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UNIFORM ACCELERATION EXPANSIONS FOR MARKOV
CHAINS WITH TIME-VARYING RATES
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We study uniform acceleration (UA) expansions of finite-state con-
tinuous-time Markov chains with time-varying transition rates. The UA
expansions can be used to justify, evaluate and refine the pointwise sta-
tionary approximation, which is the steady-state distribution associated
with the time-dependent generator at the time of interest. We obtain UA
approximations from these UA asymptotic expansions. We derive a time-
varying analog to the uniformization representation of transition proba-
bilities for chains with constant transition rates, and apply it to establish
asymptotic results related to the UA asymptotic expansion. These asymp-
totic results can serve as appropriate time-varying analogs to the notions
of stationary distributions and limiting distributions. We illustrate the UA
approximations by doing a numerical example for the time-varying Erlang
loss model.

1. Introduction. In many applied settings, such as with queueing sys-
tems, physical reality indicates that it is appropriate to use nonstationary
models. For example, arrival rates in service systems typically vary sub-
stantially by time of day; for example, see [7], page 259. However, if the
rate of change is sufficiently slow, then it is natural to approximate the
time-dependent distribution at any time t by the steady-state distribution of
the model with transition characteristics at that time t. In particular, for a
nonstationary continuous-time Markov chain (CTMC) with time-dependent
generator �A�t�x t ≥ 0�, we would approximate the time-dependent probabil-
ity vector p�t� at time t by the steady-state probability vector p�t� associated
with A�t�, obtained by solving p�t�A�t� = 0 and p�t�1T = 1, with the usual
regularity conditions guaranteeing a unique solution. (We regard vectors as
row vectors, so that 1T is a column vector of 1’s with T the matrix transpose.)

Some variant of the approximation procedure just described is routinely
used in the performance analysis of telecommunications systems and in many
other applied settings. It has been studied and called the pointwise station-
ary approximation (PSA) in [6, 26, 4]. For example, Whitt [26] proved that
PSA is asymptotically correct for Mt/Mt/s queues and more general time-
dependent birth-and-death processes as the birth and death rates increase,
which is equivalent (by a change of time scale) to having the rates change
more slowly.
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In this paper, we propose a way to evaluate PSA quantitatively and develop
refinements to it (without having to solve for the actual time-dependent distri-
bution). In particular, we focus on a class of asymptotic approximations called
uniform acceleration (UA) asymptotic expansions for CTMC’s. The UA frame-
work provides a natural way to justify, evaluate and refine the PSA because
the PSA is the first term of the UA expansion. When the next few terms are
relatively small, we can be confident that the PSA is a good approximation,
but when they are not, then the PSA can be regarded as unreliable. The first
few terms of the UA expansion provide a convenient check on PSA because
they are essentially no more difficult to compute than the PSA itself.

In particular, suppose that A�t� is the time-dependent generator for a non-
stationary CTMC. Then the UA approximation of order n for the distribution
at time t is

p�t� ≈
n∑
k=0

p�k��t�;(1.1)

where, for each k, the vector p�k� is a solution of Poisson’s equation

p�k��t�A�t� = y�k��t�;(1.2)

with

y�0��t� = 0; p�0��t�1T = 1;(1.3)

y�k��t� = d

dt
p�k−1��t� and p�k��t�1T = 0 for k ≥ 1:(1.4)

From (1.2) and (1.3), we see that p�0��t� is indeed the stationary distribution
associated with A�t�, so that p�0��t� is the PSA. However, to calculate the
higher-order terms p�k��t� for k ≥ 1, we need the derivatives of p�k��t� for k ≥
0, but these derivatives can also be calculated by solving Poisson equations.
For example, by differentiating (1.2) for k = 0, we see that

dp�0�

dt
�t�A�t� = −p�0��t�dA

dt
�t�:(1.5)

Similarly,

dp�1�

dt
�t�A�t� = d2

dt2
p�0��t� − p�1��t� d

dt
A�t�(1.6)

and

d2p�0�

dt2
�t�A�t� = −2

dp�0�

dt
�t�dA

dt
�t� − p�0��t�d

2A
dt2
�t�:(1.7)

More generally (by induction),

djp�n�

dtj
�t�A�t� = d

j+1p�n−1�

dtj+1
�t� −

j−1∑
k=0

(
j

k

)
dkp�n�

dtk
�t�d

j−kA
dtj−k

�t�;(1.8)
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where p�−i��t� ≡ 0. In order for the p�n� vectors to have the required deriva-
tives and for the UA approximation to be well defined, we assume that the
generator possesses all the required derivatives at t.

We remark that the derivatives of p�0��t� are also of interest in the sensitiv-
ity analysis of the stationary distribution to changes in the generator A�t�, now
regarded as the generator for a stationary CTMC subject to possible change
in the transition intensities. It is known that such sensitivity analysis can be
performed by solving Poisson’s equation; for example, see [23].

Thus, to calculate the first n + 1 terms p�0��t�;p�1��t�; : : : ;p�n��t� in the
UA approximation (1.1), we need to solve Poisson’s equation �n+ 1��n+ 2�/2
times with different (known) right-hand sides. In (1.1), we are not interested
in large n, because the full series is not a convergent series. It is instead an
asymptotic expansion; see (3.12) below. Indeed, higher-order terms are likely
to be sensitive to fine structure, so we only want to consider small n in (1.1).
Since we are primarily interested in small n, for example, 1 ≤ n ≤ 4, it is
essentially no more difficult to calculate the UA approximation than it is to
calculate the PSA, that is, to calculate the steady-state distribution for a single
generator. We can use the same algorithm each time we need to solve Poisson’s
equation.

As reviewed in [27], there are efficient algorithms for solving Poisson’s
equation. For finite-state CTMC’s, the solution of Poisson’s equation can be
expressed explicitly in terms of the fundamental matrix, but that is usually
not the best way to proceed computationally. For birth-and-death processes
and skip-free CTMC’s, the solution can easily be calculated recursively; see
[27], Remark 1, page 287. For more on numerical methods for solving Markov
chains, see [25]. Thus, it tends to be much easier to compute the UA approxi-
mation for some time point t than it is to numerically solve the time-dependent
differential equation. The UA approximation allows us to focus on a single
time point t without having to calculate the probability vectors at previous
time points.

However, for time-dependent birth-and-death processes and other relatively
simple time-dependent one-dimensional CTMC’s, it is actually not extraordi-
narily difficult to numerically solve for the complete time-dependent distribu-
tion (even though this is not often done in practice). Indeed, we do so to eval-
uate the performance of UA approximations. From that more sophisticated
computational perspective, PSA and the UA approximations become more im-
portant to analyze larger time-dependent systems, such as time-dependent
queueing networks and loss networks. We are unaware of any attempts to
calculate the actual time-dependent distributions of such nonstationary net-
works with more than two or three nodes.

The UA approximation might also be useful for hybrid numerical schemes.
We might opt to solve the Kolmogorov equations, but only in an interval �t−
1; t� before a time t of interest. We could then use the UA approximation for
the initial distribution at time t− 1.

We also gain insight without performing any calculations. We can see that
PSA is asymptotically correct as the arrival rates change more slowly. To see
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this, suppose that the derivative A′�t� depends on a parameter γ by A′γ�t� =
γA′1�t�. From (1.5), we see that then p

�0�′
γ �t� = γp

�0�′
1 �t�. Then, from (1.2) and

(1.4) for k = 1, we see that p
�1�
γ �t� = γp

�1�
1 �t�, so that p

�1�
γ �t� → 0 as γ → 0.

Similar reasoning applies to higher-order terms.
In practice, we rarely know high derivatives of the time-dependent gener-

ator A�t� precisely. Thus, we may wish to approximate the time-dependent
generator A�t� at a given time point t by a linear or quadratic function. Then
we can use estimation procedures as in [15] to estimate the parameters of the
approximating generator from data. When A�t� is linear, (1.8) simplifies to

djp�n�

dtj
�t�A�t� = d

j+1p�n−1�

dtj+1
�t� − jd

j−1p�n�

dtj−1
�t�dA

dt
�t�:(1.9)

We have yet to explain where the UA approximations in (1.1)–(1.9) come
from. They are derived from UA asymptotic expansions, which we will explain
in the rest of this paper. UA expansions were first developed and applied to
the time-dependent M/M/1 queue, which we denote by Mt/Mt/1 queue, by
Massey [13, 14] and Keller [11]. The UA technique was developed to create
a mathematical framework that justified and refined the analysis of time-
dependent queues by Newell [21]. That application dramatically shows the
insights provided by the UA expansion. Under appropriate regularity condi-
tions, the two-term UA approximations for the mean and the probability that
the server is busy at time t are

E�Q�t�� ≈ ρ�t�
1− ρ�t� −

ρ′�t��1+ ρ�t��
µ�t��1− ρ�t��4(1.10)

and

P�Q�t� > 0� ≈ ρ�t� − ρ′�t�
µ�t��1− ρ�t��2 ;(1.11)

where ρ�t� ≡ λ�t�/µ�t� with λ�t� being the arrival rate and µ�t� the service
rate.

To have (1.10) and (1.11), we need to assume that ρ�t� < 1 and more: for
stability at t, we need to assume that ρ∗�t� < 1, where

ρ∗�t� = sup
0≤s<t

∫ t
s λ�u�du∫ t
s µ�u�du

y(1.12)

see [14].
Consistent with intuition, formulas (1.10) and (1.11) show that PSA tends

to overestimate (underestimate) congestion when the time-dependent traffic
intensity ρ�t� is increasing (decreasing). Reasoning heuristically, in this con-
text we might judge PSA (the first terms) and the UA refinements to be good
approximations if each succeeding term is no more than 10% of the preced-
ing term. From (1.10) and (1.11), we can see when this occurs for different
functions λ�t� and µ�t�.



1134 W. A. MASSEY AND W. WHITT

The fourth power of 1 − ρ�t� in the denominator of the second term in
(1.10) is reminiscent of the fourth power in the asymptotic variance of the
sample mean for the stationary M/M/1 queue; see [27], Example 1, page 281.
The similar result can be understood by the role of Poisson’s equation in both
contexts.

It is also possible to analyze the Mt/Mt/1 queue in more detail when it
is unstable, as shown by Mandelbaum and Massey [12]. They combine the
UA analysis with strong approximations to establish functional strong laws
of large numbers and functional central limit theorems.

The UA expansions have also been applied to the Mt/G/∞ queue and net-
works of such infinite-server queues by Eick, Massey and Whitt [4] and Massey
and Whitt [16, 17], page 323. The linearity of infinite-server models produces
very appealing simple formulas for the UA expansion. As shown in [20], these
formulas provide useful insight into the behavior of associated finite-server
systems, with or without additional waiting space.

Our goal here is to develop the UA theory for finite-state CTMC’s in general.
In order to motivate the UA expansion, we start in Section 2 by reviewing the
constant-rate CTMC theory. In Section 3, we introduce UA expansions and
state three fundamental CTMC theorems that generalize basic results for the
constant-rate case. There is some overlap between our theoretical results in
Section 3 and a recent paper [10], which we discovered after completing our
work. The proofs are quite different and Khasminskii, Yin and Zhang do not
discuss computation; for example, they do not discuss (1.1)–(1.8). We also take
a more probabilistic approach to UA analysis and explore further its signif-
icance to time-varying Markov chains. In Section 4, we work out an explicit
example of uniform acceleration for the special case of a two-state CTMC. In
Section 5, we obtain results for time-varying finite-state birth-and-death pro-
cesses. As an illustrative numerical example, in Section 6 we apply the UA
theory to treat the time-dependent Erlang loss model. Finally, in Section 7,
we give proofs of the theorems in Sections 3 and 5.

2. Background on the constant-rate case. One of our goals is to re-
late the UA expansions for nonstationary CTMC’s to classical theorems for
stationary CTMC’s. Hence, in this section we briefly review the theory for sta-
tionary CTMC’s. Let �Q�t� � t ≥ 0� be a time-homogeneous CTMC with state
space �0;1; : : : ; l�. For all t ≥ 0, we represent the distribution of Q�t� as a
probability vector p�t�, where

p�t� ≡
l∑
i=0

P�Q�t� = i�ei;(2.1)

with ei being the ith unit basis vector. The Kolmogorov forward equations for
the distribution of Q�t� can be written as

d

dt
p�t� = p�t�A;(2.2)
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where the off-diagonal terms of the operator (square matrix) A are nonneg-
ative and interpreted as transition rates: aij, the �i; j� entry of A, is the
instantaneous transition rate from i to j when i 6= j. The ith diagonal term
satisfies

aii = −ai ≡ −
∑
jxj6=i

aij:(2.3)

Thus ai is the reciprocal of the mean holding time in state i. The operator
A is called the transition rate matrix or the infinitesimal generator of the
CTMC �Q�t� � t ≥ 0�. We assume that it is irreducible; that is, with positive
probability you can get from any state to any other state.

Using the matrix exponential, we can write the solution for p�t� as

p�t� = p�0� exp�tA�:(2.4)

In this setting, there are three fundamental theorems for time-homogeneous
or constant-rate CTMC transition probabilities. The first theorem is the uni-
formization property; for example, see [9], Chapter 2.

Theorem 2.1 (Uniformization). If λ > sup0≤i≤l ai, then Pλ ≡ I+A/λ is an
aperiodic, stochastic matrix and

exp�tA� =
∞∑
n=0

e−λt�λt�n
n!

Pn
λ :(2.5)

Formula (2.5) says that the random sample paths of a CTMC can be rep-
resented as a discrete-time Markov chain (DTMC) with single-step transition
matrix Pλ, with the discrete steps occurring at the jump times of a time-
homogeneous Poisson process having rate λ.

Since the generator A is irreducible, there exists a unique probability vector
p such that

pA = 0:(2.6)

Also note that (2.2) and (2.6) are special cases of Poisson’s equation. In general,
if we are given a vector y whose components sum to zero, then there exists a
vector x such that

y = xA:(2.7)

Moreover, x is unique up to the vector addition of some scalar multiple of p.
This is immediate (see [27]) when we write the solution as

x = y
∫ ∞

0

(
1Tp− exp�tA�

)
dt+ �x · 1T�p:(2.8)

The second theorem is the stationarity property.

Theorem 2.2 (Stationarity). If p�0� = p, then p�t� = p for all t > 0.
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Theorem 2.2 states that if the CTMC is initialized to be in equilibrium,
then it stays in equilibrium for all time. (For the basic CTMC chain theory
here, see [2].)

Finally, the third theorem is the ergodic property.

Theorem 2.3 (Ergodicity). For any initial probability vector p�0�,
lim
t→∞

p�t� = p:(2.9)

In the next section, we develop time-varying analogs of these three theo-
rems.

3. Uniform acceleration expansions. Now let �Q�t� � t ≥ 0� be a CTMC
with time-varying rates, again with state space �0;1; : : : ; l�. If p�t� is the
probability vector for the distribution of Q�t�, then, instead of (2.2), we have

d

dt
p�t� = p�t�A�t�;(3.1)

where we now have a family of generators �A�t� � t ≥ 0�, which we assume is
measurable (with respect to the Borel field on �0;∞�) and bounded as a func-
tion of time. Just like (2.2), (2.6) and (2.7), (3.1) is a form of Poisson’s equation,
but we do not know the derivative �d/dt�p�t�. Thus the exact solution of (3.1)
corresponds to solving a system of ordinary differential equations.

In terms of a formal solution, we can express p�t� as

p�t� = p�0�EA�t�;(3.2)

where EA�t� is the time-ordered exponential of �A�s� �0 ≤ s ≤ t�; see [3]. The
time-ordered exponential EA�t� is the unique matrix solution to

d

dt
EA�t� = EA�t�A�t�(3.3)

and EA�0� = I, the identity matrix. We must define EA�t� in this manner since
in general,

EA�t� 6= exp
(∫ t

0
A�s�ds

)
:(3.4)

We now want to give a generalization of the uniformization formula (2.5).
Just as in the constant-rate case, the time-inhomogeneous CTMC can be rep-
resented as a time-inhomogeneous DTMC where the discrete steps occur at
the jump times of a homogeneous Poisson process with rate λ. The DTMC will
have a transition matrix Pλ�s� ≡ I+A�s�/λ if the jump is at time s. Since the
generators are assumed to be bounded, we can find one rate λ uniformizing
the transition rates at all times.

We now want to find an expression for the time-dependent transition prob-
ability matrix, that is, the time-ordered exponential EA�t�. This can be done
by averaging over the number of points in �0; t� and their location. The num-
ber of points has a Poisson distribution. Conditional on there being exactly n
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such points in �0; t�, they are distributed as the order statistics of n i.i.d. ran-
dom variables uniformly distributed over �0; t�. Given that there are n jumps
at the points s1; : : : ; sn, the transition probability is Pλ�s1�Pλ�s2� · · ·Pλ�sn�.
Hence, we obtain the following formula, which will play a key role in our con-
vergence proof for UA expansions. Later, we give a direct analytical proof of
this formula. The analytical proofs show that Theorem 3.1 extends beyond the
probabilistic setting in which A�t� is a generator.

Theorem 3.1 (Time-varying uniformization). Let �A�s� �0 ≤ s ≤ t∗� be a
bounded family of generators. If λ is a positive constant with

λ > sup
0≤s≤t∗

sup
0≤i≤l

ai�s�;(3.5)

then, for all t ∈ �0; t∗�,

EA�t� =
∞∑
n=0

e−λt�λt�n
n!

∫
· · ·
∫

0≤s1≤···≤sn≤t

n∏
i=1

Pλ�si�
n!
tn
ds1 · · ·dsn;(3.6)

where Pλ�s� ≡ I+A�s�/λ is a stochastic matrix.

For a stationary model (with constant transition rates), we typically focus on
the long-run limiting behavior. We do so, not because we are interested in the
distant future, but because we believe the limiting behavior will adequately
describe the present or near future. We anticipate that the system of interest
will currently be in equilibrium or steady state. The fact that the limiting
distribution is also the equilibrium distribution gives us a reasonable model
of current and near future behavior.

With time-varying rates, we could also focus on long-run limiting behavior.
For a “stable” system with time-varying rates, long-run limits of subsequences
and averages describe the range of excursions over time and the long-run
average behavior; for example, see [8]. For an unstable system, long-run limits
describe the way the stochastic processes grow as time evolves; for example,
see [18].

However, with time-varying rates, limits as t→∞ tend to be less relevant
for describing the present or near future. If we let t→∞ within this situation,
then we would be approximating the current behavior of the system with
arrival and service rates that have not yet happened. Hence, it is natural to
consider a different kind of asymptotics.

Now suppose that the rates of the generator A�t� vary so slowly in time
that the process Q�t� can achieve equilibrium before there is any significant
change in the rates. We can formalize this by changing A�t� to A�εt�, where
ε > 0. [In replacing A�t� by A�εt�, we are focusing on the behavior in the
neighborhood of time 0. If we wanted to focus on the behavior in the neighbor-
hood of time t0, then we would replace A�t� by A�t0 + εt�.] We will let p�ty ε�
be the corresponding probability vector that solves the differential equation

d

dt
p�ty ε� = p�ty ε�A�εt�:(3.7)



1138 W. A. MASSEY AND W. WHITT

When ε = 1, we have our original process, but as ε ↓ 0, we have a process
with slowly varying rates. In fact, if we let ε = 0, then we could simply let
t→∞ and use the steady-state analysis associated with the generator A�0�,
that is, we would be using PSA at time t = 0.

In the formalism of asymptotic expansions, this would give us the leading
term of the inner expansion for the transition probabilities. What we will call
uniform acceleration will correspond to the outer expansion. (For a discussion
of inner and outer limits in the context of boundary layer theory, we refer the
reader to [1], Chapter 9.) We still take the limit as t→∞, but we simultane-
ously let ε ↓ 0 such that τ = εt for some fixed τ > 0. In effect, we are holding
the time scale for A fixed as we obtain a steady-state limit for Q. If we now
switch to the time scale of τ, then the probability vector p�τy ε� will solve the
forward equations

ε
d

dτ
p�τy ε� = p�τy ε�A�τ�:(3.8)

Note that (3.8) corresponds to uniformly accelerating the rates, that is, replac-
ing A�t� by A�t�/ε in (3.1). What we have done is to switch from the time scale
of the Markov chain to the time scale of the generators. Observe that if A is
constant over time, then we can write the solution of (3.8) as

p�τy ε� = p�0� exp
(
τ

ε
A
)
;(3.9)

and we see that, in the constant-rate case, the uniform acceleration limit of
taking ε ↓ 0 gives exactly the same results as the steady-state limit of τ→∞.

We remark that Khasminskii, Yin and Zhang [10] studied both the inner
and outer expansions. However, unlike for the outer expansion, the inner ex-
pansion seems to offer no computational advantage in this setting over solving
for the time-dependent probabilities in the original system.

We can use the uniformization expansion to give a probabilistic interpreta-
tion of uniform acceleration. First, in general, the solution to (3.8) is

p�τy ε� = p�0�EA�τy ε�;(3.10)

where EA�τy ε� is the time-ordered exponential associated with A�τ�/ε. Now
if we use a Poisson process with rate λ/ε to perform the uniformization, we
obtain the following by Theorem 3.1.

Corollary 3.2. Under the hypotheses of Theorem 3.1, we have, for all
ε>0,

EA�τ; ε� =
∞∑
n=0

e−λτ/ε�λτ/ε�n
n!

∫
· · ·
∫

0≤s1≤···≤sn≤τ

n∏
i=1

Pλ�si�
n!
τn
ds1 · · ·dsn:(3.11)

Hence, the parameter ε only appears in the uniformizing Poisson rate λ/ε and
not in the DTMC stochastic matrices P�s�.
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We say that p�ε� is an asymptotic probability vector if

p�ε� '
∞∑
n=0

εnpn as ε ↓ 0;(3.12)

which is shorthand for

lim
ε↓0

p�ε� − �p0 + εp1 + · · · + εnpn�
εn+1

= pn+1(3.13)

for all nonnegative integers n. In (3.12), p0 is a probability vector, but pn
satisfies

pn1T = 0 for all n ≥ 1;(3.14)

where T denotes matrix transpose. As noted in the Introduction, the series in
(3.12) need not be convergent for any ε > 0.

We state the remaining two theorems here and prove them in the final
section. First, we will say that �A�s� �0 ≤ s ≤ τ� is a smooth family of operators
if every entry of A�·� is an infinitely differentiable function of time.

Theorem 3.3 (Time-varying stationarity). Suppose that

�A�s� �0 ≤ s ≤ τ∗�
is a smooth family of irreducible Markov generators.

(i) For all τ ∈ �0; τ∗�, we can construct a unique sequence of vectors p�n��τ�
for n = 0;1; : : : which are solutions to the following set of Poisson’s equations:

p�0��τ�A�τ� = 0;(3.15)

where p�0��τ� · 1T = 1 and

p�n��τ�A�τ� = d

dτ
p�n−1��τ� for all n ≥ 1;(3.16)

where p�n��τ� · 1T = 0.
(ii) Let p�ε� be an asymptotic probability vector of the form

p�ε� '
∞∑
n=0

εnp�n��0� as ε ↓ 0;(3.17)

where p�n��0� satisfies (3.15) and (3.16) for τ = 0, and let p�τy ε� be the unique
probability vector that solves the forward equations (3.8) with p�0y ε� = p�ε�.
Then, for all τ ∈ �0; τ∗�, p�τy ε� is also an asymptotic probability vector of the
form

p�τy ε� '
∞∑
n=0

εnp�n��τ� as ε ↓ 0;(3.18)

where p�n� satisfies (3.15) and (3.16).
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As we will see later, the proof of this theorem is straightforward. It is anal-
ogous to stationary behavior in the sense that the vector functions p�n�, which
comprise the coefficients of the asymptotic probability vector, when used ini-
tially (at time 0) will give the future asymptotic expansion terms for all time.
Below, we show that no other collection of vector functions has this property
and the initial distribution used has no relevance to the asymptotic behavior
of the transition probabilities.

Theorem 3.4 (Time-varying ergodicity). Let �A�s� �0≤ s≤ τ∗� be a smooth
family of generators, let p�τy ε� be the probability vector that solves (3.8) for
τ ∈ �0; τ∗� and let p�0y ε� be any asymptotic probability vector. Then, for
all τ ∈ �0; τ∗�, (3.18) holds where p�n� satisfies (3.15) and (3.16).

In Theorem 3.4, we have assumed that p�0y ε� is an asymptotic probability
vector. This assumption includes an ordinary probability vector as a special
case. Then pn = 0 for n ≥ 1 in (3.12). The fact that the initial distribution
has no impact on the UA expansion may be disturbing. The idea is that the
relevant history before t is captured by A�t� and the derivatives of A at t.
Previous time-varying ergodicity results are contained in [28] and [10].

The UA asymptotic expansion based on Theorems 3.3 and 3.4 is (3.18). The
associated UA approximation is the first n terms of (3.18) for some n. In our
UA approximations for a fixed time-dependent generator A�t�, we simply set
ε = 1 in the UA asymptotic expansion as in (1.1). If we want to see how the
quality of the UA approximations improves as ε ↓ 0, then we can start with
a fixed generator A�t� and consider the family of CTMC’s indexed by ε with
infinitesimal generators A�t�/ε. Note that the approximations with the pair
�A�t�/ε; ε� are independent of ε, so that there is no loss of generality in letting
ε = 1 above. With ε = 1 set, the UA approximation will perform better when
A�t� changes more slowly.

4. Time-varying two-state Markov chain. To illustrate the behavior
of UA asymptotics, consider a two-state Markov chain. Its forward equations
are

d

dt
p0�t� = a1�t�p1�t� − a0�t�p0�t�;(4.1)

d

dt
p1�t� = a0�t�p0�t� − a1�t�p1�t�:(4.2)

Since p0�t� + p1�t� = 1, we can write p1�t� as the solution of an ordinary
differential equation of degree 1 and obtain

p1�t� =
∫ t

0
a0�s� exp

(
−
∫ t
s
�a0 + a1��r�dr

)
ds

+ p1�0� exp
(
−
∫ t

0
�a0 + a1��s�ds

)
:

(4.3)
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By induction, we can write p1�t� as

p1�t� =
m∑
n=0

[
Dna0�t�

a0�t� + a1�t�
− Dna0�0�
a0�0� + a1�0�

exp
(
−
∫ t

0
�a0 + a1��s�ds

)]

+
∫ t

0
Dm+1a0�s� exp

(
−
∫ t
s
�a0 + a1��r�dr

)
ds

+ p1�0� exp
(
−
∫ t

0
�a0 + a1��s�ds

)
;

(4.4)

for all integers m ≥ 0, where D is the differential operator

Df�x� ≡ − d

dx

f�x�
a0�x� + a1�x�

(4.5)

and D0 is the identity operator.
Now, if we apply the UA scaling, then we obtain

p1�ty ε� =
m∑
n=0

εn
[

Dna0�t�
a0�t� + a1�t�

− Dna0�0�
a0�0� + a1�0�

× exp
(
−1
ε

∫ t
0
�a0 + a1��s�ds

)]

+ εm
∫ t

0
Dm+1a0�s� exp

(
−1
ε

∫ t
s
�a0 + a1��r�dr

)
ds

+ p1�0y ε� exp
(
−1
ε

∫ t
0
�a0 + a1��r�dr

)
:

(4.6)

Hence, in the limit as ε ↓ 0, we obtain the following UA expansion:

p1�ty ε� '
∞∑
n=0

εn
Dna0�t�

a0�t� + a1�t�
:(4.7)

Notice that p1�0y ε� does not appear in the UA expansion of p1�ty ε�. Given
the explicit form of the solution for p1�t; ε� in (4.6), we see that p1�ty ε� is not
an analytic function of ε as ε approaches 0, because an expression such as
exp�−1/ε� will have an essential singularity at ε = 0.

5. Time-varying finite-state birth-death models. In this section, we
give some results for the special case of finite-state birth-death processes (with
time-varying rates). The following complements characterizations of the solu-
tions of Poisson’s equation in [27].

Proposition 5.1. Let A be the generator for a birth-death process on the
state space �0;1; : : : ; l� with birth rate vector l = �λ�0�; : : : ; λ�l − 1�;0� and
death rate m = �0; µ�1�; : : : ; µ�l��. If y ≡ �y�0�; y�1�; : : : ; y�l�� is an arbi-
trary �l + 1�-dimensional vector whose components sum to zero, and x ≡
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�x�0�; x�1�; : : : ; x�l�� is the unique solution to Poisson’s equation xA = y where
the components of x sum to zero also, then

x�l� = β�l�
l−1∑
i=0

y∗�i�
λ�i�β�i� ;(5.1)

where y∗�i� ≡ y�0� + · · · + y�i� and β�i� is the blocking probability (proba-
bility of i) for the embedded birth-death process on the smaller state space
�0;1; : : : ; i� which can be expressed as

β�i� =
i−1∏
k=0

λ�k�
µ�k+ 1�

/ i∑
j=0

j−1∏
k=0

λ�k�
µ�k+ 1� :(5.2)

Corollary 5.2. Using the previous hypothesis, consider birth-death pro-
cesses with rates

λ�ty i� = λ�t�ri and µ�ty i� = µ�t�si(5.3)

for all i = 0;1; : : : ; l, where λ�t�, µ�t�, ri and si are all nonnegative quantities.
If we set ρ�t� ≡ λ�t�/µ�t�, then, as ε ↓ 0, we have

P�Q�ty ε� = i� = π�0�i �ty l� +O�ε�(5.4)

for all i = 0;1; : : : ; l, where

π
�0�
i �ty l� = ρ�t�i

i−1∏
k=0

rk
sk+1

/ l∑
j=0

ρ�t�j
j−1∏
k=0

rk
sk+1

:(5.5)

Moreover,

P�Q�ty ε� = l� = βl�ρ�t��
[
1− ε ρ′�t�

λ�t�ρ�t�
l−1∑
i=0

ql�ρ�t�� − qi�ρ�t��
riβi�ρ�t��

×
l∏

j=i+1

βj�ρ�t�� +O�ε2�
]
;

(5.6)

where

βi�ρ�t�� ≡ π
�0�
i �ty i�; βi�ρ�t�� ≡ 1− βi�ρ�t��(5.7)

and

qi�ρ�t�� ≡
i∑

j=0

jπ
�0�
j �ty i�:(5.8)

Note that as in (1.10) and (1.11), the second term of (5.6) is of the form
−ερ′�t�c�t� for c�t� > 0.

The time-dependent Erlang model is the special case of a time-dependent
birth-death process with birth rates λ�tyk� ≡ λ�t� for 0 ≤ k ≤ l− 1, and death
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rates µ�tyk� ≡ kµ�t� for some nonnegative functions λ�t� and µ�t�. Without
loss of generality (by performing a deterministic time transformation), it suf-
fices to let µ�t� = µ for all t ≥ 0. Hence, we construct the time-dependent
Erlang model by defining the off-diagonal terms for its family of generators
�A�t� � t ≥ 0� to be, for all i 6= j,

aij�t� =





λ�t�; j = i+ 1 and i < l;

iµ; j = i− 1 and i > 0;

0; otherwise.
(5.9)

The proof of the next result follows immediately from Corollary 5.2.

Corollary 5.3. For the time-varying Erlang model, we have, as ε ↓ 0,

P�Q�ty ε� = l�

= βl�ρ�t��
[
1− ερ

′�t�
λ�t�

l−1∑
i=0

(
1− βl�ρ�t��

βi�ρ�t��

) l∏
j=i+1

βj�ρ�t�� +O�ε2�
]
;

(5.10)

where, for all x ≥ 0, βi�x� is the Erlang blocking formula for i channels with
offered load x; that is,

βi�x� ≡
xi

i!

/ i∑
j=0

xj

j!
:(5.11)

We can use the asymptotic expansion for P�Q�ty ε� = l� to compute the
corresponding expansion for E�Q�ty ε�� by using the identity

E�Q�ty ε�� = ρ�t��1− P�Q�ty ε� = l�� − ε

µ�t�
d

dt
E�Q�ty ε��:(5.12)

6. A numerical example. We now consider an example of the time-
varying Erlang loss model. We show how the probability P�Q�t� = l� can
be approximated by our UA asymptotics. To test how well the approximations
work, we will compare them to P�Q�t� = l� itself, obtained by numerically
integrating the forward equations (3.1) that the vector p�t� satisfies. This re-
sults in numerically solving l+ 1 coupled ordinary differential equations over
the time interval �0; t�. For the UA approximation, we exploit (1.1)–(1.8). In a
subsequent paper, we will discuss in greater detail the computational aspects
of UA expansions and how various numerical tricks can be used to efficiently
compute UA expansions for time-varying birth-death processes. Such calcula-
tions are significantly faster than numerically integrating forward equations.

For our numerical example, the specific model parameters are λ�t� = 15+
5 sin�:5t�, µ = 1 and l = 20. We start the process at t = 0 and run it for 22
time units. We treat the first 12 time units as a warm-up period and only plot
the results for the final 10 time units. There is no special reason for the warm-
up period of 12; it seemed adequate to eliminate the initial effect, but that is
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Fig. 1. Comparing the exact distribution to one, two and three terms in the UA expansion.

not necessary. Figure 1 compares the exact blocking probability to graphs of
the first three terms of the UA expansion. (Approximation 2 is the dashed
dark line, while the exact value is the solid dark line.) The legend keys for the
graph are given in Table 1.

Recall that the first term π
�0�
l in the UA expansion is the PSA. Hence, Fig-

ure 1 also contains a comparison between the exact blocking probability and
its PSA estimate. Now, this estimate is merely the Erlang blocking formula,
which is a monotone function applied to λ�·�. Therefore, the PSA and the ar-
rival rate function will have the same times for extreme values (times for
maxima and minima.) We immediately see that the PSA can fail as a good
estimate of the exact blocking probability because it does not account for the
natural lag between the times of peak blocking and peak arrivals. (See [20]
for more discussion.) In the two-term UA approximation, we see that the lag
disappears. Finally, the three-term UA approximation corrects for the height
of the approximate peak. This phenomenon does not always occur, though. We
intend to evaluate the quality of UA expansions as approximations in greater
depth in a subsequent paper.

Table 1
Key to graph labels

Graph key Function plotted

Exact P�Q�12+ ·� = l�
Approx 0 π

�0�
l �12+ ·�

Approx 1 π
�0�
l �12+ ·� + π�1�l �12+ ·�

Approx 2 π
�0�
l �12+ ·� + π�1�l �12+ ·� + π�2�l �12+ ·�
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7. Proofs of theorems. We now prove the theorems and corollaries in
Sections 3 and 5. For this purpose, we introduce norms on vectors and matri-
ces. If x is an �l+ 1�-dimensional row vector, then our choice of vector norms
will be the l1-norm, that is,

�x� ≡
l∑
i=0

�xi�:(7.1)

If p is a probability vector, then �p� = 1. Our choice of operator norms will be
the one induced by the l1-norm on row vectors, or

�A� ≡ sup
�x�≤1
�xA� = max

0≤i≤l

l∑
j=0

�aij�:(7.2)

When P is a stochastic matrix, �P� = 1. So when �A�s� �0 ≤ s ≤ t� is a family
of Markov generators, we have �EA�t�� = 1.

We now give the proof of our time-varying analogue to the uniformization
expansion. Our proof exploits the probabilistic argument, but the argument
can be extended beyond probabilities; see [5], Chapter 14.

Proof of Theorem 3.1. First we show that it is sufficient to have, for all
nonnegative integers m,

EA�t� =
m∑
n=0

e−λt�λt�n
n!

∫
· · ·
∫

0≤s1≤···≤sn≤t

n∏
i=1

Pλ�si�
n!
tn
ds1 · · ·dsn

+ λm+1
∫
· · ·
∫

0≤s1≤···≤sm+1≤t

exp�−λ�t− s1��EA�s1�

×
m∏
i=1

Pλ�si+1�ds1 · · ·dsm+1:

(7.3)

The theorem follows from (7.3) by taking the limit as m→∞, since
∣∣∣∣λ
m+1

∫
· · ·
∫

0≤s1≤···≤sm+1≤t

exp�−λ�t− s1��EA�s1�
m∏
i=1

Pλ�si+1�ds1 · · ·dsm+1

∣∣∣∣

≤ �λt�
m+1

�m+ 1�! :
(7.4)

The identity (7.3) can be shown by induction, making the observation that

d

dt
EA�t� = −λEA�t� + λEA�t�Pλ�t�(7.5)

yields the formula

EA�t� = e−λtI+
∫ t

0
λe−λ�t−s�EA�s�Pλ�s�ds;(7.6)

which completes the proof. 2
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Now we state and prove the following lemma and corollary to give a simple
proof of the time-varying analogue to stationarity.

Lemma 7.1. For any bounded family of generators �A�s� �0 ≤ s ≤ t�, EA�t�
is an invertible matrix and

d

dt
EA�t�−1 = −A�t�EA�t�−1:(7.7)

Proof. Let α be any positive constant strictly greater than sup0≤s≤t �A�s��.
Integrating (3.3), we have, for all s where 0 ≤ s ≤ t,

EA�s� = I+
∫ s

0
EA�r�A�r�dr:(7.8)

Now, by Theorem 3.1, it is clear that EA�r� is always a stochastic matrix,
and so

∣∣∣∣
∫ s

0
EA�r�A�r�dr

∣∣∣∣ ≤
∫ s

0
�A�r��dr < αs:(7.9)

Since the spectral radius of an operator is always bounded above by its op-
erator norm, by (7.8) and (7.9), we see that EA�s� will always be invertible
whenever 0 ≤ s ≤ 1/α.

By induction on n, it follows that EA�s� is invertible for all s belonging to
the interval �n/α; �n+ 1�/α� if �n+ 1�/α < t. If we let s = u+ r, then we can
define by induction hypothesis

Ê�u� ≡ EA�r�−1EA�u+ r�;(7.10)

where 0 ≤ u ≤ 1/α and �n−1�/α ≤ r ≤ n/α. Differentiating with respect to u,
we obtain

d

du
Ê�u� = Ê�u�A�u+ r� and Ê�0� = I:(7.11)

Now it follows that Ê�u� is a time-ordered exponential that is also invertible
for all u ≤ 1/α. Thus, EA�s� is invertible and (7.7) easily follows. 2

Corollary 7.2. Under the same hypothesis as Lemma 7.1, if x and y are
vector processes such that, for all t ≥ 0, we have

d

dt
x�t� = x�t�A�t� + y�t�;(7.12)

then

x�t� = x�0�EA�t� +
∫ t

0
y�s�EA�s�−1EA�t�ds:(7.13)

Proof. By the uniqueness of the solution to the ordinary differential equa-
tion (7.12), we need only differentiate (7.13) and show that (7.12) holds. 2
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Proof of Theorem 3.3. First, the various Poisson equations have unique
solutions; for example, see [27], Section 4. From the form of the solution, and
the assumed differentiability of A at t, the vectors p�n� have derivatives of all
orders with 0 sums [except p�0��t�1T = 1]. Now define the following sequence
of vector processes:

r�n��ty ε� ≡ p�ty ε� −
n∑
j=0

εjp�j��t�:(7.14)

Proving the theorem reduces to proving that r�n��ty ε� = O�εn+1�. Using (3.8),
(3.15) and (3.16), we have

ε
d

dt
r�n��ty ε� = ε d

dt
p�ty ε� − ε d

dt

n∑
j=0

εjp�j��t�

= p�ty ε�A�t� −
n∑
j=0

εj+1p�j+1��t�A�t�

= r�n+1��ty ε�A�t�
= r�n��ty ε�A�t� − εn+1p�n+1��t�A�t�:

(7.15)

If we set t = 0, then

r�n��0y ε� = p�0y ε� −
n∑
j=0

εjp�j��0� = O�εn+1�:(7.16)

For all 0 ≤ s ≤ t, use Lemma 7.1 to construct the operator EA�s; ty ε� ≡
EA�sy ε�−1EA�ty ε�. Also by Lemma 7.1, we see that it solves the differential
equation

ε
d

ds
EA�s; ty ε� = −A�s�EA�s; ty ε�:(7.17)

If we apply Corollary 7.2 to the differential equation for r�n��ty ε� given by its
derivative equalling (7.15), we obtain

r�n��ty ε� = −εn
∫ t

0
p�n+1��s�A�s�EA�s; ty ε�ds+ r�n��0y ε�EA�ty ε�

= εn+1
∫ t

0
p�n+1��s� d

ds
EA�s; ty ε�ds+O�εn+1�

= εn+1
[

p�n+1��t� − p�n+1��0�EA�ty ε�

−
∫ t

0

(
d

ds
p�n+1��s�

)
EA�s; ty ε�ds

]
+O�εn+1�

= O�εn+1�:
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The second and third steps follow from using (7.17) and integration by parts,
which completes the proof. 2

To prove our theorem for the time-varying analogue of ergodicity, we in-
troduce the coefficient of ergodicity, which is essentially Birkhoff ’s contraction
coefficient; see [22], page 83, L4.3 on page 139, and page 145. For any square
matrix P, let

τ1�P� = 1
2 max

0≤i<j≤l

l∑
k=0

�pik − pjk�:(7.18)

Lemma 7.3. For all square matrices P1 and P2,

τ1�P1 +P2� ≤ τ1�P1� + τ1�P2�(7.19)

and, for all scalars λ,

τ1�λP� = �λ�τ1�P�:(7.20)

Moreover, if P is stochastic, then

τ1�P� = sup
xxx·1T=0;x 6=0

�xP�
�x�

= 1− min
0≤i<j≤l

l∑
k=0

min�pik; pjk�:
(7.21)

Hence, for all stochastic matrices P1 and P2, we have

τ1�P1P2� ≤ τ1�P1�τ1�P2�:(7.22)

Relations (7.19) and (7.20) in Lemma 7.3 imply that τ1 acts as a vector
space norm on square matrices. By inequality (7.22), τ1 acts as if it were an
operator norm when we restrict it to products of stochastic matrices. It follows
from (7.21) that the coefficient τ1�P� is an upper bound on the moduli of all
the eigenvalues of a stochastic matrix P except the largest one, which is 1.
Moreover, for any two probability vectors p and q, we have

��p− q�P� ≤ τ1�P��p− q�:(7.23)

Proof of Theorem 3.4. The proof for this theorem reduces to showing
that, for all probability vectors p and q, we have

�p− q�EA�ty ε� ' 0(7.24)

as ε ↓ 0. This limit is established by the following result, which gives us our
time-varying UA analogue for ergodicity.
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Theorem 7.4. If �p�sy ε� �0 ≤ s ≤ t� and �q�sy ε� �0 ≤ s ≤ t� are both
probability vectors that solve the same set of accelerated forward equations for
the family of continuous, irreducible, Markov generators �A�s� �0 ≤ s ≤ t� with
p�0y ε� = p and q�0y ε� = q, then there exist two positive constants α0 and α1
for all positive t and ε such that

�p�ty ε� − q�ty ε�� = ��p− q�EA�ty ε�� ≤ α0 exp�−α1t/ε��p− q�:(7.25)

Moreover, if λ > sup0≤s≤t sup0≤i≤l ai�s�, then there exists a constant 0 < σ < 1,
such that we can set α0 = 1+ 1/σ2 and, for all 0 < λ∗ < λ,

α1 = min
(
λ− λ∗ + λ∗ log�λ∗/λ�; λ∗� log σ �/l∗

)
:(7.26)

Proof. To show that (7.25) holds, suppose that, for any constant λ >
sup0≤s≤t sup0≤i≤l ai�s�, there exists some positive integer l∗, depending only
on l, such that

σ ≡ sup
0≤s1≤···≤sl∗≤t

τ1

( l∗∏
i=1

Pλ�si�
)
< 1;(7.27)

and for all 0 ≤ λ∗ < λ, we have

P�N�λt� < λ∗t� ≤ exp�−�λ− λ∗ + λ∗ log�λ∗/λ��t�;(7.28)

where �N�t� � t ≥ 0� is a standard Poisson process (mean 1). We will prove both
of these below. We can then complete the proof since it follows from (7.27) that

τ1�EA�ty ε�� ≤
∞∑
n=0

P�N�λt/ε� = n�
∫
· · ·
∫

0≤s1≤···≤sn≤t

τ1

( n∏
i=1

P�si�
)
n!
tn
ds1 · · ·dsn

≤ P�N�λt/ε� < m� + P�N�λt/ε� ≥m�σ�m/l∗�

for all m. Finally, we set m = �λ∗t/ε� where λ∗ < λ, and obtain

τ1�EA�ty ε�� ≤ P�N�λt/ε� < λ∗t/ε� + σλ∗t/�l∗ε�−2:(7.29)

By (7.28), we have

τ1�EA�ty ε�� ≤ exp�−�λ− λ∗ + λ∗ log�λ∗/λ��t/ε� + σλ∗t/�l∗ε�−2;(7.30)

and so (7.25) follows once we set

α0 = 1+ 1
σ2
;

α1 = min
(
λ− λ∗ + λ∗ log�λ∗/λ�; λ∗� log σ �/l∗

)
;

(7.31)

where 0 ≤ λ∗ ≤ λ. Once we establish (7.27) and (7.28), this completes the
proof. 2

Since λ∗ is arbitrary (within constraints), then a judicious choice of λ∗ will
maximize α1. This maximum value cannot be attained when λ∗ = 0 or λ∗ = λ,
so the optimum value for λ∗ is in �0; λ�. Now we establish lemmas to prove
(7.27) and (7.28).
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Lemma 7.5. If �A�s� �0 ≤ s ≤ t� is a continuous family of irreducible gen-
erators for the state space �0;1; : : : ; l� and λ is a constant where

λ > sup
0≤s≤t

sup
0≤i≤l

ai�s�;(7.32)

then there exists some positive integer l∗, depending only on l, such that

σ ≡ sup
0≤s1≤···≤sl∗≤t

τ1

( l∗∏
i=1

Pλ�si�
)
< 1;(7.33)

where Pλ�s� = I+A�s�/λ.

Proof. If P is an irreducible stochastic matrix, then there is an integer
n ≤ l such that p�n�ij > 0. For the special case of P = I + A/λ, where A
is a CTMC generator and λ > max0≤i≤l ai, all the diagonal entries of P are
positive. So if P is irreducible and has this special form, then it follows that
Pl is a strictly positive matrix since p�l�ij ≥ p

�n�
ij p

�l−n�
jj > 0.

Now, for any stochastic matrix P on the set of states �0;1; : : : ; l�, define
I �P� to be its incidence matrix, where every entry pij is replaced by 1 if
pij > 0 and 0 otherwise. For any two stochastic matrices P1 and P2, we have

I �P1P2� = I �I �P1�I �P2��:(7.34)

When P has the above form, it is aperiodic and its incidence matrix contains
the identity matrix I as a submatrix or

I �P� ≥ I;(7.35)

where the ordering relation denotes that every entry of I �P� is greater than
or equal to every entry of I. This means that the incidence matrix of an ordered
product of stochastic matrices P1; : : : ;Pn of this type will have the following
property:

I

( n∏
α=1

Pα

)
≥ I

( ∏
α∈0

Pα

)
;(7.36)

where the product
∏n
α=1 Pα is defined to equal P1 · · ·Pn, 0 is any ordered subset

of the indices �1;2; : : : ; n� and
∏
α∈0 Pα is the corresponding ordered product

of matrices.
Finally, let �Il� equal the number of distinct incidence matrices that corre-

spond to irreducible stochastic matrices for the state space �0;1; : : : ; l�. When-
ever we form a product of l∗ = l · �Il� such irreducible, aperiodic stochastic
matrices, then by the pigeonhole principle, there must be a subsequence of at
least l of these matrices with the same incidence matrix. By the inequality
(7.36), all the entries of such a matrix product will be strictly positive. This
shows that, for all times 0 ≤ s1 ≤ · · · ≤ sl∗ ≤ t, we have

τ1

( l∗∏
i=1

Pλ�si�
)
< 1:(7.37)
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Since this is a continuous function of the si, which range over a compact subset
of �0; t�, the relation (7.33) holds. (The supremum is attained, but it must be
less than 1.) 2

Now we show that (7.28) holds. This follows from applying the Chernoff
bound. (See [24, Chapter 1].)

Lemma 7.6. Let �N�t� � t ≥ 0� be a standard (rate 1) Poisson process. For
all λ and λ∗ with 0 ≤ λ∗ < λ, we have

P�N�λt� < λ∗t� ≤ exp�−�λ− λ∗ + λ∗ log�λ∗/λ��t�;(7.38)

and so the probability P�N�λt� < λ∗t� decays exponentially fast as t→∞.

Proof. If θ > 0, we can use Chebychev’s inequality to obtain

P�N�λt� < λ∗t� = P
(
e−θN�λt� > e−θλ∗t

)

≤ E�e−θN�λt��
e−θλ∗t

≤ exp�−�λ− λe−θ − θλ∗�t�:

(7.39)

We can minimize this upper bound by setting θ = log λ/λ∗, which gives us
(7.38).

By the Cauchy mean value theorem, we have

1
λ
<

log λ− log λ∗
λ− λ∗

<
1
λ∗
:(7.40)

Therefore,

λ− λ∗ + λ∗ log�λ∗/λ� = λ− λ∗ − λ∗�log λ− log λ∗�(7.41)

= �λ− λ∗�
[
1− λ∗

log λ− log λ∗
λ− λ∗

]
> 0;(7.42)

which completes the proof. 2

Proof of Proposition 5.1. Poisson’s equation is

xA = y and x · 1T = 0:(7.43)

Define R to be the matrix corresponding to the right shift operator on row
vectors and L to be the left shift operator on row vectors. For any given vector
x, let D�x� be the diagonal matrix such that the nth diagonal term of D�x�
equals the nth component of x. If we set λ�l� = µ�0� = 0, then

A = D�l�R+ D�m�L− D�l+ m�:(7.44)
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Now R and L have various algebraic properties such as RLR = R and LRL =
L. Moreover, since µ�0� = 0, we have D�m� = D�m�LR. If we redefine λ�l� to
be strictly positive but use D�l�RL in place of D�l�, we get

A = D�l�RLR+ D�m�LRL− D�l�RL− D�m�LRLR

= D�l�RL�R− I� + D�m�LRL�I−R�
= �D�l� − D�m�L�RL�R− I�:

If we set

x∗ ≡ x�D�l� − D�m�L� and y∗ = y�I−R�−1;(7.45)

then Poisson’s equation reduces to

x∗RL = −y∗(7.46)

and

x∗�D�l� − D�m�L�−11T = 0:(7.47)

The solution for all but x∗�l� is immediate, namely,

x∗�i� = −y∗�i� for i = 0; : : : ; l− 1:(7.48)

Since x∗�l� = x�l�λ�l� and y∗�l� =∑l
i=0 y�i� = 0, we can write x∗ as

x∗ = −y∗ + x∗�l�el = −y∗ + x�l�λ�l�el:(7.49)

Since elLi = 0 for i > l, we have

x�l�λ�l�el�D�l� − D�m�L�−1 = x�l�λ�l�el�I− D�m/l�L�−1D�l�−1(7.50)

= x�l�λ�l�
l∑
i=0

el�D�m/l�L�iD�1/l�:(7.51)

Using (7.50) and substituting (7.49) into (7.47), we have

x�l�λ�l�el�D�l� − D�m�L�−1 · 1T

= x�l�λ�l�
l∑
i=0

el�D�m/l�L�iD�1/l�1T

=
l∑
i=0

y∗�D�m/l�L�iD�1/l�1T

=
l−1∑
i=0

l−1∑
j=0

y∗�j�ej�D�m/l�L�iD�1/l�1T

=
l−1∑
i=0

l−1∑
j=0

y∗�j�ej�D�m/l�L�iD�1/l�1T

=
l−1∑
j=0

j∑
i=0

y∗�j�ej�D�m/l�L�iD�1/l�1T:

(7.52)
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For all i ≤ j, define

λ�i; j� ≡





j∏
k=i
λ�k�; when i < j;

λ�i�; when i = j:
(7.53)

If µ�i; j� is defined similarly, then evaluating the operators on both sides of
(7.52) gives

x�l�λ�l�
l∑
i=0

µ�l− i+ 1; l�
λ�l− i; l� =

l−1∑
j=0

j∑
i=0

y∗�j�µ�j− i+ 1; j�
λ�j− i; j� ;(7.54)

which simplifies to

x�l�
l∑
i=0

µ�i+ 1; l�
λ�i; l− 1� =

l−1∑
j=0

y∗�j�
λ�j�

j∑
i=0

µ�i+ 1; j�
λ�i; j− 1� :(7.55)

For all j, we have

j∑
i=0

µ�i+ 1; j�
λ�i; j− 1� =

µ�1; j�
λ�0; j− 1�

j∑
i=0

λ�0; i− 1�
µ�1; i� =

1
β�j� ;(7.56)

so that (7.55) simplifies to

x�l�
β�l� =

l−1∑
j=0

y∗�j�
λ�j�β�j� ;(7.57)

which completes the proof. 2

Proof of Corollary 5.2. Observe that the solution for π�0�i �ty l� follows
from the steady-state distribution for birth-death processes. Using (5.7) and
(5.8) gives us

βi�ρ�t�� = 1− βi�ρ�t�� =
i−1∑
j=0

ρ�t�j
j−1∏
k=0

rk
sk+1

/ i∑
j=0

ρ�t�j
j−1∏
k=0

rk
sk+1

(7.58)

and

qi�ρ�t�� =
i∑

j=0

jρ�t�j
j−1∏
k=0

rk
sk+1

/ i∑
j=0

ρ�t�j
j−1∏
k=0

rk
sk+1

;(7.59)

for all i = 0;1; : : : ; l.
From (5.5) and (7.58), we obtain the identity

i∑
j=0

π
�0�
j �ty l� =

l∏
j=i+1

βj�ρ�t��:(7.60)
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Moreover, from (7.58) and (7.59), and using the notion of the logarithmic
derivative, we can show that the βi’s satisfy the identity

x

βi�x�
d

dx
βi�x� = qi−1�x� − qi�x�:(7.61)

Applying the logarithmic derivative again to (7.60) and using the identity
(7.61), we have

d

dt

i∑
j=0

π
�0�
j �ty l� =

( i∑
j=0

π
�0�
j �ty l�

)
·

l∑
j=i+1

1

βj�ρ�t��
d

dt
βj�ρ�t��

=
( i∑
j=0

π
�0�
j �ty l�

)
· ρ
′�t�
ρ�t�

l∑
j=i+1

qj−1�ρ�t�� − qj�ρ�t��

=
( i∑
j=0

π
�0�
j �ty l�

)
· ρ
′�t�
ρ�t� �qi�ρ�t�� − ql�ρ�t���

= −
( l∏
j=i+1

βj�ρ�t��
)
· ρ
′�t�
ρ�t� �ql�ρ�t�� − qi�ρ�t���:

Using (5.1), we now have

π
�1�
l �t� = βl�ρ�t��

l−1∑
i=0

�d/dt�∑i
j=0 π

�0�
j �ty l�

λ�ty i�βi�ρ�t��

= −βl�ρ�t��
l−1∑
i=0

ρ′�t��βl�ρ�t�� − βi�ρ�t���
λ�t�ρ�t�riβi�ρ�t��

l∏
j=i+1

βj�ρ�t��

= −βl�ρ�t��
ρ′�t�

λ�t�ρ�t�
l−1∑
i=0

βl�ρ�t�� − βi�ρ�t��
riβi�ρ�t��

l∏
j=i+1

βj�ρ�t��;

which completes the proof. 2
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