not full has
a bounded expected value (with respect to ‖l‖).

Using Proposition 16 of the Appendix, it is easy to check that there exists some
constant c > 0 such that the following convergence holds in L1 and almost surely,

lim‖x‖→+∞
Ex(T1)

‖x‖ = c.

(Its calculation is possible but not interesting for our purpose.) If I is the duration
of time between 0 and T1 when the bin is not full, the expected value of the
load at time T1 satisfies the following inequality (all the service times are i.i.d.
exponentially distributed random variables with parameter 1):

Ex

(
W
(
X(T1)

))≤ Ex

(
W(x)

)+ E

(Nλ([0,T1])∑
i=1

Si

)
− 4Ex(T1 − I ).

Using Wald’s formula (T1 is a stopping time), we get

Ex

(
W
(
X(T1)

))≤ Ex

(
W(x)

)+ (
λE(S1) − 4

)
Ex(T1) + 4Ex(I ).

Since there are no items 1 in the queue at 0 and T1, we have Ex(W(X(0))) = 2‖x‖
and Ex(W(X(T1))) = 3 + 2Ex(A1). The quantity Ex(I ) being bounded with
respect to ‖x‖, it follows that

2 lim sup
‖x‖→+∞

Ex(A1)

‖x‖ = lim sup
‖x‖→+∞

Ex(W(X(T1)))

‖x‖ ≤ 2 + c
(
λE(S1) − 4

)
,

where W(·) is the load (see Definition 2). Consequently, there exist a0 and α < 1
such that for ‖x‖ > a0,

Ex(A1) ≤ α‖x‖,(5)

γ = − log
(

1 + α‖x‖
1 + ‖x‖

)
> 0.(6)

If we set

ν = inf
{
n ≥ 1 | An ≤ a0

}
,

the sequence

(Zn) = (
log(1 + An∧ν) + γ (n ∧ ν)

)
is a supermartingale. Indeed, if (Fn) is the natural filtration associated to the
sequence (An), on the event {ν > n} the Markov property gives the equality

E(Zn+1 | Fn) − Zn = E(B(Tn),An)

(
log(1 + A1)

)− log(1 + An) + γ

≤ log
(
1 + E(A1 | An)

)− log(1 + An) + γ ≤ 0,
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by Jensen’s inequality and relations (5) and (6). Consequently, E(Zn) ≤ Z0, hence
γE(n ∧ ν) ≤ E(Zn) ≤ Z0. By letting n go to infinity, we get

Ex(ν) ≤ log(1 + ‖x‖)
γ

.(7)

For n ≥ 1, the bin is always full between Tn and Tn+1, except during some
integrable period whose expected value is bounded with respect to the size of the
initial state. By Wald’s formula, the contribution of the ν cycles in the integral
defining D is bounded by KEx(ν) ≤ K log(1 + ‖x‖)/γ , for some constant K .

Since λE(S1) < 1, Proposition 6 of [11] shows that the system is ergodic.
Consequently, starting from the state (B(Tν),Aν) (≤ a0)), the hitting time of the
empty state ∅ is integrable and with an expected value bounded with respect
to ‖x‖. Therefore, the expected value of the contribution of this period in the
integral defining D is bounded with respect to ‖x‖. The lemma is proved. �

Now we consider the general case with three sizes. The condition λE(S1) < 4
turns out to be sufficient for ergodicity when λp > 1.

PROPOSITION 4. If λE(S1) < 4 and λp > 1, then (X(t)) is an ergodic Markov
process.

PROOF. Let (xn) = (bn, ln) a sequence of S whose norm converges to infinity.
Since the number of configurations in the bin is finite, by taking subsequences we
can suppose that the sequence of the initial states in the bin (bn) is constant, hence
(xn) = (b, ln). Using Proposition 5 of [11], we can assume that for the states (xn)

the bin is not full. Consequently, (ln) does not contain any items 1; it is a sequence
of strings of items 2 and 3.

We denote by τ the first time when the bin is not full after all the initial items 2
and 3 have left the system; τ is clearly a (possibly infinite) stopping time. If D

is the duration of time between time 0 and τ during which the bin is not full, we
claim that D is integrable and, moreover,

lim
n→+∞

Exn(D)

‖xn‖ = 0.

If our assertion is true, between 0 and τ the load of the system is decreased at
rate 4, except during some periods of total duration D; that is, for t ≥ 0 we have

‖b‖∑
i=1

biσ
0
i +

‖ln‖+‖b‖∑
i=‖b‖+1

ln,iσ
0
i +

Nλ(]0,t∧τ ])∑
i=1

Siσi − 4(t ∧ τ − D) ≥ 0.

The sequences (σi) and (σ 0
i ) are the respective service times of the arriving

items and of the initial items. These variables are independent and exponentially
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distributed with parameter 1. Taking the expectation of the two members of this
inequality, we get the relation

Exn(t ∧ τ )
(
4 − λE(S1)

)≤ ‖xn‖ + 4Exn(D).

By letting t go to infinity, according to our assumption on (Exn(D)) we obtain the
inequality,

lim sup
n→+∞

Exn(τ )

‖xn‖ ≤ 1

4 − λE(S1)
.(8)

In the same manner, the following inequality holds:

Exn

(
W
(
X(t ∧ τ )

))≤ W(xn) + (
λE(S1) − 4

)
Exn(τ ∧ t) + 4Exn(D).

Fatou’s lemma and Lebesgue’s theorem give when t goes to infinity,

Exn

(
W
(
X(τ)

))≤ W(xn) + (
λE(S1) − 4

)
Exn(τ ) + 4Exn(D).

Since all the initial items 2 and 3 are served at time τ , at most two of the initial
items can be served at the same time; hence,

Exn(τ ) ≥ ‖xn‖
2

≥ W(xn)

6
;

consequently,

lim sup
n→+∞

Exn(W(X(τ)))

W(xn)
≤ 1 + λE(S1) − 4

6
< 1.(9)

By using the fact that W(·) is an equivalent norm to ‖ · ‖ on S, relations (8) and (9)
and Theorem 1 show that the Markov process (X(t)) is ergodic.

All we have to prove now is that (Exn(D)) is negligible with respect to ‖xn‖
when n is large. There are several possibilities for b, the common content of
the bin for the initial states (xn). We discuss the different cases. Throughout this
discussion, we shall say that random variable H is a “bounded integrable variable”
if the sequence (Exn(H)) is bounded with respect to ‖x‖.

1. If b is (1,1,1) or (1,1,1,1). As long as there is at least an item 1 in the
queue, all the other items are ignored. The condition λE(S1) < 4 implies that
λp < 4. From the point of view of the items 1, the system is a stable M/M/4
queue. Hence the first time there will be at least two empty places is a bounded
integrable variable. At that time, an item 2 will be inserted in the bin. Notice
that for this period, the duration of time during which the bin is not full is a
bounded integrable variable.

2. If b has at least an item 2. The items 3 are not taken into account as long as
the bin contains at least an item 2 or two items 1. In this case the items 3 are
ignored. Consequently, a string of the initial items 3 builds up at the beginning
of the queue. Since the condition λE(S1) < 4 implies

λp + 2q < 4,



FLUID LIMITS OF STRING VALUED MARKOV PROCESSES 871

the system with the items 1 and 2 is stable (see [11]). Lemma 3 shows that until
an item 3 enters the bin the wasted space is negligible compared to the number
of initial items 2.

3. If b contains a 3. Clearly one can assume that ln is a string of items 3. Otherwise,
if at some moment 2 enters in the bin, the cases considered above show that
the 1 and 2 will be cleared from the system until an item 3 is in the bin. The
condition λp > 1 implies that the residual space in the bin left by the items 3 is
saturated by the items 1. Consequently, the duration of time the bin is not full
is a bounded integrable variable.

This discussion shows that the assertion is proved and consequently, the
proposition. �

The result of the above proposition is fairly easy to understand: Under the
condition λp > 1 basically there is no waste of space so that the natural condition
λE(S1) < 4 is sufficient for the ergodicity of (X(t)). Notice however that the
proof of this intuitive result (Lemma 3 and Proposition 4) has required the detailed
analysis of the possible evolutions starting from a given initial state. As we shall
see, the situation is more delicate in the case λp < 1.

5. Smoothing the initial state. This section studies the properties of the
dynamic on the string structure of the queue (the L-component of the Markov
process). From now on, we shall assume that λp < 1 and that the initial states are
strings of items 2 and 3 (see Proposition 5 of [11]). Even if the L-component of
the initial states have only items 2 and 3, they are still too complicated to use fluid
limits starting from these states. Loosely speaking, the main idea is the following:
after some time the initial disorder of the L-component is smoothed; that is, it will
have some regularity properties. If the initial state is a “smooth random” state, a
fluid analysis of the Markov process is then possible. This will be done in the next
section. Compared to our previous analysis [11], this smoothing procedure is an
important additional step. It is discussed in a more general context in [29].

DEFINITION 5. For X(0) = x ∈ S and t ≥ 0, if X(t) = (B(t),L(t)) and
L(t) = (li(t)),

νx,1(t) = inf
{
k ≥ 1 : lk(t) = 1

}
,

νx,2(t) = inf
{
1 ≤ k < νx,1(t) : lk(t) = 2

}
,

νx,3(t) = inf
{
1 ≤ k ≤ νx,2(t) : lk(t) = 3

}
,

with the convention inf ∅ = +∞. If the initial state is without ambiguity, the
subscript x is omitted; in the same way, the notation νa is used for νa(0).

The next definition formalizes the notion of a “smooth random” state, in fact,
the notion of a smooth distribution on S.
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DEFINITION 6. For integers l, m, n we define the distribution Rl,m,n(dx) on
T (N) by

Rl,m,n(dx) = δ3(du)
(l) ⊗ F2,3(du)

(m) ⊗ F(du)(n),(10)

where G(dx)(n) is the nth power of the distribution G(dx) and F2,3(dx) is the
conditional distribution F2,3(dx) = (qδ2 + rδ3)/(q + r).

A distribution µ on S is smooth if its L-component is in the convex hull of the
Rl,m,n, l, m, n ∈ N, that is, if there exists a probability distribution (qi) on N

3 such
that

µ(L ∈ dx) = ∑
i∈N3

qiRi(dx).

The distribution Rl,m,n is the distribution of the concatenation of several i.i.d.
strings. The L-component of a distribution of type R0,0,n(dx) is just an i.i.d. string
of length n with distribution F .

PROPOSITION 7. If λE(S1) < 4, for any stopping time U greater than the
first time when all the initial items have left the queue, the distribution of X(U) is
smooth.

PROOF. We denote by M(t), the number of initial items in the queue at time t .
A tag is inserted after the last initial item in the queue; M(t) is in fact the position
of the tag at time t ; (M(t)) remains constant equal to 0 after it has reached 0.
We first give a rough picture of the evolution of the queue. After time 0, the new
items arrive behind the tag at rate λ. Recall that the queue of our initial state has
no item 1. As long as some initial items 2 are in the queue, the First Fit algorithm
picks (possibly) only items 1 after the tag. The departure of some of the items 1
builds a string of 2’s and 3’s after the tag. In the case where all the initial items 2
are processed and some initial items 3 remain, the next items 2 are picked after
the tag. In this case, a string of items 3 will build up behind the tag and before the
string of 2’s and 3’s.

The notation ν̃a , a ∈ T is analogous to Definition 5 except that it concerns only
the portion of the queue after the tag,

ν̃1(t) = inf
{
k > M(t) : lk(t) = 1

}
,

ν̃2(t) = inf
{
M(t) < k < ν̃x,1(t) : lk(t) = 2

}
,

ν̃3(t) = inf
{
M(t) < k ≤ ν̃x,2(t) : lk(t) = 3

}
.

Notice that if ν̃3(t) is finite, then necessarily ν̃3(t) = M(t) + 1. The variable
L̃(t) is the substring at the end of the queue consisting of the items located after
the tag, L̃(t) is the string L(t) shifted M(t) times. Consequently, if U ≤ t , then
L̃(t) = L(t) and ν̃a = νa for a ∈ T .
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ASSERTION. If τ is a stopping time, then conditionally on ν̃a(τ ), a ∈ T , and
‖L(τ)‖, the distribution of L̃(τ ) is given by (10) for some convenient l, m and
n ∈ N.

Since L(U) = L̃(U) (the initial items are served at time U ), the proposition will
be then proved if the assertion is.

To show this claim, we shall assume that all the ν̃a(τ ), a = 1, 2, 3, are finite. The
analysis for the other cases is analogous. The string L̃(τ ) is thus the concatenation
of three strings L̃(τ ) = (H3,H2,H1), with

H3 = (3, . . . ,3), ‖H3‖ = ν̃2(τ ) − 1;
H2 = (2, lν̃2(τ)+1, . . . , lν̃1(τ)−1), ‖H2‖ = ν̃1(τ ) − ν̃2(τ );
H1 = (1, lν̃1(τ)+1, . . . , l|L(τ)|), ‖H1‖ = ‖L(τ)‖ − ν̃1(τ ).

For the rest of the proof, all the probabilistic statements are supposed to be
conditioned by the values of the ν̃a(τ ) and ‖L(t)‖. Between time 0 and τ the
First Fit algorithm never scanned the queue after the position ν̃1(τ ), otherwise
the item 1 located there would have been taken in the bin. The string H1 is
thus independent of H3 and H2. The first item 1 of H1 is followed by the
(‖L(τ)‖ − ν̃1(τ ) − 1)+ items which arrived after that 1; hence it is an i.i.d.
sequence with distribution F(du).

In the same way for the string H2, the First Fit algorithm never scanned the
queue in search of a 2 after the position ν̃1(τ ). Consequently, the string H2 con-
sists of all the items arrived between the items located at the positions ν̃2(τ ) and
ν̃1(τ ), with all the items 1 removed. The first item 2 in H2 is followed by an i.i.d.
string of length (ν̃1(τ ) − ν̃2(τ )− 1)+ and distribution F(du|u ≥ 2). The assertion
is proved. �

PROPOSITION 8. If λE(S1) < 4, λp < 1 and U0 is the first time t after all the
initial items have left the queue that B(t) = (2,1), then

sup
x∈S1

Ex

((
U0

‖x‖
)2)

< +∞ and sup
x∈S1

Ex

((‖X(U0)‖
‖x‖

)2)
< +∞,(11)

where S1 is the subset of the states of S for which the bin is not full,

S1 = {
x = (b, l) ∈ S :b1 + · · · + b‖b‖ < 4

}
.

PROOF. The initial state X(0) is given by x = (B,L) with L = (l1, . . . , lp)

for some p ≥ 1. We denote by T2 (resp. T3) the time when all the initial items 2
(resp. 3) have left the queue. The variable T is the first time when all the initial
items have left the queue; T is clearly stopping time bounded by T2 + T3.

For a fixed k ∈ {1, . . . , p − 1}, we define x̌ = (B, Ľ) where Ľ is the same string
as L except the components k and k+1 are permuted. For 1 ≤ i < p, the quantities
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τi , τ̌i denote, respectively, the waiting time necessary for the ith item li to enter
the bin when the initial state is, respectively, x, x̌. We assume that for these two
initial states, the arrival stream and the services associated with the items are the
same. There are two cases:

1. If τk+1 < τk, in both systems the item lk will enter the bin at time τk, thus
τ̌k = τk .

2. Otherwise, when τk+1 ≥ τk and the initial state is x̌, at time τk the First Fit
algorithm checks if the item lk+1 fits in the bin and after the item lk is checked.

Hence, in any case τk ≤ τ̌k. By induction, the quantity Ex(T2) is thus bounded
by Ex′(T2) where x′ = (B,L′) is the initial state given by L′ = (3, . . . ,3,2, . . . ,2),
L′ is a permutation of L with all the items 3 at the beginning. Similarly, the
relation Ex(T2) ≤ Ex′′(T2) holds if T2 is the time to get rid of the initial 2’s and
x′′ = (B,L′′), where L′′ is a permutation of the L-component of x when all the
items 3 are at the head of the queue. To bound Ex(T

2) it is sufficient to give an
upper bound for Ex′′(T 2

2 ) and Ex′(T 2
3 ).

1. Items 2 are at the beginning. We can assume that the bin does not contain a
3 at time 0 (otherwise, as soon as it leaves it is replaced by an item 2). As
long as an item 2 is at the head of the queue, the system works only with
items of size 1 and 2. When the system without items 3 has at most one
item 1 in the bin and an item 3 enters in the bin, then all the initial items
are served consecutively. The estimation of T3 is thus reduced to estimation of
the time to empty the system without items 3. Since the condition λE(S1) < 4
implies that λ(p + 2q)/(p + q) < 4, the system without items 3 is ergodic.
Using the ergodicity result of [11] and inequality (4) of Theorem 1, we get that
Ex′(T 2

3 ) ≤ A1‖x‖2 (notice that ‖x′‖ = ‖x‖), for some constant A1.
2. Items 3 are at the beginning:

(A) If the initial state of the bin has an item 3, all the initial 3’s are served
consecutively and then the initial 2’s are served. For a convenient constant A2,
one easily gets that Ex′′(T 2

2 ) ≤ A2‖x‖2.
(B) If there is a 2 in the bin and at least a 1, the situation is more interesting.

At the difference of the previous case, an item 3 can enter the bin before some
of the initial items of size 2 if at some moment the state of the bin is (2,1)
(there is an empty place of size 1) and that no new item 1 arrives before a
departure form the bin. If the item 2 leaves before the item 1 then the item 3
at the head of the queue enters the bin, and then all the other initial items 3;
otherwise if the item 1 leaves first, an additional 2 enters the bin, then all the
initial items 2 are processed. Since λp < 1, if there are sufficiently many 2’s in
the queue, one of this two cases will occur with probability 1 (if it is not the
case, the 3’s occupy the bin and it is finished). We thus get a constant A3 such
that Ex′′(T2) ≤ A3‖x‖.
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At time T all the initial items have left the queue. Since

X(T ) ≤ ‖x‖ + Nλ(]0, T ]),
Wald’s formula and the above estimation show that ‖X(T )‖ is bounded by a
constant times ‖x‖.

Now we have to estimate T̄ the first time when the state of the bin is (2,1). It
is sufficient to prove that, if the initial state is x, T̄ has a second moment of the
order ‖x‖2. The first step is to get rid of items 3. If there is one in the bin and if
some of them are located at the head of the queue and one has to process these
ones until an additional item 1 or 2 enters the bin, there are two possibilities:

(a) The bin has at least 1 item 1. Since λp < 1, after some time the queue will
not have any item 1 and the bin will have two items 1.
(a1) If, at that time, there are sufficiently many items 2 in the queue, the

state of the bin will reach the state (2,1) with probability 1.
(a2) If not. All the items 3 in the queue at that time are served. When this

is finished, the condition λp < 1 implies that the number of items 1 is
tight (as a family of random variables indexed by x, the initial state).
The items 2 accumulated during that time are served, consequently
with probability 1, the state of the bin will be (2,1).

(b) The state of the bin is (2,2) and the initial items 2 are served at rate 2.
When this is finished, with probability 1, two items 1 enters in the bin. This
is the situation of the previous case.

It is easily seen that each of the steps we have described has a duration with a
second moment of the order ‖x‖2. The proposition is proved. The last inequality
is a consequence of Wald’s formula applied to the stopping time U0. �

6. A random dynamical system in R
2+. In this section we assume that (µn)

is a sequence of smooth distributions on S (see Definition 6) such that

µn

(
B = (2,1), L ∈ dx

)= E
(
Ran,bn,0(dx)

);(12)

that is, if f is a non-negative measurable function on T (N),

Eµn

(
f
(
L(0)

)
1{B(0)=(2,1)}

)= E

(∫
T (N)

f (x)Ran,bn,0(dx)

)
,(13)

where an and bn are random variables such that the convergence

lim
n→+∞

an

n
= a and lim

n→+∞
bn

n
= b

holds in L1. We assume that a and b are nonnegative integrable random variables
and P(a + b > 0) = 1. The B-component of µn is (2,1) and the L-component of
the distribution µn does not have an item 1 in the queue; it is the concatenation of
an items 3 followed by an i.i.d. string of length bn of 2’s and 3’s with respective
probability q/(q + r) and r/(q + r).
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DEFINITION 9. A sequence (Xn) of random variables is equivalent to (αn) if
the sequence (Xn/αn) converges to 1 in L1(P).

A random transition of the fluid model. If the initial distribution is given by
µn, the initial state of the bin is (2,1). If there is a departure before a new arrival:

1. With probability 1/2, this is item 2 and then an item 3 enters the bin and then
all the other an − 1 items 3.

2. With probability 1/2 this is item 1, another item 2 enters the bin, and then all
the other initial items 2 will be served consecutively.

We remark that the dynamic of the system is influenced by the fact that either
the 2 leaves first or not. This is also true at the fluid level as we shall see. A similar
phenomenon has been already encountered in the model analyzed in [11]. Here the
randomness remains because of this 1/2–1/2 transition and not because there are
many possibilities for the content of the bin. In [29], it is shown that this random
bifurcation may depend on the current state; this is not the case here.

If the distribution of X(0) is given by µn, then ‖X(0)‖ is equivalent to
((a + b)n). The next proposition shows that, up to a linear transformation, the
distribution of X at a stopping time has a property similar to identity (12).

PROPOSITION 10. If U1 is the first time when all the initial items 2 have left
the queue, the initial items 2 in the bin have been served and the state of the
bin is (2,1), there exist FU1 -measurable random variables An, Bn such that the
following relation holds:

Pµn

(
B(U1) = (2,1),L(U1) ∈ dx

)= Eµn

(
RAn,Bn,0(dx)

)
,

and a random matrix M such that the convergence

lim
n→+∞

1

n
(An,Bn) = M · (a, b)(14)

is true almost surely and in L1. The random matrix M has two possible values
with equal probability,

m1 =




1
1 − p − q

1 − p

0
2λq

4 − λp


 and m2 =




λ(1 − p − q)
1 − p − q

1 − p

2λ2(1 − p)q

4 − λp

2λq

4 − λp


 ;(15)

M is independent of (a, b) if P(a > 0, b > 0) = 1.

PROOF. Using Skorohod’s representation theorem (see [15]), with a change
of the probability space we can assume that the sequences (an/n) and (bn/n)

converge almost surely (since they converge in L1, they converge in distribution).
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If P(a > 0, b > 0) = 1 the state of the bin is (2,1) at time 0. If a new item 1
arrives, the bin is full and, during that time, the 2 in the bin is replaced by the
initial items 2. So, the state of the bin will come back to the state (2,1) after
an integrable duration of time (the time for an M/M/2 queue starting with two
customers to have only one customer). In this manner, a finite number of initial
items 2 in the queue are served in the bin before a significant change occurs. If
there is a departure when the state of the bin is (2,1), another item 2 may enter if
the item 1 leaves; otherwise an item 3 enters. Hence, after this event the state of
the bin will be (2,2) or (3,1) with probability 1/2. Since (bn) converges almost
surely to infinity, there will be an item 2 in the queue with probability 1 at the
occasion of such a departure. We conclude that the fact that an item 3 or a second
item 2 enters the bin is independent of the the limit of (an, bn)/n, as long as a

and b are positive with probability 1.
Throughout this discussion, we shall ignore small strings in our statements, that

is, strings with an integrable length independent of the initial state. At the fluid
level, most of them do not play a role (but some of them do play a role). As we
already noticed:

DISCUSSION. (A) With probability 1/2 the item 2 leaves first. In this case the
first item 3 enters the bin and then all the other an − 1 items 3 will follow it in
the bin. During that time, since λp < 1, items 1 are processed by the empty space
in the bin. It is easily checked that the time τ1 to get rid of the initial items 3 is
equivalent to an ∼ an.

At time τ1 the head of the queue is the original string of items 2 and 3 followed
by another string of 2 and 3 built up during the service of items 3. Consequently,
using again the law of large numbers, the length of the queue is equivalent to
(b + λ(q + r)a)n (Lemma 16 of the Appendix). Very quickly an item of size 2
is in the bin. It is easy to check after an integrable amount of time that the state
of the bin will be (2,2). Starting from that time, all the initial items 2 are served
consecutively: a string of items 3 builds up at the head of the queue followed by
a shrinking string of 2’s and 3’s. At the end of the queue the new items arrived
during that time form a string (since the bin is full, items 1 are not served during
this phase). The time τ2 to serve all items 2 arrived before the state of the bin
reaches (2,2) is equivalent to the quantity(

b + λ(q + r)a
) q

2(q + r)
n.

At time τ1 + τ2 there is a string of 3’s at the head of the queue of length equivalent
to (

b + λ(q + r)a
) r

q + r
n,(16)

followed by an i.i.d. string with distribution F(du) whose length is equivalent to
the quantity

λ
(
b + λ(q + r)a

) q

2(q + r)
n.
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If there is a departure of an item 2, it is immediately replaced by an item 2 or two
items 1; items 3 cannot be served at that moment. Due to the i.i.d. structure of the
queue at that time, it is then easily seen that after an integrable amount of time,
the bin will be in the state (1,1,1,1). From that time, all the 1’s will be served at
rate 4. The time τ3 it takes to empty the queue of items 1 and to have exactly a 2
and a 1 in the bin is equivalent to

λp(b + λ(q + r)a)q

2(q + r)(4 − λp)
n

(take ξ = λp and µ = 4 in Lemma 16 of the Appendix). At time τ1 + τ2 + τ3 there
is a string of 3’s whose length is equivalent to (16), followed by a string of 2’s and
3’s of length equivalent to

λ
(
b + λ(q + r)a

) q

2(q + r)
(q + r)n + λ(q + r)

λp(b + λ(q + r)a)q

2(q + r)(4 − λp)
n

(17)

= λq

2

(
b + λ(q + r)a

)(
1 + λp

4 − λp

)
= 2λq

4 − λp

(
b + λ(q + r)a

)
.

For this case the distribution of L(U) is given by Eµn(RAn,Bn,0(dx)) and (An,Bn)

satisfies the relation(14) with the matrix M = m2.
The uniform integrability of the sequences (Zn) and (n/Zn) can be proved

following the same discussion.
(B) With probability 1/2 this is the item 1; another item 2 is in the bin, then all

the other bn − 1 items 2 will be served. The method is the same as in the previous
case. It is slightly simpler since the initial items 3 are not served at time U1.

Finally, the discussion is similar on the set {a = 0, b �= 0} ∪ {a �= 0, b = 0}; the
difference is that the duration of some transitions described above are negligible in
this case. �

The next proposition gathers some facts and estimations which will be used in
the sequel. Its proof, which is not difficult, follows the discussion of the above
proof. It is skipped.

PROPOSITION 11. With the same notation as in Proposition 10, there exists a
constant K0 such that

lim sup
n→+∞

E

(
U1

n

)
< K0E(a + b).(18)

If a and b are deterministic, positive and Zn = (An +Bn)/(an+bn), the sequences
(Zn) and (1/Zn) are uniformly integrable.

The main result on the ultimate behavior of the fluid limits is contained in the
following proposition.
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PROPOSITION 12. If (Mn) is an i.i.d. sequence of random matrices with the
same distribution as M in Proposition 10 and Pn = Mn · Mn−1 · · ·M1, there exist
α, β > 0 and a function η on R+ such that for any n ∈ N and x ∈ R

2+,

E
(〈(α,β),Pn · x〉)= η(λ)n 〈(α,β), x〉,(19)

where 〈·, ·〉 is the usual scalar product in R
2. If

λ∗ = 4 − 3p − 2q −
√
(4 − 3p − 2q)2 − 16p(1 − p − q)

2p (1 − p − q)
,(20)

then η(λ) < 1 if λ < λ∗ and η(λ) > 1 if λ∗ < λ< 4/p.

PROOF. We denote by E(Pn) the expected value of the matrix Pn, that is,
the matrix of the expected values of the coefficients of P . The i.i.d. property
of the Mn’s gives the relation E(Pn) = E(M1)

n. The positive matrix E(M1)

has two positive eigenvalues. η(λ) denotes the largest of them and (α,β) is the
corresponding right eigenvector; α and β can be chosen strictly positive (see,
e.g., [31]). Consequently, we get

E
(〈(α,β),Pn · x〉)= 〈(α,β),E(Pn) · x〉 = 〈(α,β),E(M1)

n · x〉
= η(λ)n〈(α,β), x〉.

It is easily seen that η(λ) can be expressed as

η(λ) = max
{〈E(M1), x〉

〈x,1〉
∣∣∣x ∈ R

2+
}
,

since the components of E(M1) are increasing with respect to λ if λp < 4, the same
property is true for the largest eigenvalue η(λ). The smallest root of the equation
η(λ) = 1 is given by λ = λ∗. [Routine calculations show that the term under the
square root in (20) is nonnegative if p + q ≤ 1 and that λ∗p < 4.] The proposition
is proved. �

COROLLARY 13. With the notations of Proposition 12, if λ < λ∗ for any
γ > η(λ) and x ∈ R

2+ the sequence (γ −nPn · x) converges almost surely and in
L1(P) to (0,0).

PROOF. Using (19) for n = 1, it is easily seen that

(Zn) = (〈(α,β), η(λ)−n Pn · x〉)
is a martingale. The sequence (Zn) being nonnegative, it converges almost surely
to some finite limit Z∞. Since α and β are positive and all the coefficients of
Pn are nonnegative, we deduce that the sequence (γ −nPn · x) converges almost
surely to 0 for any γ > η(λ). The L1-convergence follows from the fact that
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E(Pn ·x) = E(M1)
n ·x and the fact that the eigenvalues of E(M1) are in the interval

[0,1[. �

Our study here is simplified because all our matrices are nonnegative. For
general results on the product of arbitrary random matrices, see [1], for example.

7. Ergodicity. Now we have all the necessary ingredients to get the ergodicity
result. Starting from some arbitrary large initial state, the process “hits” some
smooth random state whose size has the same order of magnitude of the initial
state. From that time, under the appropriate condition, the Markov process shrinks
with a factor γ at each cycle described in the previous section. After some fixed
number of such cycles, the size of the process will be a fraction of the original size.
The ergodicity will be proved then.

THEOREM 14. When the arrival rate of the items is λ, the distribution of their
sizes is given by

F(dx) = pδ1 + qδ2 + (1 − p − q)δ3,

and the size of the bin is 4, if

λFF
def= min

{
4 − 3p − 2q −

√
(4 − 3p − 2q)2 − 16p(1 − p − q)

2p(1 − p − q)
,

(21)
4

3 − 2p − q

}

then the Markov process (X(t)) describing the First Fit algorithm is ergodic when
λ < λFF .

PROOF. If λp > 1, Proposition 4 shows that the condition λE(S1) < 4, that is,
λ(3 − 2p − q) < 4 is sufficient for the ergodicity of (X(t)). One can check that in
that case

4

3 − 2p − q
<

4 − 3p − 2q −
√
(4 − 3p − 2q)2 − 16p(1 − p − q)

2p(1 − p − q)
.

We assume that conditions (21) and λp < 1 are satisfied. According to
Theorem 1, to prove the ergodicity it is sufficient to prove that there exists a
stopping time V such that for any sequence (xn) = (bn, ln) of S1 with ‖xn‖ = n,
the following inequalities hold:

lim sup
n→+∞

Exn(‖X(V )‖)
n

≤ 1 − ε, lim sup
n→+∞

Exn(V )

n
≤ K,(22)
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where K > 1 and ε > 0 are constants independent of the sequence (xn). The
symbol K for the constant is used throughout this proof; to avoid subscripts we
keep the same letter.

According to Propositions 7 and 8, if X(0) = xn there exists a stopping time U0

such that:

(i) The distribution of L(U0) is given by E(Ran,bn,0(dx)), where an and bn
are some random variables and B(U0) = (2,1).

(ii) The following relations hold:

lim sup
n→+∞

ExnU0

n
≤ K,(23)

lim sup
n→+∞

Exn

(
an + bn

n

)2

≤ Exn

(‖X(U0)‖
n

)2

≤ K.(24)

According to inequality (24), the sequence of random variables (an/n, bn/n)

is tight for the convergence in distribution. By taking a subsequence, we can
suppose that they jointly converge in distribution to some random variable (a, b).
Relation (24) shows that the sequence (an/n, bn/n) is uniformly integrable;
consequently, it converges in L1. In particular, the following convergence holds:

lim
n→+∞ Exn

(
an + bn

n

)
= E(a + b) ≤ K.(25)

The last inequality is a consequence of relation (24). Using again Skorohod’s
representation theorem (see [15]), with a change of the probability space we can
assume that the sequences (an/n) and (bn/n) converge almost surely to a and b,
respectively.

On the event {‖X(U0)‖ ≤ ‖X(0)‖/4} one sets V = U0, so that

EX(0)

(‖X(V )‖
‖X(0)‖ 1{‖X(U0)‖≤‖X(0)‖/4}

)
≤ 1

4
.(26)

We have to determine V on the event {‖X(U0)‖ > ‖X(0)‖/4}. Proposition 10
shows that, on the event {a + b > 0} there exist a stopping time U1, random
variables (An,1), (Bn,1) and a matrix M1 independent of (a, b) such that

Pµn

(
B(U1) = (2,1),L(U1) ∈ dx

)= Eµn

(
RAn,1,Bn,1,0(dx)

)
,

where µn is the distribution of X(U0) when X(0) = xn, and the relation

lim
n→+∞

1

n
(An,1,Bn,1) = M1 · (a, b)

holds almost surely and in L1.
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From now on, until further notice, we work on the set {a+b > 0}. We denote by
(θt ; t ≥ 0) the time-shift for the Markov process. If we iterate, we get the existence
of random variables (An,2), (Bn,2) and a matrix M2 such that

PX(U1)

(
B(U1 ◦ θU1) = (2,1),L(U1 ◦ θU1) ∈ dx

)
(27)

= EX(U1)

(
RAn,2,Bn,2,0(dx)

)
and

lim
n→+∞

1

n
(An,2,Bn,2) = M2M1(a, b),

almost surely and in L1.
For p ∈ N, we define the variable Up+1 = Up + U1 ◦ θUp ; Up is clearly a

stopping time. Relation (27) gives the following equality:

Pµn(B(U2) = (2,1),L(U2) ∈ dx) = Eµn

(
RAn,2,Bn,2,0(dx)

)
.

By induction, it is easily seen that there exist random variables (An,p) and (Bn,p),
independent matrices Mp , p ≥ 2 such that

Pµn

(
B(Up) = (2,1),L(Up) ∈ dx

)= Eµn

(
RAn,p,Bn,p,0(dx)

)
,

and the convergence

lim
n→+∞

1

n
(An,p,Bn,p) = MpMp−1 · · ·M2M1(a, b)

holds almost surely and in L1. According to Proposition 12,

lim
n→+∞

1

n

〈
(α,β),

(
Eµn(An,p),EµnBn,p

)〉= γ p (αa + βb).

Since ‖X(Up)‖ = 2 + An,p + Bn,p ,

lim sup
n→+∞

1

n
Eµn

(‖X(Up)‖)

≤ 1

α ∧ β
lim

n→+∞
1

n

〈
(α,β),

(
Eµn(An,p),EµnBn,p

)〉
(28)

= γ p αE(a) + βE(b)

α ∧ β
≤ γ p α ∨ β

α ∧ β
E(a + b) ≤ γ p α ∨ β

α ∧ β
K,

according to inequality (25). Since the condition λ < λFF implies that γ < 1, we
choose p ∈ N such that

γ p <
1

4

α ∧ β

(α ∨ β)K
.
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On the event {‖X(U0)‖ > ‖X(0)‖/4}, the variable V is defined as U0 + Up ◦ θU0 .
For n ∈ N, by the strong Markov property,

Exn

(‖X(V )‖1{‖X(U0)‖>‖xn‖/4}
)= Exn

(
Eµn(‖X(Up)‖)1{‖X(U0)‖>‖xn‖/4}

)
= Exn

(
Eµn(An,p + Bn,p + 2)1{‖X(U0)‖>‖xn‖/4}

)
.

We can assume that P(a + b = 1/4) = 0; otherwise we replace the constant 1/4
by some real r less than 1/4 such that P(a + b = r) = 0,∣∣∣∣Exn

(
Eµn

(‖X(Up)‖
n

)
(1{‖X(U0)‖>‖xn‖/4} − 1{a+b>1/4})

)∣∣∣∣
≤ C0Exn |1{‖X(U0)‖>‖xn‖/4} − 1{a+b>1/4}|

+ 2Exn

(‖X(Up)‖
n

1{‖X(Up)‖/n≥C0}
)
.

Due to the L1-convergence of ‖X(Up)‖/n = (An,p + Bn,p)/n, the second term
of the right-hand side is arbitrarily small uniformly on n for some C0 > 0. The
first term converges to 0 since ‖X(Up)‖/n converges almost surely to a + b and
P(a + b = 1/4) = 0. Hence it is enough to consider the quantity

Exn

(
Eµn

(‖X(Up)‖
n

)
1{a+b>1/4}

)
.

Relation (28) implies that

lim sup
n→+∞

Exn

(‖X(V )‖
n

1{‖X(U0)‖>‖xn‖/4}
)

≤ γ p α ∨ β

α ∧ β
K ≤ 1

4
.(29)

Inequalities (23) and (18) show that there exists some constant K such that

lim sup
n→+∞

Exn(V )

‖X(0)‖ ≤ K

and relations (26) and (29) give

lim sup
n→+∞

Exn

(‖X(V )‖
‖X(0)‖

)
≤ 1

2
.

The proof of the proposition is complete. �

REMARK. The independence of the matrices M2, M3, . . . has been used on the
proof. Since one may have a = 0 or b = 0, M1 is not necessarily independent of
(a, b). It is nevertheless true after step 2 for Mp , for p ≥ 2 (see the definition of
m1 and m2 in Proposition 10).
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8. Transience.

THEOREM 15. When the arrival rate of the items is λ, the distribution of their
sizes is given by F(dx) = pδ1 + qδ2 + (1 − p − q)δ3, and the size of the bin is 4.
The Markov process (X(t)) describing the First Fit algorithm is transient when
λ > λFF , where λFF is defined by (21).

PROOF. We assume that the initial distribution of (L(t)) is given by Ra,b,0
and the initial state of the bin is (2,1).

With the notation of Proposition 10, U1 is the first time when all the initial
items 2 have left the queue, the items 2 in the bin have been served and the state
of the bin is (2,1). As in the proof of Proposition 14, we define the sequence of
stopping times (Up) by

Up+1 = Up + U1 ◦ θUp .

The variable Up+1 is the first moment when all the items 2 present at time Up

have left the queue and the state of the bin is (2,1). Clearly enough, the sequence
(L(Up)) is a homogeneous irreducible Markov chain on T (N).

The distribution of X(U1) is represented by

PRa,b,0

(
X(U1) ∈ dx

)= E
(
RAa,b,Ba,b,0(dx)

);
almost surely U1 is a finite stopping time. Propositions 10 and 12 show that there
exist constants α, β such that

lim
a+b→+∞

αA1 + βB1

αa + βb
= γ > 1,(30)

almost surely.
We assume that the Markov process (X(t)) is recurrent. In particular it visits

the state y0 = (∅, (2,1)) infinitely often; that is, with probability 1 the queue will
be empty and the state of the bin will be (2,1). The first time the process (X(t))

visits the state y0 is necessarily at one of the moments Up , p ≥ 1. Consequently,
the Markov chain (L(Up)) visits the state y0 with probability 1.

We now define a Lyapounov function on the state space of (L(Up)) by

f (l) = log
(
1 + αp + β(‖l‖ − p)

)
,

if l = (li) and p = inf{k − 1/lk �= 2}. With the notations defined above, we have
f (L(U1)) = log(1 + αAa,b + βBa,b); consequently,

ERa,b,0

(
f
(
L(U1)

)− f
(
L(U0)

))= ERa,b,0

(
log

(
1 + αAa,b + βBa,b

1 + αa + βb

))
.

According to Proposition 10, the random variables

(1 + αAa,b + βBa,b)/(1 + αa + βb)
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and their inverse are uniformly integrable. Consequently, the elementary inequality

| logx| ≤ x + 1

x
,

for x > 0, convergence (30) and Lebesgue’s theorem show that

lim
a+b→+∞ ERa,b,0

(
f
(
L(U1)

)− f
(
L(U0)

))= logγ > 0.

Hence there exists some constant K0 such that if a + b ≥ K0,

ERa,b,0

(
f
(
L(U1)

)− f
(
L(U0)

))≥ (logγ )/2.(31)

In the same way, the following inequality holds:

ERa,b,0

(∣∣f (L(U1)
)− f

(
L(U0)

)∣∣2)
≤ 6 log(α ∨ β)2 + 4ERa,b,0

(
log2

(
1 + Aa,b + Ba,b

1 + αa + βb

))
.

The elementary inequality

log2 x ≤ 4

e2

(
x + 1

x

)
,

for x > 0 and the uniform integrability argument give the following inequality:

sup
a,b:a+b>K

ERa,b,0

(∣∣f (L(U1)
)− f

(
L(U0)

)∣∣2)< +∞.(32)

A theorem by Lamperti [23] (see [16] or [26]) states that if relations (32) and (31)
are satisfied, then the Markov chain (L(Up)) is transient. In particular this implies
that there exists an initial state such that the chain will never visit the state y0 with
positive probability. This contradicts our assumption on the recurrence of (X(t)).
The theorem is proved. �

The case of symmetrical distributions. The distribution F is symmetrical if

F(dx) = pδ1 + (1 − 2p)δ2 + pδ3,

for p ∈ [0,1/2]. Since the expected value of the size of the items is 1/2 for all
these distributions, the value λFF of the corresponding critical λ cannot exceed 2.

According to Theorem 14 the critical value of λ for the First Fit algorithm is
given by

λFF = 2 + p −
√

4 + 4p − 15p2

2p2

and for the FIFO policy, it is given by (see [21])

λFIFO = 12

6 + 12p − 24p2 + 10p3 − p4 .
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FIG. 2. The effective bandwidth of the FIFO and First Fit policies for symmetrical distributions on
{1,2,3}.

Coffman and Stolyar [8] considered the stability of the algorithms First Fit
and Best Fit when the services are constant equal to 1. In that setting they have
proved that the natural condition λE(S1) < C is sufficient for the stability when the
variable S1 is uniformly distributed on {1/n,2/n, . . . , (n− 1)/n}. This property is
not true when the services are exponentially distributed (see Figure 2).

Figure 3 shows that the First Fit algorithm is much more efficient than the FIFO
policy. This comparison is intuitive since the First Fit algorithm reduces the wasted
space in the bin. The minimal value of λFF is 15/8 = 1.875 which is close to 2,
the optimal value. Notice that in the case where there are only 1’s and 3’s equally
likely, λFF is 2, hence is optimal; this is not the case for the FIFO policy.

The fact that, even in the case of symmetrical distributions, the constant λc is
not 1/E(S1) = 2 in general can be (roughly) explained as follows. The only time

FIG. 3. First Fit compared to FIFO for symmetrical distributions on {1,2,3}: Percentage of
increase of the effective bandwidth.



FLUID LIMITS OF STRING VALUED MARKOV PROCESSES 887

when there is some potentially wasted space is when an item 3 is in the bin. During
that time some of the items 1 are served in the empty space left by the 3’s. If all of
them were served in this way, it is easy to see that it would imply λc = 2. This is
not the case in fact. Indeed, in the description of the cycle of the previous section,
we have seen that during some time, four items 1 are in the bin. In particular these
items 1 will not help to fill the empty spaces left by the 3’s. Consequently, the
condition λ < 2 is, in general, not sufficient to ensure ergodicity.

APPENDIX

The following elementary lemma is constantly used (some times implicitly) in
Sections 4 and 6.

LEMMA 16. If Nξ , Nµ are independent Poisson processes on R+ with
respective parameters ξ , µ with 0 < ξ < µ, and (ν(t)) is a cadlag (i.e., right
continuous functions having a limit on the left at any point), nondecreasing process
on R+, independent of these Poisson processes, such that (ν(t)/t) converges to ν

almost surely and in L1, then

Z(t) = 1

t

(
(Nξ − Nµ)

(]0, ν(t)]))− (ξ − µ)ν

converges to 0 almost surely and in L1. If

τ (t) = inf
{
s ≥ 0 | ν(t) + (Nξ − Nµ)(]0, s]) ≤ 0

}
,

then τ (t)/t converges to ν/(µ − ξ) almost surely and in L1.

PROOF. To prove the first part, it is enough to show that

Z1(t) = 1

t

(
(Nξ − Nµ)

(]0, ν(t)])− (ξ − µ)ν(t)
)

converges to 0 almost surely and in L1. For t ≥ 0, using the independence
properties, we get

E
(
Z1(t)

2) = 1

t2

∫ +∞
0

E
((
(Nξ − Nµ)(]0, x]) − (ξ − µ)x

)2)
P
(
ν(t) ∈ [x, x + dx])

= 1

t2

∫ +∞
0

(ξ + µ)xP
(
ν(t) ∈ [x, x + dx])= (ξ + µ)

E(ν(t))

t2 ,

hence the convergence to 0 in L1.
On the set {ν > 0}, the law of large numbers for Poisson processes gives

immediately the almost sure convergence of (Z(t)). If ν > 0, for ε > 0 and t

sufficiently large we have ν(t) ≤ εt , hence

|Z(t)| ≤ 1

t

(
(Nξ + Nµ)(]0, εt]));
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consequently,

lim sup
t→+∞

|Z(t)| ≤ (ξ + µ)ε.

We get the almost sure convergence on {ν = 0} by letting ε go to 0.
Using the law of large numbers for Poisson processes, the almost sure

convergence of τ (t)/t to ν/(µ − xi) is straightforward to obtain. By definition
of τ (t) we have,

ν(t) + (Nξ − Nµ)
(]0, τ (t)])≤ 0 ≤ ν(t) + (Nξ − Nµ)

(]0, τ (t)])+ 1.

Taking the expected value of this inequality and using Wald’s formula, we obtain,

1 + E(ν(t))

t
≥ (µ − ξ)

E(τ (t))

t
≥ E(ν(t))

t
.

Hence E(τ (t))/t converges to E(ν)/(µ − ξ); this is enough to ensure the L1-
convergence of (τ (t)/t) since it already converges almost surely. The lemma is
proved. �
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