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Let random points X1� � � � �Xn be sampled in strict sequence from
a continuous product distribution on Euclidean d-space. At the time Xj
is observed it must be accepted or rejected. The subsequence of accepted
points must increase in each coordinate. We show that the maximum ex-
pected length of a subsequence selected is asymptotic to γn1/�d+1� and give
the exact value of γ� This extends the

√
2n result by Samuels and Steele

for d = 1.

1. Introduction. Samuels and Steele [8] studied the following offspring
of Ulam’s problem on the longest increasing subsequence of a random permu-
tation. Let X1� � � � �Xn be independent random points sampled from a contin-
uous distribution. The points are recognized successively, one at a time. As
soon as the first j points become known, Xj must be selected or rejected.
If a point is selected, it cannot be discarded later and if rejected, cannot be
recalled. The points selected should make up an increasing subsequence of
X1� � � � �Xn� The problem is to determine a selection policy that yields a sub-
sequence of maximum expected length and to find the value, say vn� of this
maximum. The total number of points and their distribution are assumed to
be known and can be used in the decision rules.

Samuels and Steele constructed a threshold policy that approaches opti-
mality as n → ∞ and showed that vn ∼ √

2n� Comparing this result with
the well known 2

√
n asymptotics for the expected length of the longest in-

creasing subsequence of X1� � � � �Xn (see [7] and [10]) they interpreted the
ratio 2 	√2 as the long-run advantage of a “prophet” with complete foresight
of the sequence over an intelligent but nonclairvoyant individual who uses
nonanticipating decision rules. A striking feature of this result is that the
prophet performs better by only a finite factor. See [2] and [4] for alternative
proofs.

In this paper, we study a multidimensional analogue of the Samuels–Steele
problem. We consider independent random pointsX1� � � � �Xn sampled from a
continuous product distribution in the Euclidean d-space. For i1 < · · · < ik we
define the subsequenceXi1� � � � �Xik to be increasing if it is increasing in each
coordinate. This definition is related intrinsically with random partial orders
and multivariate records as studied, for example, in [11], [6], [3] and [5]. The
formulation of the selection problem and definition of vn generalize directly to
the multidimensional setting. Here is our central result:
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Theorem 1. As n→ ∞ we have

vn ∼ γn1/�d+1� with γ = d+ 1
��d+ 1�!�1/�d+1� �(1)

From [1] we know that the expected length of the longest increasing sub-
sequence in d dimensions is asymptotic to const · n1/�d+1�. Although for d > 1
the exact value of the constant is still unknown (some conjectures are found
in [9], page 117), Bollobás and Winkler showed that for d→ ∞ the constant
tends to e = 2�718 � � � � The same limit holds for the factors in (1), thus we
can conclude that the long-run advantage of the prophet becomes negligible
as the dimension grows.

Our proof of (1) is based on asymptotic solution of the dynamic programming
equation for an analogous selection problem related to the planar Poisson
process. Above that, we contruct a policy that achieves the asymptotic value
(1). For the case of uniform distribution in the unit cube, this policy makes a
selection each time a point hits a small simplex with vertex at the last point
selected so far. The policy is stationary in the sense that the simplex depends
only on n (this sequential method has strong points of similarity with the
bottom-up chain construction found in [1]).

2. The optimal policy. We define the relations among vectors component-
wise, for example, x < y for x = �x�1�� � � � � x�d�� and y = �y�1�� � � � � y�d�� means
x�i� < y�i�, i = 1� � � � � d� For x < y we denote �x�y� the d-dimensional
interval �z 	x < z < y� called a box. For the vectors with all zero and all unit
components we use the notation 0 and 1� respectively.

Many properties of the partial order < on Q hinge on the function

p�x� =
d∏
i=1

�1 − x�i��� x ∈ Q�

which is the Euclidean volume of �x�1�. The function p�·� is decreasing. If
p�x� = p�y�, then two boxes �x�1� and �y�1� are isomorphic in the sense that
there exists an affine one-to-one mapping between the boxes that preserves
the measure and coordinatewise orders.

We will assume that the observationsX1�X2� � � � are independent uniformly
distributed random points in the unit cube Q = �0�1�d� (The more general
case of an arbitrary continuous product distribution is easily reduced to this
particular one by a monotone coordinatewise transformation.)

A policy is defined to be a collection of finite stopping times τ = �τ1� τ2� � � ��
such that:

(i) each τi is adapted to X1�X2� � � � �
(ii) τ1 < τ2 < · · · �
(iii) Xτ1 < Xτ2 < · · · �
We allow that some of the stopping times be undefined starting from some

i, in which case the conditions are to be understood properly.
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Here, the variablesXτi are interpreted as the points selected by τ� Condition
(i) captures the intuitive idea that the policy is nonanticipating or on-line.
That is to say, a decision about Xj depends solely on the first j observations
and not on Xj+1�Xj+2 � � � � Condition (iii) requires that the selected sequence
increase.

Let Lτ�X1� � � � �Xn� = #�i 	 τi ≤ n� be the number of points selected by τ
from X1� � � � �Xn� The chief quantity of interest is

vn = sup
τ
ELτ�X1� � � � �Xn��

the maximum expected length of an increasing subsequence that can be
achieved by nonanticipating decision policies.

An example of a policy is the greedy rule, which selects X1 and then
each consecutive Xj greater than predecessors X1� � � � �Xj−1. The relevant
τi and Xτi are called record times and record values, respectively. Counting
the records shows that the expected number of selections by this policy is∑n
j=1 j

−d� which for d > 1 remains bounded as n→ ∞� We shall see that one
can do considerably better with more sophisticated policies.

We outline a dynamic programming approach to the optimization problem.
Extending the last definition, introduce the value function

vn�x� = sup
τ∈� �x�

ELτ�X1� � � � �Xn�� x ∈ Q�

where

� �x� = �τ = �τ1� τ2� � � �� 	Xτi > x�
is the class of policies that do not accept points outside the interval �x�1��
Clearly, the value function is continuous, with vn�0� = vn and vn�1� = 0�
Since � �x� becomes smaller as x increases, vn�x� is decreasing in x.

Consider policies from � �x� applied to n + 1 observations. A recurrence
formula for the value function follows by conditioning on the value of X1�
By the i.i.d. assumption, if X1 is rejected, the maximal (conditional) expected
length of a selected subsequence will be vn�x�� Similarly, if X1 > x and it is
accepted, then the maximal (conditional) expected length will be 1 + vn�X1��
Noting that X1 /∈ �x�1� with probability 1 − p�x�, we have

vn+1 = �1 − p�x��vn�x� +
∫
�x�1�

max �vn�x��1 + vn�y��dy�

where dy stands for Lebesgue measure. Rearranging terms, we put this in a
more suggestive form,

vn+1�x� − vn�x� =
∫
�x�1�

�1 + vn�y� − vn�x��+ dy�(2)

where �·�+ = max�·�0��
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Using induction in n one can prove that an optimal policy τ∗ = �τ∗1� τ∗2� � � ��,
which achieves vn, is given by

τ∗1 = min
{
j ≤ n 	vn−j�Xj� + 1 ≥ vn−j�0�

}

τ∗i+1 = min
{
j 	 τ∗i < j ≤ n 	Xj > Xτ∗i � and vn−j�Xj� + 1 ≥ vn−j�Xτ∗i �

}
�

The somewhat cumbersome stopping time notation belies the simplicity of
the optimal policy, which amounts to the following rule: Suppose at stage j we
are to decide about observation y and x is the last point selected so far. Then
y must be accepted iff

y > x and vn−j�y� + 1 ≥ vn−j�x�(3)

�and rejected otherwise�.
To find vn and τ∗ explicitly, we need to solve (2). The computations become

difficult even for small n� For the first two values we have

v1�x� = p�x�� v2�x� = 2p�x� + �2−d − 1�p2�x��
These values suggest that vn�x� depends on x ∈ Q only through p�x�� This

is indeed true and can be derived by induction from (2). Alternatively, note
that vn�x� is achieved by a policy in � �x� that pays no heed to observations
falling outside �x�1�. Thus if this box is isomorphic to another box �y�1�,
we can map such a policy to a policy from � �y�, and keep the performance
unchanged. The statement follows because two boxes are isomorphic exactly
when the corresponding values of p�·� are equal.

The last remark sheds some light on the structure of the optimal policy.
Introducing

Dn�x� =
{
y ∈ �x�1� 	vn�y� + 1 ≥ vn�x�

}
�

we can put the selection criterion (3) in the form

y ∈ Dn−j�x��
The volume of Dn�x� depends on x through p�x�. Geometrically, Dn�x� is
obtained via intersecting the box �x�1� by a hyperbolic hypersurface p�·� =
const provided p�x� is not too small [otherwise Dn�x� coincides with the box].

3. A stationary policy. The form of the optimal policy suggests that we
could approach optimality by a suitable choice of a family of decision sets
Bn−j�x� instead of the optimalDn−j�x�. After a minute of reflection, one could
guess that for n−j large and p�x� not too small, a good candidate for Bn−j�x�
would be a small simplex obtained by intersecting �x�1� with a hyperplane
parallel to the tangent space at x to the surface p�·� = p�x�� A more delicate
fact is that an asymptotically optimal policy can be obtained by taking a single
simplex � (depending on n only) for all Bn−j�x�’s. An intuitive explanation for
this phenomenon, which we will not justify here in detail, is that, for n large,
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the optimal sequence concentrates near the main diagonal in Q and grows
linearly with j (thus for j close to n/2, the last selected point is with high
probability near the center of Q, and the number of points selected so far is
close to half of the total length of the selected subsequence).

Consider a simplex � = �x ∈ Q 	x�1� + · · · + x�d� < δ�� where the side size δ
is yet to be fixed. Define a policy σ = �σ1� σ2� � � �� by setting

σ1 = min�j 	Xj ∈ ���
σi+1 = min�j > σi 	Xj −Xσi ∈ ���

(4)

Set Zj =Xσi if σi is the largest of the stopping times that are less than or
equal to j, or set Zj = 0 if not. That is to say, Zj is the last point selected
from the first j points, or it is a zero vector if no selections have been made to
instant j. VariableXj is selected by σ if it hitsZj−1++� (and thenZj =Xj),
and rejected otherwise (in which case Zj = Zj−1).

Observe that the policy operates like the greedy rule as soon as the condition

Zj−1 + � ⊂ Q(5)

is violated. If (5) holds, the point Xj is selected with probability V = δd/d!�
which is the volume of �� Conditionally on any value of Zj−1 satisfying (5)
and given that Xj ∈ Zj−1 + �, the expectation of Zj −Zj−1 is equal to m1,
where m = �d + 1�/δ is the common value for all d coordinates of the center
of gravity in �.

Loosely speaking, for δ small and n large, the selection process is governed
by the law of large numbers. The expected number of selections cannot exceed
nV. On the other hand, the mean number of selections as long as (5) holds
will be at most 1/m. Since one quantity is increasing in δ while the other is
decreasing, the maximum value of the minimum of these two quantities is
attained when they are equal. Equating nV and 1/m yields

δ =
( �d+ 1�!

n

)1/�d+1�
�(6)

The next theorem gives tight bounds on the performance of this policy.

Theorem 2. The mean number of points selected by the stationary policy
(4) with the simplex side size (6) satisfies

γn1/�d+1��1 −R�n�� < Lσ�X1� � � � �Xn� < γn1/�d+1��

where R�n� = O�n−1/�2d+2�� as n→ ∞�

Proof. The idea it to compare �Zj� with the partial sums process

S0 = 0� Sj = Sj−1 +Yj�
which has i.i.d. increments Yj =Xj1�Xj∈���
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It is easily seen that

P�Yj �= 0� = V� E�Y�k�
j � =mV�

Var�Y�k�
j � < 2δ2V� k = 1� � � � � d�

(7)

and ESn = 1 by the choice of δ.
The initial piece of Z1�Z2� � � � taken as long as (5) holds has the same

distribution as S1� S2� � � � � Sρ∧n, where ρ = min�j 	Sj−1 + � �⊂ Q� and ∧ =
min. We will speak of a jump at index j each time Yj �= 0. The upper bound
on Lσ�X1� � � � �Xn� follows by noting that the acceptance domain is a subset
of a translate of � and

ELσ�X1� � � � �Xn� < E
( n∑
j=1

1�Yj �=0�

)
= nV�

For the lower bound, note that the expected number of selections by σ is not
less than the expected number of jumps in S1� S2� � � � � Sρ∧n� Applying Wald’s
identity to stopping time ρ ∧ n, we have for the number of jumps

E

( ∑
j≤n∧ρ

1�Yj �=0�

)
= VE�ρ ∧ n� = V�n−E�n− ρ�+��

To estimate the expectation in the brackets, observe that ρ = ρ1 ∧ · · · ∧ ρd,
where ρk = min �j 	S�k�

j > 1 − δ�. Therefore

E�n− ρ�+ ≤ E
(
max
k≤d

�n− ρk�+
)
≤ E

( d∑
k=1

�n− ρk�+
)
= dE�n− ρ1�+�(8)

Since ρ1 is a stopping time, by the independence we have

E�S�1�
n −S�1�

ρ1
�+ = E

( n∑
i=1

�S�1�
n −S�1�

n−i�1�n−ρ1=i�

)

=
n∑
i=1

iP�n− ρ1 = i�E�Y�1�
1 � =mV ·E�n− ρ1�+�

Plugging this into (8) and using (7) gives

E�n− ρ�+ ≤ d

mV
E�S�1�

n −S�1�
ρ1

�+�

Using the Cauchy–Schwarz inequality and ES�1�
n = 1 we compute

E�S�1�
n −S�1�

ρ1 �+ ≤ E�S�1�
n − 1 + δ�+

< �E�S�1�
n − 1 + δ�2�1/2 = �Var�S�1�

n � + δ2�1/2�
Now from (7) we have Var�S�1�

n � = nVar�Y�1�
1 � = O�nδ2V�� whence

E�n− ρ�+ = O�n1−1/�2d+2��
and the lower bound follows. ✷
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While the asymptotic optimality of σ among all policies will follow from our
main result, there is a variational explanation why σ cannot be improved by
another stationary policy: Of all bodies in the positive orthant and with given
volume, a standard simplex minimizes the largest coordinate of the center of
gravity.

4. A Poisson process problem. We introduce next a Poisson analogue
of the fixed-n sequential selection problem and argue that both problems are
asymptotically similar.

Let � be a homogeneous Poisson point process on �0�∞�×Q, with Lebesgue
measure as intensity. Let �T1�X1�� �T2�X2�� � � � be the atoms of � labelled
by increasing the time component, T1 < T2 < · · · � Think of Xj as a point
observed at time Tj� It is well known that X1�X2� � � � are i.i.d. uniform in Q�
�T1�T2 −T1�T3 −T2� � � �� are i.i.d. standard exponential and both sequences
are independent. Consider stopping times adapted to �X1�T1�� �X2�T2�� � � �
and define a policy to be a sequence of stopping times τ = �τ1� τ2� � � ��
satisfying

(i′) each τi is adapted to �X1�T1�� �X2�T2�� � � � �
along with (ii) and (iii) of Section 2.

We denote by �t the restriction of � onto �0� t� ×Q. With a slight abuse
of notation, we write Lτ��t� = #�i 	Tτi ≤ t� for the number of Poisson points
selected by τ and write � �x� for the family of policies that do not accept points
outside �x�1�. Let

u�t� = sup
τ
ELτ��t�

be the maximum expected length for horizon t�
What makes the Poisson model so attractive is a stronger invariance prop-

erty: for any two “time–space” �d+ 1�-dimensional intervals of the same vol-
ume there exists an isomorphism that respects both the measure and the co-
ordinatewise order. The supremum of ELτ��t� over � �x� is achieved within
the subclass of policies measurable with respect to the restriction of � onto
�0� t�×�x�1�, as follows by the independence properties of the Poisson process.
Mapping the box �0� t� × �x�1� on �0� p�x�t� ×Q, we see that the supremum
is equal to u�tp�x��� That the value function depends on a single parameter
makes things much easier [as compared with two parameters n and p�x� in
the fixed-n problem].

To derive a dynamic programming equation on u�·�, consider the Poisson
problem with horizon t + ε. With probability e−ε = 1 − ε + o�ε� there are no
arrivals until instant ε, thus no selection is made. Otherwise, with probability
ε+o�ε� there is a single arrival and a decision based on the observedX1 should
be made. Therefore

u�t+ ε� = �1 − ε�u�t� + ε
∫
Q

max �u�tp�y�� + 1� u�t��dy+ o�ε��
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Rearranging terms and taking limits yields an integrodifferential equation

u′�t� =
∫
Q
�u�tp�y�� + 1 − u�t��+dy�(9)

which should be complemented by the initial condition u�0� = 0�
It does not seem possible to find a closed form solution to (9). One of the

difficulties that arises is that u�·� has singularities (the minimal singular point
is where the value 1 is taken). In what follows we will find the asymptotics
for large t.

Theorem 3. All solutions to (9) satisfy

u�t� ∼ γt1/�d+1�

as t→ ∞� whatever the initial value u�0�.

Let u�·� be a solution of (9). Our proof hinges on properties of the functionals

Jt�f� =
∫
Q
�f�tp�y�� + 1 − u�t��+ dy�

parameterized by t ≥ 0 and defined for continuously differentiable functions
on �0� t�. First, note that Jt is monotone in the sense that f�s� ≤ g�s� for
s ≤ t implies Jt�f� ≤ Jt�g�� Second, Jt�f + const� = Jt�f� for any constant.
In these terms, the equation is written as

u′�t� = Jt�u�� t ≥ 0�

and any function u�·� + const is a solution too.
For positive α and t consider the function

h�s� = αs1/�d+1� − αt1/�d+1� + u�t�� 0 ≤ s ≤ t�
where the constant terms are selected so that h�t� = u�t�� The derivative h′

at s = t is increasing and, by the monotonicity, Jt�h� is decreasing in α�

Lemma 4. Jthα ∼ ��d+ 1�/α�d��d+ 1�!�−1t−d/�d+1� as t→ ∞�

Proof. We have, by the change of variable,

Jt�hα� =
∫
Q
�α�tp�x��1/�d+1� − αt1/�d+1� + 1�+ dx

=
∫ 1

0
�α�t�1 − ξ��1/�d+1� − αt1/�d+1� + 1�+ db�ξ��

where b�ξ� is the volume of �x ∈ Q 	p�x� ≥ 1 − ξ�� Using induction in d one
can show that

b�ξ� = 1 − �1 − ξ�
d−1∑
i=0

� log�1 − ξ��i/i!
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from which

db/dξ = � log�1 − ξ��d−1/�d− 1�!�
The integrand is positive for ξ < ξ0, where

ξ0 ∼ �d+ 1�α−1t−1/�d+1��

The statement follows by taking the leading term of the Taylor expansion for
small ξ and integrating over �0� ξ0�. ✷

Proof of Theorem 3. Note that γ is a single solution to

α =
(
d+ 1
α

)d
��d+ 1�!�−1�

which is the only value of α that gives the match Jt�h� ∼ h′�t�. It follows from
the lemma and by monotonicity that, for t sufficiently large,

Jt�h� < h′�t� for α > γ�(10)

Jt�h� > h′�t� for α < γ�(11)

We claim that u�t�−αt1/�d+1� is bounded from above, provided α > γ� Indeed,
assume this is unbounded. For C > 0, define t�C� as the minimal point where
the function u�t� − αt1/�d+1� crosses the level C� We can select C arbitrarily
large and so that the derivative is strictly positive at t�C�� For such t = t�C�
we have

u′�t� > h′α�t� and u�t� = αt1/�d+1� +C�
while for s < t,

u�s� ≤ αs1/�d+1� +C = h�s��
Again by monotonicity and from (9),

u′�t� = Jt�u� ≤ Jt�hα��
whence h′α�t� < Jthα� which is a contradiction with (10), because letting C→
∞, we have t�C� → ∞�

A similar argument involving (11) proves that u�t� − αt1/�d+1� is bounded
from below for α < γ� The theorem follows. ✷

Now we can prove Theorem 1.

Proof of Theorem 1. In view of Theorems 2 and 3, all that we need to
show is that the value in the Poisson problem with t = n yields an appropriate
asymptotic upper bound for vn�

Indeed, let N�t� be the number of Poisson atoms in �0� t� × Q� For small
ε > 0 set t = n�1 + ε� and apply the optimal-n policy to the first n Poisson
arrivals, paying attention only to theXj’s. Given thatN is larger than n, this
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policy selects, on the average, vn points. Because the policy is only suboptimal
in the Poisson problem, we have

vnP�N ≥ n� < u�t��
For n→ ∞, this probability goes to 1. Thus setting ε→ 0 and using Theorem
2, we establish vn ∼ u�n� and (1) follows. ✷
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