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FAST JACKSON NETWORKS

By J. B. Martin1 and Yu. M. Suhov2

University of Cambridge and Ecole Normale Supérieure and
University of Cambridge and Russian Academy of Sciences

We extend the results of Vvedenskaya, Dobrushin and Karpelevich to
Jackson networks. Each node j, 1 ≤ j ≤ J of the network consists of N
identical channels, each with an infinite buffer and a single server with
service rate µj. The network is fed by a family of independent Poisson
flows of rates Nλ1� � � � �NλJ arriving at the corresponding nodes. After
being served at node j, a task jumps to node k with probability pjk and
leaves the network with probability p∗

j = 1 −∑
k pjk. Upon arrival at any

node, a task selects m of the N channels there at random and joins the
one with the shortest queue. The state of the network at time t ≥ 0 may
be described by the vector r�t� = �rj�n� t�� 1 ≤ j ≤ J� n ∈ Z+�, where
rj�n� t� is the proportion of channels at node j with queue length at least
n at time t. We analyze the limit N → ∞. We show that, under a stan-
dard nonoverload condition, the limiting invariant distribution (ID) of the
process r is concentrated at a single point, and the process itself asymptot-
ically approaches a single trajectory. This trajectory is identified with the
solution to a countably infinite system of ODE’s, whose fixed point corre-
sponds to the limiting ID. Under the limiting ID, the tail of the distribution
of queue-lengths decays superexponentially, rather than exponentially as
in the case of standard Jackson networks—hence the term “fast networks”
in the title of the paper.

1. Introduction. The class of Jackson networks, introduced in [2] and
[3], remains one of the most popular and widely studied in queueing network
theory. Attractions of a Jackson network lie in the simplicity of its construction
and in the partial exact solvability expressed by the product formula for the
stationary distribution of the Markov process describing the evolution of the
state of the network.

In [8], Vvedenskaya, Dobrushin and Karpelevich consider a model of a ser-
vice station consisting of a large number of separate servers and show that
allowing tasks a small amount of flexibility about which queue to join produces
considerable improvement in terms of average queue length. In this paper, we
consider networks of Jackson type whose nodes are stations of this kind and
show that flexibility of routing leads to improvement in network performance
in a similar way.

The model considered in [8] is as follows. The system consists of N identical
channels, each with an infinite buffer and a single server with service rate µ.
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The input flow is Poisson with rate Nλ; service times and arrival times are all
independent. Upon arrival, each task selects m channels at random, and joins
the one whose queue is the shortest. This model may be considered as a very
simple example of dynamic routing. Similar problems are considered in [7] by
Turner, who uses a coupling argument to provide stronger results comparing
the evolution of the system for different values of m, and by Mitzenmacher in
[6]. See also the recent paper [9], where a similar model with a more general
class of routing regimes and service distributions is considered, and the review
papers [5], where routing policies are discussed in the context of loss networks,
and [4].

The state of the system may be described by the vector rN = �rN�n��
n ∈ Z+�, (here and below Z+ is the set of non-negative integers), where
rN�n� = N−1 ∑

n′≥nM�n′�, and M�n′� is the number of channels with queue
length n′. Hence rN�n� is the proportion of queues in the system whose length
is at least n. The process rN�t� = �rn�n� t�� n ∈ Z+� t ≥ 0� describing the state
of the network at times t ≥ 0 is easily seen to be a Markov process, with state
space given by

�N = {
g = �g�n�� n ∈ Z+�� g�0� = 1� g�n� ≥ g�n+ 1� ≥ 0�

Ng�n� ∈ N for all n
}
�

(1.1)

If λ < µ, the process is positive recurrent, with a unique stationary distri-
bution πN, and the main result of [8] is that

lim
N→∞

EπN
rN�n� =

(
λ

µ

)�mn−1�/�m−1�
� n ≥ 0�(1.2)

Thus, as N → ∞, a “typical server” in the system will have at least n tasks
in its buffer with a probability that decays superexponentially as n → ∞.
We may compare this to a “linear” system, in which arriving tasks choose a
channel at random; this system is equivalent to N isolated M/M/1 queues
with arrival and service rates λ and µ. A typical server in the linear system
has at least n tasks in the buffer with probability �λ/µ�n, n ≥ 0 (independently
of N), which is larger than the r.h.s. of (1.2) and decays only exponentially as
n→ ∞.

In fact, as is shown in [8], the whole process �rN�t�� is asymptotically
deterministic as N → ∞. More precisely, extend (1.1) in the natural way by
defining

� = {
g = �g�n�� n ∈ Z+�� g�0� = 1� g�n� ≥ g�n+ 1� ≥ 0 for all n

}
�(1.3)

Then if the distribution of the initial state rN�0� approaches the Dirac delta-
measure concentrated at a point g ∈ �, the distribution of �rN�t�� is con-
centrated in the limit on the trajectory u�t�g� = �u�n� t�g�� n ∈ Z+�, t ≥ 0,
giving the unique solution to the following system of differential equations:

u̇�n� t�=λ�u�n−1� t�m−u�n� t�m�−µ�u�n� t�−u�n+1� t��� n≥1(1.4)
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with boundary conditions

u�n�0� = g�n�� n ≥ 1 and u�0� t� = 1 for all t�

The r.h.s. of (1.2) provides a stationary solution to (1.4).
We now briefly describe some details of standard Jackson networks. We

consider networks with finitely many nodes 1� � � � � J (models with infinitely
many nodes are also possible but will not be covered here). Each node j has
a single server with an infinite buffer and service rate µj. The network is
fed by a family of independent Poisson flows of rate λ1� � � � � λJ, arriving at
the corresponding nodes. After being served at node j, a task joins the queue
at node k with probability pjk and leaves the network with probability p∗

j =
1 − ∑

k pjk; here we require 0 ≤ pjk ≤ 1 for all j� k, and
∑

k pjk ≤ 1 for all
j. We will also assume throughout the paper that the J × J matrix �I − P�
is invertible; then �I − P�−1 = ∑∞

i=0 Pi. This condition guarantees that the
expected total number of nodes visited by a particular task is finite.

The state of a Jackson network at time t ≥ 0 can be described by the vector
n�t� = �n1�t�� � � � � nJ�t��, where nj�t� is the length of the queue at node j
at time t. (Throughout the paper, underlined symbols refer to J-component
vectors). It is easy to see that n�t� is a Markov process, with state space Z

J
+. Its

stationary distribution, if one exists, may be determined as follows. Consider
the equation

ρ = λ+ ρP�(1.5)

Here, λ = �λ1� � � � � λJ� is the vector of external arrival rates, and P = �pjk� is
the routing matrix. The vector ρ = �ρ1� � � � � ρJ� is the unknown, and an entry
ρj will represent the “effective arrival rate” at node j, including arrivals from
inside as well as outside the network. Now (1.5) has solution

ρ = λ�I − P�−1�(1.6)

Under the nonoverload condition,

ρ < µ (i.e., ρj < µj for all j)�(1.7)

the network is positive recurrent, and its stationary distribution may be
given by

P�Nj ≥ rj ∀ j� = ∏
j

(
ρj

µj

)rj

� r = �r1� � � � � rJ� ∈ Z
J
+�(1.8)

which is the product of the geometric distributions with paramters �ρj/µj� at
node j, 1 ≤ j ≤ J.

2. Main results. We modify the above model of a Jackson network in the
following way. Each node j ∈ �1� � � � � J� will now contain N channels, each
of which has an infinite buffer and a single server with service rate µj. The
network is fed by a family of independent Poisson flows of rates Nλ1� � � � �NλJ
arriving at the corresponding nodes. As before, after being served at node j,
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a task jumps to node k with probability pjk and leaves the network with
probability p∗

j. Upon arrival at node j, either from outside or from inside
the network, a task selects m of the N channels there uniformly at random
(with replacement, though this becomes unimportant asN becomes large), and
enters the one with the shortest queue (breaking ties at random if necessary).
The network is therefore specified by the parameters J, λ, µ, P, N and m.

The state of the network at time t ≥ 0 may be described by the collection
r�t� = �rj�n� t�� 1 ≤ j ≤ J� n ∈ Z+� where rj�n� t� = N−1 ∑

n′≥nMj�n′� t�
and Mj�n′� t� is the number of channels at node j with queue length n at time
t. Hence rj�n� measures the proportion of queues at j whose length is n or
greater. The process �r�t�� t ≥ 0� (we will generally write �rN�t�� to stress the
dependence on N) forms a Markov process, whose state space is the Cartesian
product �

J

N, where �N is defined in (1.1). The generator of �rN�t�� is given by

ANf�g� = N
∑
n≥1

∑
1≤j≤J

λj�gj�n− 1�m − gj�n�m�
[
f

(
g + ej�n�

N

)
− f�g�

]

+N
∑
n≥1

∑
1≤j≤J

µjp
∗
j�gj�n� − gj�n+ 1��

[
f

(
g − ej�n�

N

)
− f�g�

]

+N
∑

n�n′≥1

∑
1≤j� k≤J

µkpkj�gk�n′� − gk�n′ + 1��

×
[{
gj�n− 1� − 1

N
δj�kδn−1� n′

}m
−

{
gj�n� −

1
N
δj�kδn�n′

}m]

×
[
f

(
g + ej�n�

N
− ek�n′�

N

)
− f�g�

]
�

(2.1)

where g = �gj�n�� n ∈ Z+� 1 ≤ j ≤ J� ∈ �
J

N and f is a function from �
J

N to
R; here ek�n′� denotes the vector �ej�n�� 1 ≤ j ≤ J� n ∈ Z+� whose only non-
zero entry is ek�n′� = 1, and δj�k = 1 if j = k and 0 otherwise. We denote by
TN�t� the semigroup of transition operators generated by AN, defined formally

by TN�t� = exp�tA�� t ≥ 0, and acting on functions f� �J

N → R.

As well as the space �
J

, where � is defined in (1.3), we will also use the
space �J, where

� =
{
g = �g�n�� n ∈ Z+�� g�0� = 1�

g�n� ≥ g�n+ 1� for all n�
∞∑
n=0

g�n� <∞
}
�

(2.2)

The space �J represents limiting states where the average queue length per
channel is finite at each node. We will use the norm

�u� = sup
1≤j≤J

sup
n∈Z+

�uj�n��
n+ 1

(2.3)
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on the spaces �J, �
J

and �
J

N; this norm is understood when we refer to
continuity and convergence below. Under this norm, �

J
becomes a complete

compact metric space. Note that � may be interpreted as the space of sub-
probability measures on Z+ and � as the subspace of probability measures
with a finite first moment; the topology generated by norm (2.3) then corre-
sponds to the topology of weak convergence on the one-point compactification
�Z+ ∪ �∞�� of Z+. The choice of these spaces leads to a convenient description
in the limit N → ∞.

Our main results are stated in Theorems 1–4 below. We will frequently refer
to the nonoverload condition (1.7), whose form is unchanged in the modified
setting. An important role will be played by the following infinite system of
nonlinear differential equations (corresponding to the system (1.4) used in [8])
for u�t� = �uj�n� t�� 1 ≤ j ≤ J� n ∈ Z+�, t ≥ 0, with initial condition g ∈ �

J
:

u�0� = g�(2.4)

u̇�t� = h�u�t���(2.5)

where, for all j,

hj�0�u� = 0�(2.6)

hj�n�u� =
[
λj +

∑
1≤k≤J

µkpkjuk�1�
]
�uj�n− 1�m − uj�n�m�

− µj�uj�n� − uj�n+ 1��
(2.7)

for all n ≥ 1.
The first theorem establishes various properties of this system, and the

second theorem describes the way in which the behavior of the processes rN�t�
converges asymptotically to that of the limiting system of ODE’s as N → ∞,
for finite t.

Theorem 1. (i) If g ∈ �
J
, the system (2.4)–(2.7) has a unique solution

u�t�g�� t ≥ 0 in �
J
.

(ii) Under (1.7) there exists a unique fixed point a ∈ �J such that u�t�a� =
a for all t, with

aj�n� =
(
ρj

µj

)�mn−1�/�m−1�
�(2.8)

(iii) Under (1.7),

lim
t→∞

u�t�g� = a for all g ∈ �J�(2.9)

Thus there exists a unique probability measure π on �J which is invariant
under the map g �→ u�t�g�, so that

∫
f�g�dπ�g� =

∫
f�u�t�g��dπ�g�
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for all t ≥ 0, f� � J → R, and π = δa, the probability measure concentrated at
the fixed point a.

Theorem 2. For any continuous function f� � J → R and t ≥ 0,

lim
N→∞

sup
g∈� J

N

�TN�t�f�g� − f�u�t�g��� = 0�

and the convergence is uniform in t within any bounded interval.

The next result provides a coupling which compares the behavior of the
network described by the process rN�t� with that of a “linear network” where
m = 1. See the remark after the proof of Theorem 3 for suggestions regarding
an extension of the theorem.

Theorem 3. Let Q and R be two networks with the same parameters J,
λ, µ, P and N, and the same state at t = 0 and with m�Q� = 1, m�R� ≥ 1.

Then there is a coupling of the processes �r�Q�
N �t�� and �r�R�

N �t�� such that, for
all t ≥ 0, the total number of tasks present in R at time t is no greater than
the total number in Q at t.

The final result demonstrates the convergence of the stationary distribu-
tions, where they exist, to the probability measure concentrated at the fixed
point of the system of ODE’s. Thus, from the r.h.s. of (2.8), we have, for m > 1,
superexponential decay of the tail of the queue length distribution in the lim-
iting stationary regime, in contrast to the exponential decay occurring in the
case m = 1. In other words, the networks which we consider have much shorter
queues (per channel) than “standard” Jackson networks. This is the reason for
the term “fast networks” in the title of the paper.

Theorem 4. Under the nonoverload condition (1.7):

(i) The Markov process rN�t� is positive recurrent for all N, and hence has
a unique invariant distribution πN for each N.

(ii) πN → δa weakly, where δa is given by Theorem 1(ii) and (iii); that is,

lim
N→∞

EπN
f�g� = f�a�

for all continuous functions f� � J → R.

The rest of the paper is devoted to the proofs of Theorems 1–4. The methods
used to prove Theorems 1 and 2 are essentially those that may be used in the
nonnetwork case, with some modifications; we are also able to simplify in
some aspects the approach used in [8]. Later results, especially the proof of
Theorem 3, require more particular attention to the network structure.
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3. Limiting equations and convergence for finite t.

Proof of Theorem 1(i). Define ξ�x� = �min�x�1��+, where �y�+ =
max�y�0� and consider the following modification of (2.4)–(2.7):

u�0� = g�(2.4′)

u̇�t� = h̃�u�t���(2.5′)

where, for all j.

h̃j�0�u� = 0�(2.6′)

h̃j�n�u� =
[
λj +

∑
1≤k≤J

µkpkjξ�uk�1��
]
�ξ�uj�n− 1��m − ξ�uj�n��m�+

(2.7′)
− µj�ξ�uj�n�� − ξ�uj�n+ 1���+ for all n ≥ 1�

Since the r.h.s. of (2.7) and (2.7′) are the same if u ∈ �
J

, the system (2.4)–(2.7)
has the same solutions in �

J
as the system (2.4′)–(2.7′). Also, if g ∈ �

J
, then

any solution of (2.4′)–(2.7′) remains within �
J

, since, under (2.7′), if uj�n� t� ≤
uj�n + 1� t� for some j, n, t, then h̃j�n�u�t�� ≥ 0 and h̃j�n + 1�u�t�� ≤ 0,
and if uj�n� t� ≤ 0 for some j, n, t, then h̃j�n�u� ≥ 0. Thus, in order to
show that there exists a unique solution to (2.4)–(2.7) in �

J
, it suffices to

show that there exists a unique solution to (2.4′)–(2.7′) in �RZ+�J. We use the
Picard successive approximation method. The norm (2.3) is now extended to
the whole space �RZ+�J (allowing the value ∞ where required). From (2.7′),
for all u�u′ ∈ �RZ+�J,

�h̃�u�� ≤ max
j

λj + �J+ 1�max
j

µj�

�= C1�
(3.1)

and

�h̃�u� − h̃�u′�� ≤
(
2mmax

j
λj + �6 + 2m�max

j
µj

)
�u − u′�

�= C2�u − u′��
(3.2)

Here we have used the facts that �ξ�u� − ξ�u′�� ≤ �u − u′�, and, for a1� a2� b1�
b2 ∈ �0�1��

�a1b
m
1 − a2b

m
2 � ≤ �a1 − a2� +m�b1 − b2��

For t ≥ 0, let u�0��t� = g, and, recursively, let

u�r��t� = g +
∫ t

0
h̃�u�r−1��s��ds� r ∈ N�(3.3)
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It follows by induction that u�r��t� is continuous in t on �0�∞� for all r, and
that

�u�r+1��t� − u�r��t�� ≤ C1C
r
2t
r+1

�r+ 1�! for all r� t.

Hence, for all t ≥ 0, u�s� = limr→∞ u�r��s� exists uniformly for s ∈ �0� t�. Since
h̃ is uniformly continuous [see (3.2)], (3.3) then implies that

u�t� = g +
∫ t

0
h̃�u�s��ds� t ≥ 0�

and hence, by differentiating, that u�t� is a solution to (2.4′)–(2.7′).
To show uniqueness, suppose that w�t� is any solution of (2.4′)–(2.7′). Then

w�t� = g +
∫ t

0
h̃�w�s��ds�(3.4)

and so

w�t� − u�r��t� =
∫ t

0
�h̃�w�s�� − h̃�u�r−1��s���ds�(3.5)

It follows by induction, as before, that

�w�t� − u�r��t�� ≤ C1C
r
2t
r+1

�r+ 1�! �

so that w�t� = limr→∞ u�r��t� = u�t�. This completes the proof of Theo-
rem 1(i). ✷

Before proving the rest of Theorem 1, we turn to the proof of Theorem 2,
which provides a result which we will use in showing the convergence in
Theorem 1(iii). The next two lemmas show the existence of the first and second
derivatives of u�t�g� with respect to the entries in g and give bounds on their
size. Lemma 3.1 is Proposition 1 from [8]; we include the brief proof for the
sake of completeness.

Lemma 3.1. Consider the infinite system of differential equations

zx�0� = cx�

dzx�t�
dt

= ∑
y∈�

ax�y�t�zy�t� + bx�t��

for x ∈ � , t ≥ 0, where � is a countable index set and where, for all
x�y ∈ � , the functions ax�y�t� and bx�t� are continuous in t, and suppose

that
∑

y∈� �ax�y�t�� ≤ a, �bx�t�� ≤ b0e
bt, �cx� ≤ c for all x� t. Then there exists a

unique solution �zx�t��, x ∈ � , t ≥ 0 and

�zx�t�� ≤ ceat + b0

b− a
�ebt − eat� for all x� t�(3.6)
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Proof. Since the system is countable and linear with coefficients bounded
uniformly in x and in t from any bounded interval, one may show, for example
using a successive approximation argument similar to that in the proof of
Theorem 1(i) above, that it has a unique solution. To show the bound (3.6) we
again use the successive approximation method. Let

z
�0�
x �t� = cx +

∫ t

0
bx�s�ds

and

z
�k+1�
x = cx +

∫ t

0

[∑
y∈�

ax�y�s�z�k�y �s� + bx�s�
]
ds for k ∈ Z+�

Then

�z�0�x �t�� ≤ c+ b0

b
�ebt − 1��

and an induction gives

�z�k�x �t� − z
�k−1�
x �t�� ≤ ak

(
ctk

k!
+ b0

bk+1

∞∑
l=k+1

�bt�l
l!

)
for x ∈ � � k ≥ 1�

Taking the limit k→ ∞ and summing over k gives the required result. ✷

Lemma 3.2. The derivatives

∂u�t�g�
∂gj�n�

�
∂2u�t�g�
∂gj�n�2

and
∂2u�t�g�

∂gj�n�∂gj′ �n′�

exist, for g ∈ �
J

and t ≥ 0, and satisfy

∣∣∣∣
∂uk�r� t�g�
∂gj�n�

∣∣∣∣ ≤ exp�A1t��
∣∣∣∣
∂2uk�r� t�g�
∂gj�n�2

∣∣∣∣�
∣∣∣∣
∂2uk�r� t�g�
∂gj�n�∂gj′ �n′�

∣∣∣∣ ≤ A2

A1
�exp�2A1t� − exp�A1t���

where

A1 = 2�Jm+J+ 1�max
j

µj + 2mmax
j

λj�

A2 = 2J�m�m− 1� + 2�max
j

µj + 2m�m− 1�max
j

λj�

Proof. Fix j, n, g and write u′�t� = ∂u�t�g�/∂gj�n�. If this derivative
exists, then u′�t� satisfies u′

k�0� t� = 0, u′
k�r�0� = δk�jδr�n, and, by differenti-
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ating (2.7) (we omit the argument t to simplify the notation),

du′
k�r�
dt

=
[
λj+

∑
1≤i≤J

µipikui�1�
]
�µuk�r−1�m−1u′

k�r− 1�+µuk�r�m−1u′
k�r��

+
[ ∑

1≤i≤J
µipiku

′
i�1�

]
�uk�r−1�m−uk�r�m�−µk�u′

k�r�−u′
k�r+ 1���

Conversely if u′�t� is a solution of this system, then it works as the required
derivative. Using the fact that �uk�r�� ≤ 1 for all k� r, we may now apply
Lemma 3.1 with a = A1, b0 = 0, c = 1 and � = Z+ × �1� � � � � J� to give the
first bound.

By differentiating the above system again with respect to gj�n� or gj′ �n′�,
one arrives at systems of equations for the required second partial derivatives,
with coefficients now involving u and u′, to which Lemma 3.1 can be applied
with a = A1, b = 2A1, b0 = A2, c = 0 to give the second bound. ✷

Proof of Theorem 2. Let L be the set of continuous functions f� � J →
R, and let D be the set of those f ∈ L for which the derivatives

∂f�g�
∂gj�n�

�
∂2f�g�
∂gj�n�2

and
∂2f�g�

∂gj�n�∂gj′ �n′�
exist for all g� j� j′� n� n′ and are uniformly bounded in modulus by some con-
stant C = C�f� < ∞. Observe that D is dense in L, using the norm (2.3) on

�
J

and the sup norm on L. For f ∈ D,

N

(
f

(
g + ej�n�

N

)
− f�g�

)
→ ∂f�g�

∂gj�n�
�

N

(
f

(
g − ej�n�

N

)
− f�g�

)
→ − ∂f�g�

∂gj�n�
and

N

(
f

(
g + ej�n�

N
− ek�n′�

N

)
− f�g�

)
→ ∂f�g�

∂gj�n�
− ∂f�g�
∂gk�n′�

uniformly in g from �
J

. Thus, using (2.1) we have

ANf�g� →
∑
n≥1

∑
1≤j≤J

λj�gj�n− 1�m − gj�n�m�
∂f�g�
∂gj�n�

− ∑
n≥1

∑
1≤j≤J

µjp
∗
j�gj�n� − gj�n+ 1�� ∂f�g�

∂gj�n�
+ ∑

n�n′≥1

∑
1≤j� k≤J

µkpkj�gk�n′� − gk�n′ + 1��

× �gj�n− 1�m − gj�n�m�
[
∂f�g�
∂gj�n�

− ∂f�g�
∂gk�n′�

]
�

(3.7)



864 J. B. MARTIN AND YU. M. SUHOV

uniformly in g. The r.h.s. of (3.7) may be rewritten as

∑
n≥1

∑
1≤j≤J

∂f�g�
∂gj�n�

{[
λj +

∑
1≤k≤J

µkpkjgk�1�
]
�gj�n− 1�m − gj�n�m�

− µj�gj�n� − gj�n+ 1��
}
�

which coincides with

d

dt
f�u�t�g��

∣∣∣∣
t=0

�(3.8)

where u�t�g� is the solution to (2.4)–(2.5).
Setting T�t�f�g� = f�u�t�g�� defines a semigroup of operators T�t�� t ≥ 0

in L, corresponding to shifts along the solutions of (2.4)–(2.5). The generator
A of this semigroup is given by (3.8). Thus we have

lim
N→∞

ANf = Af(3.9)

in the sup norm, for all f ∈ D.
Define D0 ⊂ D as the set of those functions in D which depend on only

finitely many variables gj�n�. By the definition of the norm (2.3) on �
J

, D0
is dense in D, and hence in L. Also, it follows from Lemma 3.2 that T�f0� ∈
D for all f0 ∈ D0. Finally, observe that the semigroups TN�t� and T�t� are
continuous and contracting in L. These facts, together with (3.9) and with
Proposition 3.3 and Theorem 6.1 from Chapter 1 of [1], give the result of
Theorem 2. ✷

We write g ≤ g′ to mean that all the inequalities gj�n� ≤ g′
j�n� hold;

similarly min�g�g′� and max�g�g′� are defined componentwise.

Lemma 3.3. If g ≤ g′, where g�g′ ∈ �
J
, then u�t�g� ≤ u�t�g′� for all t.

Proof. Define the coordinate functions fj�n�g� = gj�n�� n ∈ Z+� 1 ≤
j ≤ J. Fix N and consider two networks with initial states g

N
� g′

N
∈ �J

N,
g
N

≤ g′
N

. A simple coupling shows that

TN�t�fj�n�gN
� ≤ TN�t�fj�n�g′

N
� for all t ≥ 0� j� n�(3.10)

Now for given g�g′ ∈ �
J

with g ≤ g′, choose sequences �g
N
�, �g′

N
�, N ∈ N

with g
N

, g′
N

∈ �J
N, such that g

N
≤ g′

N
for all N and g

N
→ g, g′

N
→ g′

as N → ∞. Then it follows from Theorem 2 and (3.10) that fj�n�u�t�g�� ≤
fj�n�u�t�g′�� for all t� j� n, which is exactly what we need. ✷

We define the quantities vj�n�g� = ∑
n′≥n gj�n′�, n ≥ 1, 1 ≤ j ≤ J, g ∈ �J.

Observe that vj�1�g� represents the average queue length of the channels at



FAST JACKSON NETWORKS 865

node j in the state g, which is guaranteed to be finite by the definition of �
(2.2); also note that vj�n�g� ≥ vj�n+1�g� for all j�n. In addition, given a solu-
tion u�t�g� of the system (2.4)–(2.7), write vj�n� t�g� = vj�n�u�t�g��. Define
the vectors v�n� t�g� = �v1�n� t�g�� � � � � vJ�n� t�g��, and similarly u�n� t�g�,
u̇�n� t�g�, and so on, and write x · y = �x1y1� � � � � xJyJ�.

Lemma 3.4. If g ∈ �J then u�t�g� ∈ �J for all t ≥ 0, and

v̇j�n� t�g� =
[
λj +

∑
1≤k≤J

µkpkjuk�1� t�g�
]
uj�n− 1� t�g�m − µjuj�n� t�g��

In particular,

v̇j�1� t�g� = λj +
∑

1≤k≤J
µkpkjuk�1� t�g� − µjuj�1� t�g�

or, in vector notation,

v̇�1� t�g��I − P�−1 = ρ− µ · u�1� t�g��(3.11)

Proof. Summing the r.h.s. of (2.7) over n′ ≥ n gives the result. ✷

Proof of Theorem 1(ii) and (iii). For a fixed point a of the map u, we
need h�a� = 0 in (2.6) and (2.7). Restricting ourselves to the space �J, we
have aj�0� = 1 for all j, and can use (3.11), setting the l.h.s. to 0, to give
aj�1� = ρj/µj for all j. Putting these values back into the r.h.s. of (2.7) gives

aj�n+ 1� = aj�n� −
ρj

µj
�aj�n− 1�m − aj�n�m��

which can be solved recursively to confirm the unique solution a given in (2.8).
To prove the convergence in (2.9), it will be sufficient to show that the

conclusion u�t�g� → a holds for all those g ∈ �J for which either g ≤ a or
g ≥ a, since Lemma 3.3 implies that

u�t�min�g�a�� ≤ u�t�g� ≤ u�t�max�g�a�� for all g ∈ �
J
� t ≥ 0.

First, we need to check that for such a g, the quantities vj�1� t�g� [and hence
also vj�n� t�g�, n > 1] remain bounded uniformly in t. If g ≤ a then, by
Lemma 3.3, u�t�g� ≤ a, and so v�1� t�g� ≤ v�1�a�, for all t.

On the other hand, if g ≥ a, then by the same lemma, u�t�g� ≥ a. In
particular, uj�1� t�g� ≥ �ρj/µj� for all j, or, in vector notation, µ·u�1� t�g� ≥ ρ.
Returning to (3.11) yields

v̇�1� t�g��I − P�−1 ≤ 0�(3.12)

Since �I − P�−1 has diagonal entries more than or equal to 1 and all other
entries more than or equal to 0, (3.12) implies that the entries of vectors
v�1� t�g��I − P�−1 and v�1� t�g� remain bounded uniformly in t.
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Since the derivative of uj�n� s�g� is bounded for all j, the convergence
u�t�g� → a will follow from

∫ ∞

0
�uj�n� s�g� − aj�n��ds <∞� 1 ≤ j ≤ J� n ∈ Z+(3.13)

in the case g ≥ a and from
∫ ∞

0
�aj�n� − uj�n� s�g��ds <∞� 1 ≤ j ≤ J� n ∈ Z+

in the case g ≤ a; the integrands are nonnegative for all s in each case. The two
bounds may be proved similarly, and we discuss, say, (3.13). We use induction
in n, starting with n = 1. Using (3.11),∫ t

0
�uj�n� s�g� − aj�n��ds =

1
µj

∫ t

0
ds�µ · u�1� s�g� − ρ�j

= 1
µj

∫ t

0
ds

[−v̇�1� s�g��I − P�−1]
j

= 1
µj

[�v�1�0�g� − v�1� t�g���I − P�−1]
j
�

The r.h.s. remains bounded as t→ ∞, so the integral on the l.h.s. converges.
Now assume that the integral (3.13) converges for all n ≤ L − 1. Using

Lemma 3.4 and the relation

µjaj�L� =
[
λj +

∑
1≤k≤J

µkpkjak�1�
]
aj�L− 1�m�

we have
vj�L�0�g� − vj�L� t�g�

= −
∫ t

0
v̇j�L� s�g�ds

=
∫ t

0

[
µjuj�L� s�g� −

(
λj +

∑
1≤k≤J

µkpkjuk�1� s�g�
)
uj�L− 1� s�g�m

]
ds

= µj

∫ t

0
�uj�L� s�g� − aj�L��ds

− λj

∫ t

0
�uj�L− 1� s�g�m − aj�L− 1�m�ds

− ∑
1≤k≤J

µkpkj

∫ t

0
�uk�1� s�g�uj�L− 1� s�g�m − ak�1�aj�L− 1�m�ds

By the induction hypothesis, the last two integrals converge as t → ∞. The
l.h.s. also remains bounded, so we have

∫∞
0 �uj�L� s�g� − aj�L��ds < ∞ as

required.
The second statement in part (iii) of the theorem follows immediately from

the convergence properties in the space �J just established. ✷
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Remark. There are many other invariant distributions which are not con-
centrated on �J. In fact, for all ε in a neighborhood of 0 in �0�1�J, there exists
a fixed point a�ε� of the maps u� g → u�t�g� with limn→∞ a

�ε�
j �n� = εj for all

j, and if g ∈ �
J

satisfies limn→∞ gj�n� = εj for all j, then u�t�g� → a�ε� as
t→ ∞. This corresponds to a situation where a proportion εj of the channels
at node j are considered “saturated,” that is, their queues are infinitely long
and remain so always, irrespective of arrivals or departures. Of course a�1�,
given by a

�1�
j �n� = 1 ∀ j�n, is also a fixed point; here every channel in the

network is saturated.

4. Convergence of stationary distributions. We first prove Theorem
3, from which we can deduce the existence and various properties of the sta-
tionary distributions of the Markov processes rN�t� under the non-overload
condition (1.7).

Proof of Theorem 3. The argument is an extension of that used by
Turner to prove Theorem 4 in [7]. For a network S, and r ≥ 1, 1 ≤ k ≤ J,
let Ak�r�S� be the time of the rth arrival after time 0 (from outside or from
within the network) at node k and Dk�r�S� the time of the rth departure from
node k.

We will construct a coupling such that for all k� r,

�4�1��i� Dk�r�R� ≤ Dk�r�Q��
�4�1��ii� Ak�r�R� ≤ Ak�r�Q��

As well as the real tasks in Q, we invent “shadow” tasks, whose behavior
links the networks Q and R. For each k and r, a shadow task arrives at node
k in Q at time Ak�r�R�, and remains until time Ak�r�Q�, when it is replaced
by the arriving real task. This definition makes sense if (4.1)(ii) holds. The
shadow task inhabits the same channel at node k in Q as the real task which
will replace it. We will write Q to mean the network Q including shadows as
well as real tasks; thus a node in the network Q experiences arrivals at the
same time as the corresponding node in R and departures at the same time
as that in Q.

For a network S, and x ∈ Z+, define

ψk�x�S� t� =
N∑
n=1

�lk�n�S� t� − x�+�

where lk�n�S� t� is the queue length of the nth channel at node k in S at time
t, and �y�+ = max�y�0�.

In order to show (4.1), we will also establish that, under the coupling,

ψk�x�R� t� ≤ ψk�x�Q� t�(4.2)

for all x ∈ Z+, t ≥ 0, 1 ≤ k ≤ J.
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The following observation from [7] will be used here. The difference between
ψk�x�S� t� and ψk�x+1�S� t� is equal to the number of queues at node k in S

with length greater than x at time t. Thus if ψk�y�R� t� ≤ ψk�y�Q� t� for all y,
and ψk�x�R� t� = ψk�x�Q� t�, then it follows from the inequality (4.2) at x+ 1
and x− 1 that

#
{
n� lk�n�R� t� ≤ x

} ≤ #
{
n� lk�n�Q� t� ≤ x

}
(4.3)

and

#
{
n� lk�n�R� t� ≥ x

} ≤ #
{
n� lk�n�Q� t� ≥ x

}
�(4.4)

The coupling works as follows. For each k, generate a Poisson process of
rate Nλk for the external arrival times at node k and one of rate Nµk for the
potential departure times from node k. These are the same in both systems.
Also, the rth task to depart from node k in Q will have the same destination
as the rth task to depart from node k in R (generated i.i.d. according to the
probabilities pk�j and p∗

k). This ensures that if (4.1)(i) holds for the departure
process up to a given time, then so does (4.1)(ii) for the arrival process up to
that time. We now need to describe the way in which channels within nodes
are chosen for arrivals and departures, verifying that departures preserve
(4.1) and that all network events preserve (4.2). [Certainly (4.2) holds at t = 0
since the initial states of Q and R are the same.]

At a potential departure time at node k, rank the channels at k in Q and
in R in order of queue lengths (including shadow tasks) and let a departure
occur from the correspondingly ranked queue in each system; for example, if
it occurs from the longest queue in Q, let it occur from the longest queue in R
also. (Departures from an empty queue, or from one containing only shadow
tasks, are lost.) Now let D be a potential departure time at node k, and suppose
that properties (4.1) and (4.2) hold for t < D; we wish to show that they are
preserved. First, the only way in which (4.2) could be violated by a departure
point at node k would be if ψk�x�R�D−� = ψk�x�Q�D−� for some x and if
queues of length a in Q and length b in R were chosen for departure at time
D, with 0 ≤ b ≤ x < a. But this is impossible, since (4.3) holds for t < D and
since the ranks of the channels chosen for departure are coupled. Second, for
(4.1)(i) to be violated, the number of previous departures from node k before
time D must be the same in R as in Q (and hence also Q). Then, since arrivals
in R and Q occur at the same times, there must be the same total number of
tasks at node k in R and in Q; that is, ψk�0�R�D−� = ψk�0�Q�D−�. But then,
by (4.3) again, there are at least as many empty queues in Q as in R. Thus if
a departure occurs from a nonempty queue in Q, the coupling of the ranks of
the channels chosen for departure ensures that a departure must also occur
from a nonempty channel of R, preserving (4.1)(i) and hence also (4.1)(ii).

At an arrival time A = Ak�r�R�, generated either by an external arrival
or by a departure within the network, rank the channels at node k in Q
and in R by queue length as before. Choose m�R� channels at random and
send the arrival in R to the one with the shortest queue. Choose one of the
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correspondingly ranked m�R� channels in Q at random and send the shadow
task to this channel. The effect is that if an arrival occurs to the nth longest
queue in R, the corresponding arrival in Q must occur to a queue at least as
long as the nth longest there. Again, suppose (4.2) has held up to this point;
how might it now fail? If the chosen queue in Q has length a, and that in R
length b, then it would require ψk�x�R�A−� = ψk�x�Q�A−� to hold for some
x, with a < x ≤ b. Then, following (4.4), we would have

#
{
n� lk�n�R�A−� ≥ x

} ≤ #
{
n� lk�n�Q�A−� ≥ x

}
�

but this is impossible, since a < x ≤ b and, according to our coupling scheme,
we must have

#
{
n� lk�n�R�A−� ≥ b

} ≥ #
{
n� lk�n�Q�A−� ≥ a

}
(since a queue with length a in Q is at least as long as one whose ranking
corresponds to a queue with length b in R), and #�n� lk�n�Q�A−� = a� ≥ 1 (a
queue of length a must exist in Q since a queue of length a has been chosen
there for the arrival).

Finally, at an arrival time Ak�r�Q�, the shadow task which arrived at time
Ak�r�R� ≤ Ak�r�Q� is replaced by a real task in the same channel. This does
not affect the queue lengths in Q so (4.2) is preserved.

Note that in fact no time elapses between a departure and an arrival which
it generates at the same or another node; we have separated the two events
in the above description, but if the two separately do not violate the proper-
ties (4.1) and (4.2) then the two combined will not. Similarly, it may be that
Ak�r�R� = Ak�r�Q� for some k and r; in this case the shadow task arriving at
this time is never seen since it is instantaneously erased by the arriving real
task.

Under the coupling described, arrivals in the network from outside occur at
the same time in R as in Q, and departures from the network to the outside
occur no later in R than in Q; hence the total number of tasks in R at a given
time is no greater than that in Q. ✷

Remark. We have not resolved the question of whether the conclusion of
Theorem 3, or a similar one, holds also in the case 1 < m�Q� < m�R�. The
complication introduced by the network structure is that if one part of the
network works more “slowly,” this can lead to delayed arrivals in another
part, and these delayed arrivals may, in the light of more recent information,
be able to make a better choice about which queue to join than if they had
arrived earlier.

Proof of Theorem 4. (i) If m = 1, then the network described by rN�t� is
equivalent to a standard Jackson network, with NJ nodes �j�n�, 1 ≤ j ≤ J,
1 ≤ n ≤N, arrival and service rates λj�n = λj and µj�n = µj and routing ma-
trix p�j�n��j′� n′� = pjj′/N. Then ρ�j�n� = ρj also, and under the condition (1.7)
the network is positive recurrent, with an invariant distribution analogous to
(1.8).
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For m > 1, Theorem 3 allows us to couple the network with a “slower” one
for which m = 1 in such a way that the faster network is empty whenever the
slower one is empty. Then, since the slower network is positive recurrent, the
faster one must be also.

(ii) Since �
J

is compact, so is the set � �� J� of probability measures on �
J

.
Hence the sequence of probability measures �πN� N ∈ N� has limit points.
We wish to check that any limit point is the Dirac delta-measure concentrated
at a.

From Lemma 3.2, the maps g �→ u�t�g�, t ≥ 0, g ∈ �
J

are continuous in
g, and it follows from Theorem 2 that any limit point π of �πN� must be an
invariant distribution for these maps. Hence, by Theorem 1(iii), it is sufficient
to show that π is concentrated on �J; that is, π��g� vj�1�g� < ∞ ∀ j�� = 1.
We show in fact that Eπvj�1� < ∞ for all j. If m = 1, EπN

rj�n� = �ρj/µj�n
for all N, by the argument in the proof of part (i) and the expression (1.8), so
that EπN

vj�1� = ρj/�µj − ρj� for all N. Hence, by Theorem 3 and standard
results on the convergence of Markov processes to equilibrium, EπN

vj�1� ≤
ρj/�µj − ρj� for all N and any m, giving Eπvj�1� ≤ ρj/�µj − ρj� also, as
required. ✷
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