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Given an (ordinary) super-Brownian motion (SBM) % on Rd of dimen-
sion d = 2;3; we consider a (catalytic) SBMX% on Rd with “local branching
rates” %s�dx�. We show that X%

t is absolutely continuous with a density
function ξ%t ; say. Moreover, there exists a version of the map �t; z� 7→ ξ

%
t �z�

which is C∞ and solves the heat equation off the catalyst %; more precisely,
off the (zero set of) closed support of the time–space measure ds%s�dx�:
Using self-similarity, we apply this result to give the following answer to an
open problem on the long-term behavior of X% in dimension d = 2: If % and
X% start with a Lebesgue measure, then does X%

T converge (persistently)
as T→∞ toward a random multiple of Lebesgue measure?

1. Introduction.

1.1. Motivation and sketch of results. Consider a continuous super-
Brownian motion (SBM) % = �%t�t≥0 in Rd with a constant branching rate.
Roughly speaking, the catalytic SBM X% = �X%

t �t≥0 is a continuous SBM in
Rd with local branching rate “proportional to” %: A rigorous construction can
be found in [4].

In [4], the study of the long-time behavior of X% also was initiated, and
then continued in [5] and [12]. From these papers it is known that if both
initial states %0 and X%

0 are Lebesgue measures lc and lr; respectively, then
X% is persistent in all three dimensions d ≤ 3 of its nontrivial existence. (In
d = 3, the catalyst process % was actually started from its steady state rather
than from lc at time zero; this simplification is, of course, not possible in lower
dimensions where % clusters in the long-time limit, hence dies out locally.)
Here persistence means that all weak limit points of X%

T as T→∞ have the
full intensity measure lr again. In dimensions 1 and 3, the stronger result of
persistent convergence was shown in [4, 5]. For dimension d = 2, persistence
of X% was proved in [12]. The approach of Etheridge and Fleischmann [12]
was to show the relative compactness of the set of laws of random second
moments by p.d.e. methods. However, uniqueness of the limit point, and hence
convergence, remained open.

In dimension d = 2; the process X% has a self-similarity property that
connects the long-term behavior of X% with local properties at a fixed time.
Thus, as noted in [5], Remark 14, persistent convergence of X%

T as T→∞ is
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equivalent to the existence of the limit ξ%1 �0� of �2ε�−2X
%
1 ��−ε; ε�2� as ε ↓ 0;

with full expectation, and hence to the absolute continuity of X%
1 : Our main

objective in this paper is to show that X%
1 is absolutely continuous.

It is well known that the (continuous) SBM with constant branching rate
has absolutely continuous states only in dimension 1. In d = 1, actually “ev-
ery” catalytic SBM has densities, at least at given times [6]. Dawson and
Fleischmann [3] constructed higher-dimensional catalytic SBM (with finite
variance branching) with absolutely continuous states where the branching
rate is given by a certain class of additive functionals of Brownian motion.
This class includes catalysts concentrated on hyperplanes. They showed abso-
lute continuity by constructing fundamental solutions of the related cumulant
equation.

Recently, Delmas [9] considered a class of time-independent catalysts in Rd

with carrying Hausdorff dimension greater than d − 2: He shows that the
reactant has a smooth density off the catalyst. His technique is a refinement
of the method of Brownian excursions, introduced by Fleischmann and Le Gall
[16] for a single point-catalytic model in d = 1. The procedure in these two
papers is first to determine the (singular) occupation density measures λ; say,
on the (time-independent) catalyst, and then to represent the SBM by means
of Brownian excursion densities off the catalyst (supported by a Lebesgue zero
set) starting with random masses according to λ; and by densities of Brownian
particles killed at the catalyst. Clearly, these densities are smooth and satisfy
the heat equation. At least at a heuristic level, this makes it clear that in
these cases a smooth density field exists.

Our strategy is to show first in d = 2;3 thatX% has densities in an L2 sense
on the complement of the support of %: Next we use a modification of Delmas’
representation of catalytic SBM “off the catalyst” on a local level to derive our
main result. Namely, we show that off the catalyst, X% has a smooth density
field ξ% that solves the heat equation (Theorem 1).

Finally, we use this result to conclude that in two dimensions, if we start %
and X% from Lebesgue measures, then does X%

T converge in law to the random
multiple ξ%1 �0� l of the (normed) Lebesgue measure l [Corollary 2(b)]?

1.2. Informal description of the model. We consider a stochastic model
for a chemical (or biological) diffusion-reaction system of two substances (or
species) C and R, say. While C evolves independently of R, the reaction of R
is catalyzed by C, that is, it takes place locally only in the presence of C, but
without affecting C.

The mathematical model that we chose for the catalyst is the so-called
super-Brownian motion (SBM) %: It arises as the high density short lifetime
limit of branching Brownian motion. The latter is an (infinite) particle system,
where the particles move around in Rd according to independent Brownian
motions. Moreover, the catalyst particles die with a constant rate γ; say, and
are replaced at the location of their death by zero or two offspring, each pos-
sibility occurring with probability 1

2 (critical binary branching). The offspring
continue to evolve in the same manner as their parent. Now assign mass
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ε > 0 to each particle and replace the branching rate γ by γ/ε: Then (see, e.g.,
[2], Section 4.4) SBM % is the limiting process if we let ε ↓ 0 (provided that
the initial states converge). Summarizing, the catalyst % arises as a diffusion
approximation to a critical binary branching Brownian motion with constant
branching rate. For background on SBM, we recommend [2].

The mathematical model X% for the reactant is also SBM, however, the
branching rate of an “infinitesimal reactant particle” is the local concentration
of catalytic matter. Consequently, the heuristic picture is the same except that
the reactant particles die only when they are in contact with the catalyst. The
catalyst itself varies in time and space, and it concentrates in some localized
regions if d ≤ 2:

The model is interesting only in dimensions d ≤ 3: Roughly speaking, the
catalyst is a �d∧ 2�-dimensional object in Rd; thus, a reactant particle (which
performs Brownian motion) cannot meet the catalyst if d ≥ 4: Hence, in d ≥ 4;
the “reactant” X% is only the deterministic heat flow.

A mathematical approach to this “one-way interaction” model is possible
by means of Dynkin’s additive functional approach to superprocesses [10].
In fact, given the medium %, an intrinsic X% particle (reactant) following a
Brownian path W branches according to the clock given by the collision local
time, L�W;%��ds�, of W with % [1]. Somewhat more formally,

L�W;%��ds� = ds
∫
%s�dy� δy�Ws�:(1)

For sufficiently nice initial states of %, these collision local times L�W;%� make
sense nontrivially in dimensions d ≤ 3 [14], although the measures %s�dy�
are singular for d ≥ 2 [7]. For this reason, in dimensions d ≤ 3 the cat-
alytic SBM X% could be constructed in [4] as a continuous measure-valued
(time-inhomogeneous) Markov process �X%;P

%
r;m�, given the catalyst process

% (quenched approach). By standard notation, P%r;m denotes the law of the pro-
cess X% (for % fixed) if at time r we start X% in the measure m: The laws of
the catalyst process % will be denoted by Pµ if %0 = µ: Averaging the random
laws P%0;m by means of Pµ gives the annealed distribution Pµ;m x= PµP%0;m of
X%: Of particular interest is the case µ = lc x= icl and m = lr x= irl for some
positive constants ic and ir:

Consider for the moment the critical dimension d = 2 and initial states
�%0;X

%
0 � = �lc; lr� (see Figure 1). Here the catalyst %T dies out locally in prob-

ability as T → ∞: In the large regions without catalyst, only the smoothing
heat flow acts on the reactant X%. On the other hand, a finite window of ob-
servation will be visited by increasingly large catalytic clumps at arbitrarily
large times (recall that the time averaged two-dimensional catalyst % has a
proper random limit despite local extinction; see, e.g., [15]). These clumps lead
locally to a great variability of the concentration of reactant: In contact with
the catalyst, a huge amount of reactant mass piles up in relatively small areas,
whereas large areas become vacant. However, according to [12], Theorem 1,
the smoothing effect in the large catalyst-free regions wins this competition
with the “turbulence” at the catalyst, leading to persistence: The intensity
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Fig. 1. The first row shows a discrete version of % (critical binary branching simple random walk)
on a 250 × 250 grid with periodic boundaries, originally started from a “uniformly” distributed
field. The number of particles per site is indicated by different grey scales. The “movie” clearly
exhibits the well-known tendency of clustering in d = 2. The second sequence of pictures shows a
simulation of the analogous discrete version of X% for the same realization of the branching rate
%. The figure illustrates that the reactant X% is uniformly spread out outside the catalytic clusters,
except a few “hot spots” related to the catalyst, and that mainly killing of the reactant happens
within the catalytic clumps.

measure lr of X%
T is preserved also for all accumulation points (in law) as

T→∞:
A formal description of the pair �%;X%� will be given in Section 2.1.

1.3. Notation and regularity assumption. Let

ps�x� x= �2πs�−d/2 exp
[
−�x�

2

2s

]
; s > 0; x ∈ Rd;

denote the standard heat kernel, and write q for the potential kernel:

qt�x� x=
∫ t

0
dsps�x�; t ≥ 0; x ∈ Rd:(2)

If µ is a measure on Rd and the function ϕ is integrable with respect to
µ; put µ ∗ ϕ�y� x=

∫
µ�dx�ϕ�y − x�: Introduce the spatial shift operators

θzϕ�y� x= ϕ�y − z�, y; z ∈ Rd; defined on functions ϕ; and write �ν; ϕ� for
integral expressions as

∫
ν�dy�ϕ�y�:

The construction of our processes actually needs an integrability condition
for the initial states µ and m: Namely, we will assume that µ;m ∈ Mp for
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some p > d. Here Mp is the set of measures µ on Rd such that �µ;φp� <∞;
where

φp�x� x=
1

�1+ �x�2�p/2 ; x ∈ Rd:(3)

Mp is endowed with the coarsest topology such that the map µ 7→ �µ;ϕ� is
continuous for ϕ = φp and for each ϕ in the cone C

comp
+ of all nonnegative

continuous functions on Rd with compact support.
In dimension d = 1; for each measure µ ∈ Mp; with Pµ probability 1, the

collision local time L�W;%� [recall (1)] makes sense nontrivially and is a “nice
branching functional” (see [4], Corollary 3, page 261, or Proposition 14 in the
Appendix). In higher dimensions however, we need an additional smoothness
property for initial measures of the catalyst process %. This will be introduced
next. Write Zd for the set of all points x in Rd having only integer-valued
coordinates.

Definition (η-diffusive measures). Let η ∈ �0; 1
4�: A measure µ ∈ Mp is

called η-diffusive if there is a p′ ∈ �d;p� such that even µ ∈Mp′ and that the
map

�t; z� 7→ φp′�z�µ ∗ qt�z�
is locally Hölder continuous of order η with the following uniformity in the
Hölder constants: For each N ≥ 1;

sup
n∈Zd

sup
0≤t1; t2≤N

z1; z2∈n+�0;1�d
�t1; z1�6=�t2; z2�

�φp′�z1�µ ∗ qt1�z1� −φp′�z2�µ ∗ qt2�z2��
��t1; z1� − �t2; z2��η

(4)

is finite.

Example (η-diffusive measures). µ ∈ Mp is η-diffusive in each of the fol-
lowing cases:

(i) µ absolutely continuous with a density function f such that there is a
p′ ∈ �d;p� satisfying supx∈Rd φp′�x�f�x� <∞: Here even η = 1 can be taken
(Lipschitz). For instance, µ with a bounded density function f belongs to this
class.

(ii) In particular, µ = icl; for some constant ic > 0 (Lebesgue measures).
(iii) µ = %δ (a.s.) for δ > 0 if only %0 is η-diffusive (see Proposition 16 in

the Appendix).

Note that in d ≥ 2, a measure µ with an atom is not η-diffusive.

1.4. Results. The key to our main result (Theorem 1) is the following fact
on ordinary SBM %. Let S% denote the closed support of the locally finite
measure ds%s�dx� on �0;∞� × Rd: In dimensions d ≥ 2; this S% is an l+ × l-
zero set [Proposition 6(b)]. Here l+ denotes the (normed) Lebesgue measure
on �0;∞�:
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Write Z% ⊂ �0;∞�×Rd for the complement of S% in �0;∞�×Rd: In Z% only
the heat flow acts on X%: This suggests that here the catalytic SBM X% has
densities satisfying the heat equation (recall that X% degenerates for d ≥ 4� x

Theorem 1 (Main result). Let d ≤ 3: Take r ≥ 0, µ;m ∈ Mp, η ∈ �0; 1
4�

and assume that µ is η-diffusive. Then for Pµ-almost all % the following state-
ments hold.

(a) Absolute continuity. P
%
r;m-almost surely, for all t > r; the measure

X
%
t �dz�1Z%��t; z�� is absolutely continuous with respect to Lebesgue measure.

In particular, in d = 2 or 3, the reactant X% lives on the set of all absolutely
continuous measures in Mp:

(b) Smooth density field ξ%. Denoting by ξ% = �ξ%t �z�x t > r; z ∈ Rd� the
density field of X

%
t �dz�1��t; z� ∈ Z%�; there is a version of ξ% such that P

%
r;m-

a.s. the mapping �t; z� 7→ ξ
%
t �z�, �t; z� ∈ Z%, t > r; is of class C∞ and solves

the heat equation

∂

∂t
ξ
%
t �z� =

1
2
1ξ

%
t �z�; �t; z� ∈ Z%; t > r:(5)

(c) Moments. The ξ
%
t �z� belong to L2 = L2�P%r;m�; have expectation

P%r;mξ
%
t �z� =m ∗ pt−r�z�; �t; z� ∈ Z%; t > r;(6)

and covariances

Cov%r;m
[
ξ
%
t1
�z1�; ξ%t2�z2�

]

= 2
∫ t1∧t2
r

ds
〈
%s; �m ∗ ps−r� �θz1

pt1−s� �θz2
pt2−s�

〉
≥ 0;

�ti; zi� ∈ Z%; ti > r; i = 1;2:

(7)

(d) Local L2-Lipschitz continuity. The field �ξ%t �z�x �t; z� ∈ Z%; t > r� is
locally L2�P%r;m�-Lipschitz continuous: For every compact subset C of Z% ∩
��r;∞�× Rd�, there is a constant c = c�%;C� such that

∥∥ξ%t1�z1� − ξ%t2�z2�
∥∥

2 ≤ c
∣∣�t1; z1� − �t2; z2�

∣∣; �t1; z1�; �t2; z2� ∈ C:(8)

Remark (Generalization). We have formulated our theorem for the case
where the catalyst % is SBM. However, all we really need is that % is a (deter-
ministic) Mp-valued path such that the collision local time L�W;%� exists and
is a nice branching functional [see Proposition 14(d) in the Appendix]. In this
case, the theorem is still true [except, of course, the second sentence in (a)].
In this sense, our result can be viewed as a partial generalization of Delmas
[9] for time-dependent catalysts.

Remark (Genealogical interpretation). Formula (7) has the following ge-
nealogical interpretation. The covariance there measures the probability of
two infinitesimal reactant particles at �t1; z1� and �t2; z2� to have a common
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ancestor. On the other hand, the integrand at the r.h.s. is the “distribution”
of the time–space location �s; x� of a possible latest common ancestor of these
infinitesimal particles.

Remark (Behavior at a given point). Since in d ≥ 2 a given point �t; z� in
�r;∞� × Rd belongs to Z% with Pµ probability 1 [see Proposition 6(b) below],
ξ
%
t �z� is a well-defined P%r;m-random variable, Pµ-a.s. (in d = 2 or 3�:

Remark (Annealed model). Statement (a) of Theorem 1 also implies that
with respect to the annealed law Pµ;m, the catalytic SBM X% lives on the set
of absolutely continuous measures. Clearly, (7) and (6) yield that the Pµ;m-
covariances of ξ% are given by

C ovµ;m
[
ξ
%
t1
�z1�; ξ%t2�z2�

]

= 2
∫ t1∧t2

0
ds
〈
l; �µ ∗ ps� �m ∗ ps� �θz1

pt1−s� �θz2
pt2−s�

〉
<∞;

(9)

�ti; zi� ∈ �0;∞� × Rd, i = 1;2, �t1; z1� 6= �t2; z2�: Hence (if µ;m 6= 0�; the
covariance tends to infinity if �t2; z2� → �t1; z1�: In particular,

V arµ;mξ
%
t �z� ≡ ∞; �t; z� ∈ �0;∞�× Rd:

Now we come back to the limiting behavior of X%
T as T ↑ ∞ in d = 2

with �%0;X
%
0 � = �lc; lr�: In this dimension, the long-term behavior of X% is

connected to local properties (such as absolute continuity of states) by a self-
similarity property. Proposition 13 in [5] states that

X
%
T =L K−1X

%
KT�K1/2 · �; T;K > 0;(10)

with respect to the random laws P%0; lr . Here coincidence w.r.t. the random laws
P
%
0; lr

formally means that

Plc
[
P
%
0; lr
�X%

T ∈ �·�� ∈ �·�
]
= Plc

[
P
%
0; lr

[
K−1X

%
KT�K1/2·� ∈ �·�

]
∈ �·�

]
:(11)

From this discussion the following corollary of Theorem 1 is immediate.

Corollary 2 (d = 2). In dimension 2, with respect to the random laws
P
%
0; lr

(with % distributed according to Plc�, the following two statements hold:

(a) Self-similarity:

ξ
%
T =L ξ

%
KT�K1/2 · �; T;K > 0:(12)

(b) Persistent convergence. X
%
T converges in distribution to a random mul-

tiple of Lebesgue measure:

X
%
T →

T↑∞ ξ
%
1 �0� l:(13)

Note that the limit in (13) not only has full expectation, but has even locally
finite conditional second moments (persistence of second order).
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Coincidence in law in statement (a) is understood in the same way as in
(11). Similarly, the assertion in (b) has the following formal meaning. Given %
(distributed according to Plc�; let Q%

T and Q%
∞ denote the laws of the random

measures X%
T and ξ%1 �0� l; respectively. Set

QT x= Plc�Q
%
T ∈ �·��; Q∞ x= Plc�Q

%
∞ ∈ �·��:(14)

Then the formal expression for the claim in (b) is

QT converges weakly to Q∞ as T→∞:(15)

Note that for fixed medium %, one cannot expect convergence since %T itself
does not converge a.s. as T→∞:

It is known from [4], Theorem 51, that in dimension 1,

X
%
T →

T↑∞ lr in P%0; lr probability, for Plc -almost all %:(16)

(It is still open whether this statement is true P%0; lr -a.s.) The reason for this
behavior is that in d = 1 the catalyst dies out locally almost surely. In contrast,
in d = 2, the catalyst goes to local extinction only in Plc probability. Hence, the
reactant meets the catalyst at arbitrarily large times. The randomness in the
limit in (13) reflects the random medium as experienced by the reactant at
large times. In particular, X% does not converge for almost all %: The almost
sure properties of Theorem 1 get lost on the way to Corollary 2(b) by using
the self-similarity (a) that holds only in distribution.

Note that the two-dimensional reactant X% exhibits the following interest-
ing phenomenon: Though started in a (spatially) ergodic state, the limit is not
ergodic.

Remark 3 (Annealed model). The self-similarity (10) holds also with re-
spect to the annealed law Plc; lr

([5], Proposition 13). Hence, (12) and (13) are
true also w.r.t. the annealed law. In other words, we have the following per-
sistent weak convergence of averaged distributions:

PlcQ
%
T →

T↑∞ PlcQ
%
∞:

However, recall that persistence of second order gets lost.

Remark 4 (Lattice model). In the model of two-dimensional simple branch-
ing random walk in the simple branching random medium, one can show a
statement analogous to Corollary 2(b): Here the reactant converges to a mixed
Poisson system (homogeneous Poisson point process) with random intensity
ξ
%
1 �0� ([17], Theorem 3). The proof of this statement is based on our Theorem

1. However, since there is no scaling property in the lattice model, things
become rather complicated.

The rest of the paper is laid out as follows. In Section 2 we first recall the
formal characterization of the catalytic SBM X%. We establish the fact that
around l+ × l–almost all time–space points �t; z� there is no catalytic mass.
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The key step in Section in 2 is to show that at those �t; z� an asymptotic
spatial L2�P%r;m� density ξ%t �z� of X%

t exists. Our theorem is proved in Section
3. The Appendix is devoted to the notion of η-diffusive measures serving as
initial states for the catalyst.

2. Preparations.

2.1. Formal description of catalytic SBM. First we want to recall the for-
mal characterization of the catalytic SBMX% in terms of its Laplace transition
functional.

Write B p for the set of all functions ϕ on Rd such that �ϕ� ≤ cϕφp for some
(finite) constant cϕ; and write B

p
+ for the subset of its nonnegative members.

Fix a constant γ > 0: By definition, the catalyst process % = �%t�t≥0 is
a continuous (critical) SBM with branching rate γ: This is the continuous
Mp-valued time-homogeneous Markov process �%;Pµ� with Laplace transition
functional

Pµ exp�%t;−ϕ� = exp�µ;−u�t��; t ≥ 0; µ ∈Mp; ϕ ∈ B
p
+:(17)

Here u = �u�t�x t ≥ 0� = �u�t; x�x t ≥ 0, x ∈ Rd� is the unique nonnegative
(mild) solution to the basic cumulant equation

∂

∂t
u = 1

2
1u− γ u2 on �0;∞�× Rd(18)

with initial condition u�0; x� = ϕ�x�, x ∈ Rd:
The process % serves as a random medium for a catalytic SBM X%: In order

to characterize X%, roughly speaking, we have to replace the constant rate γ
in (18) by the (randomly) varying rate %t�x�; where %t�x� is the generalized
derivative �%t�dx�/dx��x� of the measure %t�dx�: Our aim is to define X%

via its log-Laplace transition functionals v%t that solve a certain cumulant
equation. We do so by first making precise sense of this equation.

Because of time-inhomogeneity, it is convenient to write the formal cumu-
lant equation in a backward setting:

− ∂

∂r
v
%
t �r; x� =

1
2
1v

%
t �r; x� − %r�x�v%t �r; x�2;(19)

0 ≤ r ≤ t, x ∈ Rd: Note that the initial condition has become a terminal
condition: v%t �t� = ϕ: After a formal integration, we can rewrite (19) rigorously
and probabilistically as

v
%
t �r; x� = 5r; x

[
ϕ�Wt� − γ

∫ t
r
L�W;%��ds�v%t �s;Ws�2

]
;(20)

0 ≤ r ≤ t, x ∈ Rd; where 5r; x is the law of (standard) Brownian motion
W starting at time r from x: For d ≤ 3 and finite µ with some regularity
from Theorem 4.1 and Proposition 4.7 in [14] it follows that for Pµ-a.a. % the
collision local time L�W;%� makes sense as a nontrivial continuous additive
functional of W: (In d ≥ 4; actually L�W;%� = 0:� According to ([4], Theorem 4,
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page 259), this is still true if µ is random, the law of µ is shift-invariant and
has finite moments of all orders and µ is sufficiently smooth (a.s.).

In the present paper, we work with initial states µ of the catalyst process %
which are η-diffusive (recall the Definition in Section 1.3). Then, Pµ-a.s., the
collision local time L�W;%� exists and is a nice branching functional in the sense
of Proposition 14 in the Appendix. Therefore, according to ([4], Proposition 1,
page 225), for Pµ-almost all % and for t; ϕ fixed, there is a unique nonnegative
solution v%t to (20). Finally, by ([4], Proposition 12(a), page 230, and Theorem
1(b), page 235), we get the following result.

Proposition 5 (Existence of X%). Let d ≤ 3; µ ∈ Mp: If d = 2;3, then
let µ additionally be η-diffusive. Then, for Pµ-a.a. %, there exists a continu-

ous Mp-valued time-inhomogeneous Markov process �X%;P
%
r;m� with Laplace

transition functional

P%r;m exp
〈
X
%
t ;−ϕ

〉
= exp

〈
m;−v%t �r�

〉
;(21)

0 ≤ r ≤ t, m ∈Mp, ϕ ∈ B
p
+ and v

%
t the solution to (20).

This is the catalytic SBM X% with catalyst %; which was intuitively in-
troduced in Section 1.2. Since the branching mechanism is critical, X% has
expectation measure

P%r;mX
%
t ≡ St−rm;(22)

independent of the catalytic medium %: Here S = �Stx t ≥ 0� is the semigroup
of Brownian motion. The covariances (given %) related to (22) can be written as

Cov%r;m
[
�X%

t1
; ψ1�; �X%

t2
; ψ2�

]

= 2
∫ t1∧t2
r

ds
〈
%s; �m ∗ ps−r� �St1−sψ1� �St2−sψ2�

〉
;

(23)

0 ≤ r ≤ t1; t2, m ∈Mp, ψ1; ψ2 ∈ Bp; see [4], formula (95).

2.2. Catalyst-free regions. Denote by Bδ�z� the open ball in Rd of radius δ
centered at z: The starting point for our development is the following obser-
vation.

Proposition 6 (Catalyst-free regions close to time–space points). Assume
that µ ∈Mp: For t > 0; denote by Z%t the open set of all those z ∈ Rd such that
there exists a δ = δ�%; t; z� ∈ �0; t� with

sup
s∈�t−δ; t+δ�

%s�Bδ�z�� = 0;(24)

that is, Z% = ��t; z�x t > 0; z ∈ Z%t �: Suppose d ≥ 2:
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(a) Full measure. Then,

sup
t>0

l�Rd \ Z%t � = 0; Pµ-a.s.;(25)

hence, l+ × l ���0;∞�× Rd� \ Z%� = 0, Pµ-a.s.
(b) Absence at a given point. In particular, for fixed t > 0 and z ∈ Rd; there

is a δ = δ�%; t; z� such that (24) holds for Pµ-almost all %:

Remark 7 (Polarity of points). Statement (b) has been known in the case
of finite initial measures µ ([11], Theorem 11.2). In potential-theoretical lan-
guage, Dynkin shows that (in d ≥ 2� a given time–space point �t; z� is polar
for the graph of SBM %: Note that this could also be concluded from [13],
Theorems 3.1 and 3.3, and the fact that �supp%t�t≥0 is right-continuous in the
Hausdorff metric (see [20], Theorem 1.4; see also [19], Corollary 3).

Proof of Proposition 6. We only prove (a) since (b) is an immediate con-
sequence of (a). First note that by a countability argument it suffices to con-
sider the supremum taken over t ∈ �0;1� and to replace Rd by B1�0�. Next we
use the bounded support property of SBM and a Borel–Cantelli argument to
replace Pµ in (25) by PµN; where we define µN�dx� x= 1BN�0��x�µ�dx�, N ≥ 1:
In fact, there exists a constant c > 0 such that for x ∈ Rd;

Pδx
(
B1�0� 6⊂ Z%t for some t ≤ 1

)
≤ c exp�−��x� − 1�2/2�y(26)

see [8], Theorem 3.3(a). Integrating this over BN�0�c with respect to �µ −
µN��dx� gives Pµ−µN�B1�0� 6⊂ Z%t for some t ≤ 1� −→N↑∞ 0: Hence, we only
have to show

PµN
(
l�B1�0� \ Z%t � = 0 for all t ∈ �0;1�

)
= 1:(27)

This is known to be true if we replace Z%t by Z̃%t x= �supp%t�c ⊂ Z%t (see [20],
Corollary 1.3). However, from [21], Theorem 1.4, we know that PµN -a.s. for
almost all t > 0; the set Z%t \Z̃%t is at most a singleton. Hence (27) holds and
we are done.

Remark 8 (Dimension 1). Properties as in Proposition 6 are not valid in
d = 1, since there % has a jointly continuous density field on �0;∞� × R (see,
e.g., [18]).

2.3. Asymptotic L2 densities of the reactant. Recall the definition of the
reference function φp from (3). We will need the following trivial heat kernel
estimates that we state here without proof.

Lemma 9 (Estimates for the heat kernel). For d ≥ 1; let C be a compact
subset of �0;∞�× Rd and let k;n ≥ 1: Choose δ > 0 such that

Cδ x=
⋃

�t; z�∈C
�t− δ; t+ δ� ×Bδ�z� ⊂ �0;∞�× Rd:(28)
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Then there are constants ci = ci�d;C;n; δ�; i = 1;2;3; such that for �t; z� ∈ C
and �s; x� ∈ ��0;∞�× Rd�\Cδ with s ≤ t; the following three statements hold:

∣∣∣∣
∂

∂r
θzpr�x�

∣∣∣
r=n�t−s�

∣∣∣∣ ≤ c1 θzp2n�t−s��x�;(29)

∣∣∣∣
∂

∂z
θzpn�t−s��x�

∣∣∣∣ ≤ c2 θzp2n�t−s��x�;(30)

θzpn�t−s��x� ≤ c3φ
k
p�x�:(31)

Since for η-diffusive µ the collision local time L�W;%� is a nice branching
functional in d ≤ 3 (see Proposition 14(d) in the Appendix), the following
estimate is true.

Lemma 10 (Uniform estimate). Let d ≤ 3 and assume that µ ∈ Mp is η-
diffusive. Then, for Pµ-almost all %; for every T > 0 there exists a constant cT;%
such that

∫ T
0
ds
∫
%s�dy�ps�y− x�φ2

p�y� ≤ cT;%φp�x�; x ∈ Rd:(32)

The following L2 result is the key of our development.

Proposition 11 (Asymptotic L2 densities at points in Z%). Let d≤3: Take
r ≥ 0; µ;m ∈ Mp and assume that µ is η-diffusive. Then for Pµ-almost all %
the following assertions hold:

(a) Existence on Z%. For each �t; z� ∈ Z%; t > r; there is an element ξ
%
t �z� ≥ 0

in the Lebesgue space L2 = L2�P%r;m� such that the L2 convergence

X
%
t ∗ pε�z� →

ε↓0 ξ
%
t �z�(33)

takes place.
(b) Locally uniform convergence. This convergence is uniform if �t; z� runs

in a compact set C = C�%� ⊂ Z% ∩ ��r;∞�× Rd�:
(c) Moments. ξ

%
t �z� has expectationm∗pt−r�z� and the covariances are given

by (7).
(d) Existence at a given point. In particular, if d = 2 or 3; for t > r and

z ∈ Rd fixed, ξ%t �z� exists with those properties, for Pµ-a.a. %:

Remark 12 (Basic solutions). The existence (in law) of the asymptotic den-
sity ξ%t �z� for �t; z� ∈ Z% is equivalent to the existence of the basic solution
v
%
t of (19) with terminal condition v%t �t; x� = δz�x�: This fact has been used in

[3] for related models in higher dimensions to construct asymptotic densities.
Here we make a direct approach to obtain the densities (in L2).

Proof of Proposition 11. Since %r is η-diffusive Pµ-a.s. (recall the last
example (iii) listed in the end of Section 1.3), using the Markov property, with-
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out loss of generality we may assume that r = 0: By the covariance formula
(23),

∥∥X%
t ∗ pε1

�z� −X%
t ∗ pε2

�z�
∥∥2

2

=
[
m ∗ pt+ε1

�z� −m ∗ pt+ε2
�z�
]2

+ 2
∫ t

0
ds
〈
%s; �m ∗ ps��θzpε1+t−s − θzpε2+t−s�

2〉;

(34)

t ≥ 0, z ∈ Rd, ε1, ε2 > 0:
Fix a compact set C ⊂ Z% and δ > 0 such that Cδ ⊂ Z% [recall notation

(28)]. Further let τ x= sup�tx �t; z� ∈ C�. Clearly, the first summand on the
r.h.s. of (34) goes to 0 as ε1; ε2 → 0; uniformly in �t; z� ∈ C:

We use the convention pt x= 0 if t < 0: By (31) in Lemma 9, there exists a
constant c3 <∞ such that

∫ ∞
0
ds

〈
%s; �m ∗ ps� sup

�t1; z1�; �t2; z2�∈C
0<ε1; ε2<δ/2

�θz1
pε1+t1−s� �θz2

pε2+t2−s�
〉

≤ c2
3

∫ τ+δ
0

ds
〈
%s; �m ∗ ps�φ2

p

〉
:

(35)

By Lemma 10, the latter quantity is bounded by c4�m;φp� <∞: Note that for
all �s; x� ∈ �Cδ�c;

sup
�t; z�∈C

∣∣θz�pε1+t−s − pε2+t−s��x�
∣∣→ 0 as ε1; ε2 ↓ 0:(36)

If we combine (34), (35) and (36), the dominated convergence theorem yields
that �X%

t ∗ pε�z��ε>0 is Cauchy in L2�P%0;m� as ε ↓ 0; uniformly in �t; z� ∈ C:
Hence, the L2 limit ξ%t �z�; say, exists and

∥∥∥ sup
�t; z�∈C;

X
%
t ∗ pε�z� − ξ%t �z�

∥∥∥
2
→ 0 as ε ↓ 0:(37)

This proves (a) and (b).
Since L2 convergence implies L1 convergence, P%0;mξ

%
t �z� =m∗pt�z� follows

from the expectation formula (22). Then also the covariance formula (7) can
be derived from (23) and domination according to (35). This gives (c).

Statement (d) is immediate [recall Proposition 6(b)].

3. Proof of the theorem. In this section we prove Theorem 1. First we
use Proposition 11 to show (a), (c) and (d). Next we proceed similarly as in [9]
to get the smoothness (b) of the density field. Delmas used a representation of
his catalytic SBM in terms of excursions started from his (time-independent)
catalytic set. Our catalyst is not time-independent. However, it is not crucial
in Delmas’ argument to start the excursions from the catalyst. Our idea is to
use a Delmas type representation of X%

t �dz�1Z%��t; z�� on a local level with an
occupation density measure 0% concentrated on a nice set outside the catalyst.
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Again we may assume that r = 0: Recall that d ≤ 3:

(a) Absolute continuity of X% on Z% is immediate by the uniform conver-
gence statement in Proposition 11. [An alternative argument for this fact will
be given in the proof of part (b).] Since ξ%t �z� has expectation m ∗ pt�z� on Z%t ;
and l��Z%t �c� = 0 in d ≥ 2; we get the absolute continuity of X%

t on the whole
space Rd by an exhaustion argument.

(c) Moments. This is Proposition 11(c).
(d) Local L2�P%0;m�-Lipschitz continuity on Z%. We may assume that the

compact set C ⊂ Z% is a closed box. Let δ > 0 such that Cδ ⊂ Z% [recall (28)].
Set τ x= sup�tx �t; z� ∈ C� and let �t1; z1�; �t2; z2� ∈ C with t1 ≤ t2: From the
moment formulas (6) and (7) we get

∥∥ξ%t1�z1� − ξ%t2�z2�
∥∥2

2 = I1 + I2 + I3;(38)

where

I1 x= �m ∗ pt1�z1� −m ∗ pt2�z2��2;

I2 x= 2
∫ t1

0
ds
〈
%s; �m ∗ ps��θz1

pt1−s − θz2
pt2−s�

2〉;

I3 x= 2
∫ t2
t1

ds
〈
%s; �m ∗ ps��θz2

pt2−s�
2〉:

(39)

We use the bound of the partial derivatives of θzpt−s in Lemma 9 to derive the
existence of a constant c1 (depending only on C and %) such that

I2 ≤
∣∣�t1 − t2� + �z1 − z2�

∣∣2 c1
∫ τ

0
ds
〈
%s; �m ∗ ps�

[
sup
�t; z�∈C

θzp
2
2�t−s�

]〉
:

By (31) and Lemma 10, this inequality can be continued with constants c2; c3 x

≤
∣∣�t1; z1� − �t2; z2�

∣∣2 c2
∫ τ

0
ds
〈
%s; �m ∗ ps�φ2

p

〉

≤ c3 ��t1; z1� − �t2; z2��2:
Analogously, we get the existence of c4 such that

I1 ≤ c4
∣∣�t1; z1� − �t2; z2�

∣∣2:

Similarly, we get I3 ≤ c5�t1 − t2�2 for some constant c5:
(b) Smooth density field. For the final part of proof we have the following

strategy. We fix a cylinder Z contained in Z% and use Proposition 11 to con-
struct the occupation density measure 0% of X% on the lateral area A of the
cylinder. Next we use Delmas’ representation of catalytic SBM in terms of
Brownian excursions starting from A to derive the smoothness of ξ% in Z:

Let % be such that the assertions in Proposition 11(a)–(c) and in Proposi-
tion 6 hold. Recall the characterization of Z% from Proposition 6(a) and that Z%

is open in �0;∞�× Rd: Write l for the �d− 1�-dimensional Lebesgue measure
on the boundary ∂Bδ�z� of the open ball Bδ�z� around z of radius δ:
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Fix �t; z� ∈ Z% and a δ > 0 such that

�t− δ; t+ δ� ×B2δ�z� ⊂ Z%:(40)

Define a measure 0% on the lateral area A x= �t − δ; t + δ� × ∂Bδ�z� of the
cylinder Z x= �t− δ; t+ δ� ×Bδ�z� by

0%�du;dy� x= duξ%u�y� l�dy�; �u;y� ∈ A ;(41)

with ξ%u from Proposition 11(a).
First we show that 0% is the occupation density measure (superlocal time)

of X% on A : For this purpose, we define random measures 0%ε ; ε > 0; on the
lateral area A ; via their density functions

�u;y� 7→X%
u ∗ pε�y�; �u;y� ∈ A ;

with respect to the measure l+× l: The formal meaning of the statement that
0% is the occupation density measure is that

0%ε converges weakly to 0% as ε ↓ 0; P
%
0;m-a.s.(42)

To prove (42) it suffices to show that
〈
0%ε ; f

〉
→

ε↓0 �0
%; f�; P

%
0;m-a.s.,(43)

if f is a continuous function on A : From the uniform convergence in Proposi-
tion 11(b) we know that in L2�P%0;m�;

∥∥〈0%ε ; f
〉
− �0%; f�

∥∥
2

≤
∫ t+δ
t−δ

du
∫
∂Bδ�z�

dy �f�u;y��
∥∥X%

u ∗ pε�y� − ξ%u�y�
∥∥

2 →
ε↓0 0:

Hence, for every sequence εn ↓ 0 as n ↑ ∞; there exists a subsequence εn�k�
such that

〈
0%εn�k�; f

〉
→

k↑∞ �0
%; f�; P

%
0;m-a.s.

Since the mapping ε 7→ �0%ε ; f�, ε > 0; is continuous, we have shown (43), and
hence (42).

The aim is now to use 0% to get a representation of ξ% as in Proposition
7.1 of [9] (see also Theorem 2 of [16]). This is Proposition 13 below. From this
representation it is easily shown that ξ% is C∞ and solves the heat equation
(cf. Theorem 8.1 of [9]).

We start by introducing the ingredients of the representation formula. Re-
call that �W;5r; x� denotes the Brownian motion on Rd: Define the exit time
τB x= inf�s > 0x Ws /∈ B� of the open ball B x= Bδ�z�; and define the exit
density

qB =
{
qBt �x;y�x t > 0; x ∈ B; y ∈ ∂B

}
(44)
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by

50; xf
(
τB;WτB

)
=
∫ ∞

0
dt
∫
∂B
l�dy�qBt �x;y�f�t; y�;(45)

f ∈ Cb��0;∞�×∂B� (i.e., f bounded and continuous). Clearly, for y ∈ ∂B fixed,
�t; x� 7→ qBt �x;y� is of class C∞ and solves the heat equation.

Fix T > 0 and a compact set D ⊂ B: By a simple induction argument, we
derive from Lemma 9 that the partial derivatives of all orders are bounded,
uniformly in x ∈ D; y ∈ ∂B; t ∈ �0;T�: Hence, for every finite measure ν on
�0;∞�× ∂B; the mixture

ν ? qB�t; x� x=
∫ t

0

∫
∂B
ν�du;dy� qBt−u�x;y�; t > 0; x ∈ B;(46)

is also of class C∞ and solves the heat equation in �0;∞�×B:
Define the transition density pB = �pBt �x; x′�x t > 0; x ∈ B; x′ ∈ Rd� of

Brownian motion killed on Bc:

50; x1τ>t f�Wt� =
∫
B
dx′ pBt �x; x′�f�x′�; f ∈ Cb�Rd�:(47)

As above, �t; x� 7→ pBt �x; x′� is C∞ and solves the heat equation. Further, for
n ∈Mp; the mixture

n ∗ pBt �x� x=
∫
n�dx′�pBt �x; x′�; t > 0; x ∈ B;(48)

is also C∞ and solves the heat equation.
Since ν ? qB and n ∗ pB are C∞ and solve the heat equation, the same is

true for ξ% by the following proposition. Hence, after verifying Proposition 13
below, the proof of Theorem 1 will be complete.

The density of mass in the point �s; x� of the catalyst-free cylinder Z = �t−
δ; t+δ�×B decomposes in the reactant’s mass X%

t−δ at time t−δ, transported
by the heat flow density pB with absorption off B = Bδ�z�; and the reactant’s
occupation density 0% [recall (41)] at the lateral area A of Z; transported by
the excursion density qB:

Proposition 13 (Representation using smooth densities). Let µ;m ∈ Mp,
where µ is η-diffusive and r ≥ 0: Then for Pµ-almost all % the following holds.
Take �t; z� ∈ Z%, t > r: Choose δ ∈ �0; t− r� such that the inclusion (40) holds.
Then, with P

%
r;m-probability 1,

ξ%s �x� =X
%
t−δ ∗ pBs−�t−δ��x� + 0% ? qB�s− �t− δ�; x�; �s; x� ∈ Z:(49)

Proof. Set r = 0: We want to show the difference of both sides of (49)
vanishes in L2�P%0;m�: Clearly,

P
%
0;mξ

%
s �x� =m ∗ pt�x� = P%0;m

[
X
%
t−δ ∗ pBs−�t−δ��x� + 0% ? qB�s− �t− δ�; x�

]
y
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thus, the expectation of that difference equals 0: Hence, it suffices to prove
that the variance disappears. We use the covariance formulas (7) and (23) to
deduce that

Var%0;m
[
ξ%s �x� −X

%
t−δ ∗ pBs−�t−δ��x� − 0% ? qB�s− �t− δ�; x�

]

= 2
∫ s

0
ds′

∫
%s′�dx′�m ∗ ps′�x′�

×
[
θxps−s′ − 1s′<t−δ�St−δ−s′ pBs−�t−δ���x′�

−
∫ s
s′∨�t−δ�

du
∫
∂B
l�dy� pu−s′�y− x′� qBs−u�x;y�

]2

:

However, the integrand vanishes if �s; x� ∈ Z and �s′; x′� ∈ Zc: In fact, we
distinguish between the two cases whether the backward Brownian motion
path leaves the cylinder Z at the base �t − δ� × B or at the lateral area A :
This shows (49); hence the proof of the proposition is complete. 2

APPENDIX

h-diffusive m and collision local time. The purpose of this Appendix
is to show how to modify the argument in [4] in order to get, in the case of
η-diffusive µ, that for Pµ-a.a. % the collision local time L�W;%� exists and is a
nice branching functional.

Consider (ordinary) SBM �%;Pµ�: For ε ∈ �0;1�; introduce the continuous
additive functional Lε�W;%� of W defined by Lε�W;%��ds� x= %s ∗ pε�Ws�ds:

Proposition 14 (Collision local time L�W;%�). Let d ≤ 3 and µ ∈ Mp: If
d = 2;3; assume additionally that µ is η-diffusive. Then, for Pµ-almost all
%; the collision local time L�W;%� exists as a continuous additive functional of
Brownian motion �W;5r; x� satisfying the following assertions:

(a) Existence of L�W;%�. Let T > 0; ψx �0;T� × Rd→ �0;+∞� be continuous
and uniformly dominated by φp: Then

5r; x sup
r≤t≤T

∣∣∣∣
∫ t
r
Lε�W;%��ds�ψ�s;Ws� −

∫ t
r
L�W;%��ds�ψ�s;Ws�

∣∣∣∣
2

converges to 0 as ε ↓ 0; uniformly on �r; x� ∈ �0;T� × Rd:
(b) First two moments. For 0 ≤ r < T; x ∈ Rd;

5r; x

∫ T
r
L�W;%��ds�ψ�s;Ws�=

∫ T
r
ds
∫
%s�dy�ps−r�y−x�ψ�s; y�;

5r; x

[∫ T
r
L�W;%��ds�ψ�s;Ws�

]2

= 2
∫ T
r
ds
∫ T
s
ds′

∫
%s�dy�

∫
%s′�dy′�

×ps−r�y−x�ps′−s�y′−y�ψ�s; y�ψ�s′; y′�;
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(c) Local admissibility. For r0 ≥ 0;

sup
x∈Rd

5r; x

∫ t
r
L�W;%��ds�φp�Ws� →

r; t→r0
0:

(d) Nice branching functional. There exists a constant c = c%;T;η such that

5r; x

∫ t
r
L�W;%��ds�φ2

p�Ws� ≤ c �t− r�ηφp�x�;

0 ≤ r ≤ t ≤ T, x ∈ Rd:

Proof. For d = 1, the statement is well known (see [4], Corollary 3,
page 261). We only have to prove Proposition 14 for d = 2;3.

Theorem 4 of [4] makes the same statement as this proposition, but un-
der different assumptions. Our notion of an η-diffusive initial state is new
here. In fact, the proof of their Theorem 4 depends on their specific different
assumption only via a statement concerning the Hölder continuity of the oc-
cupation time density, formulated in [4], Theorem 3. Below in Lemma 15 we
give a new proof of the statement of that Theorem 3 under the assumption
of η-diffusiveness. [Note that there is a misprint in [4], Theorem 3, formula
(4.29); the correct formulation is (A1) below.] This will conclude the proof of
Proposition 14. 2

Lemma 15 (Hölder continuity of occupation density). Let d ≤ 3 and as-
sume that µ ∈ Mp is η-diffusive. Then, with respect to Pµ; there exists the

occupation density field y = �yt�z�x t ≥ 0; z ∈ Rd� of %; that is,

Pµ
(∫ t

0
ds%s�dz� = yt�z�dz for all t ≥ 0

)
= 1;

which is Hölder continuous in the following sense. For N ≥ 1;

sup
0≤t1; t2≤N

z1; z2∈Rd; �z1−z2�≤N
�t1; z1�6=�t2; z2�

�yt1�z1�φp�z1� − yt2�z2�φp�z2��
��t1; z1� − �t2; z2��η

<∞; Pµ-a.s.(A1)

Proof. We follow the lines of the proof of [4], Theorem 3, page 254. We
split Rd into overlapping cells Cn x= �0;2N�d + nN, n ∈ Zd: Now we take the
supremum in (A1) separately for each n only over z1 and z2 in Cn:

Cη;N;n x= supn
�yt1�z1�φp�z1� − yt2�z2�φp�z2��

��t1; z1� − �t2; z2��η
;(A2)

where supn denotes the supremum taken over
{
0 ≤ t1; t2 ≤N; z1; z2 ∈ Cn; �t1; z1� 6= �t2; z2�

}
:(A3)

Using Chebyshev’s inequality, it is clear that it is enough to show that for
some k ≥ 1,

∑

n∈Zd
�φp�n��2k Pµ�Cη;N;n�2k <∞:(A4)
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Note that we have replaced here φp�z1� and φp�z2� by φp�n�. This has no
effect on the Hölder continuity that we want to prove since φp is (globally)
Lipschitz and decays only algebraically fast.

By spatial homogeneity of SBM we have Pµ�Cη;N;n�2k = PθnNµ�Cη;N;0�2k:
Note that [recall q from (2)] Pµyt�z� =

∫ t
0 ds�ps ∗ µ��z� = �qt ∗ µ��z�: Hence,

from the assumption that µ is η-diffusive [see (4)], we get a bound for the
Pµyt�z�:

supn
�Pµyt1�z1� − Pµyt2�z2��
��t1; z1� − �t2; z2��η

φp′�n� <∞(A5)

for some p′ ∈ �d;p�.
Consider the centered occupation times Zt�z� x= yt�z� − Pµyt�z�: From the

last displayed equation in the proof of Theorem 2 in [4], we know that for
k > 2�d+1�/�1−4η� there exists a universal (i.e., independent of µ) constant
c = c�k� such that

Pµ supn
( �Zt1

�z1� −Zt2
�z2��

��t1; z1� − �t2; z2��η
)2k

≤ c �1 ∨ �θnNµ�2kp �:(A6)

Combining (A5) and (A6) we get

Pµ�Cη;N;n�2k ≤ c′�k�
(
φp′�n�−2kn+ �1 ∨ �θnNµ�2kp �

)
:(A7)

For k > d/�2�p − p′�� we have
∑
n∈Zd�φp�n�/φp′�n��2k < ∞: On the other

hand,
∑

n∈Zd
φp�n� �θnµ�p =

∫
µ�da�

∑
n

φp�n�φp�a− n�:

However, the series on n can be estimated from above by

2
∑

�n�≥�a�/2
φp�n�φp�a− n� ≤ 2φp�a/2�

∑
n

φp�n�;

which is integrable with respect to µ�da�: Hence we have shown (A4) and the
proof is complete. 2

An important point is the fact that the property of η-diffusiveness for a
certain p > d is preserved under the dynamics of SBM. This is stated in the
next proposition.

Proposition 16 (Preservation of η-diffuseness). Let p > d, η ∈ �0; 1
4� and

δ > 0. If µ ∈Mp�Rd� is η-diffusive, then Pµ-a.a. realizations %δ of SBM at time
δ are also η-diffusive (with the same η and p).

Proof. By assumption there exists a p′ ∈ �d;p� such that µ is η-diffusive
even w.r.t. p′: In particular, µ ∈ Mp′ ; hence %δ ∈ Mp′ for Pµ-a.a. %δ. Thus we
only have to check (4).

We adopt the notation from [4] and write for s ≤ t and z ∈ Rd,

y�s; t��z� x= yt�z� − ys�z�:
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From (A4) we know that for k > �2d+ 1�/�1− 4η� and N > 0;

∑

n∈Zd
�φp′�n��2k Pµ supn

( �y�δ; δ+t1��z1� − y�δ; δ+t2��z2��
��t1; z1� − �t2; z2��η

)2k

<∞;(A8)

where now supn is the abbreviation for the supremum taken over
{
t1; t2 ∈ �0;N�; z1; z2 ∈ n+ �0;1�d; �t1; z1� 6= �t2; z2�

}
:

However the expectations on the l.h.s. of (A8) equal [recall q from (2)]

PµPµ
{(

supn
�y�δ; δ+t1��z1� − y�δ; δ+t2��z2��
��t1; z1� − �t2; z2��η

)2k ∣∣∣%δ
}

≥ Pµ supn Pµ
{( �y�δ; δ+t1��z1� − y�δ; δ+t2��z2��

��t1; z1� − �t2; z2��η
)2k ∣∣∣%δ

}

≥ Pµ supn Pµ
{( �y�δ; δ+t1��z1� − y�δ; δ+t2��z2��

��t1; z1� − �t2; z2��η
) ∣∣∣%δ

}2k

= Pµ
(

supn
�qt1 ∗ %δ�z1� − qt2 ∗ %δ�z2��
��t1; z1� − �t2; z2��η

)2k

:

(A9)

Combining (A8) and (A9) we get that Pµ-a.s.,

sup
n∈Zd

supnφp′�n�
�qt1 ∗ %δ�z1�qt2 ∗ %δ�z2��
��t1; z1� − �t2; z2��η

<∞:(A10)

However, this yields the claim. 2
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