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NO-FEEDBACK CARD GUESSING FOR DOVETAIL SHUFFLES

BY MIHAI CIUCU

Institute for Advanced Study

We consider the following problem. A deck of 2n cards labeled consec-
utively from 1 on top to 2n on bottom is face down on the table. The deck
is given k dovetail shuffles and placed back on the table, face down. A
guesser tries to guess at the cards one at a time, starting from top. The
identity of the card guessed at is not revealed, nor is the guesser told
whether a particular guess was correct or not. The goal is to maximize the

Ž .number of correct guesses. We show that, for k G 2 log 2n q 1, the best2
strategy is to guess card 1 for the first half of the deck and card 2n for the
second half. This result can be interpreted as indicating that it suffices to

Ž .perform the order of log 2n shuffles to obtain a well-mixed deck, a fact2
Ž .proved by Bayer and Diaconis. We also show that if k s c log 2n with2

1 - c - 2, then the above guessing strategy is not the best.

1. Introduction. Consider a deck of n cards and label the possible
cutting places of the deck by 0, 1, . . . , n, starting from top. A dovetail shuffle
Ž . Ž .or riffle shuffle consists of 1 cutting the deck at a position selected at

Ž .random according to the binomial distribution and 2 interleaving the two
resulting decks at random, according to the uniform distribution on all
possible interleavings.

This mathematical model for shuffling was introduced by E. Gilbert and
C. Shannon in unpublished work at Bell Labs in 1956. It was further
developed by J. Reeds in unpublished work in 1976. The first published study

w x Ž .is Aldous 1 , who sketched an argument that 3r2 log n shuffles suffice to2
w xmix up n cards. Aldous and Diaconis 2 gave a careful proof that 2 log n2

w xshuffles are necessary and sufficient for separation distance. Diaconis 4 gave
a practical analysis showing that the Gilbert]Shannon]Reeds model is a
good model for the way real people shuffle cards. The definitive work on

w xshuffling was done by Bayer and Diaconis 3 , followed by Diaconis, McGrath
w x Ž .and Pitman 5 . The first paper gives a clear proof that 3r2 log n q c2

shuffles are necessary and sufficient by giving a closed-form formula for the
chance that the deck is in any given arrangement after any number of

Ž w x.shuffles an excellent expository account of this work is given in 7 . The
second paper determines the cycle structure, showing that such features
as the number of fixed points get random after any growing number of shuf-
fles. A recent extension of the Gilbert]Shannon]Reeds model was given by

w xLalley 6 .
We consider the following problem. A deck of 2n cards labeled consecu-

tively from 1 on top to 2n on bottom is face down on the table. The deck is
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given k riffle shuffles and placed back on the table, face down. A guesser tries
to guess at the cards one at a time, starting from the top. During this process,
the guesser is given no feedback, that is, the identity of the card guessed at is
not revealed, nor is he told whether a particular guess was correct or not. The
question is to find a guessing strategy which maximizes the expected number
of correct guesses. In case there exists a unique such strategy, we call it the
best strategy.

The main result of this paper is the following.

Ž . Ž .THEOREM 1.1. a For k G 2 log 2n q 1, the best guessing strategy after2
k riffle shufflings of a deck of 2n cards is to guess 1 at the first n cards and 2n
at the remaining n.

Ž . Ž . Ž .b Suppose 1 - c - 2 and n G n c , where n c is some positive integer
Ž .depending on c. Then, if the deck has been given c log 2n riffle shuffles, the2

above guessing strategy does not maximize the expected number of correct
guesses.

In Section 5, we indicate a way of using our guessing problem to measure
how well a deck of cards is mixed. We argue that, for even n, a number of the

Ž .order of log n shuffles suffices to mix well a deck of n cards. This is in2
w xaccordance with a result of 3 stating that the total variation distance from

the probability distribution obtained after k riffle shuffles to the uniform
Ž .distribution drops abruptly around k s 3r2 log n from being very close to 12

to being very close to zero. However, unlike in the case of total variation
distance, for our measure of well-mixedness there is no cutoff phenomenon.
Ž w xThis is not surprising, since numerical evidence presented in 3 suggests
this is the case for a similarly defined measure in the situation of complete

.feedback.

2. The position matrix. Suppose we have a deck of n cards, labeled
consecutively starting with 1 on top and ending with n on the bottom. The

Ž .position matrix M s M is the n = n matrix whose i, j entry is the proba-n
Žbility that the card labeled i ends up in position j after a riffle shuffle card

.position i is the slot between cut positions i y 1 and i, i s 1, . . . , n .

LEMMA 2.1. For 1 F i, j F n, we have

1
iy1 nyi2.1 M s 2 q 2 ,Ž . Ž .i i n2

1 n y j
2.2 M s for i ) j,Ž . i j nyjq1 ž /i y j2

2.3 M s M .Ž . i j nyiq1, nyjq1

PROOF. Imagine having a second set of numbers on our cards, one in
which the cards are labeled consecutively from 1 on bottom through n on top.
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Call this the ‘‘upward labeling’’; call the original labeling the ‘‘downward
labeling.’’

It is clear that, after a riffle shuffle, card i ends up in position j in
downward labeling if and only if card n y i q 1 goes to position n y j q 1 in
upward labeling. Since the probability distributions involved in the riffle

Ž .shuffle have a vertical symmetry axis, we obtain 2.3 .
nŽ .Since we are cutting by the binomial distribution and we have equallyk

likely interleavings after a cut at position k, each sequence ‘‘cut followed by
interleaving’’ occurs with probability 1r2n. Therefore, to determine M , iti j
suffices to count the number of cut-interleavings in which card i ends up in
position j.

Let i ) j. If the cut was made at position k G i, then the i y 1 cards
preceding card i in the upper deck will still precede it after the interleaving,
thus preventing card i from occupying position j.

Suppose therefore that the cut was made at some position k - i. The cards
Ž .labeled k q 1, k q 2, . . . , i y 1 i y k y 1 in number will always precede

card i after the shuffle. In order that card i ends up in position j, we need
j y i q k cards from the upper deck to be interleaved above it. Since these
have to be the first j y i q k cards of the upper deck, one can do this in

j y 1Ž . ways. To complete the shuffle, we have to interleave the remainingj y i q k
n y jŽ .i y j cards in the top deck below card i; this can be achieved in ways.i y j

Therefore, the total number of interleavings sending card i to position j is

j y 1 n y j n y jjy1s 2 ,Ý ž / ž / ž /j y i q k i y j i y j
k

Ž .thus proving 2.2 .
iy1 n y iŽ .Finally, consider the case i s j. The above discussion yields 2 s0

2 iy1 interleavings sending card i to position i. However, we obtain some
n y iŽ .more by cutting at positions k G i: there are interleavings of thek y i

resulting decks for which card i occupies position i. Summing over k, this
ny i Ž .gives an additional term of 2 , thus proving 2.1 . I

The crucial factor in our proof of Theorem 1.1 is that we can determine
explicitly the eigenvalues and eigenvectors of the position matrix M.

For m G 0, let u g Rn be the column vector with ith componentm
iy1 m XŽ . Ž .y1 , i s 1, . . . , n. Let u be the column vector obtained frommi y 1

Ž .my 1 wy1 u by reading its components from bottom to top i.e., the ithm
X nyiqmy1 m nŽ . Ž .xcomponent of u is y1 . Denote by v g R the columnm 0n y i

vector with all coordinates equal to 1, and define v [ u q uX , form my1 my1
m s 1, 2, . . . , n y 1. In other words, for 1 F m F n y 1 and 1 F i F n, we set

iy1 nyiqmm y 1 m y 12.4 v i [ y1 q y1 ,Ž . Ž . Ž . Ž .m ž / ž /i y 1 n y i

Ž .where v i denotes the ith component of the vector v.
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THEOREM 2.2. For 0 F m F n y 1, v is an eigenvector of the positionm
matrix M, with corresponding eigenvalue 1r2m.

One may wonder how one could guess the eigenvalues, and especially the
eigenvectors, of M s M . This can be done, for example, by computing themn
explicitly for small values of n, using a linear algebra package on the
computer. The pattern of the eigenvalues is then easily recognized. Normaliz-
ing the eigenvectors so that their first coordinates are 1, the coordinates of
the eigenvector corresponding to the eigenvalue 1r2ny1 are readily identified
as signed binomial coefficients. After some experimentation, one arrives at

Ž .conjecturing that the eigenvectors are given by 2.4 .

PROOF. As a consequence of the definition, all row sums of M equal 1.
Therefore, v is an eigenvector with eigenvalue 1.0

Let r denote the kth row of M. To prove the theorem, we have to showk
Ž .that, for all 1 F k F n and all 0 F m F n y 2 , we have

2 nr ? u q 2 nr ? uX
k m k m

ky1 nykqmy1m mnymy1s 2 y1 q y1 ,Ž . Ž .ž / ž /ž /k y 1 n y k
2.5Ž .

where the dot on the left-hand side denotes the usual scalar product of
Ž .vectors. Using Lemma 2.1, the first term on the left-hand side of 2.5 can be

written as

ky2
i m n y i y 1n2 r ? u s y2Ž .Ýk m ž / ž /i k y i y 1

is0

ky1 m n y k k y 1ky1 nykq y1 2 q 2Ž . ž / ž / ž /ž /k y 1 0 0
myk

m i m m y inymy1q y1 2 y2Ž . Ž .Ý ž / ž /i k y 1
is0

2.6Ž .

ky1
i m n y i y 1s y2Ž .Ý ž / ž /i k y i y 1

is0

mykq1
m i m m y inymy1q y1 2 y2 .Ž . Ž .Ý ž / ž /i k y 1

is0

Similarly, one obtains that

nyk
my 1 i m n y i y 1Xn2 r ? u s y1 y2Ž . Ž .Ýk m ž / ž /i n y i y k

is0

mynqk
i m m y inymy1y 2 y2 .Ž .Ý ž / ž /i n y k

is0

2.7Ž .
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Ž .To prove 2.5 , we proceed as follows. First, we show that the last sum in
Ž . Ž .2.6 is equal to the first term in the expansion of the right-hand side of
Ž . Ž .2.5 ; second, we show that the second sum on the right-hand side of 2.7

Ž .equals the second term on the right-hand side of 2.5 ; third, we show that the
Ž . Ž .second to last sum in 2.6 is the negative of the first sum on the right in 2.7 .

After some manipulation, the three claims above are seen to be equivalent
to the following three equalities:

mykq1
i mykq1m m y i m2.8 y2 s y1 ,Ž . Ž . Ž .Ý ž / ž / ž /i k y 1 m y k q 1

is0

mynqk
i mynqkm m y i m2.9 y2 s y1 ,Ž . Ž . Ž .Ý ž / ž / ž /i n y k m y n q k

is0

ky1 nyk
mi im n y i y 1 m n y i y 12.10 y2 s y1 y2 .Ž . Ž . Ž . Ž .Ý Ýž / ž / ž / ž /i k y i y 1 i n y i y k

is0 is0

The first two equalities are clearly equivalent: one is obtained from the
Ž .other by replacing k by n y k q 1. Replacing k by k q 1 in 2.8 , the identity

to be proved becomes

myk
i mykm m y i my2 s y1 .Ž . Ž .Ý ž / ž / ž /i k m y k

is0

However, one has more generally that

my km m y i mix s x q 1 ,Ž .Ý ž / ž / ž /i k m y k
iG0

since the coefficients of x k on the left- and right-hand sides of the above
relation are readily seen to be equal.

Ž .To complete the proof, we need to verify identity 2.10 . This will follow
from Lemma 2.4 by replacing n by n y 1 and k by k y 1. I

w xThe following identity is proved in 8 , page 8.

LEMMA 2.3.

pi n y i n y py1 s .Ž .Ý ž /ž / ž / mm y i iiG0

For nonnegative integers m, n and k, define

k
i m n y if m , n , k [ y2 .Ž . Ž .Ý ž / ž /i k y i

is0
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Ž . Ž .m Ž .LEMMA 2.4. We have f m, n, k s y1 f m, n, n y k .

PROOF. We have
k

i m n y if m , n , k s y2Ž . Ž .Ý ž / ž /i n y k
is0

k i ii m n y is y1Ž .Ý Ýž / ž / ž /ji n y k
is0 js0

k k ii m n y is y1Ž .Ý Ý ž / ž /ž /ji n y k
js0 isj

2.11Ž .

k k m y jm i n y is y1Ž .Ý Ý ž /ž /j ž /i y j n y k
js0 isj

k m m y j n y j y iiq js y1 ,Ž .Ý Ýž / ž / ž /j i n y kjs0 iG0

mi m y jmŽ .Ž . Ž .Ž .where, at the fourth equality, we used that s .jj i y ji
Replacing simultaneously p ¤ m y j, n ¤ n y j and m ¤ k y j in Lemma

2.3, we obtain

n y j y im y j n y miy1 s .Ž .Ý ž / ž /k y jž /k y j y iiiG0

Ž .Therefore, we can continue the sequence of equalities 2.11 and obtain
k m n y mjf m, n , k s y1 .Ž . Ž .Ý ž / ž /j k y j

js0

Ž .mŽ .nym Ž .Thus, if Q s Q is the polynomial 1 y x 1 q x , then f m, n, k ism , n
just the coefficient of x k in Q. Let Q s Ý a xn. The statement of then G 0 n

lemma is then equivalent to
m

a s y1 a .Ž .k nyk

However, this follows because
m nymn y1 n y1 y1x Q x s x 1 y x 1 q xŽ . Ž . Ž .

m nyms x y 1 x q 1Ž . Ž .
m m nyms y1 1 y x 1 q xŽ . Ž . Ž .
ms y1 Q x . IŽ . Ž .

Denote by P s P the matrix whose ith column is v , for i s 1, . . . , n. Itn iy1
y1 Žfollows from Theorem 2.2 that P MP is the diagonal matrix diag 1, 1r2,

2 ny1.1r2 , . . . , 1r2 . However, the probabilities of specific cards ending up in
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designated places after repeated riffle shufflings are given by the entries of
the corresponding power of M. By the previous observation, the powers of M
can be computed provided we find Py1.

3. The matrix P I1 . Remarkably, up to sign, the determinants of the
matrices P turn out to be factorials. Let vŽn., j s 0, . . . , n y 1, be the eigen-j
vectors of M .n

LEMMA 3.1. For 1 F i F n y 1 and 0 F j F n y 1, we have

vŽn. i q 1 y vŽn. i s vŽnq1. i q 1 .Ž . Ž . Ž .j j jq1

PROOF. Clearly, the statement is true for j s 0. For j G 1, we obtain by
Ž .2.4 that

j y 1 j y 1i nyiqjy1Žn. Žn.v i q 1 y v i s y1 q y1Ž . Ž . Ž . Ž .j j ž / ž /i n y i y 1

j y 1 j y 1iy1 nyiqjy y1 y y1Ž . Ž .ž / ž /i y 1 n y i

j ji nyiqjq1s y1 q y1Ž . Ž .ž / ž /i n y i

s vŽnq1. i q 1 . IŽ .jq1

nŽ .2Ž . Ž .LEMMA 3.2. We have det P s y1 n!.n

PROOF. The statement is clearly true for n s 1. Therefore, it suffices to
prove that, for n G 2, one has

ny13.1 det P s y1 n det P .Ž . Ž . Ž . Ž .n ny1

Ž . Ž .Let A be the n y 1 = n y 1 matrix obtained from P by deleting then n
Ž . Ž .first row and column and let B be the n y 2 = n y 2 matrix obtainedn

from P by deleting the first and last rows and the first two columns. By then
definition of the eigenvectors v , the sum of the entries in the first column ofi
P is n, while the remaining column sums are zero. Therefore, replacing then
first row by the sum of all rows in P and then expanding on the first row, wen
obtain

3.2 det P s n det A .Ž . Ž . Ž .n n

Since the single nonzero entry in the first column of A is the y1 in then
Ž . Ž .ny1 Ž . Ž .last row, it follows that det A s y1 det B . Thus, by 3.2 , we obtainn n

ny13.3 det P s y1 n det B .Ž . Ž . Ž . Ž .n n

On the other hand, consider the matrix P ; denote its rows by R , . . . ,ny1 1
R . For i s 2, . . . , n y 1, replace R by R y R . Clearly, the only nonzerony1 i i iy1
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entry in the first column of the new matrix PX is a 1 in the first row.ny1
Moreover, by Lemma 3.1, the matrix obtained from PX by deleting the firstny1

Ž . Ž .row and first column is precisely B . It follows that det P s det B ,n ny1 n
Ž .hence 3.3 implies 3.1. I

Ž . y1 Žn.Denote the i, j entry of P by q . Since all column sums of P are zeron i j n
except the first one, which is equal to n, it follows that the entries of the first
row of Py1 are all equal to 1rn. A simple calculation shows that the vectorn
w Ž .xŽ Ž ..1r 2n y 2 n y 1, n y 3, n y 5, . . . , y n y 1 is orthogonal to all columns
of P except the second, with which it has scalar product 1. Thus, this vectorn
gives the second row of Py1. The following result allows us to determine then

y1 Ž .remaining entries of P recursively see also Corollary 3.4 .n

LEMMA 3.3. For 3 F i F n and 1 F j F n y 1, we have

3.4 qŽn. y qŽn. s qŽny1. .Ž . i j i , jq1 iy1, j

PROOF. Let P Ž i, j. denote the matrix obtained by deleting row i andn
Ž .column j from P . We can rewrite 3.4 asn

det PŽ .niqj iqjq1 iqjy1Ž j , i. Ž jq1, i. Ž j , iy1.3.5 y1 P y y1 P s y1 P .Ž . Ž . Ž . Ž .n n ny1det PŽ .ny1

Let R , . . . , R be vectors representing the rows of the matrix P . For an1 n n
n-vector v, denote by vw k , l, . . . x the vector obtained from v by discarding

Ž .coordinates k, l . . . . The left-hand side of 3.5 can be expressed as

¡ w i x ¦R1
...

w i xR jy1

iqj iqj w i x w i xŽ j , i. Ž jq1, i. R q R3.6 y1 P q P s y1 det .Ž . Ž . Ž .Ž . j jq1n n

w i xR jq2
...
w i x¢ §Rn

As seen in the proof of Lemma 3.2, the first column sum of the matrix in
Ž .3.6 is n, and all other column sums are zero. Replacing the first row by the
sum of all rows and expanding on the first row, we may rewrite the right-hand
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Ž .side of 3.6 as

¡ w1 , i x ¦R2
...

w1 , i xR jy1

iqj w1, i x w1, i xR q R3.7 y1 ndet .Ž . Ž . j jq1

w1, i xR jq2
...

w1 , i x¢ §Rn

Ž .The only nonzero entry in the first column of the matrix in 3.7 is the
Ž .entry y1 in the last row. Expanding on the first column, we obtain by 3.6

Ž . Ž .and 3.7 that the expression on the left-hand side of 3.5 can be written as

iq j iqjq1Ž j , i. Ž jq1, i.y1 P y y1 PŽ . Ž .n n

¡ w1 , 2, i x ¦R2
...

w1 , 2, i xR jy1

iqjqn w1, 2, i x w1, 2, i xR q Rs y1 ndet .Ž . j jq1

w1, 2, i xR jq2
...

w1 , 2, i x¢ §Rny1

3.8Ž .

On the other hand, consider the matrix P ; denote its row vectors byny1
Ž . Ž .L , . . . , L . By 3.1 , the right-hand side of 3.5 can be written as1 ny1

¡ w iy1x¦L1
...

w iy1xL jy1iqjqn3.9 y1 ndet .Ž . Ž . w iy1xL jq1
...

w iy1x¢ §Lny1

Replacing Lw iy1x by Lw iy1x y Lw iy1x for n s 2, . . . , n y 1 and expanding onn n ny1
Ž .the first column, we conclude from 3.9 that the expression on the right of
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Ž .3.5 equals

¡ w1 , iy1x w1, iy1x¦L y L2 1
...

w1 , iy1x w1, iy1xL y Ljy1 jy2

iqjqn w1, iy1x w1, iy1xL y L3.10 y1 ndet .Ž . Ž . jq1 jy1

w1, iy1x w1, iy1xL y Ljq2 jq1
...

w1 , iy1x w1, iy1x¢ §L y Lny1 ny2

However, Lemma 3.1 implies that L y L s Rw1 x. Since omitting then ny1 n

second and ith coordinates of R corresponds to discarding the first andn

Ž . w1 x Ž .i y 1 th coordinates of R , it follows that the matrices appearing in 3.8n

Ž . Ž .and 3.10 are identical. This proves 3.5 . I

COROLLARY 3.4. For i G 3 and 1 F j F n, we have

ny11
Žn. Žny1.3.11 q s n y n q ,Ž . Ž .Ýi1 iy1, nn ns1

jy1
Žn. Žn. Žny1.3.12 q s q y q .Ž . Ýi j i1 iy1, n

ns1

PROOF. By Lemma 3.3, we obtain

jy1 jy1
Žny1. Žn. Žn.q s q y qŽ .Ý Ýiy1, n in i , nq1

ns1 ns1

s qŽn. y qŽn. ,i1 i j

Ž .which proves 3.12 .
On the other hand, since the first column of P consists entirely of 1’s, then

sum of the entries in the ith row of Py1 is zero for all i ) 1. Summing bothn
Ž . Ž .sides of 3.12 for j s 1, . . . , n, we obtain 3.11 . I

LEMMA 3.5. For n G 4 and 3 F i F n, we have

iy21 3 n y 1Ž .
Žn.< <max q F .i j ž /12 2j

PROOF. The above inequalities are readily checked for n s 4 by direct
inspection of the entries of Py1.4

Žn. Ž . Ž .Using Lemma 3.3 and the fact that q s n y 2 j q 1 r 2n y 2 , one2 j
readily obtains that the entries in the third row of Py1 are given by then
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Žn. wŽ . x wŽ .Ž . Ž .xformula q s n y 1 r12 y j y 1 n y j r 2n y 4 . A simple analysis3 j
shows that, for n G 5, this quadratic expression in j has absolute value at

Ž .most n y 1 r12, for j s 1, . . . , n. Therefore, the claim is true for i s 3.
To complete the proof, it suffices to show that, for n G 5,

3 n y 1Ž .
Žn. Žny1.< < < <3.13 max q F max q .Ž . i j iy1, j2j j

Ž .By 3.11 , we obtain

ny11
Žn. Žny1.< < < <q F n y n qŽ .Ýi1 iy1, nn ns1

1 n n y 1Ž .
Žny1.< <F max qiy1, jn 2 j

n y 1
Žny1.< <s max q .iy1, j2 j

Ž .Therefore, 3.12 implies

jy1
Žn. Žn. Žny1.< < < < < <q F q q qÝi j i1 iy1, n

ns1

n y 1
Žny1.< <F q n y 1 max q ,iy1, jž /2 j

Ž .which proves 3.13 . I

4. Proof of Theorem 1.1. We return now to the guessing problem
described in the Introduction. Since the guesser is given no feedback, his best
strategy is to guess at each step j the most likely card to end up in position j
after k riffle shuffles. That is, his guess should be the index of the row
containing the largest element of the jth column of M k.

Ž . Ž k .The argument used to prove 2.3 also shows that M si j
Ž k .M . Therefore, it suffices to show that the largest entry in eachny iq1, nyjq1

Ž .kof the first n columns of M lies in the first row: this implies that the2 n
largest entry in each of the remaining columns is the one in the last row.

Ž .For the sake of notational simplicity, let q stand for the i, j entry ofi j
y1 Ž Ž2 n.. Ž .P this was previously denoted by q . Let P s p . By the2 n i j 2 n i j 1F i, jF 2 n

remark at the end of Section 2, the powers of M s M are given by2 n

M k s P ? diag 1, 1r2 k , 1r22 k , . . . , 1r2Ž2 ny1.k ? Py1 .Ž .2 n 2 n

Ž .Expanding the product on the right-hand side, we deduce that the l, j
entry of M k is given by

2n
k Ž iy1.k4.1 M s p q r2 .Ž . Ž . l j Ý l i i j

is1
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Ž .Since p s 1 and p F 0 for l ) 1, we obtain using p s 1, q s 1r 2n12 l2 1 i 1 j
and the formula expressing the q ’s that, for 1 F j F n,2 j

2n1 2n y 2 j q 1 1 qi jkM s q qŽ . 1 j Ýk Ž iy1.k2n 4n y 2 2 2is3

2n < <1 2n y 2 j q 1 1 qi jG q y ,Ýk Ž iy1.k2n 4n y 2 2 2is3

4.2Ž .

2n1 2n y 2 j q 1 p p ql2 l i i jkM s q qŽ . l j Ýk Ž iy1.k2n 4n y 2 2 2is3

2n < < < <1 p ql i i jF q for l ) 1.Ý Ž iy1.k2n 2is3

4.3Ž .

< < iy1By the definition of the entries of P, it follows that p F 2 y 1 forl i
Ž . Ž . Ž .i G 2. Therefore, by 4.2 and 4.3 , to prove part a of Theorem 1.1 it suffices

Ž .to show that, for k G 2 log 2n q 1 and 1 F j F n, we have2

2n < <2n y 2 j q 1 1 qi j
4.4 ) .Ž . Ýk Ž iy1.Žky1.4n y 2 2 2is3

Ž .The statement of Theorem 1.1 a is easily checked directly for n s 1. For
n G 2, we deduce from Lemma 3.5 that

iy22n 2 n< <q 1 3nŽ .i j FÝ ÝŽ iy1.Žky1. Ž iy1.Žky1.122 2is3 is3
4.5Ž .

iy22n1 1 3n
s .Ýky1 ky1ž /12 2 2is3

Ž . ky1 Ž .2Let k y 1 s 2 log 3n q d and write d s log a . Then 2 s a 3n and2 2
Ž .4.5 yields

iy22n 2 n< <q 1 1 1i j FÝ ÝŽ iy1.Žky1. 2 ž /12 3a n2 a 3nŽ .is3 is34.6Ž .
1 1 1

- 212 3a n y 1a 3nŽ .
Ž .where at the second inequality we assume 3a n ) 1 . On the other hand, the

Ž . ŽŽ . k .left-hand side of 4.4 is minimum for j s n, when it equals 1r 4n y 2 2 s
Ž Ž .Ž .2 . Ž . Ž .1r 4a 2n y 1 3n . Therefore, 4.6 implies that 4.4 holds whenever

1 1
G .2 24a 2n y 1 3n 12a 3n 3a n y 1Ž . Ž . Ž . Ž .

Ž .A simple calculation shows that this is equivalent to 9a y 2 n G 2, which is
wtrue for all n as long as a G 4r9 this implies 3a n ) 1, so the last inequality

Ž . xin 4.6 is true for all such a . In view of our choice of k, the latter condition
Ž . Ž .is equivalent to k y 1 G 2 log 2n , thus proving part a of Theorem 1.1.2
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Ž .To complete the proof, we show that the conditions stated in part b of
Ž k . Ž k .Theorem 1.1 imply M ) M , that is, that after k shuffles, card 2 is2 n 1n

more likely to be in position n than is card 1.
Using the formulas for the entries q and q given in the proof of Lemma2 i 3 i

Ž . Ž .3.5, we obtain that q s 1r 4n y 2 and q s y n q 1 r12. Therefore,2 n 3n
Ž .4.1 yields

2n1 1 1 n q 1 1 qinkM s q y qŽ . Ý1n k k Ž iy1.k2n 4n y 2 122 4 2is4

2n < <1 1 1 n q 1 1 qinF q y q ,Ýk k Ž iy1.k2n 4n y 2 122 4 2is4

4.7Ž .

2n1 n q 1 1 p q2 i inkM s q qŽ . Ý2 n k Ž iy1.k2n 12 4 2is4

2n < <1 n q 1 1 i y 1 qŽ . inG q y Ýk Ž iy1.k2n 12 4 2is4

4.8Ž .

w Ž . < < xin 4.8 we used that p s y1 and p F i y 1 .23 2 i
Ž . Ž . Ž k . Ž k .By 4.7 and 4.8 , to prove the inequality M ) M it suffices to2 n 1n

show that

2n < <n q 1 1 1 1 i qin
4.9 y ) .Ž . Ýk k Ž iy1.k6 4n y 24 2 2is4

Ž . k Ž .c Ž .cSince k s c log 2n , we can write 2 s a 3n , where a s 2r3 . Using2
Lemma 3.5, we obtain, for n G 2,

iy22n 2 n< <i q 1 3nin F iÝ ÝŽ iy1.k k kž /2 12 ? 2 2is4 is4
4.10Ž .

iy22n1 1
s i .Ýc cy1ž /12a 3nŽ . a 3nŽ .is4

Ž .To estimate the last sum in 4.10 , notice that the ratio between the
Ž . Ž . Ž Ž .cy1.i q 1 th and ith terms in this sum is i q 1 r ia 3n . Since c ) 1, there

Ž .exists some positive integer n c such that this ratio is at most 1r2 for all1
Ž . Ž . Ž .n G n c . It follows from 4.10 that, for all n G n c , we have1 1

2n 2 n< <i q 1 4in iy4F 1r2Ý ÝcŽ iy1.k 2 cy222 12a 3nŽ . a 3nŽ .is4 is4

2 1
- .3cy233 a 3nŽ .

4.11Ž .
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k Ž .c Ž . Ž .By using 2 s a 3n on the left-hand side of 4.9 , we deduce from 4.11
Ž . Ž .that 4.9 is implied, for n G n c , by the inequality1

n q 1 1 1 1 2 1
4.12 G q .Ž . c2 c 3cy22 36 4n y 2 3a 3nŽ .a 3n a 3nŽ . Ž .

Ž 1y2 c.The expression on the left is Q n , while the two terms on the right are
Ž y1yc. Ž 2y3c.Q n and Q n , respectively. Therefore, as long as 1 y 2c ) y1 y c

Ž . Ž .and 1 y 2c ) 2 y 3c, there exists some positive integer n c such that 4.122
Ž .holds for all n G n c . Since these two inequalities for c are equivalent to our2

Ž . Ž Ž . Ž ..assumption 1 - c - 2, it follows that 4.9 holds for all n G max n c , n c1 2
and the proof is complete. I

REMARK. Numerical evidence strongly suggests that the statement of
Ž .Theorem 1.1 b is also true for 0 - c F 1. However, the above method does

Ž . Ž .not seem to apply to this case, essentially because the estimates 4.7 , 4.8
Ž .and 4.10 are not sharp enough for small k.

5. A well-mixed deck. It is natural to ask how many shuffles of a deck
of n cards are needed to obtain a well-mixed deck. The standard way of
measuring how well the deck is mixed after k shuffles is to consider the total
variation distance from the resulting probability distribution to the uniform

w xdistribution. This approach is used in 3 , where it is proved that this total
Ž .variation distance drops abruptly around the value k s 3r2 log n from2

being very close to 1 to being very close to 0.
w xAlternatively, as mentioned in 3 , one can measure how well the deck is

Ž w xmixed by means of a card guessing problem. The problem considered in 3 is
the one in which the guesser is provided complete feedback, i.e., he is shown

.each card after guessing at it; we consider here the no-feedback case. Notice
Ž .that if the deck is perfectly mixed i.e., all orderings are equally likely , then,

for all guessing strategies, the expected number of correct guesses equals 1.
ŽNow, suppose the deck has been given k riffle shuffles the initial ordering of

.the deck is known to the guesser . Then it is natural to measure how well the
< kŽ . < kŽ .deck is mixed by E n y 1 , where E n is the expected number of correct

guesses when the best strategy is used.
Ž .Let n be even. As a consequence of Theorem 1.1 a , once k G 2 log n q 1,2

the number of correct guesses under the best strategy can be at most 2.
kŽ .Therefore, we have E n F 2. Thus, since the best guessing strategy yields

only a gain of at most 1 over the case of the uniform distribution, one can say
wthat the deck is well mixed. This is indeed a small gain, since by Corollary

1 'Ž . Ž . Ž .x5.5 b , E n s Q n .
In the complete-feedback case, for a deck chosen uniformly at random it is

clear that the best strategy is to guess at each step a card known to be in the
deck, and the expected number of correct guesses under this strategy is
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Ž . Ž . kŽ .h [ 1 q 1r2 q ??? q 1rn . Let F n denote the expected number of cor-n
rect guesses under the best strategy for the complete-feedback problem with

w xan n-card deck shuffled k times. As indicated in 3 , numerical evidence
suggests that, once k is sufficiently large so that the deck is well mixed, each

kŽ .additional shuffle cuts the difference F n y h roughly in half. In thisn
Ž .section, we prove see Corollary 5.2 that a similar phenomenon occurs in the

no-feedback case.

Ž .PROPOSITION 5.1. For k G 2 log 2n q 1,2

2 nn 1
k Ž2 nq1. Ž2 nq1. Ž2 iy1.k5.1 E 2n s 1 q q 2 q y q r2 .Ž . Ž . Ž .Ý 2 iq1, 1 2 iq1, nq1k2n y 1 2 is2

PROOF. Let M s M be the position matrix for the 2n-card deck. By2 n
Ž .Theorem 1.1 a , in the case under consideration we have

5.2 Ek 2n s M k q ??? q M k q M k q ??? q M k .Ž . Ž . Ž . Ž . Ž . Ž .11 1n 2 n , nq1 2 n , 2 n

Ž .Using p s 1, we obtain by 4.1 that1 i

2n Ž2 n.qimkM s , m s 1, . . . , n.Ž . Ý1m Ž iy1.k2is1

k Ž .By the central symmetry of the matrix M , we deduce therefore from 5.2
that

n 2 n Ž2 n.qimkE 2n s 2Ž . Ý Ý Ž iy1.k2ms1 is1
5.3Ž .

2n n1
Ž2 n.s 2 q .Ý Ý imŽ iy1.k2is1 ms1

However, since the columns of the matrix P are alternately symmetric and
antisymmetric with respect to the horizontal symmetry axis of P, it follows
that the rows of Py1 are alternately symmetric and antisymmetric with
respect to the vertical symmetric axis of Py1. Since the sum of the entries in
each row of index at least 2 in Py1 is zero, it follows that the summand in the

Ž . Ž .last sum on i of 5.3 is zero unless i is even. Using 3.12 and replacing
Ž2 n. Ž . Ž . Ž .q s 2n y 2m q 1 r 4n y 2 in 5.3 , we obtain the formula in the state-2 m

ment of the lemma. I

COROLLARY 5.2. For any 1 - a - 2, there exists a positive integer k sucha
Ž . kq1Ž .that, for all n and for all k G 2 log 2n q k , we have E 2n y 1 F2 a

Ž kŽ . .E 2n y 1 ra.

Ž .PROOF. By 5.1 , the statement holds in the case n s 1 with k s 1.a
Ž .Assume therefore n G 2. Denote by S the sum on the right-hand side of 5.1 .
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By Lemma 3.5, we have
n

Ž2 nq1. Ž2 nq1. Ž2 iy1.k< < < < < <S F q q q r2Ž .Ý 2 iq1, 1 2 iq1, nq1
is2

2 iy1n 1 3n
F 2 Ý kž /12 2is2

5.4Ž .

y13 21 3n 3n
F 1 y .k kž / ž /ž /6 2 2

k Ž .2 Ž .Let 2 s a 3n . For a G 1, 5.4 implies
y13 21 1 3n 3n

< <2 S F 1 y3k r2 k r2 kž / ž /ž /3 2 2 2

y121 1 1 1
s 1 y3k r2 3r2 ž /ž /3 3a n2 a

5.5Ž .

F 2y3 k r2 ,
Ž . Ž .for all n. By 5.1 and 5.5 , we obtain

n2 1
k 3k r2E 2n y 1 G y 2 ,Ž . k2n y 1 2

n2 1
kq1 y3Žkq1.r2E 2n y 1 F q 2 .Ž . kq12n y 1 2

Therefore,

Ek 2n y 1 y a Ekq1 2n y 1Ž . Ž .Ž . Ž .
1 y ar2 n2

y3k r2 y3Žkq1.r2G y 2 y a2k 2n y 125.6Ž .
1 y ar2 n2

y3k r2G y 1 q a 2 .Ž .k 2n y 12
k Ž .2Since we are assuming n G 2, replacing 2 s a 3n , we obtain that the

'Ž . Ž .Ž .right-hand side of 5.6 is nonnegative whenever 4 a G 1 q a 2 y a . This
proves the corollary. I

REMARK 5.3. Using Lemma 2.1, one can work out explicitly the value of
1Ž .E n , that is, the expected number of correct guesses under the best strategy

Žwhen the deck is given a single riffle shuffle. Lemma 5.4 gives the best
1Ž . .strategy; Corollary 5.5 gives E n for n even.

LEMMA 5.4. In the case of a single riffle shuffle, a strategy that maximizes
the expected number of correct guesses is to guess, in order, 1, 2, 2, 3, 3, 4, 4, 5,
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5, . . . until we reach the middle of the deck, and then guess so that the rest of
the guessing sequence, read backwards, is n, n y 1, n y 1, n y 2, n y 2, . . . .

PROOF. By Lemma 2.1, the entries of the kth column of the position
matrix M are 2yn times the following:n

k y 1 k y 1 k y 1nyk nyk nyk2 , 2 , . . . , 2 ,ž / ž / ž /k y 1 k y 2 1

nyk ky12 q 2 ,5.7Ž .

n y k n y k n y kky1 ky1 ky12 , 2 , . . . , 2 .ž / ž / ž /1 2 n y k

Since the best guess at the card in position k is the index of the row
containing the largest entry of the kth column of M , all we need to do isn

Ž .determine the largest of the numbers 5.7 .
k y 1 n y knyk ky1Ž . Ž .Clearly, A [ 2 and B [ 2 are the largest ofk y 1 r2 n y k r2Ž . Ž .? @ ? @

Ž .the first k y 1 and last n y k numbers in 5.7 , respectively. Therefore, it
suffices to compare the largest of these two numbers to C [ 2 nyk q 2 ky1.

i iŽ .For i G 1, define a [ r2 . Considering separately the cases of eveni ir2? @

or odd i, it is straigtforward to check that a ra F 1 for all i G 1. It followsiq1 i
?Ž . @that, for k F n q 1 r2 , we have A G B. Furthermore, it is clear that, for

?Ž . @3 F k F n q 1 r2 , we also have A G C. On the other hand, for k F 2, the
Ž .largest of the numbers 5.7 is C. This proves the statement of the lemma. I

Ž .COROLLARY 5.5. a For all n G 1, we have

ny13 1 i1E 2n s q .Ž . Ý2 ny1 i ž /ir2? @2 2is0

1 'Ž . Ž . 'b E 2n ; 8rp n .

Ž . Ž .PROOF. Part a follows directly from Lemmas 5.4 and 2.1. To obtain b ,
2 i2 i 'Ž .note that Stirling’s formula implies that r2 ; 1r p i for large i. More-i

2 i y 1 2 iy1 2 i 2 iŽ .over, an immediate calculation shows that r2 s r2 , for all i.ž /i y 1 i
n ' 'Ž .Part b follows now from the fact that Ý 1r i ; 2 n . Iis1

Ž w x.NOTE. One can generalize dovetail shuffling as follows see, e.g., 3 .
Consider a deck of cards and let a G 2 be an integer. An a-shuffle consists of
Ž .1 cutting the deck by selecting a y 1 cutting places at random, according to

Ž .the multinomial distribution and 2 interleaving the a resulting decks at
random, according to the uniform distribution.
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All the results discussed in this paper can be extended to a-shuffles. More
Ža. Ž .precisely, let M denote the n = n matrix whose i, j entry is the probabil-n

ity that card i goes to position j after an a-shuffle. Then it turns out that the
eigenvalues of M Ža. are 1, 1ra, . . . , 1rany1, and, remarkably, the eigenvectorsn
are the same as in the case a s 2.

This can be proved as follows. Let RŽa. s RŽa. be the matrix whose rowsn
Ž .and columns are indexed by permutations on n elements and whose s , t

entry is the probability that a deck in order s ends up in order t after an
a-shuffle. Regarding RŽa. as a linear transformation and considering a suit-
able change of basis, one can see that RŽa. is similar to a block-diagonal

Ža. Žmatrix having M as one of the blocks. Indeed, consider any basis contain-
ing the n vectors Ý y1 s , . . . ,Ý y1 s ; these vectors span an invari-s : s Ž1.s1 s : s Ž1.sn

Ža. .ant subspace whose matrix is M .
Ža. Žb. Žab. Ž w x.Since R R s R see, e.g., 3 , it follows from the previous paragraph

Ža. Žb. Žab. Ž ny1.that M M s M . Let D s diag 1, 1r2, . . . , 1r2 and let P be the
matrix whose columns are the eigenvectors of M s M Ž2.. Then, by Theorem
2.2, we obtain

k kŽ2 . Ž2. y1 kM s M s P D P ,Ž .
which implies that our claim about the eigenvalues and eigenvectors of M Ža.

is true for a s 2 k, k G 1.
wHowever, this implies our claim for arbitrary a. Indeed, we know by 3,

xTheorem 3 that
1 n q a y r pŽ .Ža.R s ,id , p n ž /na

Ž .where r p is the number of rising sequences of p . It follows that
1 n q a y r pŽ .Ža.M s .Ýi , j n ž /na y1Ž .p : p i sj

Let v be the mth column of P. Then the coordinates of the vector anM Ža. =m
v y anymq1 v are polynomials in a that vanish at a s 2 k, k G 1, and arem m
therefore identically zero. This completes the proof.
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