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MULTI-ARMED BANDITS IN DISCRETE
AND CONTINUOUS TIME1

By Haya Kaspi and Avishai Mandelbaum

Technion–Israel Institute of Technology

We analyze Gittins’ Markovian model, as generalized by Varaiya, Wal-
rand and Buyukkoc, in discrete and continuous time. The approach resem-
bles Weber’s modification of Whittle’s, within the framework of both multi-
parameter processes and excursion theory. It is shown that index-priority
strategies are optimal, in concert with all the special cases that have been
treated previously.

1. Introduction. A multi-armed bandit is a control model that supports
dynamic allocation of scarce resources in the face of uncertainty [2, 3, 8, 15].
Each arm of the bandit represents an ongoing project and pulling arms corre-
sponds to allocating resources among the projects. In a discrete-time model,
arms are pulled one at a time and each pull results in a reward. This is in
contrast to continuous time, where a more appropriate view is that of a re-
source (time, effort) which is to be allocated simultaneously among the arms
while accruing rewards continuously. The goal is to identify optimal allocation
strategies, and in this paper it is achieved for bandits with independent arms
and random rewards, discounted over an infinite horizon.

Specifically, we analyze Gittins’s Markovian model [9, 8] in discrete and con-
tinuous time, as generalized by [18] and [13] in the spirit of [17]. The approach
resembles Weber’s [20] modification of [21] (see also [5–7]), within the frame-
work of both multiparameter processes [12, 13] and excursion theory [11]. It
differs from [6, 7], which take a martingale-based approach. The outcome is a
rigorous proof that is shorter and, in our opinion, conceptually clearer than its
predecessors, both in discrete time [18, 5, 3, 12] but especially in continuous
time [6, 7, 13, 14]. Of interest also is the connection with general excursion
theory [1]; see, for example, the index representation (33), which generalizes
(4.3) in [11] from a Markovian setting.

The continuous-time model is formulated and its solution presented in Sec-
tion 2. One could view discrete-time bandits as a special case of continuous
time, where rewards and information change only on a discrete set of pre-
dictable epochs. Nevertheless, Section 3 constitutes a self-contained treatment
in discrete time: being short and accessible, it provides an introduction to the
solution in continuous time, by highlighting main ideas that are not obscured
by (unavoidable) technicalities. Properties of the index process are developed
in Section 4 and used, in Section 5, to solve the multi-armed bandit problem.
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2. Problem formulation and solution.

2.1. Primitives. Let T = �0;∞�, D = �1; : : : ; d�. A d-armed bandit model
is constructed in terms of adapted stochastic processes �Zk;F k�, k ∈ D, on a
common probability space ��;F P�x Zk = �Zk�t�; t ∈ T �, where the random
variable Zk�t� is the reward rate obtained after pulling arm k for t units
of time; F k = �F k�t�; t ∈ T � is a filtration in F and the σ-field F k�t�
models the information accumulated from pulling arm k for t units of time;
�Zk�0�;F k�0�� is the initial state of affairs associated with time 0; finally,
adaptedness means that, for each k ∈ D, Zk�t� ∈ F k�t�, for all t ∈ T . We
assume further:

1. Integrability: for a given β > 0, P
∫∞

0 e−βt�Zk�t��dt < ∞, for all k ∈ D.
(Pf denotes the integral of measurable function f with respect to the mea-
sure P.)

2. Independence: the filtrations F k, k ∈ D, are independent.
3. Regularity: the filtrations F k, k ∈ D, satisfy the usual hypotheses of right-

continuity and completeness [4].

2.2. Strategies. Put S = T d. An allocation strategy T = �T�t�; t ∈ T � is
an S-valued stochastic process: T�t� = �T1�t�; : : : ;Td�t��, where Tk�t� is the
total amount of time that T allocates to arm k during the first t units of time.
Formally,

T�0� = 0 and T�t� is nondecreasing in t ≥ 0;(1)

T1�t� + · · · +Td�t� = t; t ∈ T ;(2)

�T�t� ≤ s� ∈ F �s�; t ∈ T ; s ∈ S;(3)

where

F �s� = F 1�s1� ∨ · · · ∨ F d�sd�:
Property (3) captures the nonclairvoyant nature of T [13]. By (1) and (2), each
Tk is Lipschitz and thus absolutely continuous. Hence, one can talk about
rates of increase of each Tk. (In the theory of multiparameter processes, T�t�
is a stopping point in S; an allocation strategy is called an optional increasing
path [19]; being a nondecreasing family of stopping points, T is also referred
to as a multiparameter random time change.)

Under a strategy T, the reward rates of the bandit at actual time t ≥ 0 are
given by the random vector �Z1�T1�t��; : : : ;Zd�Td�t���, and the information
available then is the σ-field

{
B ∈ F x B ∩ �T�t� ≤ s� ∈ F �s�; ∀ s ≥ 0

}
:

The present value of T is taken to be

v�T� = P
∫ ∞

0
e−βt

d∑
k=1

Zk�Tk�t��dTk�t�;(4)
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where β is the discount factor from the integrability condition. Also, in view
of integrability, the value function v�T� is bounded, as a function of T.

2.3. Solution. The d-armed bandit problem is to identify the optimal
strategies that attain the optimal value V = supT v�T�. We describe such
strategies in terms of adapted index processes �0k;F k�, k ∈ D, given by

0k�t� = ess sup
τ>t

Pkt
∫ τ
t e
−βuZk�u�du

Pkt
∫ τ
t e
−βu du

:(5)

Here τ is a stopping time with respect to F k and Pkt is an abbreviation for
the conditional expectation given F k�t�. (0k is finite, as a consequence of the
integrability condition; it is also progressively measurable, see [6].) Note also
that the 0k’s are independent since the definition of each 0k entails data of
only arm k, that is, 0k ∈ F k. Introduce the lower envelope 0k of each 0k by

0k�t� = inf
0≤u≤t

0k�u�; t ∈ T :(6)

Let Mk be the closure of the set �t ≥ 0x 0k�t� = 0k�t��. Elements in the
complement of Mk are excursion times of 0k from its lower envelope 0k. They
constitute an open set, which is a countable union of disjoint open excursion
intervals.

A strategy T̂ = �T̂1; : : : ; T̂�d is an index strategy if each T̂k = �T̂k�t� ≥ 0�
right increases at a time t ≥ 0 only when

0k
[
T̂k�t�

]
=

d∨
j=1

0j
[
T̂j�t�

]
;(7)

and Mk includes all the times that are either left increase of T̂k but not right
increase or on which T̂k increases at a rate smaller than 1. This definition
mathematically articulates two properties: first, T̂ follows the leader (largest)
among the index processes; second, over an excursion interval, time must be
allocated exclusively to a single arm, without switching. Index strategies need
not be unique, as discussed in [13]. Nonuniqueness arises when time is allo-
cated simultaneously to two arms, say arms j 6= k (this must happen during
epochs that are in both Mj and Mk), and they start an excursion interval
simultaneously (necessarily from the same level). In such circumstances, an
index strategy must allocate time only to a single arm, at least until the end
of its present excursion, and the prescription of an index strategy leaves the
choice of this single arm unresolved. (To the best of our understanding, the
“synchronization identity” of [7] does not quite address this problem.) Our so-
lution of the bandit problem requires that this resolution must depend on the
path strictly before the excursion starts, as made precise at the beginning of
Section 5. One way of ensuring this is through the enforcement of priorities
[13]: a static priority scheme is a permutation �i1; : : : ; id� of D; T̂ is an index-
priority strategy if it adheres to such a scheme, namely, it allocates time at t
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to arm im, m > l, only when

0il
[
T̂il�t�

]
> 0il�u� for all u > T̂il�t�:

Theorem 1. Index-priority strategies exist and are optimal. Furthermore,
the optimal value is expressed in terms of the lower envelopes of the indices as

V = P
∫ ∞

0
e−βt

d∨
k=1

0k
[
T̂k�t�

]
dt;(8)

where T̂ = �T̂1; : : : ; T̂d� is any index-priority strategy.

Index-priority strategies were constructed in Section 5.1 of [11] (see (3.29)
of [7] as well). We also recommend Section 5.2 in [11] for an illuminating
sample-path decomposition of the switched process �01�T̂1�; : : : ; 0d�T̂d��,
which demonstrates the role that local time plays in quantifying switching in
continuous time.

Theorem 1 provides sufficient conditions for optimality. As for necessity, it
will become apparent from our proof that there exist optimal strategies that do
not adhere to static priorities (assigning priorities predictably suffices). Since
we have been unable to completely characterize the class of optimal strategies,
we have decided not to elaborate any further on priority rules which, even
when treated in full generality, will still provide only a partial answer to the
above sought-after characterization.

2.4. Deteriorating bandits. The proof of Theorem 1 entails a reduction of
the general bandit problem to that of a deteriorating bandit, for which the
solution is immediate. A d-armed bandit is deteriorating if its rewards do not
improve with time, that is,

Zk�t� ≥ Zk�u� for all t ≤ u and k ∈ D:

It is directly verifiable that the optimal strategies T̂ for deteriorating bandits
are myopic. Indeed, when present rewards always dominate future ones, the
discounting implies that T̂ is optimal if and only if it prescribes pulling arms
with maximal immediate rewards [0k = Zk in (7)]; its value is then given by

V = v�T̂� = P
∫ ∞

0
e−βt

d∨
k=1

Zk
[
T̂k�t�

]
dt:(9)

2.5. Reduction. A comparison between (8) and (9) reveals a connection
between the bandit �Zk;F k� and the deteriorating bandit �0k;F k�, k ∈ D.
The proof of Theorem 1 is based on this connection, which is further articulated
in Theorem 2 below. Specifically, we prove in Section 5 that, for any strategy T,

v�T� ≤ P
∫ ∞

0
e−βt

d∑
k=1

0k�Tk�t��dTk�t�;(10)
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while equality prevails for index-priority strategies T̂, namely,

v�T̂� = P
∫ ∞

0
e−βt

d∑
k=1

0k
[
T̂k�t�

]
dT̂k�t�:(11)

The relations (10) and (11) yield Theorem 1. This is verified first by observ-
ing that any strategy that follows the leader, also follows the leader with 0k

replacing 0k, k ∈ D. Thus, any index-priority strategy T̂ is optimal for the de-
teriorating �0k;F k�, k ∈ D. As such, T̂ maximizes the right-hand side of (10)
over T, its value dominates V and is equal to (11). This establishes that index-
priority strategies are optimal and their value, as follows from (9), coincides
with the right-hand side of (8).

Our optimality result can be summarized by the following.

Theorem 2. Let �Zk;F k�; k ∈ D, be a d-armed bandit that satisfies the
integrability, independence and regularity conditions. Then there exists a de-
teriorating bandit �0k;F k�; k ∈ D, with 0k given in (6), that is equivalent to
the original bandit in the following sense:

(i) the value of both bandits is equal to (8);
(ii) the classes of optimal strategies for both bandits coincide except that, for

the original bandit, if T is optimal and 0k�Tk�t�� > 0k�Tk�t�� with 0k in (5),
then, at that time t, Tk�t� right increases at rate 1.

Remark. Following the leader while adhering to a static priority could,
conceivably, contradict if the indices of two arms that are pulled simultane-
ously jump upwards at the same time and the new index of the arm with the
lower priority is higher than that of the arm with the higher priority. As will
be shown in Section 5, it is impossible for two arms, pulled together by an
index-priority strategy, to leave their respective M’s at the same time due to
a jump of one or two of the indices upwards. This follows from the fact that
such jumps of the indices occur at totally inaccessible stopping times for both
arms. Thus, if two arms start an excursion from their set of index minima
at the same time (and necessarily from the same level), they start from a
continuity point of their indices. Therefore, static priorities and following the
leader among the indices do not contradict.

3. Bandits in discrete time. The multi-armed bandit problem will be
now formulated and solved in discrete time. The continuous-time bandit can
be viewed as a limit of discrete-time models, taken as the durations of periods
between pulls converge to zero [13]. This helps explain the main difference
between discrete and continuous time: in the former, time is allocated only to
a single arm at a time; as durations shrink, the limit is such that time can be
allocated simultaneously and continuously among the arms.

3.1. Primitives. Let N = �0;1;2; : : :�. The primitives are now adapted
stochastic sequences �Zk;F k�, k ∈ Dx Zk = �Zk�n�; n ∈ N �, where Zk�n�
is the reward obtained from pull n of arm k; F k = �F k�n�; n ∈ N �, where
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F k�n� is the information accumulated during the first n pulls of arm k. The
integrability condition now takes the form E

∑∞
n=0 α

n�Zk�n�� <∞, for a given
discount factor 0 < α < 1 and all k ∈ D, and the independence and regularity
conditions are unaltered.

3.2. Strategies. Put S = N d. An allocation strategy T = �T�t�; t ∈ N � is
an S-valued stochastic sequence: T�t� = �T1�t�; : : : ;Td�t��, where Tk�t� is the
number of pulls of arm k during the first t pulls of the bandit’s arms. Formally,
T satisfies (1)–(3), with n ∈ N replacing t ∈ T . Property (2) is equivalent to
the fact that only one arm is pulled each time. The value of a strategy T is

v�T� = P
∞∑
t=0

αt
d∑
k=1

Zk�Tk�t���Tk�t+ 1� −Tk�t��:

3.3. Solution. The solution to the d-armed bandit problem uses the index
sequences �0k;F k�, k ∈ D, where

0k�n� = ess sup
τ≥n+1

Pkn
∑τ−1
m=n α

mZk�m�
Pkn

∑τ−1
m=n α

m
; n ∈ N ;(12)

and it is given by the following.

Theorem 1D. The class of optimal strategies coincides with the class of
index strategies T̂; which pull arms with the highest index. Formally, an index
strategy is a strategy T̂ for which

T̂k�t+ 1� = T̂k�t� + 1 only when 0k
[
T̂k�t�

]
=

d∨
j=1

0j
[
T̂j�t�

]
;(13)

for all t ∈ N and k ∈ D. Furthermore, the optimal value is given by

V = P
∞∑
t=0

αt
d∨
k=1

0k
[
T̂k�t�

]
:(14)

3.4. Reduction to deteriorating bandits. In a deteriorating bandit,Zk�n� ≥
Zk�n+ 1�, for all n ∈ N and k ∈ D. A strategy T̂ is optimal for a deteriorating
bandit if and only if it always pulls arms with maximal immediate rewards
[0k = Zk in (13)]; its value is then given by

V = v�T̂� = P
∞∑
t=0

αt
d∨
k=1

Zk
[
T̂k�t�

]
:(15)

To establish Theorem 1D, one proves that, for every strategy T,

v�T� ≤ P
∞∑
t=0

αt
d∑
k=1

0k�Tk�t���Tk�t+ 1� −Tk�t��;(16)

with equality for index strategies T̂ as in (13), namely,

v�T̂� = P
∞∑
t=0

αt
d∑
k=1

0k
[
T̂k�t�

][
T̂k�t+ 1� − T̂k�t�

]
:(17)
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The relations (16) and (17) yield Theorem 1D. This is verified exactly as in
continuous time, with the arguments in the paragraph that follows (11): simply
replace (10), (11), (9) and (8) there by (16), (17), (15) and (14), respectively. For
the converse, it is easy to show that a strategy that starts with arm k with
0k�0� < ∨d

j=1 0
j�0� is not optimal.

3.5. Summary. An index strategy that satisfies (13) follows the leader
among 01; : : : ; 0d. Equivalently, for each k ∈ D,

T̂k�t+ 1� = T̂k�t� + 1 only when 0k�Tk�t�� =
d∨
j=1

0j�Tj�t��(18)

together with

0k�Tk�t�� > 0k�Tk�t�� implies T̂k�t+ 1� = T̂k�t� + 1;(19)

for all t ∈ N . Hence, T̂ is optimal for the d-armed bandit �Zk;F k�, k ∈
D, if and only if it is optimal for the deteriorating �0k;F k�, k ∈ D, and it
switches arms only at times when the active index process coincides with its
lower envelope (e.g., by enforcing a static priority among the arms [13]). Our
optimality result can thus be summarized by the following theorem.

Theorem 2D. Let �Zk;F k�; k ∈ D; be a discrete-time d-armed bandit that
satisfies the integrability, independence and regularity conditions. Then there
exists a deteriorating bandit �0k;F k�; k ∈ D; with 0k being the lower envelope
of (12), which is equivalent to the original bandit in the following sense:

(i) the value of both bandits equals (14);
(ii) the classes of optimal strategies for both bandits coincide (up to (19)).

Specifically, T̂ is optimal if and only if it adheres to (13) or, equivalently, to
both (18) and (19).

Theorem 2D was anticipated in [12], Theorem 1′ there and its succeeding
Remark. (Note, however, that our relation (16) is the “right” articulation of
(2.8) in [12].)

3.6. The index sequence. We now focus on a single arm; hence its identifier
k will be suppressed as long as no confusion arises. Fix an arm �Z;F �, a time
n ∈ N and a scalar γ. Associate with the arm a value vn�γ�, for playing it
optimally after time n until stopping, while paying γ for each pull. Formally,

vn�γ� = ess sup
τ≥n+1

Pn

τ−1∑
m=n

αm�Z�m� − γ�;(20)

where Pn is the conditional expectation with respect to F �n� and τ is a stop-
ping time with respect to F . As a function of γ, vn�·� is nonincreasing and
convex, being an upper envelope of γ-affine decreasing functions. By the inte-
grability condition for Z, it is also finite hence continuous, with vn�−∞� = ∞
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and vn�∞� = −∞. One concludes that vn�·� has a unique zero. Denote it by

0�n� = v−1
n �0�(21)

and call 0 = �0�n�; n ∈ N � the index sequence associated with arm �Z;F �.
We now verify the equivalence of (21) and (12).

To solve (20), apply Snell’s optimal-stopping theory [17] to X�m� =∑m−1
j=n α

j�Z�j� − γ�, m ≥ n + 1, as in Section 6.3 of [12]: τn�γ� = inf�m ≥
n+ 1x vm�γ� ≤ 0� is the stopping time that attains vn�γ� in (20). By (21) and
properties of vn�·�, also

τn�γ� = inf
{
m ≥ n+ 1x 0�m� ≤ γ

}
; n ∈ N :(22)

The equivalence of (21) and (12) is essentially the relation vn�0�n�� = 0. In-
deed,

vn�0�n�� = 0 ≥ Pn
τ−1∑
m=n

αm�Z�m� − 0�n��;

for all stopping times τ ≥ n+ 1, with equality to 0 attained by

τn�0�n�� = inf
{
m ≥ n+ 1x 0�m� ≤ 0�n�

}
:(23)

One deduces for 0�n� in (21) that

0�n� = ess sup
τ≥n+1

Pn
∑τ−1
m=n α

mZ�m�
Pn

∑τ−1
m=n α

m
= Pn

∑τn�0�n��−1
m=n αmZ�m�

Pn
∑τn�0�n��−1
m=n αm

;(24)

namely, (12). Our proofs require a generalization of (24) in three aspects: an
augmentation of F , a randomization of time n and a manifestation that dilat-
ing the discounting αm can only hurt. Such a generalization is the following.

Proposition 3. Let G be a σ-field that is independent of the filtration F .
Then, for every stopping time ε with respect to F �·� ∨G ,

0�ε� = ess sup
ζ�·�

P̃ε
∑∞
m=ε α

ζ�m�Z�m�
P̃ε

∑∞
m=ε α

ζ�m�
= P̃ε

∑τε�0�ε��−1
m=ε αmZ�m�

P̃ε
∑τε�0�ε��−1
m=ε αm

:

Here ζ�·� stands for random sequences with the properties that ζ�n� = ∞ is
allowed,

ζ�n� ∈ F �n� ∨G and ζ�n� − n is nondecreasing; n ∈ N y(25)

P̃ε denotes conditional expectation with respect to the pre-ε σ-field �Bx B ∩
�ε = n� ∈ F �n� ∨G ; ∀n ∈ N �; finally

τε�0�ε�� = inf
{
m ≥ ε+ 1x 0�m� ≤ 0�ε�

}
:
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Proof. Augmentation and randomization are straightforward to accom-
modate. The ζ-discounting amounts to the following randomized version of
(20) (see, e.g., (7.5) in [12]):

vn�γ� = ess sup
ζ�·�

P̃n

∞∑
m=n

αζ�m��Z�m� − γ�: 2

3.7. Excursions. For later use, we decompose the evolution of the index
sequence into excursions from its lower envelope. To this end, introduce a
sequence of stopping times

ε�0� = 0y ε�l+ 1� = inf
{
m ≥ ε�l� + 1x 0�m� ≤ 0�ε�l��

}
; l ∈ N :

Then �ε�l�x l ∈ N � = �n ∈ N x 0�n� = 0�n��, and each ε�l� is the start of
an excursion interval out of the latter set. Write these intervals as I �l� =
�ε�l�; ε�l+ 1��, l ∈ N and observe the relations

0�ε�l�� = 0�ε�l�� = 0�m�; m ∈ I �l�y
τε�l��0�ε�l��� = ε�l+ 1�:

(26)

3.8. Proof of (16) and (17). We now add again a superscript k to indi-
cate an affiliation with arm k. Denote by P̃kn the conditional expectation with
respect to

F̃ k�n� = F k�n�
∨
j6=k

F j�∞�; n ∈ N ;

which is an augmentation of F k by an independent σ-field. Fix a strategy T
and let

ζk�n� = inf
{
tx Tk�t+ 1� > n

}
; n ∈ N :

Under T, the nth pull of arm k is pull number ζk�n� of the bandit. Starting
with (16), the value of T has the representations

v�T� = P
d∑
k=1

∞∑
t=0

αtZk�Tk�t���Tk�t+ 1� −Tk�t��

= P
d∑
k=1

∞∑
n=0

αζ
k�n�Zk�n�

= P
d∑
k=1

∞∑
l=0

P̃k
εk�l�

∑

m∈I k�l�
αζ

k�m�Zk�m�:

The sequence ζ, given by ζ�m� = ζk�m�, m < εk�l+ 1�, and ζ�m� = ∞ other-
wise, has the properties in (25). It follows from Proposition 3 that

P̃k
εk�l�

∑
m∈I k�l� α

ζk�m�Zk�m�
P̃k
εk�l�

∑
m∈I k�l� αζ

k�m�
≤ 0k�εk�l��;(27)
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for all k and l. The observation (26) now yields

v�T� ≤ P
d∑
k=1

∞∑
l=0

0k�εk�l��P̃k
εk�l�

∑

m∈I k�l�
αζ

k�m�

= P
d∑
k=1

∞∑
l=0

P̃k
εk�l�

∑

m∈I k�l�
αζ

k�m�0k�m�

= P
d∑
k=1

∞∑
t=0

αt0k�Tk�t���Tk�t+ 1� −Tk�t��;

which is precisely (16).
As for (17), it is a consequence of the fact that any index strategy T̂ satisfies

(27) with an equality. Indeed, under T̂, pull ζ�εk�l�� of the bandit is the εk�l�th
pull of arm k. By (13), T̂ stays with arm k also for the next εk�l+1�−εk�l�−1
pulls or, formally,

ζk�m� = ζ�εk�l�� − εk�l� +m; m ∈ I k�l�:

Substituting these relations into (27), cancelling out αζ�ε
k�l��−εk�l� ∈ F̃ k�εk�l��,

and recalling that εk�l+ 1� attains the ess sup in Proposition 3, applied with
ε = εk�l�, establishes (17). 2

3.9. The fundamental identity. The formula for the value in Theorem 1D,
when specialized to a single arm, yields

P
∞∑
n=0

αnZ�n� = P
∞∑
n=0

αn0�n�:(28)

Viewing this identity along excursion intervals amounts to sweeping out of
the discounted rewards during those intervals to the beginning of the excur-
sions.

4. The index process—continuous time. We are now going to extend
the approach of the previous section to continuous time. In this section, we
treat the index process of a single arm in analogy to Sections 3.6–3.7. The
required excursion theory is conceptually similar but technically demanding.
In particular, formula (33) below, which extends formula (24), is an excursion-
representation of the index. Both (24) and (33) are building blocks for the proof
of optimality via excursion theory (in Section 3.8 for the discrete model, and
in Section 5 for the continuous one).

Fix an arm �Z;F �, a time t ∈ T and a nonnegative scalar γ. (Again, the
identifier k will be suppressed.) Associate with the arm a value vt�γ�, for
playing it optimally after time t until stopping, while paying at a rate of γ for
participating in the game. Formally,

vt�γ� = ess sup
τ>t

Pt

∫ τ
t
e−βu�Z�u� − γ�du;(29)
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where Pt is the conditional expectation with respect to Ft and τ is a stop-
ping time with respect to F . As a function of γ, vt�·� is nonincreasing, con-
vex and finite hence continuous; it is also nonnegative with vt�γ� = 0 for all
γ > Pt

∫∞
0 e−βu�Z�u��du. (Note that Pt

∫∞
0 e−βu�Z�u��du is a.s. finite by inte-

grability.) One concludes that there exists a minimal γ̂�t� such that vt�γ� = 0,
for all γ ≥ γ̂�t�. Denote this γ̂�t� by

0�t� = inf
{
γx vt�γ� = 0

}
;(30)

and call 0 = �0�t�x t ≥ 0� the index process associated with �Z;F �. The
equivalence of (5) and (30) is well known (see, e.g., [6], Proposition 3.4). Our
proofs require the following generalization of (5), in analogy to Proposition 3.

Proposition 4. Let G be a σ-field independent of the filtration F . Then,
for every stopping time ε with respect to F �·� ∨G ,

0�ε� = ess sup
ζ�·�

P̃ε
∫∞
ε e−βζ�u�Z�u�du
P̃ε

∫∞
ε e−βζ�u� du

:

Here ζ�·� stands for any optional process with respect to F �·� ∨ G such that

ζ�t� = ∞ is allowed and ζ�t�−t, t ≥ 0, is nondecreasing; P̃ε denotes conditional
expectation with respect to the pre-ε σ-field �B ∈ F �·� ∨ G x B ∩ �ε ≤ t� ∈
F �t� ∨G ; ∀t ≥ 0�.

Proof. Again, augmentation and randomization are straightforward. The
ζ-discounting is a consequence of the following lemma with X = Z− γ.

Lemma 5. Let �X;F � be a progressively measurable process satisfying the
integrability and regularity conditions. If

sup
τ
P
∫ τ

0
e−βtX�t�dt = 0;

where τ runs over all F stopping times, then for every optional process q which
is nonnegative decreasing and bounded by 1,

P
∫ ∞

0
e−βtq�t�X�t�dt ≤ 0:

Proof. For q continuous and decreasing, define the stopping times

τnl = inf
{
tx q�t� = 1− l

n

}
:

Then

P
∫ ∞

0
e−βtq�t�X�t�dt = lim

n→∞
P
n−1∑
l=0

(
1− l

n

) ∫
�τnl ; τnl+1�

e−βtX�t�dt

= lim
n→∞

n∑
l=1

1
n
P
∫ τnl

0
e−βtX�t�dt ≤ 0:



MULTI-ARMED BANDITS 1281

The rest now follows from approximating q by a sequence �qn� of continuous
adapted functions that converge to q a.e. Lebesgue. Indeed, let

qn�t� = q�0� for 0 ≤ t ≤ 1
n
;

qn�t� = qn
(
k

n

)
+
(
q

(
k

n

)
− qn

(
k

n

))(
t− k

n

)
n;

k

n
< t ≤ k+ 1

n
:

Then qn is continuous, optional and satisfies

q�t� ≤ qn�t� ≤ q�t− 2/n�; t ≥ 0:

It follows that

P
∫ ∞

0
e−βt�qn�t� − q�t���X�t��dt ≤ P

∫ ∞
0
e−βt�q�t− 2/n� − q�t���X�t��dt:

We now recall that X satisfies the integrability condition, q is decreasing,
and thus q�t − 2/n� − q�t�� converges a.e. to 0. Since q is bounded by 1, the
Dominated Convergence Theorem implies that the last integral converges to
0, and we are done. 2

Our objective now is to represent 0 in terms of excursions from the set
M of its minima. This is carried out via a successive generalization of (28),
culminating in (33). (In [11], the analogue of (33) provided a tool for explicit
computations of 0, as well as to the proof of Theorem 1 for Lévy processes.)
To this end, define the filtration F̃ k by F̃ k�t� = F k�t�∨∨j6=k F j�∞�, then let
P̃kt �P̃k� be the conditional expectation with respect to F̃ k�t� �F̃ k�0�).

Continuing to suppress the identifier k, we first quote the following exten-
sion of (28) to continuous time:

P̃
∫ ∞

0
e−βtZ�t�dt = P̃

∫ ∞
0
e−βt0�t�dt:(31)

It can be obtained either by discrete approximation [12] or by the beau-
tiful change-of-variables argument of [6]. The same argument leads to the
following.

Proposition 6. Let q be a positive process adapted to F̃ . Then

P̃
∫ ∞

0
e−βtq�t�Z�t�dt = P̃

∫ ∞
0
e−βtq�t�0q�t�dt;

where 0q is the lower envelope of

0q�t� = ess sup
τ>t

P̃t
∫ τ
t e
−βuq�u�Z�u�du

P̃t
∫ τ
t e
−βuq�u�du

; t ≥ 0:

With Lemma 5 at hand, we deduce the following.

Corollary 7. If q is nonnegative, optional decreasing and bounded by 1,
then 0q�t� ≤ 0�t� a.s. for all t ≥ 0.
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The set M = closure�tx 0�t� = 0�t�� is a closed random set as defined in [1].
We shall use the terminology and notation of [1] and [10] with the filtration
F̃ . Define

Dt = inf�u > tx u ∈M�;
Rt = Dt − t;
gt = sup�u < tx u ∈M�;
G = �t > 0x Rt− = 0; Rt > 0�:

The following extensions of (31) enable us to identify the index in terms of
the �F̃ �Dt�� predictable exit system from M.

Proposition 8. For any �F̃ �Dt�� predictable H,

P̃
∫ ∞

0
e−βtH�gt�Z�t�dt = P̃

∫ ∞
0
e−βtH�gt�0�t�dt:

Proof. By the Monotone Class Theorem, it is enough to prove the result
for the generators of the predictable σ-field, that is, forH�t� = 1��0; σ ���t�, where
σ is an �F̃ �Dt�� stopping time and Ht = 1��0A�� where A ∈ FD0

, and 0A is the
stopping time that is equal to 0 on A and ∞ on Ac. For Ht = 1��0; σ ���t�, we
note that Dσ is an F̃ stopping time with values in M, and

�0 ≤ gt ≤ σ� = �0 ≤ t ≤ Dσ�:
The result now follows from (31) and from the fact that

P̃
∫∞
Dσ
e−βtZ�t�dt = P̃P̃Dσ

∫ ∞
Dσ

e−βtZt dt

= P̃P̃Dσ

∫ ∞
Dσ

e−βt0�Dσ ; t�dt

= P̃
∫ ∞
Dσ

e−βt0�Dσ ; t�dt

= P̃
∫ ∞
Dσ

e−βt0�t�dt;

(32)

where 0�u; t� is defined as 0�t� with F0 replaced by F �u�, τ > 0 replaced by
τ > u, 0�u; t� = infu≤v≤t 0�u; v� and P̃Dσ

is the conditional expectation with
respect to the pre-Dσ σ-field F̃ �Dσ�. The last equality is a consequence of
Dσ ∈M a.s. on �Dσ <∞�, and 0�Dσ ; t� = 0�t� a.s. on �Dσ ≤ t�. Subtracting
(32) from (31) yields the result forH = 1��0; σ ��. ForHt = 1��0A���t� withA ∈ FD0

,
we note that

1��0A���gt� = 1A1�0≤t≤D0�:

The rest of the proof is identical to the above argument and is therefore omit-
ted. 2
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The next result deals with the downwards jumps of 0. In nature, this part
is close to the discrete case because it is composed of a countable union of
graphs of stopping times.

Proposition 9. Let H be an �F̃ �Dt�� predictable process. Then

P̃
∫ ∞

0
e−βtH�gt�1�0�gt�<0�gt− ��Zt dt = P̃

∫ ∞
0
e−βtH�gt�1�0�gt�<0�gt− ��0�gt�dt;

where we note that 0�gt� entering the integrand on the right instead of Z�t�
on the left, may be replaced by 0�t�.

Remark. Note that �tx 0�gt� < 0�gt−�� may contain complete excursion
intervals from M, and thus we cannot assume that this set has countable
sections.

Proof. As before, it is enough to prove the result for H = 1��0;T�� where T
is an �F̃ �Dt�� stopping time. Then, as in Proposition 8, it is enough to show

P̃
∫ ∞

0
e−βt1�0�gt�<0�gt− ��Z�t�dt = P̃

∫ ∞
0
e−βt1�0�gt�<0�gt− ��0�gt�dt:

This result follows from the fact that �tx 0�t� < 0�t−�� is contained in M and
is covered by a countable sequence of F̃ stopping times �τn�. Let τn be such
a stopping time; set

τ̃n =
{
τn; if Rτn

> 0;
∞; if Rτn

= 0:

Then

0�τ̃n� =
P̃τ̃n

∫Dτ̃n

τ̃n
e−βtZ�t�dt

P̃τ̃n
∫Dτ̃n

τ̃n
e−βt dt

:

Thus, as in the discrete case,

P̃
∫ ∞

0
e−βt1�0�gt�<0�gt− ��Z�t�dt = P̃

∞∑
n=0

1�τ̃n<∞�Pτ̃n

∫ Dτ̃n

τ̃n

e−βtZ�t�dt

= P̃
∞∑
n=0

1�τ̃n<∞�0�τ̃n�P̃τ̃n
∫ Dτ̃n

τ̃n

e−βt dt

= P̃
∞∑
n=0

1�τ̃n<∞�
∫ Dτ̃n

τ̃n

0�τ̃n�e−βt dt

= P̃
∫ ∞

0
e−βt1�0�gt�<0�gt− ��0�gt�dt

= P̃
∫ ∞

0
e−βt1�0�gt�<0�gt− ��0�t�dt: 2

We now show that positive jumps of 0 from its lower envelope are totally
inaccessible.
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Proposition 10. Let N = �t ∈ Gx 0�t� > 0�t−��. Then, for every �F̃ �Dt��
predictable stopping time τ, P̃�τ ∈N� = 0.

Proof. Let τ be a �F �Dt�� predictable stopping time that, with a positive
probability, is contained in N. Let �τn� be its announcing sequence and B =⋂
n�Dτn

< τ�. Note that since N ⊂M, and τn < τ a.s. on �τ <∞�,

�τ ∈N� ∩Bc ⊂
⋃
n

�τ ∈N; Dτn
= τ�

⊂ �τ is isolated in M�
⊂ �0�τ� ≤ 0�τ−�� ⊂ �τ ∈N�c:

Thus, �τ ∈ N�∩Bc is empty. Denote by τB the stopping time that is equal
to τ on B and infinity otherwise. By the above argument, we may replace
τ by the predictable stopping time τB and assume that �Dτn

< τB� for all
n on �τB < ∞�, and that 0�Dτn

� decreases to a random variable 0̃ satisfying
P�0̃ < 0�τB�� > 0. Note that 0̃ ∈ ∨n F̃ �Dτn

� ⊂ F̃τB
, and there exists a stopping

time τ+ > τB on �τB <∞� and a number b > 0 so that

P̃τB

∫ τ+

τB

e−βu�Z�u� − 0̃�du ≥ b

on a set A ∈ F̃τB
of a positive probability, say p.

Let ε > 0 and define

An =
{
P̃Dτn

∫ τB
Dτn

e−βu�Z�u��du < b · ε; 0�D�τn��P̃Dτn

∫ τB
Dτn

e−βu du < b · ε
}
;

Bn =
{
P̃Dτn

∫ τ+

τB

e−βu�0�Dτn
� − 0̃� < b · ε

}
:

Then

An ∈ F̃ �Dτn
�; P�Ac

n ∩ �τB <∞�� → 0;

Bn ∈ F̃ �Dτn
�; P�Bcn ∩ �τB <∞�� → 0:

Set

τ̃ =
{
τB; on Ac;

τ+; on A:

On An ∩Bn,

0 ≥ P̃Dτn

∫ τ̃
Dτn

e−βu�Z�u� − 0�Dτn
��du

= P̃Dτn

∫ τB
Dτn

e−βu�Z�u� − 0�Dτn
��du

+ P̃Dτn

(
1A
∫ τ+

τB

e−βu�Z�u� − 0�Dτn
��du

)
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≥ −2bε+ P̃Dτn

(
1A
∫ τ+

τB

e−βu�Z�u� − 0̃�du
)

− P̃Dτn

(
1A
∫ τ+

τB

e−βu�0�Dτn
� − 0̃�du

)

≥ P̃Dτn

(
1A
∫ τ+

τB

e−βu�Z�u� − 0̃�du
)
− 3bε

≥ bP̃Dτn
�1A� − 3bε:

Now Hτn
= P̃�1A�F̃ �Dτn

�� is a bounded martingale that converges to HτB− =
P̃�1A�F̃τB−� and, furthermore,

P̃�HτB−� = P�A� = p:
Let

Cn =
{
Hτn

>
p

4

}
;

C =
{
HτB− >

p

2

}
:

Then P�Cn� ≥ P�C� > 0 for n large enough and on An ∩Bn ∩ Cn (which has
a positive probability for n large enough),

bP̃Dτn
�1A� − 3bε >

b · p
4
− 3bε:

Since ε > 0 is arbitrary, the above can be made positive, which is a contradic-
tion. 2

We are now in a position to establish the representation of the index in
terms of �l; ∗P�, the �F̃ �Dt�� predictable exit system from M. The process
�l�t�� is an (F̃ �Dt�� predictable local time at M and ∗P is a kernel from
�R × �; P̃ � into ��; F̃ �, where P̃ is the �F̃ �Dt�� predictable σ-field. For the
construction of exit systems from closed sets, we refer the reader to [1], for
�F̃ �Dt�� predictable exit systems in the Hunt case to [10], and for the general
theory of kernel constructions to [16], Appendix 3. Roughly, the local time l is
the �F̃ �Dt�� dual predictable projection of the random measure

5�ω;dt� =
∑
u∈G

δu�dt��1− exp�−Ru�� + 1M�t�λ�dt�;

where δu is the Dirac measure with mass at u and λ is the Lebesgue mea-
sure. The kernel ∗P is obtained by considering the �F̃ �Dt�� dual predictable
projection lf of

5f�ω;dt� =
∑
u∈G

δu�dt��1− exp�−Ru��f�θtω�;

where �θt� are the usual shift operators on � [for which Z�u; θtω� = Z�u +
t;ω�] and f is an ��; F̃ �measurable function. Here lf is absolutely continuous
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with respect to l, and its Radon–Nikodym derivative �∗Pf��ω� is an �F̃ �Dt��
predictable process. The construction of ∗P now follows from A3.3 of [16], for
example. Indeed, ∗P is characterized as the unique kernel that satisfies the fol-
lowing: for any �F̃ �Dt�� predictable U and any ��; F̃ � positive measurable f:

1. P̃
∑
u∈G e

−uU�u�f�θu� = P̃
∫∞

0 e−uU�u� ∗Pu�f�dl�u�;
2. ∗Pu�R = 0� = 0, l-a.e., almost surely;
3. let mZ�t� be the �F̃ �Dt�� predictable Radon–Nikodym derivative of

1M�t�Z�t�λ�dt� with respect to l, and let m =m1. Then
∗Pu�1− e−R� +m�u� = 1; l-a.e., almost surely.

Theorem 11. Let �l; ∗P� be the �F̃ �Dt�� predictable exit system and mZ as
defined above. Introduce

0̃�t� =
e−βtmZ�t� + ∗Pt�10�t�≥0�t−�

∫Dt

t e−βuZ�u�du�
e−βtm�t� + ∗Pt�10�t�≥0�t−�

∫Dt

t e−βu du�
; t ≥ 0;(33)

(with the convention that 0/0 = 0). Then, for a.e. t, with respect to the Lebesgue
measure,

1�0�gt�≥0�gt−��0̃�gt� = 1�0�gt�≥0�gt−��0�gt−�:

Proof. It follows from Propositions 8 and 9 that, for any �F̃ �Dt�� pre-
dictable H,

P̃
∫ ∞

0
e−βt1�0�gt�≥0�gt−��H�gt�Z�t�dt

= P̃
∫ ∞

0
e−βt1�0�gt�≥0�gt−��H�gt�0�t�dt

= P̃
∫ ∞

0
e−βt1�0�gt�≥0�gt−��H�gt�0�gt−�dt

= P̃
∑
u∈G

1�0�u�≥0�u−��H�u�0�u−�
∫ Du

u
e−βt dt

+ P̃
∫ ∞

0
e−βt1M�t�H�t�0�t−�dt:

(34)

Applying now the exit system results first to the right-hand side of (34), and
then to the left-hand side, we get

P̃
∫ ∞

0
H�u�0�u−�

(
∗Pu

(
1�0�u�>0�u−��

∫ Du

u
e−βt dt

)
+ e−βum�u�

)
dl�u�

= P̃
∫ ∞

0
H�u�

(
∗Pu

(
1�0�u�>0�u−��

∫ Du

u
e−βtZ�t�dt

)
+ e−βumZ�u�

)
dl�u�

= P̃
∫ ∞

0
H�u�0̃�u�

(
∗Pu

(
1�0�u�>0�u−��

∫ Du

u
e−βt

)
+ e−βum�u�

)
dl�u�

= P̃
∫ ∞

0
e−βtH�gt�1�0�gt�≥0�gt−��0̃�gt�dt;

(35)
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where for the last equality we have applied the exit system identity following
the steps from (34) to (35), this time backward.

The result follows now from the fact that both �0�u−�� and �0̃�u�� are
�F̃ �Dt�� predictable processes and the following identity that summarizes the
first equality of (34) and the first and last equalities of (35):

P̃
∫ ∞

0
e−βtH�gt�0�gt−�1�0�gt�≥0�gt−�� dt

= P̃
∫ ∞

0
e−βtH�gt�1�0�gt�≥0�gt−��Z�t�dt

= P̃
∫ ∞

0
e−βtH�gt�1�0�gt�≥0�gt−��0̃�gt�dt;

for all �F̃ �Dt�� predictable H. 2

5. Proof of Theorem 1. Let T be any strategy. As in the discrete case,
let

F̃ k�t� = F k ∨
∨
j6=k

F j�∞�

and ζk�t� = inf�ux Tk�t� > u�. Let T̂ be an index-priority strategy. Since the
sets Nk; k ∈ D, defined in Proposition 10 do not contain predictable stopping
times, it follows that it is not possible for two arms pulled simultaneously by T̂
to start an excursion from their respectiveM’s by upward jumps of at least one
of their indices (necessarily from the same value of their respective minima).
To see this, suppose that arms j and k are pulled simultaneously by T̂ at time
t; then this can occur only if T̂j�t� and T̂k�t� are in Mj and Mk, respectively,
and both 0j and 0k are strictly decreasing at T̂j�t� and T̂k�t�, respectively. If
x is a point from where 0j starts an excursion from its minimum, then for 0k

to jump upwards from its minimum x, P k = �0k�t−� = x, 0k�t − ε� > x for
all ε > 0� must intersect Nk. Now P k is a predictable set whose ω-sections
consist of a single time point and is, therefore, contained in the graph of a
predictable stopping time which cannot intersect Nk. Thus, if the indices of
two arms start excursions from a level set x in their respective minima at time
t, that time has to be a point of continuity for both 0j�T̂j�t�� and 0k�T̂k�t��,
and then the priority rule will determine which of the two arms will be pulled
first and continue to be pulled until the end of the excursion from its M. Thus,
with Ij�u� = Dj

T̂j�ζi�u�� − T̂
j�ζi�u��, we have

ζi�git� = ζi�git−� +
∑
j<i

Ij�git−�:

Let

Hi�t� = ζi�t−� +
∑
j<i

Ij�t−�:

Then Hi is �F̃ i�Di�t��� predictable. (As will be seen shortly, this predictability
plays an important role in our proof. Indeed, any index strategy with this
predictability property is optimal.)
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With the above at hand, for any strategy T,

P
∫ ∞

0
e−βtZi�Ti�t��dTi�t� = P

∫ ∞
0

exp�−βζi�t��Zi�t�dt

= P
∫ ∞

0
e−βtqi�t�Zi�t�dt

= P
∫ ∞

0
e−βtqi�t�0i;q�t�dt

≤ P
∫ ∞

0
e−βtqi�t�0i�t�dt

= P
∫ ∞

0
exp�−βζi�t��0i�t�dt;

where qi�t� = exp�−β�ζi�t� − t�� satisfies the assumption of the remark fol-
lowing Proposition 6 and 0q is as defined in that proposition.

If T̂ is an index-priority strategy, with its corresponding ζi’s,

P
∫ ∞

0
exp�−βζi�t��Zi�t�dt

= P
∫ ∞

0
exp�−βζi�t��1Mi�t�Zi�t�dt

+P
∑
u∈G

exp�−β�ζi�u� − u��1�0i�u�≥0i�u−��
∫ Di

u

u
e−βtZi�t�dt

+P
∑
u∈G

exp�−β�ζi�u� − u��1�0i�u�<0i�u−��
∫ Di

u

u
e−βtZi�t�dt

= P
∫ ∞

0
exp

[
−β�ζi�u−� +

∑
j<i

Ij�u−� − u�
]

×
(
∗Piu

(
1�0i�u�≥0i�u−��

∫ Du

u
e−βtZi�t�dt

)
+ e−βu�mZ�i�u�

)
dli�u�

+P
∞∑
n=0

exp�−β�ζi�τ̃in� − τ̃in��P̃iτ̃in
∫ D

τ̃in

τ̃in

e−βtZi�t�dt;

where τ̃in was defined in the proof of Proposition 9. We recall that, for each τ̃in,

0i�τ̃in� =
P̃τ̃in

∫Dτ̃in

τ̃in
e−βtZi�t�dt

P̃τ̃in
∫Dτ̃in

τ̃in
e−βt dt

:

Therefore, the above sum is equal to

P
∫ ∞

0
exp�−β�ζi�u� − u��0̃i�u�

×
(
e−βumi�u� + ∗Piu

(
1�0i�u�≥0i�u−��

∫ Di
u

u
e−βt dt

))
dli�u�

+P
∞∑
n=0

exp�−β�ζi�τ̃in� − τ̃in��0i�τ̃in�P̃iτ̃in
∫ D

τ̃in

τ̃in

e−βt dt
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= P
∫ ∞

0
exp�−βζi�u��1�0i�giu�≥0i�giu−��0

i�giu−�du

+P
∫ ∞

0
exp�−βζi�u��1�0i�giu�<0i�giu−��0

i�giu�du

= P
∫ ∞

0
exp�−βζi�u��0i�u�du

= P
∫ ∞

0
e−βt0i

[
T̂i�t�

]
dT̂i�t�;

where the equality before last follows from Theorem 11. Summing over all
arms, we get

P
d∑
i=1

∫ ∞
0
e−βtZi�Ti�t��dTi�t� ≤ P

d∑
i=1

∫ ∞
0
e−βt0i�Ti�t��dTi�t�;

with equality for index strategies. This last expression is smaller than

P
∫ ∞

0
e−βt

d∨
j=1

0j
[
T̂j�t�

]
dt;

where T̂ is an index strategy, and therefore follows the leader among 0j,
j = 1; : : : ; d. Our proof is now complete. 2
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