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CHERNOFF-TYPE BOUND FOR FINITE MARKOV CHAINS

By Pascal Lezaud

CENA and Université Paul Sabatier

This paper develops bounds on the distribution function of the empiri-
cal mean for irreducible finite-state Markov chains. One approach, explored
by Gillman, reduces this problem to bounding the largest eigenvalue of a
perturbation of the transition matrix for the Markov chain. By using esti-
mates on eigenvalues given in Kato’s book Perturbation Theory for Linear
Operators, we simplify the proof of Gillman and extend it to nonreversible
finite-state Markov chains and continuous time. We also set out another
method, directly applicable to some general ergodic Markov kernels having
a spectral gap.

1. Introduction. Let �Xn� be an irreducible Markov chain on a finite set
G with transition matrix P and stationary distribution π: Then, for any func-
tion f and any initial distribution q, the weak law of large numbers states
that for almost every trajectory of the Markov chain, the empirical mean
n−1∑n

i=1 f�Xi� converges to πf = ∑
yπ�y�f�y�: This result is the basis of

the Markov chain simulation method to evaluate the mean of the function
f: In this paper, we will quantify this rate of convergence by studying the
probability

Pq

[
n−1

n∑
i=1

f�Xi� − πf ≥ γ
]
;

where Pq denotes the probability measure of the chain with the initial distri-
bution q; and the size of deviation, γ; is a small number, such as πf/10 or
πf/100:

The corresponding rate of convergence for sums of independent random
variables has been given by Kolmogorov (1929), Cramér (1938), Chernoff
(1952), Bahadur and Ranga Rao (1960) and Bennett (1962), but the sam-
ples in Markov chains are generally correlated with each other, even if this
correlation decreases exponentially with the number of steps. In that case,
the theory of large deviations gives an asymptotic rate of convergence, since
the empirical mean satisfies the large deviation principle with the good rate
function I�z� = supr∈R�rz− logβ0�r��; where β0�r� is the largest eigenvalue
(i.e., Perron–Frobenius eigenvalue) of a perturbation of the transition matrix
P [see Dembo and Zeitouni (1993)]. This asymptotic result is not satisfactory
if one wants to achieve bounds that are useful for fixed n: Using perturba-
tion theory, Gillman (1993) estimated the rate of convergence for reversible
finite-state Markov chains by bounding the eigenvalue β0�r�: He got a bound
in terms of the spectral gap of the original transition matrix P; defined
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by ε�P� = 1−β1�P�; where β1�P� denotes the second largest eigenvalue of P:
Using a technique adapted from Rellich, Dinwoodie (1995) improved the bound
obtained by Gillman, but only for γ small. Improvements of such bounds are
motivated by their wide use in simulation.

The aim of this work, based on Kato’s perturbation theory, is to obtain a
bound which depends on the variance of f and which is applicable for all γ:
More precisely, this bound provides a Gaussian behavior for the small values
of γ and a Poissonian behavior for the large values. Moreover, the result we
achieved can also be easily extended to nonreversible Markov chains and con-
tinuous time. For instance, we get in the reversible case the following theorem,
proved in Section 3.1, where � · �2 denotes the l2�π�-norm.

Theorem 1.1. Let �P;π� be an irreducible and reversible Markov chain on
a finite set G: Let fx G→ R be such that πf = 0, �f�∞ ≤ 1 and 0 < �f�22 ≤ b2:
Then, for any initial distribution q; any positive integer n and all 0 < γ ≤ 1;

Pq

[
n−1

n∑
i=1

f�Xi� ≥ γ
]
≤ eε�P�/5Nq exp

[
− nγ2ε�P�

4b2�1+ h�5γ/b2��

]
;(1)

where Nq = �q/π�2 and

h�x� = 1
2

(√
1+ x− �1− x/2�

)
:

Therefore, if γ � b2 and ε�P� � 1; the bound is

�1+ o�1��Nq exp
[
− nγ2ε�P�

4b2�1+ o�1��

]
:

Remark 1. For γ > 1; the probability of deviation is zero; thus, we can
assume that γ ≤ 1: Moreover, applying Theorem 1.1 to −f gives the same
bound on Pq�n−1∑n

i=1 f�Xi� ≤ −γ�: Thus, inequality (1) implies bounds on
all moments of the positive random variable �n−1∑n

i f�Xi��; and quantifies
convergence in each lp norm, 1 ≤ p <∞:

Remark 2. h�x� is an increasing function of x ≥ 0 such that h�x� ≤ x/2
for all x: Thus, for γ ≤ 2b2/5, we get

Pq

[
n−1

n∑
i=1

f�Xi� ≥ γ
]
≤ eε�P�/5Nq exp

[
−nγ

2ε�P�
4b2

(
1− 5γ

2b2

)]
;

whereas for γ > 2b2/5;

Pq

[
n−1

n∑
i=1

f�Xi� ≥ γ
]
≤ eε�P�/5Nq exp

[
−nγε�P�

10

(
1− 2b2

5γ

)]
:

Remark 3. Obviously, we can take b2 = 1 in inequality (1), which gives

Pq

[
n−1

n∑
i=1

f�Xi� ≥ γ
]
≤ eε�P�/5Nq exp�−nγ2ε�P�/12�:(2)
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The constant Nq is the l2�π�-norm of the density of q related to the station-
ary distribution π: This norm can be large but is always bounded by π−1/2

∗ ,
where π∗ = min�π�y�x y ∈ G�: However, it is worth noting that Nq = 1 when
the initial distribution is the stationary one. This fact will be used to im-
prove the convergence, by splitting the simulation in two steps, as suggested
in Aldous (1987). The first step, the initial transient period, may be defined as
the period of time which must be discarded before the chain comes close to π;
whereas the second step, the observation period, may be defined as the period
of time where observations must be collected to reach the desired precision.

A short description of the paper is as follows. Section 2 of this paper sets out
preliminaries on the perturbation theory of linear operators. The results taken
from Kato (1966) are based on a function-theoretical study of the resolvent,
in particular on the expression of the eigenprojections as contour integrals
of the resolvent. However, the specific results needed here are easier than in
Kato (1966), since we restrict our study to the case of operators having an
eigenvalue whose algebraic multiplicity is 1.

Section 3.1 proves Theorem 1.1. The bound is extended to nonreversible
Markov chains in Section 3.2, by considering the multiplicative symmetriza-
tion of the operator P; namely, K = P∗P; where P∗ is the adjoint of P on
l2�π�: Explicitly,

P∗�x;y� = π�y�P�y;x�/π�x�:
Dinwoodie (1995) also obtained a bound for nonreversible Markov chain, but
his bound depended on the random covering time T defined by T = inf�n ≥
1x �X0;X1; : : : ;Xn� = G�: Bounding this covering time can be difficult.

Section 3.3 shows how the previous bounds extend to continuous-time
Markov chains, by employing a method suggested by Fill (1991). We thus
get an exponential bound in terms of the smallest nonzero eigenvalue of
−�3+ 3∗�/2; where 3 is the generator of the semi-group Pt:

Perturbation theory of linear operators is a fruitful method to achieve ex-
plicit bounds on finite Markov chains. Mann (1996) used it to obtain a Berry–
Esseen bound for Markov chains with finite or countably infinite state space,
such that

β x= sup
{�Pg�2
�g�2

}
< 1;(3)

where the sup is over all complex-valued functions on the state space G with
πg = 0: Nagaev (1957, 1961) used also the perturbation method for studying
some limit theorems for Markov chains under the Doeblin condition. Following
the method used in a setting of the finite-state space, we recently have been
able to achieve a Chernoff-type bound for general Markov operator P under
the assumptions that 1 is an isolated eigenvalue of P and the dimension of the
eigenspace for the eigenvalue 1 is finite. In particular, these assumptions are
fulfilled for Markov chains satisfying the Doeblin condition or the relation (3).
We will publish this result in a forthcoming paper. Instead of presenting these
results, we would rather set out another method, directly applicable to a gen-
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eral irreducible Markov kernel assuming condition (3). Section 4 introduces
this method, due to Bakry and Ledoux, which gives the following inequality
for γ ≤ b2:

Pπ

[
n−1

n∑
i=1

f�Xi� − πf ≥ γ
]
≤ exp

[
−nγ

2�1− β�
21b2

]
:

Note that this last inequality involves β and not ε�P�: For instance, if the
state space is finite and the Markov chain is periodic, then β = 1: Thus, this
method is not applicable in this case, unlike the perturbation method.

Finally, Section 5 shows how the running time of simulation can be im-
proved by considering an initial burning period whose effect is to decrease Nq:

2. Perturbation theory of linear operators. Let T be a linear operator
on some finite-dimensional vector space X: We denote the spectrum of T by
6�T�: The resolvent of T, defined by R�ζ� = �T−ζ�−1, is an analytic operator-
valued function on the domain /C\6�T�; called the resolvent set. Furthermore,
the only singularities of R�ζ� are the eigenvalues λh, h = 1; : : : ; s; of T:

The Laurent series of the resolvent at a simple eigenvalue λh takes the
form [Kato (1966), page 38]

R�ζ� = −�ζ − λh�−1Ph +
∞∑
n=0

�ζ − λh�nSn+1
h ;

where Ph is the eigenprojection operator for the eigenvalue λh and Sh is called
the reduced resolvent of T with respect to the eigenvalue λh: More precisely,
Sh is the inverse of the restriction of T − λh in the subspace �I − Ph�X: We
deduce that Ph is the residue of −R�ζ� in λh; and

Ph = −
1

2πi

∫
0h

R�ζ�dζ;

where 0h is a positively oriented small circle enclosing λh; but excluding other
eigenvalues of T:

Consider a family of operator-valued functions with the form

T�χ� = T+ χT�1� + χ2T�2� + · · · :
Then the resolvent R�ζ; χ� = �T�χ� − ζ�−1 of T�χ� is analytic in the two
variables ζ; χ in each domain in which ζ is not equal to any of the eigenvalues
of T�χ� [Kato (1966), page 66]. So it can be expanded into the following power
series in χ with coefficients depending on ζ:

R�ζ; χ� = R�ζ� +
∞∑
n=1

χnR�n��ζ�;(4)

where each R�n� is an operator-valued function. This series is uniformly con-
vergent if

∞∑
n=1

�χ�n�T�n�R�ζ�� < 1:(5)
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Let r�ζ� be the value of �χ� such that the left member of (5) is equal to 1: Then
(5) is satisfied for �χ� < r�ζ�: Let λ be one of the eigenvalues of T = T�0� with
multiplicity m = 1; and 0 be a positively oriented circle, in the resolvent set of
T; enclosing λ but no other eigenvalues of T: The series (4) is then uniformly
convergent for ζ ∈ 0 if

�χ� < r0 = min
ζ∈0

r�ζ�:(6)

In the special case in which X is a Hilbert space and T is normal (i.e.,
T∗T = TT∗), we get

�R�ζ�� = 1/dist�ζ; 6�T��;

r0 = min
ζ∈0

(
a

dist�ζ; 6�T�� + c
)−1

for every ζ in the resolvent set of T; where a = �T�1�� and c is such that
�T�n�� ≤ acn−1: If we choose as 0 the circle �ζ − λ� = d/2, where

d = min
µ∈6�T�\�λ�

�λ− µ�;

we obtain r0 = �2ad−1 + c�−1:
The existence of the resolvent R�ζ; χ� for ζ ∈ 0 implies that there are no

eigenvalues of T�χ� on 0: The operator

P�χ� = − 1
2πi

∫
0
R�ζ; χ�dζ(7)

is the eigenprojection for all the eigenvalues of T�χ� lying inside 0: In partic-
ular [Kato (1966), page 68], for all �χ� sufficiently small, we have

dimP�χ�X = dimPX = 1:

Therefore, only the eigenvalue λ�χ� of T�χ� lies inside 0; and P�χ� is the
eigenprojection for this eigenvalue.

As the only eigenvalues of T�χ�P�χ� are 0 and λ�χ�; we will consider

λ�χ� − λ = tr��T�χ� − λ�P�χ��:
Combining (7) and substitution for R�ζ; χ� from (4) give the Taylor series
expansion [Kato (1966), page 79]

λ�χ� − λ = − 1
2πi

tr
∫
0
�ζ − λ�R�ζ; χ�dζ =

∞∑
n=1

χnλ�n�;

where

λ�n� =
n∑
p=1

�−1�p
p

∑
ν1+···+νp=n

k1+···+kp=p−1
νi≥1; kj≥0

tr�Tν1S�k1� · · ·TνpS�kp��;(8)

with S�0� = −P, S�n� = Sn: Here S is the reduced resolvent of T with respect
to the eigenvalue λ:
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3. Chernoff-type bound for Markov chains. In this section, we con-
sider an irreducible finite Markov chain with transition matrix P and sta-
tionary distribution π: This transition matrix defines an operator acting on
functions by

Pf�x� =
∑
y∈G

P�x;y�f�y�:

We are interested in bounding the rate of convergence of

Pq�n−1tn ≥ γ�; where tn =
n∑
i=1

f�Xi� − πf:

If the Markov chain is reversible, the operator P is self-adjoint on l2�π�
endowed with the inner product

�f;g� =
∑
x∈G

f�x�g�x�π�x�:

This operator P has largest eigenvalue 1 and because of irreducibility, the
constant functions are the only eigenfunctions with eigenvalue 1: These eigen-
values are denoted by

β0�P� = 1 > β1�P� ≥ β2�P� ≥ · · · ≥ β�G�−1�P� ≥ −1;

and the spectral gap by ε�P� = 1− β1�P�:
If �P;π� is not reversible, we will consider the multiplicative symmetriza-

tion K = P∗P of P: This operator K is a reversible Markov kernel with same
stationary distribution π: We will assume that K is irreducible. For instance,
this will be the case as soon as P�x; x� > 0 for every x ∈ G:

Since we will always work with a self-adjoint operator on l2�π�, every norm
considered will be the l2�π�-norm. Moreover, except for constant functions
without interest, replacing f by �f − πf�/�f − πf�∞ shows that there is no
loss of generality in assuming

πf = 0; �f�∞ ≤ 1; �f�22 ≤ b2 ≤ 1:

3.1. Reversible Markov chains. This section proves Theorem 1.1 stated in
the Introduction, by using the method of Gillman (1993). We first prove the
following lemma.

Lemma 3.1. Referring to the setting of Theorem 1.1, let r > 0: Then, for any
positive integer n,

Pq�tn/n ≥ γ� ≤ e−rnγqTP�r�n1;

where P�r� = �erf�y�P�x;y��:

Proof. By Markov’s inequality,

Pq�tn ≥ nγ� ≤ e−rnγEq exp�rtn�;
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where Eq denotes the expectation given the initial distribution q: Observe
that

Eq exp�rtn� =
∑

x0; x1;:::;xn

exp�rtn�q�x0�
n∏
i=1

P�xi−1; xi�;

where the summation is evaluated over all possible trajectories x0; x1; : : : ; xn:
By introducing the operator P�r� = �erf�y�P�x;y��; we obtain the expression

Eq exp�rtn� = qTP�r�n1:

Lemma 3.2. Let r > 0 and Nq = �q/π�2: Then

qTP�r�n1 ≤ erNqβ
n
0�r�;

where β0�P�r�� is the largest eigenvalue of P�r�.

Proof. Let us recall that P is a self-adjoint operator in l2�π�; and intro-
duce the diagonal matrix Er = diag�erf�y��; so that P�r� = PEr: Then P�r� =√
E−1
r

√
ErP

√
Er

√
Er is similar to the self-adjoint matrix S�r� =

√
ErP

√
Er;

so its eigenvalues are real values for r ≥ 0: In this case, the Perron–Frobenius
theorem says that �S�r��2→2 = β0�P�r��; where β0�P�r�� is the largest eigen-
value of P�r�: Applying the Cauchy–Schwarz inequality in l2�π� gives

qTP�r�n1 =
〈
q

π
;P�r�n1

〉

π

≤Nq�1�2�Er/2�2→2�E−r/2�2→2�S�r�n�2→2

≤ erNqβ
n
0�P�r��:

Thus, Lemma 3.2 gives the inequality

Pq�tn/n ≥ γ� ≤ erNq exp�−n�rγ − logβ0�P�r����:(9)

Let D = diag�f�x��; then we can write

P�r� = P+
∞∑
i=1

ri

i!
PDi:

Since P ≤ P�r� ≤ erP; we get 1 ≤ β0�P�r�� ≤ er [see Kato (1966), Theo-
rem I-6.44]. It follows that β0�P�r�� is the perturbation of the eigenvalue 1
of P: The irreducibility of P implies that 1 is a simple eigenvalue and the
eigenprojection for the eigenvalue 1 is the operator π defined by

πf�x� x=
∑
x

f�x�π�x�:

Thus (8) can be used to obtain the coefficients β�n� in the Taylor series of
β0�P�r��− 1; so long as r < r0, where r0 is the convergence radius defined by
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(6). We obtain

β�n� =
n∑
p=1

�−1�p
p

∑
ν1+···+νp=n

k1+···+kp=p−1
νi≥1; kj≥0

1
ν1! : : : νp!

�fν1; S�k1�PDν2 · · ·S�kp−1�Pfνp�;(10)

where we used the following relation whatever the matrix M:

tr�πPDν1MDνp� = tr�πDν1MDνp� = �fν1;Mfνp�π :

For instance,

β�1� = �f;1�π = 0; β�2� = �f;−Sf�π − 1
2�f;f�π :

An explicit calculation gives β�2� = limn→∞Eπt
2
n/n; which is precisely the

asymptotic variance of tn:
The number of terms in the formula (10) is

C�n� x=
n∑
p=1

(
n− 1

p− 1

)(
2�p− 1�
p− 1

)
1
p
:

Furthermore, as �1/n!� ≤ 21−n and
( 2k
k

)
< 22k�kπ�−1/2, we obtain the following

inequalities for n ≥ 3:

C�n� < 1+ π−1/2
n−1∑
p=1

(
n− 1

p

)
1

p+ 1
4p ≤

(
25
4n

)
5n−2:

Thus, for n ≥ 7; we get C�n� ≤ 5n−2; but direct computations show this bound
is also valid for n ≥ 3: Finally, the Cauchy–Schwarz inequality gives

β�n� ≤ �b2/5��5/ε�P��n−1; n ≥ 2:

Hence, provided that r < ε�P�/5; we obtain

β0�P�r�� ≤ 1+ b2

ε�P�r
2
(

1− 5r
ε�P�

)−1

:(11)

Combining inequalities (9) with (11) and log�1+ x� ≤ x gives, for r < ε�P�/5;

Pq�tn/n ≥ γ� ≤ eε�P�/5Nq exp�−nQ�r��;

where Q�r� = γr− �b2/ε�P���1− 5r/ε�P��−1r2 is maximized when

r = γε�P�
b2�1+ 5γ/b2 +

√
1+ 5γ/b2�

:

We can check that r < ε�P�/5; and simple computations yield inequality
(1). 2
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3.2. Nonreversible Markov chains. This section extends the previous bound
to nonreversible Markov chains. We now consider the multiplicative sym-
metrization of P; namely, K = P∗P: Set K�r� = P∗�r�P�r� and denote its
largest eigenvalue by β0�r�: As in the previous section, Markov’s inequality
gives

Pq�tn/n ≥ γ� ≤ e−rnγqTP�r�n1

≤ e−rnγNq�1�2�P�r�n�2→2

= e−rnγNq��P�r�∗�nP�r�n�1/22→2

= e−rnγNq

√
β0; n�r�;

where β0; n�r� denotes the largest eigenvalue of �P�r�∗�nP�r�n: Result anal-
ogous to Lemma 3.2 requires the use of Marcus’ Theorem [see Marshall and
Olkin (1979), Theorem 9.H.2.a]. This theorem states that β0; n�r� ≤ β0�r�n;
whence the following inequality:

Pq�tn/n ≥ γ� ≤Nqβ
n/2
0 �r�e−rnγ:

Here again, the operator K�r� will be considered as a perturbation of K;
since we have

K�r� =K+
∞∑
i=1

ri
( i∑
j=0

1
j!�i− j�!D

jKDi−j
)
:

In the remainder of this section, we assume that K is irreducible. From here,
the arguments are exactly the same as the ones used in the proof of Theo-
rem 1.1. The coefficients β�n� in the Taylor series of β0�r� − 1 are bounded by

β�n� ≤ 2b2�2/ε�K��n−1C�n� ≤ �2/5�b2�10/ε�K��n−1:

Therefore, provided that r < ε�K�/10; we obtain

β0�r� ≤ 1+ 4b2

ε�K�r
2
(

1− 10r
ε�K�

)−1

y

hence,

Pq�tn/n ≥ γ� ≤Nq exp
[
−n

(
rγ − 4b2

ε�K�r
2�1− �10r�/ε�K��−1

)]
:

Optimizing in r < ε�K�/10; we may therefore state the following.

Theorem 3.3. Let �P;π� be an irreducible Markov chain on a finite set
G; such that its multiplicative symmetrization K = P∗P is irreducible. Let
fx G → R be such that πf = 0, �f�∞ ≤ 1 and 0 < �f�22 ≤ b2: Then, for any
initial distribution q; any positive integer n and all 0 < γ ≤ 1;

Pq�tn/n ≥ γ� ≤Nq exp
[
− nγ2ε�K�

8b2�1+ h�5γ/b2��

]
;
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where ε�K� is the spectral gap of K and

h�x� = 1
2

(√
1+ x− �1− x/2�

)
:

Obviously, with some modifications, the remarks stated in the Introduction
are also valid.

3.3. Continuous-time Markov chain. In this section, we consider an irre-
ducible continuous-time Markov chain on a finite-state space. If π denotes its
unique stationary distribution, the weak law of large numbers states that, for
any functions f;

P

[
1
t

∫ t
0
f�Xs�ds− πf ≥ γ

]
→ 0 as t→∞:

We can express the previous integral as the following limit:

1
t

∫ t
0
f�Xs�ds = lim

k→∞
k−1

k∑
i=1

f�Xit/k�:

Fix k and assume that πf = 0; �f�∞ ≤ 1 and 0 < �f�22 ≤ b2: The Markov
kernel P�t/k� satisfies

P�t/k��x;y� > 0 ∀t > 0 ∀�x;y� ∈ G2:

It follows that the Markov kernel K�t/k� = P∗�t/k�P�t/k� is irreducible. Let
β1�t/k� be the second largest eigenvalue of K�t/k� and denote its spectral gap
by ε�t/k� = 1− β1�t/k�: Hence, for all 0 ≤ γ ≤ 1; Theorem 3.3 implies

Pq

[
k−1

k∑
i=1

f�Xit/k� ≥ γ
]
≤Nq exp

[
− kγ2ε�t/k�

8b2�1+ h�5γ/b2��

]
:(12)

If 3 denotes the generator of the semigroup �Pt�; the generator of �P∗t � is
3∗: So, we deduce that, for k→∞; K�t/k� = I+ �t/k��3+3∗� + o�1/k2� and
ε�t/k� = 2�t/k�λ1+o�1/k2�; where λ1 denotes the smallest positive eigenvalue
of −�3 + 3∗�/2: Now applying Fatou’s lemma for k → ∞ to inequality (12),
gives the following theorem.

Theorem 3.4. Let �Pt; π� be an irreducible continuous-time Markov chain
on a finite set G; and 3 its infinitesimal generator. Let fx G→ R be such that
πf = 0, �f�∞ ≤ 1 and 0 < �f�22 ≤ b2: Then, for any initial distribution q; all
t > 0 and all 0 < γ ≤ 1;

Pq

[
1
t

∫ t
0
f�Xs�ds ≥ γ

]
≤Nq exp

[
− γ2λ1t

4b2�1+ h�5γ/b2��

]
;

where λ1 is the smallest positive eigenvalue of −�3+ 3∗�/2 and

h�x� = 1
2

(√
1+ x− �1− x/2�

)
:
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Finally, bounding b2 by 1 gives the boundNq exp�−γ2λ1t/12�; which is valid
for all γ ≤ 1:

Remark. Applying Lemma 3.1 with the transition matrix P�t/k� and us-
ing the following formula valid for all matrices A;B:

lim
k→∞
�exp�A/k� exp�B/k��k = exp�A+B�;

give

Pq

[
1
t

∫ t
0
f�Xs�ds ≥ γ

]
≤ e−rtγNq� exp�3�r�t��2→2;

where 3�r� = 3 + rdiag�f�x��: Thus, we get a linear perturbation of the
infinitesimal generator 3: Moreover, � exp�3�r�t��2→2 ≤ exp�−λ0�r�t�; where
λ0�r� is the smallest eigenvalue of −�3 + 3∗�/2 − rD: By using the Trotter
product formula [see Trotter (1959)], this method can be extended to general
state space ergodic Markov processes.

4. Direct method. This section develops another method to obtain upper
bound on the distribution function of the empirical measure. This method does
not require the perturbation theory of linear operators and works easily in a
more general setting.

From now on, we consider an ergodic Markov kernel P�x;dy� defined on a
general state space G; with the stationary distribution π: This kernel defines
an operator P acting on L2�π� by

Pg�x� =
∫
G
g�y�P�x;dy�:

Assume now that the condition (3) is fulfilled by P: Our goal is to obtain
an upper bound for Eπ exp�r∑n

i=1 f�Xi��; where 0 ≤ r and f is such that
�f�22 ≤ b2, πf = 0 and �f�∞ ≤ 1: Write g = exp�rf�; then

Eπ exp
(
r

n∑
i=1

f�Xi�
)
=
∫
Q�n�gdπ;

where, for all h ∈ L2�π�,
Q�1�h�x� =

∫
P�x;dy�h�y�;

Q�n+1� =
∫
P�x;dy�g�y�Q�n�h�y�:

The principle of the proof, due to Bakry and Ledoux, consists of centering each
successive term on which the operator P acts. Introduce some notation:

a0 = 1; ai = Eπ exp
(
r

i∑
j=1

f�Xj�
)
; 1 ≤ i ≤ n;

g1 = g −
∫
gdπ; gi = gPgi−1 −

∫
gPgi−1 dπ; 2 ≤ i ≤ n;

b1 =
∫
gdπ; bi =

∫
gPgi−1 dπ =

∫
g1Pgi−1 dπ; 2 ≤ i ≤ ny
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then

an = an−1b1 +
∫
Q�n�g1 dπ

= an−1b1 + an−2b2 +
∫
Q�n−1�g2 dπ

:::

=
n∑
i=1

bian−i:

Now, each bi can be bounded by using (3), since the operator P acts on the
centered functions gi−1: Actually, let α = βer, a = b2er/2; then

b1 =
∫

exp�rf�dπ = 1+ r
2

2
Eπf

2 + r
3

3!
Eπf

3 + · · · ≤ 1+ ar2;

bi ≤ βαi−2�g1�22; 2 ≤ i < n;

where we used the inequality �gi�2 ≤ αi−1�g1�2, 1 ≤ i ≤ n: Furthermore, by
Jensen’s inequality, we get

∫
exp�rf�dπ ≥ 1, so

�g1�22 =
∫

exp�2rf�dπ −
(∫

exp�rf�dπ
)2

≤ 1+ 2r2e2rEπf
2 − 1 ≤ 4ar2er:

Choose r < 1−β; so α < 1, since logβ ≤ −�1−β�:Now, as induction hypothesis,
suppose that ak ≤ φk�r�; where φ�r� = 1+Cr2 and C ≥ 4a is independent of
k: As

a1 ≤ �g�2 ≤ �1+ 4ar2�1/2 ≤ �1+ 2ar2�;
the hypothesis is true for k = 1 and the induction hypothesis gives

ak ≤
{
�1+ ar2�φk−1�r� + 4ar2αk−1

k−2∑
i=0

�φ�r�/α�i
}

≤
{
�1+ ar2�φk−1�r� + 4ar2αφk−1�r�

φ�r� − α

}

≤ φk−1�r��1+ 4ar2�1− α�−1�:

Choosing C = 4a�1 − α�−1; it follows that the induction hypothesis is valid.
Hence, for every 0 ≤ γ < 4b2 and r = γ�1− β�/�4b2�; we obtain, by Markov’s
inequality,

Pπ�tn/n ≥ γ� ≤ exp�−n�rγ − 2b2r2er�1− βer�−1��

= exp
{
−n�1− β�γ

2

8b2

(
2− �1− β� exp��γ�1− β��/4b2�

1− β exp��γ�1− β��/4b2�

)}
:
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Assume now that γ ≤ 2b2: As ex ≤ 1+4x/3; for x ≤ 1/2; we get the following:

Pπ�tn/n ≥ γ� ≤ exp
{
−n�1− β�γ

2

8b2

(
1− γ

2b2

)}
:(13)

This method is directly applicable to general Markov chains and gives the
same type of asymptotic bound as the one obtained by the perturbation method
for finite nonreversible Markov chains. Observe, however, that for finite re-
versible Markov chains the bound (13) involves the constant β; instead of the
second largest eigenvalue of the kernel P:

Inequality (13) can be extended to continuous time by assuming that f is
continuous and bounded and

sup��Ptg�2/�g�2; πg = 0� ≤ e−tλ ∀t ≥ 0 and λ > 0:(14)

Arguing as in the proof of Theorem 3.4, we get that, for every γ ≤ 2b2;

Pπ

[
1
t

∫ t
0
f�Xs�ds ≥ γ

]
≤ exp

{
−γ

2tλ

8b2

(
1− γ

2b2

)}
:

An exponential inequality applicable for all 0 ≤ γ ≤ 1 can be obtained
by following the proof of the Prokhorov’s inequality for independent random
variables given in Stout (1974). We obtain the following inequality, when
qπ, Eπf = 0, �f�∞ ≤ a and �f�22 ≤ b2:

Pπ�tn/n ≥ γ� ≤ exp
{
− γ

2a
arcsinh

(
nγa�1− β�

4b2

)}
:

Proof. For every x≥0, ex≥ ex: Therefore,Eπ exp�rtn�≤ exp�Eπ exp�rtn�−
1�: Let Q�x� = Pπ�tn ≤ x�y we get

Eπ exp�rtn� ≤ exp
[∫
�exp�rx� − 1�dQ�x�

]
:

Moreover, Q assigns mass 1 to the interval �−na;na� and
∫
xdQ�x� = 0;

∫
x2 dQ�x� = Eπ�t2n� ≤ 2nb2�1− β�−1:

Thus,

Eπ exp�rtn� ≤ exp
[∫
�exp�rx� − 1− rx�dQ�x�

]

≤ exp
[
2
∫
�cosh�rx� − 1�dQ�x�

]
:

As the function h�x� = cosh�rx� − 1 is even and convex, we obtain
∫
h�x�dQ�x� ≤

∫
h�x�dQ1�x�;
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where Q1 assigns mass only to 0 and to na; with as much mass as possible
assigned to na without violating

∫
x2 dQ1�x� ≤ 2nb2�1− β�−1y

thus, Q1�na� ≤ �2b2��n�1− β�a2�−1: This yields

Eπ exp�rtn� ≤ exp
{

4b2

na2�1− β��cosh�rna� − 1�
}
:

Hence, for any r ≥ 0;

Pπ�tn/n ≥ γ� ≤ exp
{
−nγr+ 4b2

na2�1− β��cosh�rna� − 1�
}
:

Differentiation shows that

r = �na�−1 arcsinh�naγ�1− β��4b2�−1� x= �na�−1θ

minimizes the right-hand side of the above inequality. It suffices to show
cosh θ− 1 ≤ �θ sinh θ�/2: But the above inequality can easily be deduced from

∀x ∈ R; ex�2− x� + e−x�2+ x� ≤ 4:

Another proof, due to Ledoux, can be developed for continuous-time Markov
chain under the weaker assumption that the function f is bounded, measur-
able and hypothesis (14) is fulfilled. Let Yt =

∫ t
0 f�Xs�ds; then, for all k ≥ 1,

Yk
t = k!

∫ t
0
ds1

∫ t
s1

ds2 · · ·
∫ t
sk−1

f�Xs1
�f�Xs2

� · · ·f�Xsk
�dsk;

EπY
k
t = k!

∫ t
0
du1

∫ t−u1

0
du2 · · ·

∫ t−�u1+···+uk−1�

0
duk

∫
fPu2

�f · · · �fPukf� · · ·�dπ:

Let a2;:::;k= �
∫
fPu2

�f · · · �fPukf� · · ·�dπ�; then, using (14) and the centering
method gives the inequality

a2;:::;k ≤ �f�22
(
exp�−�u2 + · · · + uk�λ� + a2 exp�−�u4 + · · · + uk�λ�

+ · · · + a2;:::;k−2 exp�−ukλ�
)
:

An iteration of this inequality shows that a2;:::;k is bounded by a sum of at
most 2k−1 of such terms: �b2�s+1 exp�−�m2 + · · · +mk�λ�; where mi = 0 or ui
and s is the number of mi 6= ui with 0 ≤ s ≤ �k/2� − 1: This implies

Eπ exp�rYt� ≤ 1+
∞∑
k=2

rk2k−1
�k/2�∑
s=1

�b2t�s
s!

λs−k

≤ 1+ �2− 4r/λ�−1
∞∑
s=1

�4b2r2t/λ�s
s!

;
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so long as 2r/λ < 1: For 2r/λ ≤ 1/2; this yields Eπ exp�rYt� ≤ exp�4b2tr2λ−1�:
Optimizing in r ≥ λ/4 together with Markov’s inequality, it follows that, for
every 0 ≤ γ ≤ 2b2;

Pπ

[
1
t

∫ t
0
f�Xs�ds ≥ γ

]
≤ exp

[
−γ

2tλ

16b2

]
:

5. Some reflections on simulation. This last section shows how Theo-
rem 1.1 can be combined with quantification of the closeness to stationarity,
in order to compute the simulation time required to obtain a sufficiently ac-
curate estimate. More precisely, we will consider the algorithm suggested by
Aldous (1987).

The constant Nq. As it has already been said before, the coefficientNq =
�q/π�2 may be large but always bounded by π−1/2

∗ ; where π∗ = min�π�y�x y ∈
G�: Furthermore, Nq = 1 when q = π: This fact suggests that it might be
better to begin the computation of tn only when the distribution of the Markov
chain is close to π: For instance, if the Markov chain is ergodic (i.e., irreducible
and aperiodic), the distribution πn of Xn converges to π exponentially as n
tends to infinity. In that case, the simulation can be split into two phases.
During the first one, the Markov chain approaches the stationary distribution
sufficiently close to eliminate the “bias” from the initial position X0; while the
second one is the period of time necessary before tn is a reasonable estimate
of πf:

Let πn be the distribution of Xn for the initial distribution q; and

N2
n = �πn/π�22 =

∑
x

π�x�
(∑

y

q�y�Pn�y;x�/π�x�
)2

:

Then, the time until the distribution is close to stationary can be formalized
by a parameter τ; defined as

τ = min
{
nx Nn ≤

√
1+ 1/e2} = min�nx ��πn/π� − 1�2 ≤ 1/e�:

From now on, we consider reversible and aperiodic Markov chains. Instead
of working with Nn; we will use the chi-square distance ��πn/π� − 1�2: We
have

��πn/π� − 1�22 ≤
∑
x;y

π�x�q�y��Pn�y;x�/π�x� − 1�2

≤ sup
y
�Pn�y; ·�/π�·� − 1�2 = �Pn − π�22→∞

≤ �Pn1�22→∞�Pn2 −Eπ�22→2;

where the first inequality follows from the Cauchy–Schwarz inequality and
n1 + n2 = n: From the last inequality, we deduce

��πn/π� − 1�2 ≤ min
n1+n2=n

D�n1��Pn2 −Eπ�2→2

≤ �1/π∗ − 1�1/2µ�n�;
(15)
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where D�n1� = �Pn1�2→∞ and µ�n� = �Pn −Eπ�2→2: Finally, an upper bound
for µ�n� is accomplished by using the inequality µ�n� ≤ β∗�P�n; where

β∗�P� = max��β�G�−1�P��; β1�P��:

See Diaconis and Saloff-Coste (1993) and Fill (1991) for more details. Combin-
ing this inequality with (15) gives

��πn/π� − 1�2 ≤ �1/π∗ − 1�1/2β∗�P�n:(16)

We are interested in determining the sufficient total number of steps for
the simulation, ne = τ + n; such that

Pq

[∣∣∣∣n
−1

τ+n∑
i=τ+1

f�Xi�
∣∣∣∣ ≥ γ

]
≤ α;(17)

where α < 1 is a small constant such as 0:05; for instance. Then with the
setup of Theorem 1.1, the inequality (2) stated in Remark 3 gives

Pq

[∣∣∣∣n
−1

τ+n∑
i=τ+1

f�Xi�
∣∣∣∣ ≥ γ

]
≤ 2 exp�−nγ2ε�P�/12�:(18)

Moreover, different techniques can be used to get a bound on τ; such as eigen-
values and geometric techniques or coupling [see Aldous and Fill, Fill (1991),
Diaconis and Saloff-Coste (1996a, b)]. For instance, Poincaré inequality gives
upper bound for µ�n� [see Diaconis and Saloff-Coste (1996a)], whereas, when
applicable, Nash and Log-Sobolev inequalities allow us to bound D�n� [see
Diaconis and Saloff-Coste (1996b)].

Examples. The following examples deal with the Metropolis algorithm,
a widely used tool in simulation. Consider G = �0;1; : : : ;N� and π a fixed
distribution. We would like to construct an irreducible Markov chain M�x;y�
whose stationary distribution is π: The Metropolis algorithm begins with a
base chain P�x;y� on G which is modified by an auxiliary randomization. We
will assume that P is irreducible and aperiodic and that P�x;y� > 0 implies
P�y;x� > 0: Let

A�x;y� =
{
π�y�P�y;x�/�π�x�P�x;y��; if P�x;y� > 0;
0; otherwise.

Formally, the Markov kernel M is

M�x;y�=





P�x;y�; if A�x;y� ≥ 1; x 6= y;
P�x;y�A�x;y�; if A�x;y� < 1;

P�x;y� +
∑

zxA�x; z�<1

P�x; z��1−A�x; z��; if x = y:
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We can easily prove that M is reversible and aperiodic. For the present
examples, we take the base chain to be the nearest-neighbor random walk

P�x; x+ 1� = P�x; x− 1� = 1/2; 1 ≤ x ≤N− 1;

P�0;1� = P�0;0� = P�N;N− 1� = P�N;N� = 1/2:

Binomial distribution. The stationary distribution is π�x� = 2−N
(
N
x

)
:

The standard Metropolis construction gives [see Diaconis and Saloff-Coste
(1996a)]

M�x;y�=





1/2; if

{
y=x+1; 0≤x≤�N− 1�/2;
y=x−1; �N+1�/2≤x≤N;

x/2�N− x+ 1�; if y = x− 1; 1 ≤ x ≤ �N+ 1�/2;
�N−x�/2�x+1�; if y=x+1; �N−1�/2≤x≤N−1;

�N−2x+1�/2�N−x+1�; if y=x; 0≤x≤�N+1�/2;
�2x−N+1�/2�x+1�; if y=x; �N−1�/2≤x≤N:

Here 1/N ≤ 1−β1�M� ≤ 2/N, π∗ = 2−N; and βN�M� ≥ −1+2 minM�x; x� ≥
−1/2: Furthermore, it is shown in Diaconis and Saloff-Coste (1996a), by using
the Log-Sobolev inequality, that

�Mn�x; ·�/π − 1� ≤ �1+ 2e2�1/2e−c for n ≥ �N/2��logN+ 2c� + 1:

In other words, we find that approximate equilibrium is reached for τ of the
order of N logN, whereas inequality (16) asserts approximate randomness for
τ of order N2: We thus see, using inequality (2) (i.e., with τ = 0), that order
�N/γ�2 steps are sufficient for condition (17) to hold, whereas inequality (18)
improves the running time, since we get ne of the order of N�logN+ 1/γ2�:

Exponential fall-off. In this example, given in Diaconis and Saloff-
Coste (1995), the stationary distribution is

π�i� = z�a�ah�i�; 0 < a < 1; z the normalizing constant:

Then, assuming

h�i+ 1� − h�i� ≥ c ≥ 1; 0 ≤ i ≤N− 1;

the Metropolis chain is given by

M�i; i− 1� = 1/2; M�i; i� = 2−1�1− ah�i+1�−h�i��;
M�i; i+ 1� = 2−1ah�i+1�−h�i�; 1 ≤ i ≤N− 1;

M�0;0� = 1− 2−1ah�1�−h�0�; M�0;1� = 2−1ah�1�−h�0�;

M�N;N− 1� =M�N;N� = 1/2:
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Here, the second eigenvalue of this chain satisfies

β1 ≤ 1− 2−1�1− ac/2�2:
See Diaconis and Saloff-Coste (1995) for the proof based on a Poincaré in-
equality. Moreover, βN ≥ −1 + 2 minM�x; x� ≥ −1 + 2�1/2 − ac/2� = −ac:
Thus,

β∗ ≤ max�1− 2−1�1− ac/2�2; ac�:(19)

Moreover, inequality (19) says order N steps are sufficient to reach station-
arity. It follows that, using inequality (18), condition (17) holds for ne of the
order of N; whereas applying inequality (2) gives ne of the order of N/γ2:
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