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THE LINEAR GEODESIC PROPERTY IS NOT GENERALLY
PRESERVED BY A FIFO QUEUE

BY A. J. GANESH 1 AND NEIL O’CONNELL

University of London and BRIMS

If a FIFO queue is fed by several input streams that jointly satisfy a
Ž .sample path large deviation principle LDP with ‘‘linear geodesics,’’ then

Ž .the cumulative departures up to a large time also satisfy the LDP with a
rate function which depends in a relatively simple way on the rate
function corresponding to the inputs: this was demonstrated in a recent
paper by the second author. It suggests the possibility of an iterative
scheme which would allow one to determine the large deviation behavior
of more complicated networks. To do this, however, one would require that
the linear geodesic property be preserved: in this paper we demonstrate
that in general it is not preserved. This is true even in the case of a single
input stream.

1. Introduction and preliminaries. There has been considerable re-
cent interest in the large deviations behavior of queueing systems. This
started with the observation that for a single server queue, the tails of the
queue length distribution can be characterized in terms of the large devia-

Žtions behavior of the arrivals and service processes. This is actually a
classical result, originally due to Cramer in the iid case; for more general´

w x .statements in the context of queueing systems, see 2, 7, 8, 9 . Since then
there have been many attempts to extend the theory to more complicated
networks. A starting point in this quest is to consider the effect of interac-

Ž .tions in a shared buffer, which is served according to a FIFO first-in]first-out
policy. More precisely, if the arrival streams are assumed to jointly satisfy a

Ž .large deviation principle LDP , then what can be said about the joint large
deviation behavior of the corresponding departure streams? A partial answer

w xto this question was presented in 7 , where the notion of decoupling of
effective bandwidths was introduced. There it is shown that there is a region
over which the large deviation rate functions for the cumulative departures
and arrivals agree, and bounds are given outside that region. Chang and

w xZajic 4 consider the case of a single arrival stream and stochastic service
w xrate. In 10 , a full description of the rate function for the cumulative

departures is given in general, under the hypothesis that the arrival pro-
wcesses jointly satisfy a sample path LDP with ‘‘linear geodesics.’’ Roughly
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speaking, this means that the most likely path to an extreme value is a
straight line. It is usually assumed, or is a consequence of the stochastic
model of the arrival process, that the sample paths of the arrival process

U ˙ UŽ . Ž Ž ..satisfy a LDP with rate function of the form I f s HL f t dt. If L is
Ž .convex, then the sample path f that minimizes I f subject to the boundary

Ž . Ž .conditions f 0 s a and f 1 s b is described by the straight line joining
Ž . Ž . x0, a and 1, b . This begs the question, which we will address in this paper:
do the departures also satisfy this hypothesis? If so, then one could treat
quite complicated networks by successive iteration of the single-buffer results

w xin 10 . We know of one example where this is the case, namely if the inputs
and service are independent Poisson processes and the queue is stable: then
the outputs, in equilibrium, are also independent Poisson processes with the
same rates as the corresponding inputs. However, we find that it is not
generally the case, even when there is jut one input stream.

The remainder of this section is devoted to giving some background and a
formal description of the problem. Counterexamples to the above suggestion
are given in the next section.

But first we discuss some special cases when the departure process does
have linear geodesics. Suppose there is a single input stream. If the service
process is deterministic, then the departure process has linear geodesics. So,

w xa recursive analysis of networks of such queues is possible, as in 3 . Even if
the service process is stochastic, we show that, conditional on the departure
rate from a queue exceeding its mean, the departure process has linear
geodesics. We are typically interested in the probability of queue lengths
exceeding some large threshold, and in well-designed networks this requires
departure rates exceeding their mean. Therefore, we have linear geodesics in
the region of interest, and so the study of networks of queues using a

w xrecursive approach is again feasible. Such an approach has been taken in 1 ,
in the context of quite general arrival and service processes and a single class
of customers. We show in this paper that this approach cannot be extended
easily to networks with more than one traffic class. In fact, even if the service
process is deterministic and there are only two traffic types, the departure

Žprocess need not have linear geodesics. This is true even if we condition on
.the aggregate departure rate exceeding its mean.

We now give a formal description of the problem. Consider a discrete time
Ž 1 d .queue with d arrival streams X s X , . . . , X sharing an infinite buffer

according to a FIFO policy with stochastic service rate C. The number of
arrivals of each type in time slot k is denoted by X , while the maximumk
number of customers of any type that can be served in this time slot is
denoted by C . We will begin by assuming that the queue is empty at timek
slot 0. Define

n n

1 A s X , B s C .Ž . Ý Ýn k n k
ks1 ks1

Let A s Ýd A j denote the total number of arrivals, and D the totaln js1 n n
number of departures up to time n. Assuming that the queue is work-con-
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serving, we have

2 D s inf A y B q B .Ž . Ž .n k k n
0FkFn

Ž 1 d .The amount of work, D s D , . . . , D , serviced from each input stream byn n n
time n, is defined as follows. Set

� 43 T s sup k F n: A F D ,Ž . n k n

4 D s A q D y A X rX .Ž . Ž .n T n T T q1 T q1n n n n

Ž 1 d .Recall that X s X , . . . , X denotes the amount of work arriving from thek k k
different streams in time slot k. The expression T denotes the last time slotn

Žsuch that all arrivals up to it have been served by time n some of the
.arrivals in time slot T q 1 may also have been served . In words, work isn

serviced in the order received and simultaneous arrivals from different
sources are thoroughly mixed in the queue.

Ž . Ž . Ž .Define S t s A rn, B rn , R t s D rn. For each positive inte-n w nt x w nt x n w nt x
k Žw x k .ger k, let LL denote the subspace of paths in L 0, 1 with nondecreasing`

components, and by AAk ; LL k the set of those paths with absolutely continu-
ous components starting at zero. The following hypotheses are employed in
w x10 .

Ž . w Ž .xH1 For all g g R, sup E exp g X q C - `.k k k
Ž . dq1H2 For each l g R , the limit

1
5 L l s lim log E exp lS 1Ž . Ž . Ž .Ž .nnnª`

exists as an extended real number and is finite in a neighborhood of the
Ž .origin. The sequence S satisfies the large deviation principle LDP inn

LL dq1 with good rate function I given by

1¡ U dq1˙L f ds, if f g AA ,Ž .H~6 I f sŽ . Ž . 0¢̀
, otherwise,

where LU is the convex conjugate of L.
Ž .H3 The arrival and service processes are asymptotically independent in the

sense that

7 LU x, c s LU x q LU c .Ž . Ž . Ž . Ž .a b

Ž .We refer to the hypothesis H2 as the ‘‘linear geodesic property.’’ It follows
Ž . Ufrom H2 , the convexity of L and Jensen’s inequality, that the optimal path

from point to point is a straight line. Such a LDP has been shown to hold
w xquite generally by Dembo and Zajic 6 : roughly speaking, it holds provided

the sequence is, in some sense, stationary and mixing. Under the above
w xhypotheses, it was shown in 10 that the sequence R satisfies the LDP inn



THE LINEAR GEODESIC PROPERTY 101

LL d with good rate function given by

8 I c s inf I f : D f s c ,� 4Ž . Ž . Ž . Ž .d

where D: CC dq1 ª CC d is defined by

9 A f s f1 , . . . , f d ,Ž . Ž . Ž .
dq1 dq110 D f t s inf A f n t y f n t q f t ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .

0FnF1

11 T f t s inf r : A f r s D f t ,� 4Ž . Ž . Ž . Ž . Ž . Ž . Ž .
12 D f s A f (T f .Ž . Ž . Ž . Ž .

Ž . Ž . Ž . Ž . Ž . Ž . Ž .Here 9 follows from 2 , 10 from 3 and 11 from 4 . A f denotes the
Ž . Ž . 1 dscaled joint arrival process, while A f s f q ??? qf denotes the aggre-

Ž .Ž .gate arrival process. For the scaled processes, T f t denotes the last time,
arrivals up to which depart by time t. Since the queue was assumed to be
empty at time 0 and the service discipline is FIFO, the departures in all the

Ž .Ž .streams up to time t, denoted D f t , are precisely the arrivals in all the
Ž .Ž . Ž .streams up to time T f t . The term D f describes the scaled departure

process corresponding to the scaled arrival and service processes described by
f. By expressing the object of interest, the scaled departure process, as a

Ž .continuous function, D, of the arrival and service processes, 12 sets the
stage for applying the contraction principle. The contraction principle then

Ž .yields the LDP in 8 for the sample paths of the departure process. Using the
contraction principle once more, we obtain a LDP for the departure rate:
D rn satisfies the LDP in R d with good rate functionn

13 LU z s inf I c : c 0 s 0, c 1 s z ,� 4Ž . Ž . Ž . Ž . Ž .d d

Ž . w xfor I as in 8 . From this, it was derived in 10 thatd

z y x
U U UL z s inf bL xrb q sLŽ . Ž .d a a½ ž /s

z y x
U UqbL c q 1 y b L :Ž . Ž .b b ž /1 y b

14Ž .

w xb , s g 0, 1 , c g R, b q s F 1, x F bc .5
The last result has the interpretation that the most likely path of the

arrival and service processes which results in the departure process having
w xmean rate z on the interval 0, n is as follows. The arrival process has rate

w x Ž . w Ž . xxrb on the interval 0, b n and rate z y x rs on b n, b q s n . The
w xservice rate during 0, b n is c, which is greater than the aggregate arrival

w xrate during this period. So the queue is empty during 0, b n . The queue is
w xnonempty throughout b n, n , during which period the service rate, at

Ž . Ž . Ž .z y x r 1 y b , is no larger than the total arrival rate, which is z y x rs .
Therefore, the aggregate departure rate is equal to the aggregate arrival rate,

w xxrb, during the first phase, 0, b n , when the queue is empty, and equal to
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Ž . Ž . w xthe service rate, z y x r 1 y b , during the second phase, b n, n , when the
queue is never empty. The rigorous statement underlying this intuition,

w xproved in 10 , is the following:

15 LU z s I c ,Ž . Ž . Ž .d d

Ž .where c t , 0 F t F 1 is specified by,

x¡ , 0 - t - b ,
b~˙16 c 0 s 0, c t sŽ . Ž . Ž . z y x

, b - t - 1.¢1 y b

Ž . Ž .Here, b, x are those achieving the infimum in 14 , and I is as defined in 8 .d
Ž .The result in 14 applies to a queue started empty. A similar but more

involved expression was derived for a queue in equilibrium. Under the above
hypotheses, we can derive an expression for the asymptotics of the queue
length distribution. The problem of extending this derivation to an arbitrary
queue in a feed-forward queueing network remains open. The arrival process
into any queue in such a network is an aggregate of the departure process

Ž .from its predecessors or splittings thereof and possibly of an external arrival
process. Therefore, the result above suggests that we approach this problem
using the LDP for the departure process. This would work if the departure

Ž . Ž .process also satisfied hypotheses H1 ] H3 . In the next section we give
examples to show that there are situations where the departure process fails

Ž .to satisfy H2 , both for the queue initially empty and for the system started
in equilibrium.

2. Counterexamples.

2.1. Single customer class. Consider a queue with a stochastic server and
Ž . Ž .a single class of customers so d s 1 . Then 14 simplifies to

z y x
U U UL z s inf bL xrb q sLŽ . Ž .d a a½ ž /s

z y x
U UqbL c q 1 y b L :Ž . Ž .b b ž /1 y b

17Ž .

w xb , s g 0, 1 , c g R, b q s F 1, x F bc ,5
where now x and z are scalars.

X Ž . X Ž .Let EX s L 0 denote the mean number of arrivals, and EC s L 0 thea b
mean number of services in each time slot. The following properties of LU , LU

a b
w x U Ž U .are well known; see 5 for instance. L respectively, L is nonnegative anda b

Ž . U Uzero only at EX respectively, EC . Both L and L are convex, and finite ona b
a nonempty interval, in the interior of which they are analytic. We assume
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w xthat the queue is stable, namely EX - EC. Suppose that for some a g 0, EX ,

18 LU a s LU aŽ . Ž . Ž .a b

and also that these functions are finite in a neighborhood of a . Without loss
w xof generality, we can take a to be the largest number in 0, EX for which

Ž . U Ž . U Ž . U Ž . U Ž .18 holds. Then, since L EX s 0 - L EX , we have L x - L x for alla b a b
Ž x Ž U . XŽ . Ž U . XŽ .x g a , EX , and consequently that L a - L a . It follows from thisa b

that
U U w x19 ' « ) 0: L x - L x - q` ; x g a y « , a ,Ž . Ž . Ž .b a

and also that

x q x LU x q LU xŽ . Ž .1 2 b 1 a 2 U20 ' 0 - x - a - x - EX : s a , - L a .Ž . Ž .1 2 a2 2

We shall show that in this case, the most likely departure path having
Ž . Ž 1Ž . 2Ž .. w xmean rate a is not linear. Let f t s f t , f t , be defined on 0, 1 by

Ž .f 0 s 0 and

1 1x , 0 - t - , EC, 0 - t - ,2 2 21 2˙ ˙21 f t s f t sŽ . Ž . Ž .1 1½ ½EX , - t - 1, x , - t - 1,12 2

Ž . Ž . Ž .where x , x are as in 20 . Then, since EX - EC, we have from 9 ] 12 that1 2

1x t , 0 F t F ,2 2
22 D f t sŽ . Ž . Ž . 1 1 1½ x q t y x , F t F 1,Ž .2 12 2 2

Ž .Ž . Ž . Ž .and in particular that D f 1 s a . Therefore, by 8 and 13 ,

LU a F I fŽ . Ž .d

1 1U U1 2˙ ˙s L f s ds q L f s dsŽ . Ž .Ž . Ž .H Ha b
0 0

1r2 1 1r2U U Us L x ds q L EX ds q L EC dsŽ . Ž . Ž .H H Ha 2 a b
0 1r2 023Ž .

1 Uq L x dsŽ .H b 1
1r2

U U1s L x q L xŽ . Ž .a 2 b 12

- LU a .Ž .a

Ž . Ž .The first equality above follows from 6 and 7 , the second from the
Ž . U Ž . U Ž .definition of f in 21 , and the last from the fact that L EX s L EC s 0;a b

w x Ž .see 5 , for example. The last inequality above holds because of 20 . Notice
Ž . Ž .that the departure process D f in 22 , corresponding to the arrival process

f1 and service process f 2, is not linear but has different slopes x and x in2 1
two different periods of equal length.
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Ž . w x Ž . Ž .Next, let c t be linear on 0, 1 with c 0 s 0 and c 1 s a , so that
˙ 2Ž . Ž . Ž .c t s a for all t g 0, 1 . Consider any f g AA such that c s D f . That is,
Ž 1 2 . Žf , f is any pair of arrival and service processes excluding those whose

.rate function is q` , corresponding to which c is the departure process.
Ž . Ž .Then, by 9 ] 12 ,

1 2 224 c t s inf f s y f s q f t ,Ž . Ž . Ž . Ž . Ž .
0FsFt

Ž . 1Ž . 1Ž . 1Ž .from which it is clear that c t F f t . In particular, f 1 G a . If f 1 s a ,
Ž .then, by 6 ,

1 U 1˙I f G L f s dsŽ . Ž .Ž .H a
0

1U 1˙G L f s dsŽ .Ha ž /0

25Ž .

s LU a .Ž .a

The first inequality is due to the nonnegativity of LU , LU ; the second holdsa b
because of Jensen’s inequality and the convexity of LU , while the equality isa

1Ž . 1Ž .because f 1 was assumed to be a . If f 1 ) a , define

w x 126 t s sup t g 0, 1 : f t F a t� 4Ž . Ž .
1Ž .and note that t - 1. Hence, by the continuity of f, f t s at .

Ž . w xLEMMA 1. Suppose that c t s a t for all t g 0, 1 , where c is defined by
Ž . 2 Ž .24 , and that f g AA . Then, with t given by 26 ,

2 2 w xf t y f t s a t y t ; t g t , 1 .Ž . Ž . Ž .

1Ž . Ž .PROOF. As noted above, f t s at s c t , the latter equality holding by
Ž .hypothesis regarding c . From this, we see that the infimum in 24 corre-

Ž .sponding to t s t is achieved at s s t . Consequently, 24 implies that
1 2 227 c t s inf f s y f s q f t ; t G t .Ž . Ž . Ž . Ž . Ž .

tFsFt

w xIf the infimum above is achieved at t for all t g t , 1 , then, for all t in this
2Ž . 2Ž . Ž . Ž . Ž .interval, f t y f t s c t y c t s a t y t , and so the lemma is estab-

lished. Otherwise, because f is absolutely continuous, one of the following
must hold:

˙1 ˙228 ' « ) 0: f s y f s - 0 ; s g t , t q «Ž . Ž . Ž . Ž .
or

29 T J inf s ) t : f1 s y f 2 s - f1 t y f 2 t g t , 1 .� 4Ž . Ž . Ž . Ž . Ž . Ž .
Ž .In the former case, the infimum in 27 corresponding to t s t q « is achieved

at s s t q « , and so

30 c t q « y c t s f1 t q « y f1 t ) a« ,Ž . Ž . Ž . Ž . Ž .
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Ž .where the inequality follows from the definition of t in 26 . In the latter
Ž .case, we see from the continuity of f that the infimum in 27 corresponding

Ž . 1Ž .to t s T is achieved at s s T. So c T s f T and

31 c T y c t s f1 T y f1 t ) a T y t ,Ž . Ž . Ž . Ž . Ž . Ž .
Ž . Ž . Ž .where the inequality follows from 26 . Now, both 30 and 31 contradict the

Ž . w x Ž . Ž .hypothesis that c t s a t for all t g 0, 1 . Therefore, neither 28 nor 29
Ž .can hold, implying that the infimum in 27 must be achieved at t for all

w xt g t , 1 . This completes the proof of the lemma. I

Ž . Ž .From Lemma 1 and 26 , we obtain, using 6 , that
t 1U U1 2˙ ˙I f G L f s ds q L f s dsŽ . Ž . Ž .Ž . Ž .H Ha b

0 t

G tLU a q 1 y t LU aŽ . Ž . Ž .a b
32Ž .

s LU a .Ž .a

The first inequality is due to the nonnegativity of LU and LU , and the seconda b
w 1Ž .is due to their convexity and Jensen’s inequality note that f t s at , while

2Ž . 2Ž . Ž . xf 1 y f t s a 1 y t by Lemma 1 . The equality follows from the defini-
Ž .tion of a in 18 .

Ž . w x Ž . Ž .Let c be given by c t s a t, t g 0, 1 . Since either 25 or 32 applies to
2 Ž . Ž . U Ž .any f g AA for which Df s c , observe from 8 that I c G L a . There-d a

Ž . Ž .fore, by 23 , c does not achieve the infimum in 13 corresponding to z s a .
In other words, the departure process with constant rate a is not the most
likely to achieve an average departure rate a ; this is achieved by a process
with a nonlinear path. This implies that I cannot be expressed in the formd

1 U ˙I j s L j dsŽ . Ž .Hd
0

for any convex function LU and so the departure process does not satisfy
Ž .hypothesis H2 .

The above conclusion applies to a queue started empty. We now consider a
queue in stationarity. Let Q denote the queue length at time 0. It is shown0

w xin 10 that the scaled queue lengths Q rn satisfy a LDP in R with rate0
function L, which is explicitly computed. For our purposes, it is enough to

Ž . Ž .note that L 0 s 0 and that L q G 0 for all q ) 0. Suppose the scaled initial
queue length is q, and that the scaled process of arrivals and services is

Ž 1 2 .described by f s f , f . Then, the scaled departure process up to time t is
given by

2 1 2 233 D q , f t s f t n inf q q f n t y f n t q f t ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .
0FnF1

� 4 Ž . Ž .where x n y denotes min x, y . Notice that since f 0 s 0, we recover 10 for
the departure process from an empty queue by substituting q s 0. We shall

2 Ž Ž ..show that for any q ) 0 and f g LL such that D q, f t s a t for all
w x Ž . Ž . U Ž .t g 0, 1 , we have L q q I f G L a . This will enable us to conclude that

the departure process does not have linear geodesics, even in equilibrium.
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w x Ž . w xLet c be linear on 0, 1 with c t s a t for all t g 0, 1 . Fix q ) 0 and let
2 Ž . Ž . 2Ž .f g CC be such that D q, f s c . Then, by 33 , either f t s a t for all

w x 1Ž . 2Ž . w xt g 0, 1 , or q q f s y f s - 0 for some s g 0, 1 . In the former case, we
Ž . Ž . Uhave by 6 , 7 and the nonnegativity of the L that

1 U U2˙34 I f G L f s ds s L a .Ž . Ž . Ž . Ž .Ž .H b b
0

In the latter case, we have by the continuity of f that
1 2w xt J inf s g 0, 1 : q q f s y f s - 0 g 0, 1 .� 4Ž . Ž . .

Ž Ž .. 2Ž . w x w xIt follows that D q, f t s f t for all t g 0, t , whereas, for t g t , 1 ,
2 2 1 2D q , f t y D q , f t s f t y f t q inf q q f s y f s ,Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .

tFsFt

1Ž . 2Ž . w xbecause q q f s y f s takes its minimum value on 0, t at t , and this
value is zero. Hence, we can rewrite the above as

D q , f t y D q , f tŽ . Ž . Ž . Ž .
35Ž . 1 1 2 2 2 2s inf f s y f t y f s y f t q f t y f t .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .

tFsFt

˜Ž . Ž . Ž . w xDefine f t s f t y f t , t g t , 1 . Then we have from above that

2 w xf t , if t g 0, t ,Ž .
36 c t sŽ . Ž . 1 2 2 2˜ ˜ ˜½ xinf f s y f s q f t q f t , if t g t , 1 .Ž . Ž . Ž . Ž . Žt F sF t

Ž . w xComparing this with 24 , we see that the departure process on t , 1 is
identical to that from an empty queue with arrival and service processes

˜given by f. This is not surprising because the queue does, in fact, become
˜ w xempty at time t by definition of t . Since f, restricted to t , 1 , is merely a

˜Ž . Ž .shifted version of f on this interval, I f s I f for f restricted to this
interval. Therefore,

t
U 2˙ ˜I f G L f s ds q I f .Ž . Ž . Ž .Ž .H b

0

˙2Ž . Ž . w xNow, since c t s a t, f s s a for all s g 0, t . Also, by the same deriva-
˜ UŽ . Ž . Ž . Ž . Ž .tion as leads to 25 and 32 , we have I f G 1 y t L a . Finally, sincea

U Ž . U Ž . Ž .L a s L a by definition of a , and L q G 0 for all q, we geta b

L q q I f G LU a .Ž . Ž . Ž .a

This holds for all initial queue lengths q G 0 and arrival and service pro-
Ž . Ž .cesses f that result in a linear departure process c t s a t. Note that 23

continues to hold for departures in equilibrium because it was derived for
Ž . w xdepartures from an empty queue, and we have L 0 s 0; see 10 . Therefore,

U w x37 L a - inf L q q I f : D q , f t s a t ; t g 0, 1 ,� 4Ž . Ž . Ž . Ž . Ž . Ž .d

which implies that, conditional on a mean departure rate of a , the most
likely path is not linear. Thus, even in equilibrium, the departure process
does not necessarily have linear geodesics.
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We end this subsection with some comments about the scope and implica-
tions of the above results. A careful look at the proof shows that the result
relied on a being less than EX and on the rate functions of the arrival and
service processes intersecting at a . If the service process is deterministic, the
latter cannot happen, and in this case it can be shown that the departure
process has linear geodesics. This makes it possible to analyze networks of

w xdeterministic server queues, as in 3 . Likewise, if we consider only a ) EX,
then too it can be shown that the departure process conditioned on having
mean rate a is linear. Since we are typically interested in the problem of
queue lengths exceeding some large threshold, and since in well-designed
networks this requires departure rates exceeding their mean, we are usually
only interested in the rate function of departures for a ) EX. Since we have
linear geodesics in this region, the study of networks of queues using a

w xrecursive approach is again feasible. Such an approach has been taken in 1 .
We shall next show that neither of these features comes to our rescue when
dealing with multiclass queues. In this case, the joint departure process can
have nonlinear geodesics even if the server is deterministic, and even if we
consider departures whose aggregate rate exceeds their mean.

2.2. Two customer classes. Consider a queue multiplexing two customer
classes and served deterministically at rate c. Suppose that customers from
the first class arrive deterministically at rate a, while those of the second

Ž . Ž .have a stochastic arrival process satisfying hypotheses H1 ] H3 with the
rate function LU . We assume that the mean aggregate arrival rate is strictly2
less than the service rate, c. Note that the two arrival streams are trivially
independent, as are the arrival and service processes. We denote the large
deviations rate function of the first arrival process by LU and that of the1
service process by LU . Sob

0, if x s a, 0, if x s c,U U38 L x s L x sŽ . Ž . Ž .1 b½ ½q`, else, q`, else.
Ž .For some « ) 0 and b - c q « y a, let z s a y « , b and consider the depar-

ture process conditioned to have mean rate z. We shall show that this
departure process does not have linear geodesics.

2 ˙Ž . Ž .Let c g AA be linear with c 0 s 0 and c 1 s z, so c s z. We show that
3 Ž . Ž .there is no f g AA with I f - q` such that D f s c . In other words,

there is no process of arrivals and services whose rate function is finite,
corresponding to which c is the departure process. Suppose otherwise. Let

3 Ž .f g AA have I f - q`, so that

39 f1 t s at , f 3 t s ct ,Ž . Ž . Ž .
and suppose that

40 D f t s c t s a y « t , bt ,Ž . Ž . Ž . Ž . Ž .Ž .
Ž . Ž .where « ) 0 and a q b y « - c. Observe from 9 ] 12 that

41 D f t s f1 T f t , f 2 T f t .Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ž .
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Ž . Ž . Ž .Ž . Ž . 2ŽŽ . .Therefore, by 39 and 40 , T f t s a y « tra, and so f a y « tra s bt.
Ž .In addition, by 11 ,

42 D f t s f1 T f t q f 2 T f t s a q b y « t .Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .
Ž .But by 10 ,

1 2 3 3D f t s inf f s q f s y f s q f t ,Ž . Ž . Ž . Ž . Ž . Ž .
0FsFt

Ž . 2Ž . Ž .and so, by 39 and the fact, noted above, that f s s absr a y « , we get
abs

D f t s inf as q y cs q ctŽ . Ž .
a y «0FsFt

a¡ct , if a q b y « G c,Ž .
a y «~s a

a q b y « t , else.Ž .¢a y «

Ž .Ž . ŽBecause of our hypothesis that a q b y « - c, we have D f t ) a q b y
. Ž .« t in either case above, contradicting 42 . We have thus shown that, if
Ž . Ž . Ž . Ž .I f - q`, then D f s c is impossible for c t s zt with z s a y « , b .

Ž . Ž .Therefore, by 8 , I c s q`.d
U Ž .We now show that L z - q` for z as above. Since « ) 0 was arbitrary,d

we assume without loss of generality that a y 2« ) 0 and define
a

43 x s a q 2 b y « y c, x s c y a q 2« .Ž . Ž . Ž .1 2 a y 2«

Since the only requirement we imposed above was that a q b y « - c, it is
clear that b and « can be chosen so that x G 0. Also, x ) 0 since it was1 2
assumed that c is larger than a. Let f g AA3 be defined by

a, x , c , 0 - t - 1r2,Ž .1˙44 f 0 s 0, f t sŽ . Ž . Ž . ½ a, x , c , 1r2 - t - 1.Ž .2

Since x and x are nonnegative, f has nondecreasing components as1 2
required by the definition of AA3. Note that

a q x s 2 a q b y « y c - cŽ .1

by the hypothesis that a q b y « - c, whereas
ac

a q x s ) c.2 a y 2«

In other words, the aggregate arrival rate a q x is less than the service rate1
w x w xc during 0, 1r2 whereas, at a q x , it is greater than c during 1r2, 1 .2

Ž .Therefore, the joint departure process D f is given by

D f 0 s 0,Ž . Ž .
¡ a, x , 0 - t - 1r2,Ž .1d ~ a xD f t sŽ . Ž . 2

c, c , 1r2 - t - 1.dt ¢ž /a q x a q x2 2

45Ž .
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This is intuitively clear from the description of the queue, but can also be
Ž . Ž . Ž .formally established using 9 ] 12 . Hence, we have from 43 that

1 ac1
D f 1 s a q s a y « ,Ž . Ž . ž /2 a q x2

1 x c22
D f 1 s x q s b.Ž . Ž . 1ž /2 a q x2

Ž . Ž . Ž . Ž .Therefore, by definition of z, Df 1 s z. Furthermore, by 44 , 6 and 38 , we
have

U 1 U U46 L f s L x q L xŽ . Ž . Ž . Ž .Ž .2 1 2 22

Ž . U Ž . U Ž . U Ž .for x , x as in 43 . Therefore, L f is finite if L x and L x are, as is1 2 2 1 2 2
true if, for instance, the second arrival process is Poisson. It now follows from
Ž . Ž . U Ž . Ž .8 and 13 that L z - q`. But we showed earlier that I c s q` for cd d

Ž .given by c t s zt. Therefore, the departure process with linear path does
Ž .not achieve the infimum in 13 , implying that the departure process does not

satisfy a large deviations principle with action functional that is the integral
of a convex rate function. In other words, it is not true that

1 UI j s L j s dsŽ . Ž .Ž .Hd
0

for any convex function LU. Consequently, the joint departure process does
Ž .not satisfy hypothesis H2 , and so a recursive approach to estimating

asymptotics of the queue lengths in a network does not appear feasible.
We now consider the same queueing system in stationarity, rather than

w xstarted empty. It is shown in 10 that in stationarity, the scaled queue
lengths Q rn satisfy a LDP in R2 with a rate function L that can be0

Ž 1 2 .computed explicitly. Here Q s Q , Q denotes the number of customers of0 0 0
each of the two types in the queue at time zero. It suffices for our purposes to

Ž .note that L q G 0 for all q G 0, with equality if q s 0.
Consider the system starting at time zero with scaled queue length Q rn0

Ž 1 2 3.s q. Suppose the arrival and service processes are given by f s f , f , f ,
Ž 1 2 .and that c s c , c is the corresponding departure process. Let a and c be

defined as above to be the deterministic rate of the first arrival process and
Ž .the service process respectively. Let « g 0, a and b ) 0 be such that a q

Ž . w xb y « - c. We shall show that if c t s zt for all t g 0, 1 , where z s
Ž . Ž . Ž .a y « , b , then L q q I f s `.

Ž .Analogous to 33 , the scaled process of aggregate departures up to time t
is given by

3 3 347 D q, f t s f t n inf q q A f n t y f n t q f t ,Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .
0FnF1

1 2 Ž .where q J q q q is the total number in queue at time zero, and A f J
f1 q f 2 is the aggregate arrival process. Note that setting q s 0 above

Ž . Ž .recovers 10 since f 0 s 0. Now, if c is to be the departure process, then we
Ž . 1 2 Ž . Ž .must have D q, f s c q c . Since c t s zt, with z s a y « , b , the above



A. J. GANESH AND N. O’CONNELL110

Ž . Ž . w x Ž .implies that D q, f s a q b y « rt for all t g 0, 1 . Recall that if I f is
1Ž . 3Ž . w xto be finite, then we must have f t s at and f t s ct for all t g 0, 1 ,

since the first arrival process and the service process are deterministic with
Ž .rates a, c, respectively. Therefore, for all such f, 47 implies that

a q b y « t s ct n inf q q A f s y cs q ct .Ž . Ž . Ž .
0FsFt

w Ž .Ž . xSince a q b y « - c, the above implies that inf q q A f s y cs is0 F sF t
Ž .Ž . 1Ž . 2Ž . Ž .strictly negative for all t ) 0. Now A f s s f s q f s , f 0 s 0 and f

Ž .is continuous if I f is finite. Therefore, it follows from the above that q s 0,
that is, the queue must start empty. Then, by the argument above for
departures from an empty queue, there is no process f of arrivals and

Ž .services such that the departure process is c and I f is finite. We have also
shown that this conclusion does not change if we allow any positive initial

Ž .queue size q. This completes the proof that I c s ` even in equilibrium,d
where I denotes the rate function of the departure process.d

U Ž .We argued above that L z - ` for departures from an empty queue.d
Ž . Ž w x.Since L 0 s 0 see 10 , this argument applies to departures in equilibrium

as well. Thus, the most likely path leading to a mean departure rate z is not
Ž .linear. This also implies that the rate function I c for equilibrium depar-d

1 U ˙ UŽ .Ž .tures cannot be of the form H L c s ds, for any convex function L .0
Ž .Therefore, the departure process does not satisfy hypothesis H2 , needed to

w xapply the results of 10 inductively to feed-forward multiclass queueing
networks.

3. Conclusion. We considered the problem of characterizing the large
deviations behavior of the departure process from a FIFO queue multiplexing
several traffic streams. Such a characterization could, in principle, be used
iteratively to determine the large deviations behavior of all processes of
interest in networks of queues, and thereby to obtain the tail of the queue
length and waiting time distributions at each queue in the network. The

w xstarting point of our analysis was the general description, in 10 , of the rate
function for the cumulative departures as the solution of a variational

w xproblem. It was shown in 10 that if, in addition, the arrivals satisfy a
‘‘linear geodesics’’ condition, then the variational problem reduces to a
finite-dimensional optimization problem. Such a simplification is essential if
an iterative approach to analyzing networks of queues is to be practical. This
naturally leads to the question of whether the departures also satisfy the
‘‘linear geodesics’’ assumption. We showed in this paper that this is not
generally the case, even when there is just one input stream. Nevertheless, in
the case of a single input stream, the departures do satisfy the linear
geodesics requirement in the regime leading to large queue sizes. So an

w xiterative approach to obtaining the tail of the queue length is possible; see 1 .
However, such is not the case for multiple traffic streams, even when the
service rate is deterministic.
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