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STOCHASTIC CALCULUS FOR BROWNIAN
MOTION ON A BROWNIAN FRACTURE

By DavAR KHOSHNEVISAN! AND THOMAS M. LEWIS

University of Utah and Furman University

In this paper, we give a pathwise development of stochastic integrals
with respect to iterated Brownian motion. We also provide a detailed
analysis of the variations of iterated Brownian motion. These variations
are linked to Brownian motion in random scenery and iterated Brownian
motion itself.

1. Introduction and preliminaries. Heat flow on a fractal ¥ has been
the subject of recent and vigorous investigations. See, for example, the survey
article [2]. As in the classical studies of heat flow on smooth manifolds (see
[16]), a probabilistic interpretation of such problems comes from the descrip-
tion and analysis of the “canonical stochastic process” on &, which is usually
called Brownian motion on §. One of the many areas of applications is heat
flow along fractures. In this vein, see [14, 17, 20, 21, 22, 26, 39]. These
articles start with an idealized fracture (usually a simple geometric construct,
such as a comb) and proceed to the construction and analysis of Brownian
motion on this fracture. Let us attack the problem from a different point of
view; namely, rather than considering a fixed idealized fracture, let us begin
with a random idealization of a fracture. Let )N be a vertically homogeneous,
two-dimensional, rectangular medium with sides parallel to the axes. Then a
left-to-right random fracture on N would resemble the graph of a one-dimen-
sional Brownian motion. (To make this more physically sound, one needs
some mild conditions on the local growth of the fracture together with the
invariance principle of Donsker.) Approximating the Brownian graph by the
paths of random walks and applying Donsker’s invariance principle once
more, it is reasonable to suppose that Brownian motion on a Brownian
fracture is described by the stochastic process {(Y,, Z,): ¢ > 0}, where Y =
{Y,: t > 0} is a one-dimensional Brownian motion and Z = {Z,: ¢t > 0} is an
associated iterated Brownian motion. To construct Z, let X*={X, : ¢ > 0}
and X ={X,: ¢ >0} be independent one-dimensional Brownian motions
which are independent of Y, as well. Here, and throughout this paper, we
assume that all Brownian motions start at the origin. Let X = {X,: u € R} be

Received August 1996; revised May 1999.

1Supported by grants from the NSF and NSA.

AMS 1991 subject classifications. Primary 60H05; secondary 60K20, 60F12.

Key words and phrases. Iterated Brownian motion, Brownian motion in random scenery,
stochastic integration, sample-path variations, excursion theory.

629



630 D. KHOSHNEVISAN AND T. M. LEWIS

the two-sided Brownian motion given by

. X" (u), ifu >0,

“ X (-u), ifu<o.

Then the iterated Brownian motion Z is defined as
Zt = X(Yt)

for ¢t > 0. As is customary, given a function f, we will freely interchange
between the notation f(¢) and f, for typographical ease.

This model for Brownian motion on a Brownian fracture appears earlier
(in a slightly different form) in [13]. The model is supported by the results of
[11], which demonstrate that iterated Brownian motion arises naturally as
the (weak) limit of reflected Brownian motion in an infinitesimal fattening of
the graph of a Brownian motion.

Recently, iterated Brownian motion and its cognates have been the subject
of various investigations. See, for example, [1, 4, 5, 8-11, 12, 13, 15, 23-25,
29, 30, 38, 40]. In addition to its relation to heat flow on fractures, iterated
Brownian motion has a loose connection with the parabolic operator +A? —
d/dt. See [19] for more on this relationship.

In this paper, we are concerned with developing a stochastic calculus for
iterated Brownian motion, and the key step in our analysis is a construction
of stochastic integral processes of form [{f(Z,) dZ,, where f is from a class of
smooth functions. Since Z is not a semimartingale, such a construction is
necessarily nontrivial. (A folk theorem of Dellacherie essentially states that
for ([HdM to exist as an “integral” for a large class of H’s, M need
necessarily be a semimartingale.) Our construction of [{f(Z,) dZ, is reminis-
cent of the integrals of Stratonovich and Lebesgue. For each nonnegative
integer n, we divide space into an equipartition of mesh size 27 "/2. According
to the times at which the Brownian motion Y is in this partition, we obtain
an induced random partition {T}, ,: 1 <k < 2"t} of the time interval [0, ¢].
One of the useful features of this random partition is that it uniformly
approximates the common dyadic partition {£27": 1 < k < 2"¢}. Upon devel-
oping the partition, we show that

Z(Tk+ l,n) + Z(Tk,n)
2

j;)tf(zs) dZs = lim Z f (Z(Tk+1,n) _Z(Tk,n))

N> 1 <kh<2mt
exists with probability 1, and can be explicitly identified in terms of familiar
processes. This material is developed in Section 2. The use of the midpoint
rule in defining the stochastic integral is significant: the midpoint rule is a
symmetric rule, and symmetry will play an important role in our analysis. As
we will show later in this section, the analogous partial sum process based on
the right-hand rule does not converge.

We have argued, based on Donsker’s invariance principle, that iterated
Brownian motion is a reasonable candidate for the canonical process on a
Brownian fracture. This viewpoint is strengthened by our results in the
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remainder of this paper, which are concerned with the variations of iterated
Brownian motion. For a smooth function f and a positive integer j, let

‘ Z(T,.,,) +Z(T, , ;
vorn - x| 20 ’)2 . ))(Z(Tm,n)—Z(Tk,n)).
1<k<2"t

When f = 1, we will write V/(¢) in place of V,V(1, ¢). We call V,¥(¢) the jth
variation of Z. A more traditional definition of the variation of iterated
Brownian motion has been studied in [9]. Using the random partitions, we
extend the results of [9]: we prove that with probability 1,

lim 2" /2V,2(f,¢) = [*(Z,) ds,
n— o 0

lim VO(f,t) = 0

and
lim V(£ t) = 3['(Z,) ds.
n—ow 0

We also study refinements of these strong limit theorems. In essence, we
show that appropriately normalized versions of V,((¢) — 2"/%¢ and V*(¢) —
3t converge in distribution to Kesten and Spitzer’s Brownian motion in
random scenery [27], while an appropriately normalized version of V,®(¢)
converges in distribution to iterated Brownian motion itself. Indeed, it can be
shown that, after suitable normalization, each even-ordered variation con-
verges in distribution to Brownian motion in random scenery while each
odd-ordered variation converges in distribution to iterated Brownian motion.
Our results on the variation of iterated Brownian motion appear in Sections 3
and 4 of this paper.

Our analysis of the variation of iterated Brownian motion indicates the
failure of the right-hand rule in defining the stochastic integral. If f is
sufficiently smooth and has enough bounded derivatives, then, by Taylor’s
theorem,

Z f(Z(Tk,n))(Z(Tk+l,n) _Z(Tk,n))
1<k<2™
= Vn(l)( f t) - %Vn@)(f,’ t) + %Vn@)(f”’ t) - 4_18Vn(4)( ", t) + 0(1)’
where o(1) — 0 almost surely and in L*(P) as n — o. It follows that

tim (X 2T ONE(Ty) = 2T, ) + 320

no® N 1<k<2mt
t t
= [£(2,)dz, ~ % [ f"(2,) ds.
0 0

Consequently, the right-hand rule process will converge if and only if the
associated quadratic variation process converges; however, the quadratic
variation process diverges whenever [’ is a positive function, to name an
obvious, but by no means exceptional, case.



632 D. KHOSHNEVISAN AND T. M. LEWIS

Our construction of [{f(Z,) dZ, is performed pathwise and relies heavily
on excursion theory for Brownian motion. It is interesting that a simplified
version of our methods yields an excursion-theoretic construction of ordinary
It6 integral processes of the type [(f(Y,)dY, for Brownian motion Y (see
Section 5 for these results). While stochastic calculus treatments of excursion
theory have been carried out in the literature (see, for example, [37]), ours
appears to be the first attempt in the reverse direction.

A general pathwise approach to integration, based on a construction of
Lévy-type stochastic areas, is carried out in [35]; it would be interesting to
see the connection between these results and ours.

We conclude this section by defining some notation which will be used
throughout this paper. For any array {a; ,: j € Z, n > 0}, we define Aq,
@y, — a;, Whenever a process U has local times, we will denote them by
Lx(U ). This means that for any Borel function f and all ¢ > 0,

fof(Us) ds = fimf(x)L’f(U) dx

almost surely. We will write I{ A} for the indicator of a Borel set A. In other
words, viewed as a random variable,

1, ifweA,
"{A}(w)={0 ;fZGEA.

Let C%(R) denote the set of all twice continuously differentiable functions
f:R - R. For f € C%(R), let

(1.1) S(f) = sup(If(x)l +1f'(x)l +1f" (x)])
and let CZ(R) denote the collection of all f € C*(R) for which S(f) < o,

For each integer j and each nonnegative integer n, let r; , = j2 /2
Recalling that X is a two-sided Brownian motion, let

X, =X(r;.),
(1.2) v = i) + X(r0)
jin T 2 '

Finally, for any p > —1, let u, denote the absolute pth moment of a
standard normal distribution, that is,

@ +1
(1.3) pm, = (277)71/2f |x|Pexp(—x%/2) dx = 771/22”/2F(p 5 )

2. The stochastic integral. In this section we will define a stochastic
integral with respect to iterated Brownian motion. For each ¢ > 0, we will
construct a sequence of partitions {7}, ,: 0 <k < [2"¢]} of the integral [0, ]
along with the partial sum process

2nt]-1
Vn(l)(f,t) _ [ 2]: f(Z(Tk+1,n) +Z(Tk,n)
k=0 2

)(Z(Tk+1,n) - Z(Tk,n))
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converges almost surely and in L*(P) as n — «, for each f< CZ(R). The
limiting random variable is properly called the stochastic integral of foZ
with respect to Z over the interval [0, ] and will be denoted by [{f(Z,) dZ..
Our point of departure from the classical development of the stochastic
integral is that the partitioning members T}, , are random variables, which
we define presently. For each integer n > 0 and each integer j, recall that
i, =Jj27"/% and let

2, ={rj .. j €Z}.
To define the elements of the nth partition, let T, , = 0 and, for each integer
k>1,let

Tk,n = inf{s > Tk—l,n: Ys E"@(n \ {Y(Tk—l,n)}}'

For future reference we observe that the process {Y(T), ,): £ > 0} is a simple
symmetric random walk on 2,,.
Here is the main result of this section.

THEOREM 2.1. Lett > 0 and f € CZ(R). Then
VO(f,e) - [Vf(X,) dX, + Ssen(Y,) [VF(X,) ds
0 0
almost surely and in L>(P) as n — .

We have used the following natural definition for two-sided stochastic
integrals: for u € R, let

. [ (x5 daxs,  ifuzo,
[ f(x,)dx, ="
0

f(;uf(Xs‘) dX:, ifu <0,
whenever the It6 integrals on the right exist.
REMARK 2.2.1. For f€ CZ(R) and u € R, let
£ X)) = [T(X,) dX, + jsen(u) [ F(X,) ds.

Then {{f, X >(u): u € R} is the two-sided Stratonovich integral process of the
integrand f o X. Thus Theorem 2.1 asserts that

A 'F(2,) dZ, = (f, X)(Y,).

In other words, stochastic integration with respect to Z is invariant under
the natural composition map (X,Y) — Z.

Before proceeding to the proof of Theorem 2.1, a few preliminary remarks
and observations are in order. First, we will demonstrate that the random
partition {T}, ,: k& € Z} approximates the dyadic partition {k/2": & € Z} as n
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tends to infinity.

LEMMA 2.2. Let t > 0. Then
sup |Tigrg),, — 81— 0

O<s<t

almost surely and in L*(P) as n — .

ProoF. By the strong Markov property, {AT; ,: j > 0} is an i.i.d. sequence
of random variables. Moreover, by Brownian scaling, AT, , has the same
distribution as 27"T, ,. By Itd’s formula, exp(AY, — A*t/2) is a mean-one
martingale. Thus, by Doob’s optional sampling theorem,

E(exp(—A*T, 4/2)) = (cosh( A)) L

It follows that E(T,,) =1, E(T?,) = 5/3; consequently, var(T, ,) = 2/3.
Thus, by Brownian scaling,
(2.1) E(AT, ,) =27" and var(AT, ,) = 327°".
Given 0 < s < ¢,
sup [Tigny) , — sl < sup |Tigngy , — [27s]27"| + sup [[2"s]27" — 5]

sl,n

O<s<t O0<s<t O<s<t
< max |T,,-KT,,|+2".
1<k<[27] '
Since
k-1
Tk,n - [E(Tk,n) = Z (AT],H - [E(AT‘J,H))’
j=0

we have, by Doob’s maximal inequality and (2.1),

[2™¢]—1
[E[ max |T, , — E(T, n)|2] <4 Y var(AT,,)
1<k<[2"t] ’ ’ j=0 ’
—0(2™").

In summary,
(2.2) ‘

which demonstrates the L?(P) convergence in question. The almost-sure
convergence follows from applications of Markov’s inequality and the
Borel-Cantelli lemma. O

sup [Tigngy , — S|H =0(27"/?),
2

O<s<t

For each n > 0, let
7, =T1(n,t) = Tioney, ns
J*=j*(n,t) = 2"?Y(7,).

Notice that r;. , = Y(7,), in keeping with the notation that we have already

developed.

n
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LEMMA 2.3. Lett > 0. Then, as n — o:

(@) [IY(r,) = YDz = OQ27"/?);

() [1(sgn(Y (@) — sgn(Y(z)) (Y (@) + [Y(z,)D [l = O27"/%).

Proor. For each integer n > 1, let ¢, = |I1, — ¢13/2. From 2.2),
(2.3) g, =0(27"/%).
Observe that

E(1Y(r,) - Y(1)*) = E(1Y(5,) — Y(6)1* U7, — t] < &,))
+ [E(|Y(Tn) — Y()f)l2 I(Ir, — ¢l > sn))
=A,+B,,

with obvious notation. By (2.3) and the elementary properties of Brownian
motion,

A, < 2[E[ sup |Y(s) — Y(t)|2}

t<s<t+te,

=2an[E[ sup |Y(s)|2]

O0<s<1
=0(27/1).

Concerning B,, observe that {2"/2Y(T, ,): k£ > 0} is a simple symmetric
random walk on Z. As such,

E[(27/2Y(r,))"] = 8[2"¢]" - 2[2"¢].

It follows that {|[Y(s)lls: n = 0} is a bounded sequence. By the Holder,
Minkowski and Markov inequalities,

B, <|Y(7,) — Y()lIiyP(Ir, — t| > &,)

< (I (n)lls + ¥ ()2 =1

=0(s,)
=0(2™"/"),
which proves (a).

For each integer n > 1, let §, =|Y(¢) — Y(Tn)llé/z, noting that §, =
0O(27"/16), By elementary considerations,

Isgn(Y(t)) — sgn(Y (7))l < 20(1Y(¢)l < 8,) + 20([Y(¢) — Y(7,)| = 8,).
Consequently,
lsgn(Y(t)) — sgn(Y (7))l < 200(1Y(¢)| < 8,)ll4
+ 200(1Y (¢) — Y(7,)l = 26,)ll4.
We will obtain bounds for the terms on the right.
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Since ¢ > 0, |Y(#)| has a bounded density function. In particular,

PY(6) < 3,) = | = &,

which shows that [[I(|Y(¢)] < §)lls = O(8}/*) = O(27"/%).
By Markov’s inequality,

1Y (#) — Y(5)ll2

P(Y(t) — Y(7,)l = 8,) < 53 =5,
which shows that [|[1(|Y(¢) — Y(7,)| > 8 )ll, = O(27"/%*). In summary,
(24) Isgn(Y (1)) = sen(¥(5,))l = O(27" /).

Finally, by the Holder and Minkowski inequalities,
I(sgn(Y (¢)) — sgn(Y(7,)))(1Y () + [Y(7,)])ll2
< llsgn(Y(2)) — sgn(Y (7))l (1Y (£)lls + 1Y (7,)lls).
As we have already observed, {||Y(7)ll;: n > 0} is a bounded sequence; thus,
item (b) of this lemma follows from (2.4), as was to be shown. O

We will adopt the following notation and definitions. For each integer
n >0, je Z, and real number ¢ > 0, let

[27¢]—1
(25) [Jj,n(t) = Z {Y(Tk n) j n» Y(Tk+1 n) _/+1 n}
k=0
[27t]-1
(26) Dj,n(t) = Z {Y(Tk n) J+1 n» Y(Tk+1 n) }
k=0
Thus, U, (¢) and D, () denote the number of upcrossings and downcross-

ings of the interval [ i Tisn, ,] within the first [2"¢] steps of the random
walk {Y(T}, ,): k = 0}, respectively.
As is customary, we will say that ¢: R? - R is symmetric provided that
e(x,y) = ¢(y,x)
for all x, y € R. We will say that ¢ is skew symmetric provided that
QD(X, y) = _¢(y} x)
for all x,y € R. Recalling (1.2), we state and prove a useful real-variable
lemma.

LEMMA 2.4. If ¢ is symmetric, then

[27¢]—1
kgo O(Z(Ty. ), Z(Ty 1.0)) = Zzso( s X;1,0)(U,a(t) + D; (2)).

If ¢ is skew symmetric, then
[2"t]-1

Z (P(Z(Tk,n)’Z(Tk+1,n)) Z QD( J+1 n)(an(t) _Dj,n(t))‘

k=0 Jjez
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PROOF. Since each step of the random walk {Y(T), ,): & > 0} is either an

upcrossing or a downcrossing of some interval [r; ,,7;,; .1, j € Z, it follows
that

1= Z ( {Y(Tk n) j n» Y(Tk+1 n) J+1 n}

JjeZ
{Y(Tk n) _]+1 no Y(Tk+1 n) })
Consequently,
[27t]-1
Z qD(Z(Tk,n)’Z(TkJrl,n))

k=0

[27t]-1

= Z Z ¢(Z(Tk,n)7Z(Tk+1,n))
JEZ k=0

( {Y(Tk n) j no Y(Tk+1,n) = rj+1,n}
+|]{Y(Tk,n) =Tist,ns Y(Thi1,n) = rj,n})'
Observe that from (2.5) and (2.6),

[27¢]1-1
Z ‘P(Z(Tk n) Z(Tk+1 n)) {Y(Tk n) Tins Y(Tk+1 n) Tiva, n}

k=0
= ()D(Xj,n’ j+1, n)U n(t)
[27t]-1
kgo @(Z(Tk n) Z(Tk+1 n)) {Y(Tk n) ]+1 n’Y(Tk+1 n) }

= ¢(Xj+ 1,n> Xj,n)Dj,n(t)'

The remainder of the argument follows from the definitions of symmetric and
skew symmetric. O

Our next result will be used in conjunction with the decomposition devel-
oped in Lemma 2.3; its proof is easily obtained by observing that the
upcrossings and downcrossings of the interval [r; ,, ;. ,] alternate.

LEMMA 2.5. Lett > 0. For each j € Z,

10 <j <j*),  ifj*>0,
[jj,n(t) _Dj,n(t) = 0’ Lf.]*: )
—I(j* <j<0), ifj*<O0.

We will need a set of auxiliary processes. For s > 0, let

+_x+
X+ =X*(r;,) whenr;, K <s<r,,,.
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For s € R, let
N X, ifs>0,
X, =

X-,, ifs<o.

We will adopt the following conventions: given u € R, let

) [ A(Xr)dx;, ifuzo0,
ff(Xs)dst Ofu

0 X;)dX;, ifu<o0
j;) f( s) ., ifu<o,

whenever the integrals on the right are defined. Due to the definition of
{X,:seR}

k—1
Y f(X;,)AX],, ifk>0,
j=0
(2.7) [ (X)) dx, = {0, if k=0,
0 k-1
Y f(X;,)AX;,, ifk<o0.
j=0

Similarly, through consideration of the cases,

E-1

X f(Xf,)Ar,,, ifk>0,

j=0

(2.8)  sen(ry,,) [ "f(X)ds = {0, ifk =0,
0

k-1
Y f(X;,)Ar;,, ifk<0.
j=0

It will be preferable to rewrite the results of (2.8) in a modified form. For
k > 0, observe that

sgn(rk,n)frk'nf()fs) ds = i }”(Xj»f,,)(AX;n)2
(2.9) ’ /=0

2
+ f(XJtn)(Arj.n a (AXJTVL) )
j=0
The obvious modifications can be made for the case £ < 0.

Proor oF THEOREM 2.1. Recall (1.1)—(1.3). For each integer n > 0, let

VO(F,t) = forj*'nf(X's) dX; + %Sgn(’”j*,n)forﬁ,nf'(is) ds,

VOE ) = [RX) dX, + dsen(Y(s)) [T (X,) d,

Vs = [ Yf(X,) dX, + isgn(Y,) [ (X, ds.
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In this notation, we need to show that VU(f,¢) - VI(F,¢) almost surely
and in L?(P) as n — . To this end,

VO£, ) = VOUF, )l < IVO(F, 1) = VO, )l
+IVO(F,t) = VOUF, )l
+ ”Vn(l)(f’ t) - V(l)(f’ t)HZ‘

We will estimate each of the terms on the right in order. We will begin by
expressing VM(f, ¢) in an alternate form. We will place a + superscript on
M; , whenever the underlying Brownian motion is so signed. Since the
function

y+x
o(x.) =[5 -
is skew symmetric, by Lemma 2.4,
VU(ft) = X fA(M;,)AX; (U ,(8) = D; ().
JEZ

In light of Lemma 2.5, there will be three cases to consider, according to the
sign of j*. If j* = 0, then U, ,(t) = D, (¢) = 0 and, consequently, VAO(f,t) =
0. If j* >0, then U, (¢) — D L) = 1 for 0 <j <j* — 1 and 0 otherwise;
consequently,

Jr-1

Vil(f,t) = X f(M)AX]
Jj=0

If, however, j* <0, then U; ,(¢) — D, (t) = —1for j* <j < —1 and 0 other-
wise, consequently,

u X; 1n+X'n
Vn(l)(f>t) = = Z f( i 9 = )(Xj+1,n _Xj,n)

J=J
2 (X + X,
-j—1,n —Jj,n _ _
=X f( 5 )(X X, 1)
Jj=J*
l7*1-1
= X f(M;,)AX;,.
Jj=0
In summary,
J-1
Y f(M;n)AX;n, if j* > 0,
=0
(2.10) VO(f,t) =10, if j* =0,
-1
Y f(Man)AXj_’n, if j* < 0.
j=0
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By combining (2.7), (2.9) and (2.10),
Vn(l)(f’ t) - Vn(l)(f’ t) = An + Brn

where
J'*_
Y [AM],) - (X)) - 3F(X5,)AX]|AXS,,  if j* >0,
Jj=0
A, =10, if j* = 0,
[j*-1
[F(M;,) = £(X;,) = 5f(X;,,)AX; ,|AX; ,, ifj* <0,
Jj=0
and

j*_
iy f’(Xan)((AX;nf - Arm), if j* > 0,
j=0

B, = 07 lf.]>ﬁ= ’

[j*I=1
1 ZO f'(XJ.jn)((AX;n)2 - Arj,n), if j* < 0.
=

By Taylor’s theorem,
| F(ME) = F(X5) = 3F/(X5)A X5 | < 3S(HIAXE.

Hence,
J-1

$8(f) X IAX] I, if j* >0,
j=0

|4, <10, if j* =0,
-1

S(F) X IAX; 1P, ifj*<o.
Jj=0

However, for any integer m, we have, by the triangle inequality and Brown-
ian scaling,
Im|-1
3
Y IAX 4
Jj=0

< ImlI(AXsE, )l
2

— |m| Mé/2273n/4‘

Since the random variable j* is independent of X, by conditioning on the
value of j* and applying the above inequality,

Since {2"/?Y(T}, ,): k > 0} is a simple symmetric random walk on Z, it
follows that, for each ¢ > 0,

(2.11) E(Lj*) < %1, = V[27¢] = O(27/2).
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Consequently,
(2.12) lA,lls =0(27"/%).
Let us turn our attention to the analysis of B,,. For each j € Z, let
et = (AX7, ) —Ar;

Observe that E(s*,) = 0 and var(s?*,) = 27" var(X(1)?). Let m € Z. Since
the random Varlables {r (X )g* 0 <j <|m|— 1} are pairwise uncorre-

lated and since ", is 1ndependent of f'(X;*,), it follows that

Im|—1 [m|—-1 9
Var( Z f( ) ) =1 jgo [E(f/(Xj,in) )Var( +n)
< Ciml27",

where C,; = S(f)? var(X(1))? /4. Arguing as above, since j* is independent of
X, it follows that

IB,ll3 < C;27"E(1*)
= 0(277?).

We have used (2.11) to arrive at this last estimate. This estimate, in conjunc-
tion with (2.12), yields

(2.13) VO, ) = VO, )l = 02774,
Recalling that r;. , = Y(7,), we have

<[ (rx) - 1(X))
[ (F(X,) - F(X,)) ds|.

[VO(f,t) = VO(f, )] <

4+ 1
+2

For j > 0,
[E[([O (F(x,) - (X ))dX)Ql

_ forj’"[E[lf(X;) — F(X)?] ds

< S(f)QfOrj’"[E[IX; ~ X7 ds

Tk+1,n

j-1
- S(f)2k¥0fr E[1X*(s) — X*(r,, )] ds

,n

_ S(f)2jf0r1'"sds

= 1S(f)ir?,.
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A similar argument handles the case j < 0, and in general

(2.14) E[(forj’"(f(Xs) - f(X,)) dXS) l < 3S(f)*ljle.

Since j* is independent of the X, by conditioning on the value of j* and
applying (2.14),

(2.15) [E[(/:*'n(f (%,) dx, ~ f(X,)) dXs) l — 1S(f)%2"E(1*])
= O(Z—n/Z),

where we have used (2.11) to obtain this last estimate. Similarly, for any
integer j > 0,

F(X) = (X)), ds

H/O”‘"(f(xs) ~ (X)) ds

Tj.n
< f
2 0

< S(f)[o’””nxg — Xy ds

il Th+1,n
=S(H) X [7IX(s) = X (ry )l ds

k=0 "Tkn
_ s(f)jj”"\/? ds
0
- 880

A similar proof handles the case j < 0, and, in general,

(2.16) [E[( [ (F(x) ds ~ (X)) ds) l < 8S(f)* 22,

Since j* is independent of X, by conditioning on the value of j* and applying
(2.16),

2
Ti n - . o .
(2.17) [E[(/O (f(Xs) ds —f(XS)) ds) l < 28(f)*27? /Z[E((J ) )
= O(z—n/Z).
We have used (2.11) to obtain this last estimate. From (2.15) and (2.17),

(2.18) IVOCF, 1) = VO, )l = 027"/,
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= Y(7,), we have

n

Recalling that r;.

VO, ) = VO(F, 1)l <

[1r(x,) dx,
Y(r,)

=+

sen(Y (1)) [

0

£(X,) ds

—sen(¥(5,) ["F (X,) ds

Let a, b € R. Then, by the It6 isometry,

[E[(fabf(Xs) ax,| ] = [T (P (X)) ds

<S(f)%b — al.
Since X and Y are independent, by item (a) of Lemma 2.3,

Y (7,

Y ? )
(2.19) [E[( &) dXs) } < S(/YE(Y(2) - Y(7,))

=0(27"/8).
By consideration of the cases,

Y(®)

sgn(Y(2)) [

£1(X,)ds = sen(Y(7,) [T 7F (X,) ds
0 0

is bounded by

[7r(x,) ds

Y(7,)

+1sgn(Y (1)) — sgn(Y(r,))l fOY(t)f’(Xs) ds + fOY(T")f’(XS) ds

However, by an elementary bound on the integral and item (a) of Lemma 2.3,

[ p(x,)ds
Y(7,)

(2.20) ZSSUWﬂﬂ—Ymmb

=0(27"/8).
Finally, note that
sen(Y (1)) ~ sen(¥(s)l| ["F(X) ds + ["7F(X,) ds

< S(f)lsgn(Y(2)) — sgn(Y (7)) (1Y ()l + Y (7))
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Therefore, by Lemma 2.3(b),

(sen(¥(0)) ~ sen(¥ ()| [" (X ds + [ (x) ds) |

(2.21)
— O(Z_n/64),
From (2.19), (2.20) and (2.21),
(2:22) IVOCF, ) = VO 1)z = 027"/,

Combining (2.13), (2.18) and (2.22), it follows that
IVIO(F,t) = VO(F, )l = 0(27"/%),

which yields the L*(P) convergence in question. The almost sure convergence
follows from applications of Markov’s inequality and the Borel-Cantelli
lemma. O

3. The quadratic variation of iterated Brownian motion. Given an
integer n > 0 and a real number ¢ > 0, let
[27¢]-1 )
VA= X (Z(Tyiv,,) — Z(Ty0))
k=0

[27t1-1 Z(Tk+1,n) +Z(Tk,n)

VA= X f 5 (Z(Tys1.0) = Z(T;,,))"

In this section, we will examine both strong and weak limit theorems
associated with these quadratic variation processes. Our first result is the
strong law of large numbers for V(£ t).

THEOREM 3.1. Lett > 0 and f € CZ(R). Then,
t
27" 2VA(f,t) - [f(Z,)ds
0
almost surely and in L>(P) as n — .

As a corollary, we have 27 "/2V®(¢) — ¢t almost surely and in L*(P) as
n — . Our next result examines the deviations of the centered process
(27"/2V®(¢) — t) and connects the quadratic variation of iterated Brownian
motion with the stochastic process called Brownian motion in random scenery,
first described and studied in [27]. Since the introduction of this model,
various aspects of Brownian motion in random scenery have been investi-
gated in [7, 31-34, 36].

We will use the following notation in the sequel. Let Dy[0, 1] denote the
space of real-valued functions on [0, 1] which are right continuous and have
left-hand limits. Given random elements {T),: n > 0} and T in Dg[0, 1], we
will write T, = T to denote the convergence in distribution of {T,,;: n > 0} to T'
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(see [6], Chapter 3). Let {B;(¢): ¢ € R} be a two-sided Brownian motion, let
{B,(#): ¢ = 0} denote an independent standard Brownian motion, and let

7(2) = [ Li(B2) By( ).

The process {€(t): t > 0} is called a Brownian motion in random scenery. Our
next result states that V®(¢), suitably normalized, converges in Dy[0, 1]
to Z(t).

THEOREM 3.2. Asn — o,

2n/4

V2

(27"7PVP(t) —t) = Z(t).

We will prove these theorems in order, but first we will develop several
lemmas pertaining to the local time of Brownian motion.

LEMMA 3.3. For real numbers p,q > 0,
LIy (V) = 02"7?).
JEZ
Proor. We will use the following notation: given x € R, let
(3.1) 7, =inf{s > 0:Y, = x}.

Let C = E((L)?). Then, from the strong Markov property, elementary prop-
erties of the local time process, the reflection principle, and a standard
Gaussian estimate, it follows that

E((L3(Y))") = fot[E((L’;(Y))p |7, =) dP(r, < s)
f ()} dP(r, <5)

< [E((L(}(Y)) JP(r, <)
= 2CtP?P(Y, > |x)
< 2CtP/? exp(—x%/(2t)).
Consequently,
JILE (Y5 dx < e

Since the mapping x — [[LY(Y)[|} is uniformly continuous,

lim YLy (V)52 = lim ¥ ILp(Y)lAr, - [ L ()1 d.

no® ez * jez
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It follows that

LIL(Y)lp = 0(2"?),
JEZ

which proves the lemma in question. O

LEMMA 3.4. Leta,b € R with ab > 0. Then there exists a positive constant
W, independent of a, b, and t, such that

IL(Y) = L(Y)ll2 < pylb — alt'/* exp(—a®/(41)).

ProoF. Let ¢ € R and ¢ > 0. From [37], Theorem 1.7, page 210 and its
proof, there exists a constant vy, independent of ¢ and ¢, such that

(3.2) E(Li(Y) = LY(Y))’) < yleltV/2.
By symmetry, it is enough to consider the case 0 < a < b. Recall (3.1). By the

strong Markov property, Brownian scaling, the reflection principle, item (3.2),
and a standard estimate,

(=}

E((Li(Y) - Zi())) = [TE((ZA(Y) - L3(Y)) | 7, = 5) dP(r, < 5)
J

(
,Ell
y(b —a)tV?P(7, <t)

y(b — a)t'/? exp(—a®/(2t)).

The desired result follows upon taking square roots and setting u = y/2. O

L-a(Y) = LY (Y))) dP(s, < 5)

IA

IA

What follows is an immediate application of the preceeding lemma.

LEmMA 3.5. Let ¢t > 0. In the notation of (1.2),

Y A(M, ) Lyn(Y)Ar, , - fotf(ZS) ds

jeZ
almost surely and in L*(P) as n — .

PrOOF. By the occupation times formula,
t oo
[f(z)ds = [ AX)LUY) du

= T [TVHX) LY du.

JEZ Tjn
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It follows that

fotf(Zs) - X f(M; )Ly (Y)Ar;,

JEZ

2

(3.3) |
< T [TTIAX)LHY) = F(M,,,) Lo (V)]s du

JEZ Tjn
Since f € C?(R) and X is independent of Y,
IAX)LE(Y) = (M )Ly (Y)ll2
< S(FYILHY) = Lpn(Y )l + 11X, = M, LIl (Y)ls).

However, by Lemma 3.4,

(4¢)

where C depends only upon ¢. By the integral test, the sums,

2
(Tjn AN Tji1n) )
AT

2
N ro,Ar.q1,
ILA(Y) — Li(Y)lly < C‘/Arj’nexp(— w)

(4¢)

JEZ

)y eXp( -
are bounded in n. Thus,

(3.5) jngrm MILE(Y) = Lyp#(Y)lly du = O(y/Ar, |

=0(27"/%).
For r;, <u<r;.y,, 1X, =M, ,l: =/Ar; , . Thus, by Lemma 3.3,
(3.6) Y[, = Myl 1L (V) du = O(27774).
jEZ rj,n

Combining (3.3), (3.4), (3.5) and (3.6) we see that

= 0(27 /).

2

Hfotf(zs) ds — Y f(M; )Ly (Y)Ar, ,

JjeZ

This demonstrates the convergence in L*(P). By applications of Markov’s
inequality and the Borel-Cantelli lemma, this convergence is almost sure, as
well. O

Our next result is from [28], Theorem 1.4 and its proof. See [3] for a related
but slightly weaker version in L?(P).
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LEMMA 3.6. There exists a positive random variable K € L8 (P) such that,
foralljeZ,n>0andt >0,
n/2

U (1) = —5—Lin(Y)

< Kn2"/*\JLyn(Y) ,
< Kn2"/*\/Liyn(Y).

Proor OF THEOREM 3.1. Since the mapping

e(x,y) =f(¥)(y —x)”

2n/2

D, () = —5—Li+(Y)

is symmetric, by Lemma 2.4,

27 AVE(f, 1) = Y 272 f(M; ) (AX; ) (Ui .(¢) + D; (1))

JjeZ
=A, +B,+C,,
where

An = Z 2_n/2f(Mj,n)(AXj,n)2(l]j,n(t) + Dj,n(t) - ZH/QL?'”(Y))’

JjezZ

2 2\\ 7.

B, = ¥ f(M,,)((AX,,)" - E((AX, ,)")) Lon(Y),

jez
Cn = Z f(Mj,n)L;j’n(Y)Arj,n‘

JEZ

By Lemma 3.6, since f € CZ(R),
1A, <S(f)n2™"/* ¥ (AX; ) KLy (Y)

JEZ
Since X is independent of Y, by Holder’s inequality, for each j € Z,
2 T o 2 , 1/2

l(ax, ) &YL-(T) |, <ll(ax, )2, 1K 27 (7) [
By scaling, [(AX; ,)*ll; = 27"/%)/u, . Hence, by the triangle inequality and
Lemma 3.3,
1A, Nl < n2 2" A Kllay/pmg 2 IIL(Y )15
JEZ
=0(n2 /%),

which shows that A, — 0in L*(P) as n — «. By Markov’s inequality and the

Borel-Cantelli lemma, the convergence is almost sure, as well.
Let

o X, ifj=0,
i TN Xy, i <0,
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Then we may write B, = B{" + B®, where
Bl' = ¥ (A(M;,) —f(ijn))((AXj,n)Q - [E((AXj,nf))L?'n(Y)’
JEZ
BY = ¥ A(X5)((8%,,)7 — E((a%,,)7)) oY),
JEZ

By noting that [M, , — X7, | = 5|AX; |, we see that
IBY| < 1S(£) ‘ZZIAXL,LI((AXL,L)Z ~ E((aX;,)%)) e
je
Since X and Y are independent,
1Bl < 38(1) T 1AX,,,l l(ax;,)* = E((ax;,)7) |, 125+ ()l
je
—o(2"/Y.

We have used Brownian scaling and Lemma 3.3 to obtain this last estimate.
Observe that the collection {f(XF )(AX; )* — E(AX; )*): j € Z} is cen-
tered and pairwise uncorrelated. Since X and Y are independent,

var(B®) = ¥ IA(X;,)I5 I Ly ()13
JEZ

2 2 2
xvar((8X; )" - E((AX,,)" — E((AX;,)’)).
Since f is bounded, by Brownian scaling,
2 2 .
var((AX; )" - E((AX; ,)°)) = 0(2™").
Therefore,
IB®|l, = 0(27"/4).

In summary, ||B,lls = O(27"/*), which shows that B, — 0in L*(P) as n — .
By applications of Markov’s inequality and the Borel-Cantelli lemma, this
convergence is almost sure, as well.

Finally, by Lemma 3.5, C, — [{f(Z,) ds almost surely and in L*(P) as
n — o, which proves the theorem in question. O

We turn our attention to the proof of Theorem 3.2. In preparation for the
proof of this result, we will prove several lemmas. For each integer j, each
nonnegative integer n and each positive real number ¢, let

& () = 272U (1) + Dy (1))

LEmMA 3.7. For each t > 0,

Y E(12;.(0)F) = 0(2"72).

JEZ
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ProOF. By the triangle inequality and a standard convexity argument, it
follows that

E(12,,,(1)°) < 4E(1Lyn(Y)P) + 4E(12; ,(¢) — Lp»(Y)IP).
By Lemma 3.3,
X E(ILp(Y)I?) = 0(2"7?).

jez
By Lemma 3.6,
[25.(0) = Lp+ (V)" < KPn®2720 /(L (V).
By Holder’s inequality,
B2 (1) — Lpo(Y) ) < IKIn®2 5/ L (¥) |2

From Lemma 3.3, it follows that

Y E(]2,.(t) = Lpn(Y)[') = 0(nP277/4).

JEZ
This proves the lemma in question. O
LEMMA 3.8. For each pair of nonnegative real numbers s and t,
lim 3 E(|L; ()8, ,(t) — Ly(Y)Lp(Y)[)27"/% = 0.
naooje
Proor. We have the decomposition
|€;.2(8)8,,,(¢) = Lgn(Y) Lypn(Y )|
<|(25,u(8) = Lpn(Y))(L,.(8) = Lpo(Y))]
H[(2,4(5) = Loe(¥) [Epn(Y)
+[(25,.(0) = Lin(1) |E2(Y).

By Lemma 3.6,

|(5,0(8) = Lpn(V))(L;,,() = Lyp=(Y))|
<K®n®27"/*\[Li(Y) /Ly~(Y) .

By Hoélder’s inequality,

E(|(2),.(5) = Lpn(Y))(L,,.(8) = Lin(Y))])
< ||K||§n22‘”/2||L§fxn(Y)Iléé‘“é ||L?'”(Y)||é//?2)-
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By applications of the Cauchy—Schwarz inequality and Lemma 3.3,
L E([(2,0(8) = L (Y))(L,0(0) = Lipe(Y)) [J272

JEZ

<|IKlgn22™" | Y NLy(Y)I3/5 .| X ILy(Y)II3)5
JjeZ JEZ

= 0(n%27"/?).

The remaining two terms can be handled similarly. O

LEMMA 3.9. Let 0 <s <t < 1. Then
Y Ly (Y)Lpn(Y)Ar; , — [Li(Y)Li(Y) dx
JEZ R

in L'(P) as n — .

Proor. We have
[LiN)Li(V) dx = % [ LY LY ) dx.
JEZ Tjn

From this it follows that

By the Holder and Minkowski inequalities,
IL(Y)Li(Y) = Lgn(Y) Lipn(Y) [l <[ L3 (Y) = Lip~(Y) || ILE(Y) Il
+H[LI(Y) = Ly (Y) [ 1L (Y ) o

Since s, t € [0, 1], it follows that [|L*(Y)|lz and [[L}(Y)llz are bounded by 1.
Therefore, by Lemma 3.4 and Jensen’s inequality, there exists a universal
constant C such that

[LONLE(Y) de = T Ly (Y) Lp(Y)Ary
jez

1

< Z/rj+1n||L§(Y)L§(Y)_ngn(Y)L;jn(Y)Hl dx.

JEZ Tjn

2
AT
|LE(Y)Li(Y) — Lyp+(Y) Lpn(Y)], < Cy/B7,, exp(— (in A rpaon)

4

By the integral test, the sums,

2
(Tjon ATji1,n)
Y exp| - ———————|Ar;
jez 4 ’
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are bounded in n. Since \/Ar; , = 27"/4,

= 0(27"/%).
1

H [LONLE(Y) de = T Ly (Y) Lp(Y)Ary,,
JjeZ

This proves the lemma. O

Given a function f defined on [0,1] and 6 > 0, let
w(f,8) = sup I£(t) - F(s)l

O0<s,t<1
|s—t|< &

LEMMA 3.10. There exists a positive real number c such that

E(w(L(Y),8)) < c(\/S In(1/8) A |a|exp(—a2/4))

fora € R and 6 €(0,1/2).

PrOOF. Since local time at a is nondecreasing in the time variable,
w(L(Y),8) <Lj(Y).
Consequently, by Lemma 3.4, there exists a positive real number ¢, such that
E(w(L4(Y), 8)) < E(LY(Y))
< ILY(Y)ll

< c,lalexp(—a®/4)

for a € Rand 6 > 0.
By Tanaka’s formula,

LY(Y) =Y, — al - lal — fotsgn(Yr —a)dY..
Hence, for 0 <s <t <1,
Li(Y) - LYY) <Y, - Y,| - [‘sgn(Y, - a) dY,.
By Lévy’s characterization theorem (see [37], page 141), ¢ — [{ sgn(Y, — a) dY,
is a standard Brownian motion. By Lévy’s theorem on the modulus of

continuity of Brownian motion (see [37], page 29), there exists a positive real
number ¢, such that

E(w(L*(Y),8)) <cyy/8log(1/6)

for a € R and 8 € (0,1/2). Letting ¢ = ¢; A ¢,

E(w(L(Y),8)) < c(\/ﬁ In(1/8) A |a|exp(—a2/4)),

as was to be shown. O
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ProoF oF THEOREM 3.2. For each integer j and each positive integer n, let
on /2

P W((ij,n)z - E((ij,n)z)).

For each n, the random variables {¢; ,: j € Z} are independent and identi-

cally distributed. A scaling argument shows that &;, is distributed as

e=(X2—-1)/V2 for all admissible integers j and n. Let ¢ denote the

characteristic function of &. Since E(¢) = 0 and E(¢2) = 1, we have, as z — 0,
2

log ¢(z) = —% +0(2%).

Thus, there exist y > 0 and 0 < 6 < 1 such that
2

z
log ¢(2) + —

3
< vlzl?,
) vzl

(3.7)

for all |z] < §.
By Lemma 2.4 and the definition of {¥; (¢): j € Z},

. 2.
22V A(¢t) = 'ZZ(AXj’n) & a(t).
JE
Noting that E(AX; )?) = Ar; , = 27"/,
27n/2Vr£2)(t) = Z ﬁgj,ngj,n(t)zin/z + 27” Z (ljj,n(t) + Dj,n(t))
JEZ JjEZ
Concerning this last term on the right,
27" Y (U (t) +D; (t))=2""[2"t] =t + O(27"),
JEZ
since the number of upcrossings and downcrossings of all the intervals

[7; »»7;+1,,] by the random walk is equal to the number of steps taken by this

same random walk. It follows that
n/4

(V) —t) = X &, ()27 +0(273"/*).
JEZ

V2

Letting
gn(t) = Z gj,ngj,n(t)z_n/4’
JEZ

it is enough to show that
(3.8) g, =Z.
First we will demonstrate the convergence of the finite-dimensional distribu-
tions and then we will give the tightness argument.

Let 0 <t <t, < - <t, <1andlet A, A,,..., A, €R. To demonstrate

the convergence of the finite-dimensional distributions, it is enough to show
that

(3.9) [E[exp(i i /\k?n(tk)” - [E[exp(i g‘, )\kf(tk)”,
k=1

k=1
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as n — o, For simplicity, let,

m
a;, =27 Y ML (),
k=1

;,=2"/* ¥ NLp(Y).
k=1

We have the following:

‘ [exp( Z /\k?(tk)” - [E[eXp(iki:‘,lf\k?(tk)”

where

<A, +B,+C,,

oo}
B
I
i
@
o]
o
—_——
D=
Q
S
B
S —
el
|
M
| —
@
o}
=]
—_——
|
[N
Q
SN
3
SN—
el

| JEZ JjEZ
C,=|E exp(—é Y din) - [E[exp(i h )\k?(tk)” :
| JEZ k=1

We will estimate each term in turn.
Observe that

m
Z /\kgn(tk) Z ,n Jn
k=1 JEZ

Let Z denote the o-algebra generated by {Y,: ¢ > 0} and observe that the
random variables {a il JE 7} are Z-measurable. Thus,
4

[exp( Z,\k?(tk)” {[E[]—[emj,na,-,n

JEZ

= [E[ 1_[ d)(aj,n)}'
JEZ
Assuming that ¥, ,la; 1> < 63, we have, by (3.7),
Z|10g¢(a]n) jn|<72|a_]n .

JEZ JEZ

From this it follows that

3
< vye ), IaLnI .
JEZ

[16(a,,) - exp( 4 ¥ o,

JEZ jEZ
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Since

<2,

j,n) - eXp(_% Z a?,n)

JEZ

we may conclude that

1 (a,,) ~exp| 1 Lo,

< vye’) IaLnl3 + 2[|( Y Iaj’nl3 > 88
JEZ

JEZ JjEZ

Upon taking expectations and applying Markov’s inequality,

A, <CY g P,

JEZ

where C = (ye” + 26 3). However, by a convexity argument and Lem-
ma 3.7,

Y E(la;,I°) < m22%n/4 NS E(L] (%))

JEZ k=1 JEZ
=0(27"/%),
which shows that A, > 0 as n — o,
Note that
1 2 2
n = 2 ( j j,n|)

<1
=3

P
f f Ml T E(12; (602, 0(8) — Lipn(Y) Lip(Y) )27,

JjeZ

By Lemma 3.8, we see that B, — 0.
Finally, observe that

[exp( E )\k?(tk)” = [E[exp(——f( i L’;k(Y))zdx

Thus,
2
C, < iE|l| X @, —f( YA ;;(Y)) dx
JjEZ
<3 X LININ X 80 (8) A, = [Li(Y)Li(Y) dx
k=11=1 jez R 1

By Lemma 3.9, C, — 0, which, in conjunction with the above, verifies (3.9).
To demonstrate tightness, observe that

w(%,,8) < Y 27" g lo(L,,5),

JEZ
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from which it follows that
[E( w(%,,98) )

IA

Y 27”/2[E(|8j,n|)[E(w(2j’n, 8))

JjeZ

Y 27" ?E(w(8; ,, 8)).

JEZ

(3.10)

IA

By Lemma 3.6 and the fact that the local time is nondecreasing in the time
variable,

|0(8,,,8) — w(Li(Y),8)| < 2Kn27"/*/Ln(Y) .
Thus, by the Cauchy—Schwarz inequality,
, . 2n . 1/2
E(w(%,,,,8)) <E(o(L7"(Y),8)) + WIIKIIZ 1L (Y) Iz

=E(o(L7(Y),8)) +A(n),

with obvious notation.
By Lemma 3.3,

(3.11) Y 2724, = O(n27"/%).

JEZ

Given 6 € (0,1/2), let us partition the integers into two sets J; and J,,
where

J={jeZ: |jl<st/2"/2),
Jy={jez:|jl>s1/*2"2}
Then, by Lemma 3.10,

Y 27" PE(w(Lr, 8)) < cldy|27"/% /5 log(1/8)
(3.12) Jeh
< 2¢8"*/log(1/5) .

However, recalling that Ar; , = 27"/* and applying Lemma 3.10,

Y 27" PE(w(Ln, 8)) <c X Ir; lexp(—r?,/4)Ar; ,
JEJy JEJ,

(3.13) :
~ 2cf |x|exp(—x?/4) dx.
5-1/4

Combining (3.10), (3.11), (3.12) and (3.13), we obtain the requisite tightness.
This demonstrates (3.8), and the theorem is proved. O

4. Higher-order variation. In this section, we will examine strong and
weak limit theorems for the tertiary and quartic variation of iterated Brown-
ian motion. Let us begin by recalling a theorem, essentially due to [8].
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PROPOSITION 4.1. Let t > 0 and p > 0. The following hold in L?(P):

[2"/%t]

(2) L (Z(uin0) = Z(nn)) = 0;
[2"/2t] .

(b) kg() (Z(rkJrl,n) _Z(rk,n)) - 3¢.

Our next two theorems generalize the above, but along our random parti-
tions. Given an integer n > 0 and a real number ¢ > 0, let
[27e1-1 Z(Tk+1 n) +Z(Tk n) 3
R Y e (KRR T
k=0

@ AR Z(Ty ) + Z(T ) B 4
Vn (f’t) - kgo f 9 (Z(Tk+1,n) Z(Tk,n)) :

When f=1, we will write V®(¢) and V*(¢) in place of V®(f,¢) and
VO(f,t), respectively. Our first result is a strong limit theorem for the
tertiary variation of iterated Brownian motion and is related to Theorem 2.1
and Proposition 4.1(a).

THEOREM 4.2. Let ¢t > 0 and let f € CZ(R). Then
V.O(f,¢) -0

almost surely and in L>(P) as n — .

Our next result is a strong limit theorem for the quartic variation of
iterated Brownian motion and is related to Theorem 3.1 and Proposi-
tion 4.1(b).

THEOREM 4.3. Lett > 0 and let f € CZ(R). Then
VA(f,t) - 3[ f(2,) ds
0

almost surely and in L*(P) as n — .

As corollaries to Theorem 4.2 and Theorem 4.3, V®(¢) —» 0 and V,*(¢) — 3¢
almost surely and in L?(P). Our next two results concern the deviations of
VE(¢) and V®(¢) — 3¢t: we will demonstrate that V,®(¢) and V*(¢) — 3¢,
suitably normalized, converge in distribution to an iterated Brownian motion
and to Brownian motion in random scenery, respectively. As in Section 3, let
{B,(1): u € R} denote a standard two-sided Brownian motion and let {B,(¢):
t > 0} denote an independent standard Brownian motion. Observe that
{B; o By(t): t > 0} is an iterated Brownian motion and that

Z(t) = /R Li(By,) By(dx)

is a Brownian motion in random scenery.



658 D. KHOSHNEVISAN AND T. M. LEWIS

THEOREM 4.4. Asn — o,
2n/2

V15

THEOREM 4.5. Asn — o,
n/4

V96

We will prove these theorems in order.

Vn(S)(t) = By By(t).

(V,9(¢) = 3t) = Z(¢).

ProoOF OF THEOREM 4.2. Since the mapping
yt+x 3

e(x0) = 1[5 (=)

is skew symmetric, by Lemma 2.4,

3
VO, t) = X F(M;,)(AX; ) (U, u(8) = Dj u(2)).

jez

By Lemma 2.5 and by following the argument preceding (2.10), we obtain

j-1
Y f(M;)(AX],), if >0,
J=0

VAL, 1) =10, #7=0,
[j*—1
Y A(M;)(AX; ), if j*<o.
Jj=0

However, for any integer m, by the triangle inequality, the boundedness of f
and Brownian scaling,
Im|—1
3 3
Y (M) (ax5) | < seolaxs,)]; im
j=0

2

= S(F)lml /220

Since the random variable j* is independent of X, by conditioning on the
value of j* and applying the above inequality,

2 —3n )
(VO£ 1)) = S(F)? me2*"/2E((5*)°)
=0(27"/?).
We have used (2.11) to obtain this last estimate. This demonstrates the

L?(P)-convergence in question. By applications of Markov’s inequality and the
Borel-Cantelli lemma, the convergence is almost sure, as well. O

PrOOF OF THEOREM 4.3. Since the mapping

o(x.) =125 ) - )"
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is symmetric, by Lemma 2.4,

VEO(f, 1) = ¥ AM; ) (AX; ) (U .(2) + D; (1))

JEZ
=A, +B,+C,,
where
An = Z f(Mj,n)(AXj,n)4(U],ﬂ(t) + Dj,n(t) - 2n/2L?j’"(Y))’
JjEZ
B, =Y f(Mj,n)((AXj’n)‘l - [E((AXJ.,”)“))zn/zL;j,n(Y),
JjEZ
c,= Y 3f(Mj7n)L;J>"(Y)Arj,n.
JEZ

Since f € CZ(R), by Lemma 3.6,
1A, < S(f)n2"/* ¥ (AX, ) K/Lyin(Y) .
JjEZ
Since X is independent of Y, by Hélder’s inequality,

1/2

(4%, ) KVEZ ()], < A%, ) e DK e |2 () |,

for each j € Z. By scaling, [(AX; )%l = 27"/ug. Hence, by the triangle
inequality and Lemma 3.3,

IA,ll2 < S(f)n2 ="K lli/is T | Lpr(Y) ]3>

JEZ
= 0(n2™ /%),
which shows that A, — 0in L*(P) as n — ». By Markov’s inequality and the
Borel-Cantelli lemma, the convergence is almost sure, as well.
Let

X . if j>0,
X = ’ o
I Xy, ifj<O.

Then we may write B, = B’ + B» where
BY = T (F(M;0) = AN (AX,)" — E((8X;,0)') |2 *Lisn(¥),
BY = L A(X1)((8X,,)" = E((8X,.,)'))2" Lo (Y).
je
Noting that |M; , — X7,| = 3IAX, |,

BY < 38(£)2" L IAX,,I((AX,,)" — E((AX, ,)"))Li=(Y).
JjEZ
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Since X and Y are independent,
IBOls < 38(F)2"2 L IAX, e |[(aX;,)" = E((aX;,)") |, 12+(7) I,
JEZ
=0(27"/%).
We have used Brownian scaling and Lemma 3.3 to obtain this last estimate.

Observe that the collection {f(XF )(AX; )* — E(AX, )*): j € Z} is cen-
tered and pairwise uncorrelated. Since X and Y are independent,

var(BP) = 2" ¥ I F(X;,)I3 1Ly +(Y)I3 var((AX; ) - E((AX; ,)"))-
JjeZ

IA

By Brownian scaling,
var((aX; )" - E((AX; ,)")) = 0(272").
Therefore,
IBZll, = 027" /4).

In summary, ||B,lls = O(2"/*), which shows that B, — 0in L*(P) as n — .
By applications of Markov’s inequality and the Borel-Cantelli lemma, this
convergence is almost sure, as well.

Finally, by Lemma 3.5, C,, — 3[{f(Z,) ds almost surely and in L*(P) as
n — o, This proves Theorem 4.3. O

PrROOF OF THEOREM 4.4. Since the mapping

o(x,5) = (y —x)°
is skew symmetric, by Lemma 2.4,
3
V() = L (AX; ) (U a(8) = D; (1))
JEZ

From Lemma 2.5 and some algebra, it follows that

i1
Y (aX;,)’, ifj*>o0,
Jj=0
-1 5
(AX; ), ifj* <o,
Jj=0

For each j € Z and each integer n > 0,
var((AX, ,)') = 15-27%"/2,
Let

4.2 t 1 98n/4(AxE )
(4.2) gin = g 27 (AXG)
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A scaling argument shows that, for each n, the random variables {¢*,: j > 0}
are independent and identically dlstrlbuted as e=X}/ V15. For future
reference, let us note that E(¢) = 0 and E(¢?) = 1. For each t>0,let

[27/2¢]1-1

2 n/4 Z sﬁn, ift >277/2,
j=0

0, ifo<t<2 /2,

X, (t) =

For u € R, let
X (u), ifu=0,

X)) =4 X (w), ifu<o.

In order that we may emphasize their dependence upon n and ¢, recall that
7, =7(n,t) = Tigni),n>
F=jf(n,t) = 2"*Y(7,).

For ¢t € [0, 1], let

Y,(¢) =Y(7(n,t)).
We observe that

(4.3) —— 22V ®(¢) = X, o Y, (¢).

V15

Let Dg[0, ) denote the space of all real-valued functions on [0, ) which
are right continuous and have left limits. Given a function g: R — R, let us
define g*, g7: [0,%) — R accordingly: for each ¢ > 0, let g*(¢) = g(¢) and let
g (1) = g(=1). Let

D{(R) = {g: R > R: g"€ Dp[0,%) and g~ € Dy[0,x)}.
Let g denote the usual Skorohod metric on D[0,«) (cf. [18], page 117). Then
we can define a metric ¢* on DE(R) as follows: given f, g € DE(R), let
q*(f.g)=q(f",g") +a(f,g").

So defined, (DE(R), g*) is a complete separable metric space. Moreover {g,}
converges to g in DE(R) if and only if {g;} and {g,} converge to g* and g~
in Dgl0, ), respectlvely By Donsker’s theorem, X! = Bf and X, = By in
D0, ») consequently,

(4.4) X, = B, in D}(R).
By another application of Donsker’s theorem,
(4.5) Y, = B, in Dy([0,1]).

From (4.4) and (4.5), the independence of X and Y and the independence of
B, and B,, it follows that

(X,,Y,) = (B, By) in DE(R) X Dg([0,1]).
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Since (x, y) € DER) X Dg(0,1]) — Dg(0,1]) = x o y is measurable and since
B, ° B, is continuous, it follows that

X,°Y = B,°B, in Dy([0,1]).
Recalling (4.3), this proves the theorem. O

Proor orF THEOREM 4.5. For each integer j and each positive integer n, let

P %((ij,n)“ - [E((AXj,n)“)).

For each n, the random variables {aj,n: J € Z} are independent and identi-
cally distributed. A scaling argument shows that &;, is distributed as
e=(X}-3)/ V96 for all admissible integers j and n. For future reference,
we note that E(¢) = 0 and E(¢?) = 1.

By Lemmas 2.4 and 2.5,

VE(t) = ¥ (AX;,) (U, () + D; (1))

JEZ
= X VB62 e (0 + 8270 B (U,(0) + D,0(0).
JE JjE

Arguing as in the proof of Theorem 3.2,
3:-27" Y (U, ,(t) + D; ,(t)) =3t +0(27").
JEZ
From this it follows that
2‘”/4(Vn(4)(t) — 3t) =027/ + ) sj,nﬁj’n(t)2_”/4.
JEZ

As was shown in the proof of Theorem 3.2,

Z Sj,n%,n(t)Zin/zl = g(t)

JEZ

This completes the proof. O

5. An excursion-theoretic construction of the Ito integral. In this
section we show that the It6 integral process [{f(Y,) dY, can be developed by
means of the random partitions defined in Section 2. For each integer n > 0
and &k € Z, let

Yk,n = Y(Tk,n)

We offer the following theorem.

THEOREM 5.1. Let t > 0 and let f € CZ(R). Then
[27"¢]-1 ‘
Z f(Yk,n)AYk,n_) j;)f(Yr) dYr
E=0

almost surely and in L>(P), as n — .
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We will need the following lemma, which is a simple consequence of the
mean value theorem for integrals.

LEMMA 5.2. Leta,b € R, a <b, and let f € CZ(R). Let
a=uy<u < <u, ;<u,=b

be a partition of [a, b]. Then

[y ds = [ ) s,

<S b — Au,l}.
< S()b —al, max (18]

PrOOF OF THEOREM 5.1. By the proof of Lemma 2.4,
[27t]—1
Z f(Yk,n)AYk,n
k=0

> [f(rj,n)Arj,nl]j,n(t) _f(rj+1,n)Arj,nDj,n(t)]

JjEeZ
= Z f(rj,n)Arj,n(l]j,n(t) - Dj,n(t))
JEZ
- Z (f(rj+1,n) - f(rj,n))Arj,nDj,n(t)
JEZ
=1, -1,
in the obvious notation. We will show that
(5.1) 1, - [“f(u) du,
0
1 t
(52) 1, - 3 [ f(Y,) du
0

almost surely and in L2(P) as n — .
First observe that

I~ ["f(u) du

<

[7fu) du — [Vf(u) du
0 0
—A, +B,,

in the obvious notation.
By Lemma 2.3 and an elementary bound, it follows that

Al < S(AOIY(2) = Y(7,)ll2

+(1, = [T7f(u) du
0

(5.3) _ oz,
By Lemma 2.5,
JF—-1
P f(r; ) Arj s if j* > 0,
j=0
I, =<0, if j* =0,

-1
-y f(an) Ar; ., ifj*<0.
=i
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Thus, by Lemma 5.2,
B, <S(f)IY(7,)27"/2.

In the proof of Lemma 2.3, it was shown that {|Y(7))l: n > 0} is bounded;
thus,
(54) IB,Il = 0(27"/2).

Combining (5.3) and (5.4),
Y,
I - [ du,
o f ) du

in L?*(P) as n — «. By Markov’s inequality and the Borel-Cantelli lemma,
this convergence is almost sure, as well. This verifies (5.1).
Observe that

II, = Z (f(rj+1,n) _f(rj,n) _f’(rj,n)Arj,n)Arj,nDj,n(t)

JEZ
, 2
+ Z f (rj,n)(Arj,rL) D],n(t)
JjeZ
=A,+B,,
using obvious notation. By Taylor’s theorem,
|1A,l < 3S(f)27°"/2 ¥ D; (1)
(5.5) JeZ
=0(27"/?).
We have used the fact that X, ,D; ,(¢) <[2"t] to obtain this last bound.
Observe that

<BY +1BY,

B, [ @) du

where
2n/2
B =8(f)27 L |D(t) = =5 Lip(Y)
JEZ
and
BE = X /() Ly (Y)Ary, = [ £/(u) Li(Y) du).
JjeZ
By Lemma 3.6,

B{ < S(f)yn273/* Y KyLyn(Y)

JEZ
Consequently, by the Minkowski and Holder inequalities,
IBPlly < S(F)n27%/* Y KN4 1Ly (Y)Ily?
(5.6) Jjez
= 0(n27"/%).
We have used Lemma 3.3 to obtain this last bound.
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As in the proof of Proposition 3.3,
B® <S(f) ¥ [ ILUY) - Ly~(Y)| du.

JEZ Tjn

Consequently, by symmetry,

1Bl <28(f) L [ ILY(Y) = Lyp(Y)llz du.

J=0"Tjn

By Lemmas 3.4,

IL{(Y) = Liyn(Y)ll2 < CyfAr; , exp(—17,/2).
Thus,

(5.7) IBll, < 28(f)C27"/* ¥ exp(—r?,/2)Ar;,
Jj=0

=0(27"/%).
Combining (5.6) and (5.7), we see that,

I, - 5 [ f(w) L(Y) du,
R

in L?*(P) as n — ». By Markov’s inequality and the Borel-Cantelli lemma,
this convergence is almost sure, as well. By the occupation times formula,
this verifies (5.2).
We can now complete the proof. By (5.1) and (5.2),
[27¢]

(58) Y A(Y, ) AY, , > [Vf(w) du— 1 ['F(Y,) du
k=0 0 0

almost surely and in L?*(P) as n — . Let F(¢) = [{f(x) du and apply Itd’s
formula to F(Y,) to see that the right-hand side of (5.8) is another way to
write [§f(Y,) dY,. This proves the theorem. O
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