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In the random allocation model, balls are sequentially inserted at random
into n exchangeable bins. The occupancy score of a bin denotes the number
of balls inserted in this bin. The (random) distribution of occupancy scores
defines the object of this paper: the empirical occupancy measure which is a
probability measure over the integers. This measure-valued random variable
packages many useful statistics. This paper characterizes the large deviations
of the flow of empirical occupancy measures when n goes to infinity while
the number of inserted balls remains proportional to n. The main result
is a Sanov-like theorem for the empirical occupancy measure when the
set of probability measures over the integers is endowed with metrics that
are slightly stronger than the total variation distance. Thanks to a coupling
argument, this result applies to the degree distribution of sparse random
graphs.

1. Introduction. Consider the following classical model in random combi-
natorics. At each time k = 1,2, . . . , a ball is thrown into one bin among n. Let
{1, . . . , n} denote the set of bins. The set �n = {1, . . . , n}{1,2,...} of all sequences
in {1, . . . , n} is the natural space for the realizations of this experiment. For any
k ≥ 1, the canonical projection Bn

k : ω = (ωl)l≥1 ∈ �n �→ ωk ∈ {1, . . . , n} is the
random variable: “name of the bin into which the kth ball is thrown.”

To make things easier, it is assumed that at time k = 0, all bins are empty. The
score of bin α at time k ≥ 0 is defined by

Snk (α)=
k∑

l=1

1{Bn
l =α},

with the convention that Sn0 ≡ 0. Let us consider the time-scaling k = 	nt
,
0 ≤ t ≤ T where 	s
 is the integer part of s. We are interested in the time-rescaled
evolution of the joint empirical distribution of the scores. This is described by
the following empirical occupancy process from [0, T ] to the set P (N) of all
probability measures on N:

Xn
t =

1

n

n∑
α=1

δSn	nt
(α) =
∑
i≥0

Xn
t (i)δi ∈P (N), 0 ≤ t ≤ T,
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where δ stands for the Dirac measure and Xn
t (i) is the proportion of bins with

score i after 	nt
 ball allocations. The sequence (Xn) satisfies a law of large
numbers (see Proposition 2.5). Recall that a sequence Rn of probability measures
on a topological space E satisfies a large deviation principle with rate function I

whenever I is a nonnegative function having compact level sets and such that for
every measurable A,

inf
x∈int(A)

I (x)≤ lim inf
n→∞

1

n
logRn(A)≤ lim sup

n→∞
1

n
logRn(A)≤− inf

x∈A
I (x),(1.1)

where int(A) and A denote, respectively, the interior and the closure of A. For
large deviations we refer to [8]. In this paper, we will show that a large deviation
principle (LDP) holds for the sequence of laws of the measure-valued process Xn

(abbreviated to Xn satisfies a LDP).

1.1. The limitations of Poisson approximation. The random allocations phe-
nomenon is intimately connected with questions in Poisson approximation [1]. For
any fixed t , Xn

t may be considered as the empirical measure Yn
t of n identically

distributed independent Poisson random variables with parameter t conditioned
on the fact that their sum is equal to 	nt
. By the Sanov theorem [8], Yn

t satisfies

a LDP in P (N) with rate function H(ν | pt )
�=∑i∈N ν(i) log ν(i)

pt (i)
[here (pt (i))i∈N

is the Poisson distribution with mean t]. As the probability that the sum of n inde-
pendent Poisson random variables with parameter t equals 	nt
 is of order 1/

√
n,

we immediately get the following LDP upper bound for Xn
t :

lim sup
n→∞

1

n
logP(Xn

t ∈ C)≤− inf
ν∈CH(ν | pt ),

which by the way proves that, for fixed t , Xn
t satisfies a law of large numbers.

A very natural question is whether the lower bound also holds. Analyzing the
behavior of collections of dependent random variables by conditioning collections
of independent random variables is a standard method in random combinatorics
(see the characterization of the LDP for integer partitions profiles [7]). The
ambitions of this paper consist first in providing with results of wide applicability
and second in establishing a Sanov-like theorem in a dependent context.

As random allocations models arise in many applications ranging from
algorithm analysis, random combinatorics and learning theory, they have been
investigated by a variety of methods: mostly by combinatorial analysis (see
[13, 12, 28, 5] and references therein) and probabilistic techniques using
characteristic functions (see [18, 21–23] and references therein). Combinatorial
analysis provides results of unrivaled precision, but tends to be involved when
dealing with infinite-dimensional random variables. In classical probabilistic
approaches, conditioning a collection of independent Poisson random variables
and ingenious depoissonization arguments going back to [2] have often been used
to obtain Central Limit Theorems.
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This paper avoids the depoissonization approach, and characterizes the LDP
for the flow of empirical occupancy measures by taking advantage of the simple
dynamics of the model. We illustrate our main result by deriving a LDP for the
degree distribution of sparse random graphs.

1.2. Outline of the paper. The main result of the paper, Theorem 2.7, is
stated at the end of Section 2. The LDP upper bound is proved in Section 3
where a variational representation of the rate function is established. Thanks to
Orlicz spaces techniques, the nonvariational representation of the rate function is
established in Section 4. The LDP lower bound is established in Section 5 thanks
to the classical change of measure argument. The difficulty lies in the construction
of a rich enough collection of absolutely continuous changes of measures. In
Section 6, the LDP for the flow of empirical occupancy measures is shown to
hold with the same rate function when the topology is strengthened. In Section 7,
a coupling argument allows deriving the LDP for the degree distribution of sparse
random graphs from Theorem 2.7.

Convention. Henceforth, it is assumed that the value of all functions indexed
by −1 are 0.

2. Main results.

2.1. The model. The dynamics of the process is as follows. If the kth ball is
inserted into bin Bn

k which score Snk−1(B
n
k )= i, then

Xn
k/n(i + 1)=Xn

(k−1)/n(i + 1)+ 1/n,

Xn
k/n(i)=Xn

(k−1)/n(i)− 1/n,

Xn
k/n(j)=Xn

(k−1)/n(j), j �∈ {i, i + 1}
and the value of the process remains constant on the time interval [k/n, (k+ 1)/n).
For any i ≥ 0, each realization of the process Xn(i) stands in the space
D([0, T ],R) of right continuous left limited (cadlag) paths from [0, T ] to R. The

sample path space of Xn is DP
�= D([0, T ],P (N)): the set of all ν: [0, T ] �→

P (N) such that ν(i) ∈D([0, T ],R) for all i ≥ 0.
Let us endow DP with its canonical filtration (Ft )0≤t≤T where Ft = σ(πs;0 ≤

s ≤ t) is generated by the canonical projections πs : ν ∈DP �→ νs ∈P (N) and the
σ -field on P (N) is induced by the usual product σ -field on RN. Similarly, �n is
endowed with the natural filtration (An

t )0≤t≤T where An
t = σ(Bn

k ;1 ≤ k ≤ 	nt
).
The σ -fields on �n and DP are An

T and FT . Clearly, Xn
t = Xn ◦ πt, Xn is an

(An
t )-adapted process and the canonical process π is (Ft )-adapted.
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As the bins are chosen uniformly and independently at each time, the probability
measure Pn on �n is the product of the uniform distribution on {1, . . . , n},

Pn(dω)= ⊗
1≤k≤	nT 


(
1

n

∑
1≤α≤n

δα(dωk)

)
.

2.2. The topologies. Considering P (N) as a subset of sumable sequences
#1(N), it is naturally endowed with the topology induced by #1 norm, that is, by
the total variation metric

‖π − ρ‖ =∑
i≥0

|π(i)− ρ(i)|, π,ρ ∈ P (N).(2.1)

We shall not use the Skorokhod topology on the sample path space DP .

DEFINITION 2.1. The space DP is endowed with the topology of uniform
convergence associated with the norm

‖ν −µ‖ �= sup
0≤t≤T

‖νt −µt‖, ν,µ ∈DP .(2.2)

REMARK 2.2. Provided with this topology, DP is a nonseparable complete
metric space. The following result shows that we should not be distracted by
separability, measurability and exponential tightness issues.

LEMMA 2.3. There exists a compact subset E of DP such that for all n ≥ 1
and all ω ∈�n, Xn(ω) belongs to E .

PROOF. We take advantage of the simple form of the sample paths of Xn(ω).

Let xn be any realization of Xn. As for any t and n,

sup
t≤r, s<t+1/n

‖xns − xnr ‖ = 2/n,

we have for any 0 ≤ t < t + δ ≤ T, supt≤r, s<t+δ ‖xns − xnr ‖ ≤ (1 + nδ)2/n =
2/n+ 2δ.

On the other hand, for any t , the mean score per bin is
∑

i≥0 ix
n
t (i)≤ t . Hence,

for all t ≤ T , xnt belongs to the relatively compact subset of P (N) consisting of
the probability measures with their first moment bounded above by T . As P (N) is
complete, this relatively compact subset is totally bounded.

As in the proof of Ascoli–Arzela’s theorem, it follows from these considerations
that for any ε > 0, one can build a finite collection of open balls of DP with
radius ε which covers

⋃
n≥1{Xn(ω);ω ∈ �n}. This means that it is a totally

bounded set in the complete metric space DP . Therefore, its closure E is com-
pact. �
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REMARK 2.4. According to Lemma 4.1.5 in [8], if I is a rate function on DP

that is infinite outside E , proving the LDP with rate function I in E endowed with
the (complete, metrizable, separable) topology induced by the supremum norm is
equivalent to proving the LDP in DP provided with the topology induced by the
same norm and the σ -algebra generated by canonical projections. This holds even
if the σ -algebra defined on DP is strictly smaller than the Borel σ -algebra.

2.3. A larger class of models. Suppose you observe a significant deviation
of Xn from its limiting value (i.e., Poisson flow p = (pt )t∈[0,T ] according to the
law of large numbers). One may ask for the most typical sample paths leading to
this situation. As it will be shown that (Xn) satisfies a LDP, answering the previous
question amounts to solving a variational problem whose objective function is the
rate function of the LDP. The solutions of this variational problem are the limits in
probability of the empirical occupancy measures arising in more general allocation
schemes. In this section, we describe those general allocation schemes, and state
the corresponding laws of large numbers. This will be useful when deriving the
LDP lower bound (see Section 5). In this larger class of models, the choice of the
bin Bn

k+1 at time k+ 1 depends on the whole empirical distribution Xn
k/n at time k.

Let us take a continuous function λ on [0, T ] ×N such that:

1. λ has range included in [a,∞) for some a > 0.
2. There exists some integer M such that λ(t, i)= 1 for all i ≥M and all t .

Conditionally on An
k/n, the probability of choosing a bin with score i is

Qn
(
Snk (B

n
k+1)= i |An

k/n

)= λ(k/n, i)Xn
k/n(i)/〈λk/n,Xn

k/n〉,(2.3)

where 〈λk/n,Xn
k/n〉 =

∑
j≥0 λ(k/n, j)X

n
k/n(j). Let us remark that as infλ≥ a > 0,

we have 〈λk/n,Xn
k/n〉 > 0. The choice of the bin, among those of score i is uni-

form. Note that if Xn
k/n(i;ω)= 0, then one cannot allocate the (k + 1)th ball in a

bin with score i. It is worth noting that under Qn, for any d ≥M , the Rd -valued
process formed by the projection of Xn on its first d coordinates is a Markov
process. Indeed,

〈λk/n,Xn
k/n〉 = 1+

M∑
i=0

(
λ(k/n, i)− 1

)
Xn
k/n(i)(2.4)

and hence for d ≥ M , the law of the d-dimensional projection of Xn at time
(k + 1)/n only depends on the value of the d-dimensional projection of Xn at
time k/n. Under Qn, Xn is a projective limit of a vector-valued Markov process
and satisfies the following law of large numbers whose proof is postponed to
Section 5.

PROPOSITION 2.5 (Law of large numbers). Let Qn as before. Then, the
sequence (Xn) converges, in probability, in DP (see Definition 2.1) toward
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a deterministic process ν = (νt )t∈[0,T ]. This process is the unique solution of the
following differential equation:

dνt

dt
(i)= #νt (i − 1)νt (i − 1)− #νt (i)νt (i) and ν0(i)= δ0(i), i ∈ N,(2.5)

where #νt (i)= λ(t, i)/
∑

j≥0 λ(t, j)νt (j).

In particular when Qn = Pn (#ν ≡ 1), the limiting path is the time-marginal flow
of the Poisson process with parameter 1, denoted by p, given by

dpt
dt

(i)= pt (i − 1)− pt (i).(2.6)

2.4. The rate function. It will be convenient to associate with each path
ν ∈DP the relaxed measure on [0, T ] ×N,

ν̄(dt dz)= νt (dz) dt.

A path ν ∈ DP is said to be absolutely continuous if for each i ∈ N, there exists
ν̇(i) in L1([0, T ], dt) such that νt (i)− ν0(i)= ∫[0,t] ν̇s(i) ds. For each absolutely
continuous path ν, let us define vν , ν̄-almost everywhere by

vνt (j)
�=−∑

i≤j
ν̇t (i) for j ≥ 0.(2.7)

Let P be a probability measure and Q a nonnegative measure on some measure
space. The relative entropy of Q with respect to P is defined by

H(Q|P )=
EQ log

dQ

dP
, if Q is a probability measure and Q� P ,

∞, otherwise,
(2.8)

with the convention 0 log 0 = 0.
We are now in a position to define the rate function I , for any ν ∈DP ,

I (ν)
�=

∫
[0,T ]

H(vνt |νt )dt, if ν is absolutely continuous,

∞, otherwise.
(2.9)

Note that H(·|P ) is defined on the space of all nonnegative measures, but that if
H(Q|P ) <∞ then Q is a probability measure (this conforms with the variational
definition of relative entropy) (see [8], Lemma 6.2.13 and remarks thereafter).
Hence for any ν satisfying I (ν) <∞, dt-almost everywhere vνt is a probability
measure on N. Moreover, using∑

j≥0

∑
i>j

νt (i)=
∑
i≥0

iνt (i) and
∑
i>j

ν̇t (i)=−∑
i≤j

ν̇t (i),

algebraic manipulations show that the time-derivative of the mean score is 1
dt-almost everywhere:

∑
i iν̇t (i) = 1. The finiteness of the rate function warrants

that balls are allocated with unit intensity.
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REMARK 2.6. The rate function representation may be interpreted in the
following way: vνt (j) represents the instantaneous rate of allocation into bins
with score j at time t when following sample path [see (2.10)] ν, H(vνt |νt )
represents the cost of following ν rather than satisfying the ordinary differential
equation (2.6).

2.5. The main results. Let us recall that DP is endowed with the topology
defined by the uniform norm and the σ -algebra generated by canonical projections
(see Remarks 2.2 and 2.4). The main result of the paper is the following theorem.

THEOREM 2.7. The sequence (Xn)n≥1 satisfies the LDP on DP with the rate
function I .

As the identities (2.7) are equivalent to

ν̇t (i)= vνt (i − 1)− vνt (i) for i ≥ 0,(2.10)

and as I (ν) = 0 if and only if vν = ν, ν̄-almost everywhere, we obtain that
I (ν)= 0 if and only if for almost every t , ν̇t (i)= νt (i − 1)− νt (i), for νt -almost
all i ≥ 0. Hence ν = p, which is in agreement with (2.6) in Proposition 2.5.

The rate function may actually be further interpreted.

PROPOSITION 2.8. The function I is a convex rate function. Let ν ∈DP , then
I (ν) <∞ if and only if ν is absolutely continuous and there exists a measurable
RN-valued function #ν which is defined ν̄-almost everywhere, such that:

(i) The following master equation is satisfied ν̄-almost everywhere:

ν̇t (i)= #νt (i − 1)νt (i − 1)− #νt (i)νt (i), i ≥ 0.(2.11)

(ii) (#νt (i)νt (i))i≥0 defines a probability measure on N, for dt-almost every t .
(iii)
∫
[0,T ][
∑∞

i=0 νt (i)#
ν
t (i) log #νt (i)]dt <∞.

Alternative expressions for I (ν) are

I (ν)=
∫
[0,T ]×N

#ν log#ν dν̄ =
∫
[0,T ]

[ ∞∑
i=0

νt (i)#
ν
t (i) log #νt (i)

]
dt

=
∫
[0,T ]

H(#νt νt | νt) dt,

where #ν is any process satisfying the above properties (i), (ii) and (iii).

PROOF. The convexity and the lower semicontinuity of I are direct conse-
quences of the variational representation stated in Proposition 4.2.



614 S. BOUCHERON, F. GAMBOA AND C. LÉONARD

If I (ν) <∞, then dt-almost everywhere vνt is a probability measure on N which

is absolutely continuous with respect to νt . Let #νt = dvνt
dνt

be its Radon–Nykodym
derivative. Clearly, property (ii) holds. As

I (ν)=
∫
[0,T ]

H(vνt | νt ) dt =
∫
[0,T ]

〈#νt log#νt , νt 〉dt,(2.12)

property (iii) is satisfied. Finally, property (i) is given by (2.10).
Conversely, let #νt satisfy conditions (i), (ii) and (iii). Set vνt = #νt νt . Then,

(2.11) is (2.10) which is equivalent to (2.7). Finally, conditions (ii) and (iii)
with (2.12) imply that I (ν) is finite. �

Let ν be an absolutely continuous path. If νt (i) > 0, (2.11) gives #νt (i) =[−∑j≤i ν̇t (j)]/νt (i), so that #νt (i) is uniquely defined up to ν̄-a.e. equality on
{(t, i); νt (i) > 0}. On the other hand, (2.11) and (2.12) are insensitive to the values
of #ν on the complementary set {(t, i); νt (i)= 0}. Therefore,

#νt (i)=

[
−∑

j≤i
ν̇t (j)

]
/νt (i), if νt (i) > 0,

1, if νt (i)= 0,

(2.13)

is a useful measurable inversion formula for #ν .

3. The upper bound.

3.1. Statement of the upper bound. As we will resort to duality arguments in
Sections 4 and 5, let us first define an ad hoc set of test functions. This set of test
functions will be rich enough to allow us to use the variational characterization of
entropy when we will identify the rate function. Moreover, these functions will be
sufficiently regular in order to simplify the proofs. Let g be a real function on N

(a sequence of real numbers); we set Dg(j)
�= g(j + 1)− g(j), for all j ≥ 0. For

any function G: [0, T ] × N → R, let us denote for all j ∈ N, G(j): t ∈ [0, T ] �→
Gt(j)

�=G(t, j) and for all 0 ≤ t ≤ T , Gt = (Gt (j))j≥0. The set of relevant test
functions is

G
�=
{
G: [0, T ] ×N → R; sup

t,j

|DGt(j)|<∞,G(j) ∈ C,∀ j ∈N
}
,

where C is the space of all functions f : [0, T ] �→ R which are absolutely
continuous and such that f (T ) = 0. For any G in G, we will denote by Ġt the
generalized derivative of Gt with respect to t ; that is,

Gt(j)=−
∫
[t,T ]

Ġs(j) ds, t ∈ [0, T ], j ∈ N.

Let us also introduce the notation ν̇(G). For all G ∈ G and ν ∈DP ,

ν̇(G)
�=−〈G0, ν0〉 −

∫
[0,T ]

〈Ġt , νt 〉dt.(3.1)
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The main result of the section is the following variational formulation of the large
deviation upper bound.

PROPOSITION 3.1. Let DP be endowed with the topology defined by the
uniform norm (see Definition 2.1). For any closed measurable subset C of DP

we have

lim sup
n→∞

1

n
log Pn(Xn ∈C)≤− inf

ν∈C sup
G∈G

{
ν̇(G)−

∫
[0,T ]

log〈exp(DGt), νt 〉dt
}
.

PROOF. In Lemma 3.3 below, the upper bound is proved for C measurable
convex and compact. The convexity restriction is removed using MinMax
argument inspired from [27], Theorem 4.1. As by Lemma 2.3, the laws of the
Xn’s are compactly supported, the upper bound holds for all measurable closed
subsets of DP or E . �

3.2. Exponential martingale. We introduce a family of exponential martin-
gales ZG,n which will allow us, by means of Lemma 3.2 below, to derive in
Lemma 3.3 the upper bound for compact convex subsets.

For any G in G and n≥ 1, let us define the process ZG,n by

1

n
logZG,n

t
�= 〈Gt,X

n
t 〉 − 〈G0,X

n
0 〉 −
∫
[0,t]

〈Ġs,X
n
s 〉ds

−
	nt
−1∑
k=0

1

n
log
∑
j≥0

exp
(
DG(k+1)/n(j)

)
Xn
k/n(j).

As DG is bounded, there exists c ≥ 0 such that |G(i)| ≤ c(1+ i) for all i ∈ N. As
for all 0 ≤ t ≤ T ,

∑
i≥0 iX

n
t (i)≤ T , all the terms in the definition of ZG,n are well

defined and ZG,n is a bounded process.

LEMMA 3.2. For any G ∈ G and n≥ 1, (ZG,n
t )0≤t≤T is a Pn-martingale with

respect to the filtration (An
t )0≤t≤T . In particular, EPnZ

G,n
T = 1.

PROOF. It is enough to check that for any 0 ≤ t ≤ t + h≤ T ,

EPn(Z
G,n
t+h/Z

G,n
t | An

t )= 1.

We have

1
n

log[ZG,n
t+h/Z

G,n
t ] = 〈Gt+h,Xn

t+h〉 − 〈Gt,X
n
t 〉 −
∫
[t,t+h]

〈Ġs,X
n
s 〉ds

−
	n(t+h)
−1∑
k=	nt


1

n
log
∑
j≥0

exp
(
DG(k+1)/n(j)

)
Xn
k/n(j).

(3.2)
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Note that if k
n
≤ t < k+1

n
≤ t + h, then

〈Gt+h,Xn
t+h〉 − 〈Gt,X

n
t 〉

=
∫
[t,t+h]

〈Ġs,X
n
s 〉ds + 〈G(k+1)/n,X

n
(k+1)/n〉 − 〈G(k+1)/n,X

n
k/n〉.

If 	n(t + h)
 = 	nt
, the right-hand side vanishes and there is nothing to prove.
Using cascade conditioning, all other cases reduce to 	n(t + h)
 = 	nt
 + 1.
Furthermore, it is enough to consider the case 	nt
 = nt and 1/n≤ h < 2/n.

Hence the right-hand side of (3.2) reduces to

〈G(k+1)/n,X
n
(k+1)/n〉 − 〈G(k+1)/n,X

n
k/n〉 −

1

n
log
∑
j≥0

exp
(
DG(k+1)/n(j)

)
Xn
k/n(j).

The proof is completed by noticing

EPn

[
exp(n[〈G(k+1)/n,X

n
(k+1)/n〉 − 〈G(k+1)/n,X

n
k/n〉])|An

t

]
=∑

j≥0

exp
(
DG(k+1)/n(j)

)
Xn
k/n(j). �

3.3. Compact convex subsets. The LDP upper bound for convex compact sets
is established thanks to a general min–max theorem due to Sion [26] (see also [8],
Exercises 2.2.38, 4.5.5 for applications of this theorem to the derivation of LDP
upper bounds). Let C ⊂ DP be a convex compact set, for G ∈ G and ν ∈ DP

define the two functionals,

K(G, ν)
�= ν̇(G)−

∫
[0,T ]

log〈exp(DGt), νt 〉dt,

Kn(G,ν)
�= ν̇(G)−

	nT 
−1∑
k=0

1

n
log〈exp(DG(k+1)/n), νk/n〉.

The two functionals are convex with respect to ν thanks to the concavity of log,
and concave with respect to G thanks to Hölder’s inequality and the fact that log
is increasing. The continuity with respect to ν and the upper semicontinuity with
respect to G follow from the definition of G.

LEMMA 3.3. Let C be a measurable convex compact subset of DP , then

lim sup
n→∞

1

n
log Pn(Xn ∈C)≤− inf

ν∈C sup
G∈G

K(G,ν).

PROOF. By an exponential Markov inequality, for any G ∈ G,

Pn(Xn ∈ C)≤ Pn
(
enK

n(G,Xn) ≥ inf
ν∈C e

nKn(G,ν)
)≤ exp

(−n inf
ν∈CKn(G,ν)

)
,
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since as EPnenK
n(G,Xn) = EPnZ

G,n
T , by Lemma 3.2 we have EPnenK

n(G,Xn) = 1.
We may now optimize with respect to G ∈ G:

Pn(Xn ∈ C)≤ inf
G

exp
(
−n inf

ν∈CKn(G,ν)

)
= exp

(
−n sup

G∈G
inf
ν∈CKn(G,ν)

)
.

Letting n tend to infinity, one obtains

lim sup
n

1

n
logPn (Xn ∈ C

)≤− lim inf
n

sup
G

inf
ν∈C Kn(G,ν).

Let us prove that

lim inf
n

sup
G∈G

inf
ν∈C Kn(G,ν)≥ sup

G

inf
ν∈CK(G,ν).(3.3)

As DG is bounded and t-continuous and ν is right continuous, Kn converges
pointwise toward K . For any fixed G ∈ G, the sequence Kn(G, ·) converges
uniformly toward K(G, ·) on the compact set C. Let us check that for a fixed G,
for every ε > 0, for n sufficiently large, for all ν in C,∣∣∣∣∫[0,T ][log〈exp(DG(	nt
+1)/n), ν	nt
/n〉 − log〈exp(DGt), νt 〉]dt∣∣∣∣≤ ε.

Indeed, as we may assume that there exists some L such that exp(−L) ≤
exp(DGt(i))≤ exp(L) for all t ∈ [0, T ] and i,∣∣∣∣∫[0,T ][log〈exp(DG(	nt
+1)/n), ν	nt
/n〉 − log〈exp(DGt), νt 〉]dt∣∣∣∣

≤
∫
[0,T ]
[
e2L‖ν	nt
/n − νt‖ + 〈| exp(DG(	nt
+1)/n)− exp(DGt)|, νt 〉]dt.

The first term in the integrand tends uniformly towards 0 on the compact
set C since compact sets are equicontinuous. The second term in the integrand
tends uniformly toward 0 because νt are uniformly tight thanks to the compact
containment property of compacta of DP and because each DGt(i) is absolutely
continuous with respect to t .

Let us take ε > 0. For any n and G, let νG,n ∈ C be such that Kn(G,νG,n) ≤
infν∈C Kn(G,ν) + ε. Because of uniform convergence, for any G, there exists
nG ≥ 1 such that for all n ≥ nG: infν∈C Kn(G,ν) ≥ Kn(G,νG,n) − ε ≥
K(G,νG,n)− 2ε ≥ infν∈C K(G, ν)− 2ε. Hence,

sup
G∈G

lim inf
n→∞ inf

ν∈CKn(G,ν)≥ sup
G∈G

inf
ν∈C K(G,ν).

As, lim infn→∞ supG∈G ≥ supG∈G lim infn→∞, this proves (3.3).
Applying Sion’s Theorem [26], the right-hand side in (3.3) is identified with

infν∈C supG∈G K(G,ν). �



618 S. BOUCHERON, F. GAMBOA AND C. LÉONARD

4. The rate function. Proposition 4.2 below identifies the rate function
appearing in Proposition 3.1 with the rate function I defined at (2.9). It will be
proved using the Riesz representation theorem in Orlicz spaces. Using the Riesz
representation theorem in L2 would have been appropriate if we were facing a
Gaussian situation, but the bins and balls model resorts to Poisson approximation.
Orlicz spaces constitute a tailor-made framework in such a case [14]. For the sake
of completeness, let us first recall some basic facts about Orlicz.

4.1. Orlicz spaces. A Young function θ is an even, convex, [0,∞]-valued
function satisfying θ(0) = 0, lims→+∞ θ(s) = +∞ and θ(s0) < +∞ for some
s0 > 0. The convex conjugate θ∗ of the Young function θ : θ∗(t) = sups∈R{st −
θ(s)} is also a Young function, and the Young inequality states st ≤:(s)+:∗(t).
In the sequel, the relevant Young functions are τ (x)

�= exp(|x|) − |x| − 1 and
τ ∗(x)= (|x| + 1) log(|x| + 1)− |x|.

Let µ be a nonnegative bounded measure on the measurable space (<,A).
Consider the following vector spaces, where µ-almost everywhere equal functions
are identified:

Lθ =
{
f : <→ R,∃ a > 0,

∫
<
θ

(
f

a

)
dµ<∞

}
,

Mθ =
{
f : <→ R,∀ a > 0,

∫
<
θ

(
f

a

)
dµ<∞

}
.

The Orlicz space associated with θ is the Banach space induced by the following
norm on Lθ (see [24] and references therein):

‖f ‖θ = inf
{
a > 0,

∫
<
θ

(
f

a

)
dµ≤ 1

}
.(4.1)

Hölder’s inequality holds between Lθ and the Orlicz space Lθ∗ ,

∀ f ∈ Lθ,g ∈ Lθ∗, fg ∈L1(µ) and
∫
<
|fg|dµ≤ 2‖f ‖θ‖g‖θ∗ .(4.2)

Thus any g in Lθ∗ defines a continuous linear form on Lθ for the duality bracket
〈f,g〉 = ∫ fg dµ. Although, the topological dual space of (Lθ ,‖ · ‖θ ) may be
larger than Lθ∗ , we always have the following version of the Riesz representation
theorem. (See, e.g., [15], Section 4, for a proof.)

THEOREM 4.1. Let θ be a finite Young function and θ∗ its convex conjugate.
The topological dual space of Mθ can be identified, using the previous duality
bracket, with Lθ∗: M ′

θ #Lθ∗ .
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4.2. Variational representation of the rate function.

PROPOSITION 4.2. For every ν ∈DP , we have

I (ν)= sup
G∈G

{
ν̇(G)−

∫
[0,T ]

log〈exp(DGt), νt〉dt
}
.

PROOF. Let ν belong to DP . By (4.1), for any G ∈ G,

‖DG‖τ,ν̄ = inf
{
a > 0;

∫
[0,T ]×N

τ (DG/a)dν̄ ≤ 1
}
.

Let K(ν)
�= supG∈G K(G,ν) = supG∈G{ν̇(G) − ∫[0,T ] log〈exp(DGt), νt 〉dt}, so

that for any a > 0 and G ∈ G: ν̇(G/a) ≤ K(ν) + ∫[0,T ] log〈exp(DGt/a), νt 〉dt .
Subtracting

∫
[0,T ]〈DGt/a, νt〉dt from both sides,

ν̇(G/a)−
∫
[0,T ]

〈DGt/a, νt 〉dt

≤K(ν)+
∫
[0,T ]
[
log〈exp(DGt/a), νt 〉 − 〈DGt/a, νt〉]dt

(a)≤ K(ν)+
∫
[0,T ]

〈exp(DGt/a)−DGt/a− 1, νt 〉dt
(b)≤ K(ν)+

∫
[0,T ]

〈τ (DGt/a), νt〉dt,

where (a) comes from logx ≤ x−1 and (b) from exp(x)−x−1 ≤ τ (x). Choosing
a = ‖DG‖τ,ν̄ ,

ν̇(G)−
∫
[0,T ]×N

DGdν̄ ≤ [K(ν)+ 1]‖DG‖τ,ν̄ .

As an analogue inequality can be proved by replacingG by −G, and as by Hölder’s
inequality (4.2), | ∫[0,T ]×N DGdν̄| ≤ 2‖1[0,T ]‖τ∗,ν̄‖DG‖τ,ν̄ = 2T τ ∗(1)‖DG‖τ,ν̄ ,

|ν̇(G)| ≤ [K(ν)+ 1+ 2T τ ∗(1)]‖DG‖τ,ν̄ .
Let us first prove that if K(ν) < ∞, then K(ν) = I (ν). Now, assume ν is

such that K(ν) <∞. The above estimate implies first that for all F , G in G, if
DF = DG then ν̇(F ) = ν̇(G) and second that ν̇ is a continuous linear form on
Mτ(ν̄). By Theorem 4.1, there exists #ν in Lτ∗(ν̄) such that

ν̇(G)=
∫
[0,T ]

〈#νt DGt, νt 〉dt ∀ G ∈ G.(4.3)
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It follows that

K(ν) = sup
G∈G

{
ν̇(G)−

∫
[0,T ]

log〈exp(DGt), νt〉dt
}

(a)= sup
G∈G

{∫
[0,T ]
(〈#νt DGt , νt〉 − log〈exp(DGt), νt〉)dt}

(b)= sup
g∈#∞

{∫
[0,T ]

(〈g, #νt νt 〉 − log〈eg, νt 〉) dt
}

(c)=
∫
[0,T ]

sup
g∈#∞

{〈g, #νt νt 〉 − log〈eg, νt〉}dt

(d)=
∫
[0,T ]

H(#νt νt | νt ) dt.
Equation (a) follows directly from (4.3) whereas equation (b) follows by setting
g =DGt ∈ #∞. Equation (c) follows from Theorem 2 in [25]. This theorem states
that, under mild assumptions, in the conjugate computation of a convex integral
functional one may exchange integral and supremum. Observe that this theorem is
obvious for a measure supported by a finite set. Finally, equation (d) follows from
the variational representation of the relative entropy ([8], Lemma 6.2.13). Note that
if K(ν) <∞, then equation (c) implies that dt-almost everywhere #νt νt defines a
probability measure on N.

By Proposition 2.8, completing the proof of K(ν) = I (ν) when K(ν) < ∞
amounts to checking that the master equation is (2.11). Choosing G

ϕ,i
t (j) =

ϕt1{i}(j) where ϕ is continuously differentiable and ϕT = 0, with (3.1),

ν̇(Gϕ,i)=−ϕ0ν0(i)−
∫
[0,T ]

ϕ̇t νt (i) dt

and (4.3) leads us to

ν̇(Gϕ,i)=
∫
[0,T ]

ϕt [#νt (i − 1)νt (i − 1)− #νt (i)νt (i)]dt.
As these identities hold for all ϕ and i, (2.11) is satisfied and thus K(ν) = I (ν)

whenever K(ν) <∞.
Finally, if I (ν) < ∞, by Proposition 2.8 we have (2.11) which is equivalent

to (4.3) by the above-described computation. Now, according to the computation
following (4.3), we obtain that K(ν)= I (ν). �

A simple corollary of Proposition 2.8 is the following.

COROLLARY 4.3. If ν satisfies I (ν) <∞, then for all 0 ≤ s ≤ t ≤ T ,

‖νt − νs‖ ≤ 2(t − s).
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As a matter of fact, the effective domain of the rate function I is included in the
compact subset of DP mentioned in Lemma 2.3.

5. The lower bound. In this section we prove the following lower bound.

PROPOSITION 5.1. For any open measurable subset U of DP we have

lim inf
n→∞

1

n
logPn(Xn ∈ U)≥− inf

ν∈U I (ν).

Without loss of generality, I (U)
�= infν∈U I (ν) is assumed to be finite. The nth

change of measure associated with path ν ∈ U satisfying I (ν) <∞ is the twisted
probability Qν,n defined by (2.3) with λ= #ν , provided that #ν is regular enough.
Henceforth, P n and Qν,n stand for the laws of Xn under Pn and Qν,n (see
Section 2). The changes of measure are used through the following device. For
any ε > 0,

1

n
log Pn (Xn ∈U

)= 1

n
log EQν,n

(
dPn

dQν,n
1{Xn∈U }

)
≥ inf

ξ∈V
1

n
log

dP n

dQν,n
(ξ)+ 1

n
log Qν,n(Xn ∈ V )

≥ 1

n
log

dP n

dQν,n
(ν)− ε− ε

(5.1)

for any small enough neighborhood V of ν with V ⊂ U and any large enough n,
provided that Qν,n satisfies the three following properties:

(α) For any open neighborhood V of ν, limn
1
n

log Qν,n(Xn ∈ V )= 0.
(β) P n is absolutely continuous with respect to Qν,n.
(γ ) The map ξ ∈ V �→ dPn

dQν,n (ξ) is continuous at ν.

Membership in DI , the effective domain of I , does not warrant these three
properties. Therefore we focus on a subset of DI : the set of nice ν’s.

5.1. The nice ν’s. Property (α) will follow from the law of large numbers
(Proposition 2.5). Property (β) will be easily checked if bounds are imposed on ν.
Property (γ ) will be checked if ν and #ν are sufficiently smooth. We will assume
that ν is nice according to the following definition.

DEFINITION 5.2. A path ν ∈DP is said to be nice if:

(i) ν belongs to DI ; that is, I (ν) <∞.
(ii) For all t > 0 and i ∈N, νt(i) > 0.

(iii) There exists M ≥ 0 such that for all i ≥M and all 0 ≤ t ≤ T , #νt (i) = 1
and there exists β > 0 such that for all t > 0 and i ∈N, #νt (i)≥ β .

(iv) For all i ∈ N, #νt (i) is C2 with respect to t .
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Under conditions (ii) and (iv), formula (2.13) allows determining #νt (i) as
a function of ν for all i and t > 0.

Let ν be nice; Qν,n is the nth twisted probability measure associated with it; it
is defined by (2.3) with λ= #ν .

The main property of ν and Qν,n when ν is nice is stated in the following lemma.

LEMMA 5.3 (Nice ν’s are really nice). For any nice ν,

sup
V

lim inf
n

Qν,n ess inf
ξ∈V

(
1

n
log

dP n

dQν,n
(ξ)

)
≥−I (ν),

where the supremum is taken over all open measurable neighborhoods V of ν.

This lemma together with (5.1) leads to the desired lower bound for any open
measurable neighborhood of any nice ν. In order to extend this result to the general
case, the following density result will be needed.

LEMMA 5.4 (Nice ν’s are dense). For each ν ∈ DI , there exists a sequence
(νm)m≥1 of nice sample paths such that limm→∞ sup0≤t≤T ‖νt − (νm)t‖ = 0 and
limm→∞ I (νm)= I (ν).

The proofs of these lemmas are postponed to after the proof of Proposition 5.1.

5.2. Proof of the lower bound. Assuming Proposition 2.5, Lemma 5.3 and
Lemma 5.4, we can give a proof of lower bound.

PROOF OF PROPOSITION 5.1. Let U be any open measurable subset of DP

with I (U) <∞. For any ε > 0, let ν∗ ∈ U be such that I (ν∗) < I (U) + ε. By
Lemma 5.4, there exists a sequence of nice sample paths (νm)m≥1 converging to ν∗
in U such that I (νm) converges towards I (ν∗). Hence, there exists a nice ν in U

such that I (ν) < I (ν∗)+ ε < I (U)+ 2ε. Let Qν,n be the nth twisted probability
law of Xn associated with ν, then

lim inf
n

1

n
logPn(Xn ∈U)

(a)≥ sup
V : ν∈V⊂U

[
lim inf

n
Qν,n-ess inf

ξ∈V

(
1

n
log

dP n

dQν,n
(ξ)

)
+ lim inf

n

1

n
logQν,n(V )

]
(b)≥ sup

V : ν∈V⊂U
lim inf

n
Qν,n-ess inf

ξ∈V

(
1

n
log

dP n

dQν,n
(ξ)

)
(c)≥ −I (ν)≥−I (U)− 2ε,

where (a) follows from (5.1), (b) from Proposition 2.5 and (c) from Lemma 5.3. �
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5.3. Proof of Proposition 2.5. Recall that for all n≥ 1, under Qν,n, Xn is still
a Markov process (as pointed out in Section 2.3). The argument relies on diffusion
approximation techniques. As limiting distributions are degenerate, it is enough to
rely on the following version of Corollary 4.2 in [9], page 355. In the sequel, if A
is a matrix, A† denotes its transpose.

LEMMA 5.5. Let Yn be a sequence of Rd -valued Markov chains with initial
condition distributed according to µ and vanishing maximal jump size. If the first-
order differential equation dy

dt
= b(y, t) has a unique solution in C1([0, T ],Rd)

for any initial condition y0 in the support of µ, then if the sequences

bn(y, t)
�= nE[Yn

k+1 − Yn
k | Yn

k = y, k = 	nt
],
an(y, t)

�= nE[(Y n
k+1 − Yn

k )
†(Y n

k+1 − Yn
k ) | Yn

k = y, k = 	nt
],
satisfy for each r and T ,

(i) lim
n

sup
‖y‖≤r,t≤T

|an(y, t)| = 0,

(ii) lim
n

sup
‖y‖≤r,t≤T

|bn(y, t)− b(y, t)| = 0,

then the sequence of processes t �→ Yn	nt
 converges in law towards the process Y
with Y0 distributed according to µ and for each y0 in the support set of µ,
if Y0 = y0, Y is the unique solution of dy

dt
= b(y, t) with initial condition y0.

PROOF OF PROPOSITION 2.5. By Lemma 2.3, the sequence (Qν,n)n≥1 is
tight in DP . Using observation (2.4), it is thus enough to check the conditions
of Lemma 5.5 for the d-dimensional projections of Xn for all d >M .

The limiting ordinary differential equation is:

dξt (i)

dt
= 1

〈#tξt 〉[#
ν
t (i − 1)ξt (i − 1)− #νt (i)ξt (i)], i ∈N.

As ν is nice, #νt (i) is bounded from below by some β > 0. Hence the limiting
differential equation satisfies the local Lipschitz condition and has a unique
solution.

Now we have to check conditions (i) and (ii) in Lemma 5.5. For all i ∈ N: the ith
coordinate of bn(x, t) equals

nE[Xn
t+1/n(i)−Xn

t (i) |Xn
t = x] = 1

〈#t , x〉[#
ν
t (i − 1) x(i − 1)− #νt (i)x(i)],

where expectation is taken with respect to Qν,n. Hence condition (ii) is enforced.
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The conditional covariance matrix is symmetric tridiagonal. The diagonal and
off-diagonal terms satisfy

nE
[
Cov(Xn

t+1/n −Xn
t )[i, i] |Xn

t = x
]= #νt (i)x(i)+ #νt (i − 1)x(i − 1)

n〈#νt , x〉
,

nE
[
Cov(Xn

t+1/n −Xn
t )[i, i + 1] |Xn

t = x
]=−#νt (i)x(i)

n〈#νt , x〉
.

The sum of the absolute values of the coefficients of an(x, t) is bounded by 4/n,
which warrants condition (i). �

5.4. Proof of Lemma 5.3. Let us first prove two preliminary results stated in
Lemmas 5.6 and 5.7.

In this section, #ν is related to ν through (2.13), Qν,n is defined by (2.3)
and Qν,n is the corresponding law of Xn. Let us derive an alternate form of the

log-likelihood log dQν,n

dP n . For ξ ∈DP , let Fξ(t, i)
�=∑j≤i ξt (j), and let us define

I ν,n(ξ)
�=∑

i≥0

Fξ(0, i) log#ν0(i)−
∑
i≥0

Fξ(T , i) log #νT (i)

+
	nT 
−1∑
k=1

1

n

∑
i≥0

Fξ

(
k

n
, i

) log#νk/n(i)− log#ν(k−1)/n(i)

1/n

−
	nT 
∑
k=0

1

n
log〈#νk/n, ξk/n〉,

(5.2)

I ν(ξ)
�=∑

i≥0

Fξ(0, i) log#ν0(i)−
∑
i≥0

Fξ(T , i) log #νT (i)

+
∫
[0,T ]

[∑
i≥0

Fξ(t, i)∂t log#νt (i)
]
dt −
∫
[0,T ]

log〈#νt , ξt 〉dt.
(5.3)

LEMMA 5.6. For any ν satisfying conditions (i), (ii) and (iv) in Definition 5.2,
1
n

log dQν,n

dP n (Xn)= I ν,n(Xn).

PROOF. The result follows from

log
dQν,n

dP n
(Xn)

=
	nT 
−1∑
k=0

∞∑
i=0

1{Snk (Bn
k+1)=i} log

( #νk/n(i)

〈#νk/n,Xn
k/n〉
)
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(a)=
	nT 
−1∑
k=0

∞∑
i=0

log #νk/n(i)
∑
j≤i

n[Xn
k/n(j)−Xn

(k+1)/n(j)]

−
	nT 
−1∑
k=0

log〈#νk/n,Xn
k/n〉

(b)= n
∑
i≥0

log #ν0(i)
∑
j≤i

Xn
0 (j)− n

∑
i≥0

log#νT−1/n(i)
∑
j≤i

Xn
T (j)

+ n

	nT 
−1∑
k=1

1

n

∑
i≥0

log#νk/n(i)− log#ν(k−1)/n(i)

1/n

∑
j≤i

Xn
k/n(j)

−
	nT 
−1∑
k=0

log〈#νk/n,Xn
k/n〉,

where (a) comes from the identity 1{Snk (Bn
k+1)=i} = n

∑
j≤i(Xn

k/n(j)−Xn
(k+1)/n(j)),

and (b) is Abel’s transformation
∑n

i=0 ai(bi − bi+1) = ∑n
i=1 bi(ai − ai−1) −

bn+1an. �

LEMMA 5.7. For any ν satisfying conditions (i), (ii) and (iv) in Definition 5.2,
we have I ν(ν)= I (ν).

PROOF. For any nice ν, we have

I ν(ν)
(a)=∑

i≥0

[
Fν(0, i) log#ν0(i)− Fν(T , i) log #νT (i)+

∫
[0,T ]

Fν(t, i)∂t log#νt (i) dt
]

(b)=∑
i≥0

∫
[0,T ]

−∂tFν(t, i) log #νt (i) dt

(c)=
∫
[0,T ]

〈#νt log #νt , νt 〉dt,

where (a) follows from Fubini’s theorem and log〈#νt , νt 〉 = 0 for all t , by (ii) in
Proposition 2.8, (b) follows from an integration by parts (#ν is t-differentiable),
(c) is a consequence of the definition of #ν [see (2.13)] and an application of
Fubini’s theorem. The lemma then follows from Proposition 2.8. �

PROOF OF LEMMA 5.3 (Nice ν’s are really nice). Let us prove that for any
ε > 0, there exists an open neighborhood V of ν such that

lim inf
n

inf{−I ν,n(ξ); ξ ∈ V } ≥ inf{−I ν(ξ); ξ ∈ V } − ε.(5.4)
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Recall the definition of I ν,n (5.2). The third summand on the right-hand side may
be decomposed as A+B +C with

A=
	nT 
−1∑
k=1

1

n

∑
i

Fξ

(
k

n
, i

)[ log #νk/n(i)− log #ν(k−1)/n(i)

1/n
− ∂t log#ν(k−1)/n(i)

]
,

B =
	nT 
−1∑
k=1

1

n

∑
i

[
Fξ

(
k

n
, i

)
− Fν

(
k

n
, i

)]
∂t log #ν(k−1)/n(i),

C =
	nT 
−1∑
k=1

1

n

∑
i

Fν

(
k

n
, i

)
∂t log #ν(k−1)/n(i).

By condition (iii) in Definition 5.2, index i in summation ranges between 0 and
M − 1. In this proof, K stands for a nonnegative constant that may vary from line
to line.

Control of A. Thanks to (iv) in Definition 5.2,

|n(log#νk/n(i)− log#νk−1/n(i))− ∂t log#νk−1/n(i)| ≤K/n,

and as |Fξ | ≤ 1, we get |A| ≤KM/n.
Control of B . Thanks to (iv) in Definition 5.2, supt,i |∂t log #νt (i)| ≤ K , and

it is possible to find an open neighborhood V of ν such that supt,i |Fξ(t, i) −
Fν(t, i)| ≤ ε for all ξ in V . Therefore, |B| ≤KMε.

Control of C. As a Riemann series [note that ∂t log #νt is continuous thanks
to (iv) in Definition 5.2], limn C = ∫ T0 ∑i Fν(t, i)∂t log#νt (i) dt .

In order to control the fourth summand of the right-hand side of I ν,n(ξ), note
that thanks to (iii) in Definition 5.2, for some L<∞,∣∣∣∣−1

n
log〈#νt , ξt〉 +

1

n
log〈#νt , νt 〉

∣∣∣∣≤ L

n
‖νt − ξt‖.

Therefore, for any ε > 0, there exists an open neighborhood V of ν such that

sup
ξ∈V

∣∣∣∣∣
	nT 
∑
k=0

1

n
[log〈#νk/n, ξk/n〉 − log〈#νk/n, νk/n〉]

∣∣∣∣∣≤ Lε.(5.5)

Combining the above arguments we have proved (5.4).
Note that (5.5) with the continuity of ξ �→ Fξ implies that I ν is continuous at ν.

Therefore

sup
V

inf{−I ν(ξ); ξ ∈ V } = −I ν(ν).(5.6)

Observing by Lemma 5.6 that Qν,n and P n are mutually absolutely continuous
measures and that

Qν,n-ess inf
ξ∈V

(
1

n
log

dP n

dQν,n
(ξ)

)
≥ inf{−I ν,n(ξ); ξ ∈ V },

the lemma follows by combining this inequality, (5.4), (5.6) and Lemma 5.7. �
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5.5. Proof of Lemma 5.4 (Nice ν’s are dense). The proof of Lemma 5.4 is
postponed to after the proofs of two technical lemmas (5.8 and 5.9) concerning
two parametrized regularization procedures; see (5.7) and (5.13).

The first regularization proceeds by time extension, mixing, and convolution by
the following kernel:

ζ ε(s)
�=


2

ε

(
1− s

ε

)
, for 0 ≤ s ≤ ε,

0, otherwise.

Remember that pt denotes the Poisson distribution with parameter t .
As the convolution by the regularizing kernel ζ ε depends on sample paths up to

time T + ε, we first introduce a time-extension ν̃ of ν. For any ν in DI , let ν̃ be
defined by:

ν̃
�=

ν̃t = νt , for t ∈ [0, T ],
dν̃t

dt
(i)= ν̃t (i − 1)− ν̃t (i), for t > T and i ≥ 0,

and for α ∈ [0,1], let να,εt be defined for all t ≥ 0 by

να,ε
�= ζ ε ∗ να where ναt

�= (1 − α)ν̃t + αpt ;(5.7)

that is, να,εt = ∫∞0 ζ ε(s)ναt+s ds.
The paths ν̃ , να and να,ε belong to D([0,∞),P (N)). Notice that the restriction

of να,ε to [0, T ] satisfies condition (ii) in the Definition 5.2 of nice ν’s and
that να,ε. (i) and #ν

α,ε

. (i) are infinitely differentiable with respect to t for all i
[see (2.13)]. Let Ĩ be defined by

Ĩ (ν̃)
�=
∫
[0,∞)

H(vν̃t | ν̃t ) dt,

where vν̃t is defined by (2.7). The following lemma summarizes the main properties
of the regularized sample path να,ε .

LEMMA 5.8. If I (ν) <∞, the following statements hold:

Ĩ (να)≤ I (ν),(5.8)

Ĩ
(
ν̃(· + s)

)≤ I (ν), ∀ s ≥ 0,(5.9)

Ĩ (να,ε)≤ Ĩ (να),(5.10)

lim
α↓0,ε↓0

sup
t≤T

‖να,εt − νt‖ = 0,(5.11)

lim
α↓0,ε↓0

Ĩ (να,ε)= I (ν).(5.12)
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PROOF. Note that as pt (i) > 0 for all t > 0, i ∈ N, for all α > 0 we have
ναt (i) > 0, να,εt (i) > 0, and thus #α,εt (i) is uniquely defined by (2.13).

As ν̃t = νt and #ν̃t = #νt for t ≤ T and #ν̃t = 1 for t > T , we have

Ĩ (ν̃)= I (ν)+
∫
[T,∞)

〈1 log1, ν̃s〉ds = I (ν).

The convexity of Ĩ implies the inequalities (5.8) and (5.10).
The same remarks imply that time shifting may only decrease the rate function,

that is, (5.9).
The convergence (5.11) follows from

sup
0≤t≤T

‖να,εt − νt‖

= sup
0≤t≤T

∥∥∥∥∫ ∞
0

(
(1− α)ν̃t+s + αpt+s

)
ζ εs ds − νt

∥∥∥∥
≤ sup

0≤t≤T
(1 − α)

∥∥∥∥∫ ∞
0

(ν̃t+s − ν̃t )ζ
ε
s ds

∥∥∥∥+ α

∥∥∥∥∫ ∞
0

(pt+s − ν̃t )ζ
ε
s ds

∥∥∥∥
≤ sup

0≤t≤T
(1 − α)

∥∥∥∥∫ ∞
0

(ν̃t+s − ν̃t )ζ
ε
s ds

∥∥∥∥+ 2α (as ‖ν̃t+s − ν̃t‖ ≤ 2s)

≤
∫ ε

0
2sζ εs ds + 2α by Corollary 4.3

≤ ε+ 2α.

Proof of (5.12). Now we identify να,ε with its restriction to [0, T ]. Inequalities
(5.8) and (5.10) imply that I (να,ε)≤ I (ν) for all α, ε > 0. On the other hand, as I
is lower semicontinuous, with (5.11), we obtain lim infα,ε I (να,ε) ≥ I (ν). Hence,
limα,ε I (ν

α,ε)= I (ν). �

The second regularization procedure operates directly on #ν . For any integer M ,
let us define JM by JM#νt (i)= #νt (i) for i ≤M , t ≥ 0, and JM#νt (i) = 1 for all
i >M and t ≥ 0. The associated sample path νM is defined by

ν̇Mt (i)= [JM#νt (i − 1)]νMt (i − 1)− [JM#νt (i)]νMt (i).(5.13)

LEMMA 5.9. If I (ν) < ∞ and #ν. (i) is t-continuous for all i ≥ 0, the
following statements hold:

lim
M→∞ sup

t≤T
‖νt − νMt ‖ = 0,(5.14)

lim
M→∞ I (νM)= I (ν).(5.15)
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PROOF. Thanks to the t-continuity of #ν. (i) for all i, supt,i JM#νt (i) <∞. By
construction, for any i ≤M , νMt (i)= νt(i) for all t . It follows that

I (ν)− I (νM)=
∫
[0,T ]

[∑
i>M

νt (i)#
ν
t (i) log #νt (i)

]
dt.

Letting M tend to infinity, by dominated convergence, the right-hand side vanishes
and (5.15) is established. As∑

i≥0

|νMt (i)− νt (i)| =
∑
i

∣∣∣∣∫[0,t](ν̇Ms (i)− ν̇(i)
)
ds

∣∣∣∣
by Proposition 2.8,∑

i≥0

|νMt (i)− νt (i)|

=∑
i>M

∣∣∣∣∫[0,t](νMs (i − 1)− νMs (i)− #νs (i − 1)νs(i − 1)+ #νs (i)νs(i)
)
ds

∣∣∣∣
≤ 2
∫
[0,t]
∑
i>M

|νMs (i)− νs(i)|ds + 2
∑
i>M

∣∣∣∣∫[0,t][#νs (i)− 1]νs(i)
∣∣∣∣ds

≤ 2
∫
[0,t]
∑
i≥0

|νMs (i)− νs(i)|ds + hM(t),

where hM(t)
�= 2
∑

i>M

∫
[0,t](#νs (i)+ 1)νs(i) ds. Applying Gronwall’s lemma,∑

i≥0

|νMt (i)− νt (i)| ≤ hM(t)+ 2
∫ t

0
hM(s)e2(t−s) ds.

However, according to Dini’s lemma, a sequence of continuous functions decreas-
ing pointwise toward 0 on the compact interval [0, T ] is also uniformly convergent.
Therefore (5.14) follows from the fact that hM decreases pointwise to 0 as M tends
to ∞. �

PROOF OF LEMMA 5.4. Let ν be in DI . First apply the regularization (5.7).
Then apply the second regularization (5.13) to να,ε for α, ε small enough. The
resulting path is nice and the desired result follows from Lemmas 5.8 and 5.9. �

6. Stronger topologies. Should stronger topologies be considered? Recall
that Xn

t is similar to the empirical measure of a Poisson random variable with
parameter t . The latter satisfies the LDP with respect to the total variation distance
with the rate function H(· | pt ). It is not reasonable to think of test functions
that could be larger than i log i: the distribution ν(i) ∝ 1/(i2 log2+δ(i)) with
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δ > 0 has finite relative entropy with respect to any Poisson distribution although
〈i log1+ε(i), ν〉 = ∞ as soon as ε ≥ δ (see [16] for approaches to extension of
Sanov’s theorem).

Let p be strictly larger than 1 and let H be the class of sequences defined by

H = {G= (G(i)
)
i∈N : |G(0)| = 1 and for i ≥ 1, |DG(i)| ≤ log1/p(i)

}
.

If G ∈ H then |G(i)| ≤ i log1/p(i). In this section we consider the following
metric on DP :

dH (ν, ν′) �= sup
s∈[0,T ]

sup
G∈H

(〈G,νs〉 − 〈G,ν′s〉).(6.1)

THEOREM 6.1. The sequence
(
Xn
)

satisfies the LDP with rate function I

on DP equipped with the topology defined by the metric dH .

The proof of Theorem 6.1 proceeds according to the following steps. The
compactness of the level sets of I under metric dH and the exponential equivalence
between (Xn) and the linearly interpolated process (X̂n) are established. Finally
the exponential tightness of (X̂n) is established using an exponential martingale
argument. The theorem follows from the inverse contraction principle [8],
Theorem 4.2.4.

LEMMA 6.2. I is a rate function under the topology induced by dH .

PROOF. The convexity and the lower-semicontinuity of I still hold. It is
enough to prove that the finiteness of I (ν) implies both an upper bound on the
modulus of continuity under metric dH and that there exists a compact set Kα of
P (N) such that νt ∈Kα .

Let ν ∈DP be such that I (ν) <∞ and q = p/(p− 1). For any G ∈ H ,

〈G,νt − νs〉 (a)=
∫
[s,t]

〈#νuDG,νu〉du=
∫
[0,T ]

〈1[s,t]DG#νu, νu〉du
(b)≤
[∫

[0,T ]
〈1[s,t], #νuνu〉du

]1/q
×
[∫

[0,T ]
〈|DG|p, #νuνu〉du

]1/p
(d)≤ |t − s|1/q ×

∫
[0,T ]

〈v, #νuνu〉du,

(6.2)

where we set v(0) = 1 and for i ≥ 1, v(i) = log(i). Indeed, (a) follows from
Proposition 2.8, (b) follows from Hölder’s inequality and (c) from the definition
of H . Now∫

[0,T ]
〈v, #νuνu〉du

(a)≤
∫
[0,T ]

〈(i − 1)i∈N, νu〉du+
∫
[0,T ]

〈#νu log#νu, νu〉du
(b)≤ 〈(i)i∈N, ν0〉T + T 2

2
+ I (ν),

(6.3)
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where (a) follows from the application of Young’s inequality in the duality
between τ and τ ∗, that is, xy ≤ τ (x)+ τ ∗(y), and (b) from Proposition 2.8 again.
Combining inequalities (6.2) and (6.3), we get

sup
G∈H

〈G,νt − νs〉 ≤
(
T 2

2
+ 〈i, ν0〉T + I (ν)

)1/p

(t − s)1/q.(6.4)

To check the compact containment property under metric dH , it is enough to check
that if I (ν) <∞ and 〈φ, ν0〉<∞ where φ(i)= (i log i), then

〈(i log i)i∈N, νt 〉 ≤ 〈i log i, ν0〉 + I (ν)+ e

(
t2

2
+ (1+ 〈i + 1, ν0〉)t

)
.

As I (ν) <∞, by Proposition 2.8, d〈φ, νt〉/dt=〈Dφ #νt , νt〉,
d〈φ, νt〉

dt

(a)≤∑νt (i)
(
#νt (i) log #νt (i)−

(
#νt (i)− 1

))
+∑νt (i)

(
eDφ(i) −Dφ(i)− 1

)+∑νt (i)Dφ(i)

(b)≤ 〈φ(#νt ), νt 〉 + e (t + 1+ 〈i + 1, ν0〉),
where (a) follows from Young’s inequality, and (b) follows from Dφ(i) ≤ 1 +
log(i + 1), 〈#ν, ν〉 = 1 and 〈i + 1, νt 〉 = 〈i + 1, ν0〉. Integration with respect to t

finishes the proof. �

In the sequel, X̂n denotes the linearly interpolated version of Xn,

X̂n
t
�=Xn	nt
/n +

(
t − 	nt


n

)
(Xn'nt(/n −Xn	nt
/n).

By Theorem 4.2.13 in [8], the exponential equivalence between Xn and X̂n

warrants that X̂n satisfies the LDP with rate function I under the topology induced
by the total variation distance.

LEMMA 6.3. Xn and X̂n are exponentially equivalent under the topology
induced by dH .

Let us denote by Ln(k)
�= Snk−1(B

n
k ) the occupancy score at time (k− 1)/n of

the bins where the kth allocation takes place at time k/n.

PROOF. As for each G ∈ H ,∑
i≥0

G(i)
[
Xn
k/n(i)−Xn

(k+1)/n(i)
]= 1

n
DG
(
Ln(k)

)≤ 1

n
log1/p(Ln(k)

)
,
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we have

P

[
sup
t≤T

sup
G∈H

〈G,Xn
t − X̂n

t 〉 ≥ η

]

≤ P

[
sup
k≤nT

1

n
logLn(k)≥ η

]
≤ nT P[Ln(	nT 
)≥ enη].

However, at time T = k/n, ess-supLn(k) is smaller than nT . Hence

∀ η,∀ n, enη > nT ⇒ sup
t≤T

sup
G∈H

〈G,Xn
t − X̂n

t 〉< η.

So for all η > 0,

lim
1

n
log P

[
sup
t≤T

sup
G∈H

〈G,Xn
t − X̂n

t 〉 ≥ η

]
=−∞. �

It remains to show that (X̂n) also satisfies the LDP with the rate function I with
respect to the topology defined by (6.1). By the inverse contraction principle [8],
it is enough to check the exponential tightness.

LEMMA 6.4. The sequence (X̂n) is exponentially tight under the topology
induced by metric dH .

We will use the following corollary of the Cauchy–Schwarz inequality. Let q(i)
be a probability on N having finite expectation. Then for some universal
constant C,

∑
i≥0

q(i)3/4 ≤ C

(∑
i≥0

iq(i)

)1/2

<∞.(6.5)

PROOF. In view of Lemma 6.2, it is enough to check that for some α > 0,

lim sup
n

1

n
logP{I (X̂n) > α}< 0.

Note first that I (X̂n)=∑	nT 

k=0 −1/n logXn

(k−1)/n(L
n
k). Denote by Zm the follow-

ing quantity:

Zm
�=

m∏
k=0

[X̂n
(k−1)/n(L

n
k)]−1/4∑

i≥0[X̂n
(k−1)/n(i)]3/4

.

One may check that Zm is an Am-martingale. This entails

EPn

[
exp

(
n

4
I (X̂n)−

	nt
∑
k=1

log

[∑
i≥0

(
Xn
(k−1)/n(i)

)3/4
])]

= EPn[Z1].(6.6)
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Now

Z1 = [Xn
0 (L

n
1)]−1/4∑

i[Xn
0 (i)]3/4 ≤ [Xn

0 (L
n
1)]−1/4 = [ν0(L

n
1)]−1/4,

thus using the initial remark,

EPn [Z1] ≤
∑
i≥0

[ν0(i)]3/4 <∞.

On the other hand, by (6.5) and recalling 〈(i)i∈N, X̂
n
T 〉 ≤ 〈(i)i∈N, X̂

n
0 〉 + T ,∑

i≥0

[X̂n
T (i)]3/4 ≤ C(〈i, X̂n

0 〉 + T )1/2 �=K,

thus,

Z	nT 
 ≥K−	nT 

	nT 
∏
k=1

[X̂n
(k−1)/n(L

n
k)]−1/4.(6.7)

Finally,

P{I (X̂n)≥ α} = P

{
K−	nT 
 exp

(
n

4
I (X̂n)

)
≥K−	nT 
 exp

(
nα

4

)}

≤ P

{
Z	nT 
 ≥K−	nT 
 exp

(
nα

4

)}

≤ EPn[Z1]K	nT 
 exp
(
−nα

4

)
.

As EPnZ1 <∞,

lim sup
n

1

n
log P{I (X̂n) > α} ≤ −

[
−T logK + α

4

]
,

which is negative for sufficiently large α. �

7. An application to random graphs. Theorem 2.7 is used to characterize
the large deviations of the degree sequence of sparse random graphs.

In the Erdös–Rényi G(n, 	tn
) model for random graphs, 	tn
 edges are
inserted at random among n vertices. When t remains fixed while n tends to
infinity, the model deals with sparse random graphs (with average degree 2t). The
degree of vertex i after k = 	nt
 edge insertions is denoted Un

i (k). Any (random)
graph defines an empirical probability measure V n

t on N:

V n
t

�= 1

n

n∑
i=1

δUn
i (	tn
),
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which is called the degree distribution of the graph [3]. If vertices are identified
with bins and edge extremities with balls, the degree distribution may be viewed as
a conditioned empirical occupancy measure [20, 4, 6]. The conditioning approach
is fruitful when establishing upper bounds, but it runs into difficulties when trying
to prove LDP. Hence, we will depend on coupling and exponential approximation
arguments to derive an LDP for the degree distribution of sparse random graphs.

THEOREM 7.1. In the G(n, 	tn
) random graph model, the empirical degree
distribution satisfies a LDP with the rate function

I ′(µ) �= inf
{
I (ν) :ν ∈DP

([0,2t],P (N)
)
, ν2t =µ

}
.

The theorem follows from the coupling lemma below and Theorem 4.2.13
in [8].

LEMMA 7.2. There exists a sequence of probability spaces over which one
may define a random variable (Y n

t )t≤T distributed like (Xn
t ) and another random

variable (Wn
t )t≤T distributed like (V n

t )t≤T and such that for any ε > 0,

lim
n

1

n
log P{sup

t
‖Yn

2t −Wn
t ‖> ε} = −∞.

PROOF. The coupling space is defined as follows. After step k, 2k balls have
been inserted into the n bins and k edges have been inserted among the n vertices.
At step k + 1, a couple of indices (i, i′) is picked uniformly at random, a ball
is inserted into bin i and another ball is inserted into bin i′ (both bins may be
identical). If i �= i′ and if the edge {i, i′} had not been inserted previously then the
edge {i, i′} is inserted; otherwise a new couple of indices is picked at random until
the couple defines a new edge, then this edge is inserted into the random graph
under construction.

Notice that the probability that the pair of bins that receive the two balls
at step k differs from the pair of vertices adjacent to the kth edge is equal to
1
n
+ (1 − 1

n
) 2k
n(n−1) ≤ 1

n
(1 + 2T ). Let �n denote the total number of steps with

index less than nT at which the insertion in the random allocation process and the
insertion in the graph construction process differ. It is worth noting that

sup
t≤T

‖Yn
2t −Wn

t ‖ ≤
8�n

n
.(7.1)

As Sn is a sum of independent Bernoulli random variables with success probability
( 1
n
+ (1 − 1

n
) 2k
n(n−1) )k≤nT , E�n ≤ T (1 + T ) and Var(�n) ≤ T (1 + 2T ). Now

applying Bernstein’s inequality, we get

P{�n ≥ T (1 + T )+ s} ≤ exp
[
− s2

2(T (1+ 2T )+ s/3)

]
.(7.2)

The lemma follows by combining inequalities (7.2) and (7.1). �
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For sparse random graphs, Theorem 7.1 complements the results reported
in [17] where events with polynomially small probability are characterized.

Acknowledgment. The authors thank a careful and patient referee for
providing many suggestions.
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