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ON THE RATE OF MIXING FOR p-SHUFFLES1

By Steven P. Lalley

University of Chicago

The p-shuff le is a natural generalization of the dovetail shuffle. It is
defined as follows. First, the deck is cut into a top stack and a bottom stack
so that the distribution of the size of the top stack is Binomial �N�p�,
where N is the total number of cards in the deck. Then, conditional on
the outcome of the cut, the two stacks are “riffled” in such a way that all
possible riffles (interleavings) of these two stacks are equally likely. The
main result of the paper is an asymptotic �N→∞� bound on the number
of repetitions needed to “randomize” the deck.

1. Introduction. The p-shuffle (or GSR-p shuffle, for Gilbert, Shannon,
and Reeds) is a simple and natural generalization of the dovetail (or GSR
shuffle) studied in [3] and [1]. For 0 < p < 1 and a deck of size N, the
p-shuffle is defined as follows: first, “cut” the deck into two stacks in such a
way that the cardinality of the top stack has the Binomial �N�p� distribution.
Next, “riffle” the two stacks by dropping cards one at a time from either the top
stack or the bottom stack, according to the following rule: at any stage of the
riffle, if there are A cards remaining in the top stack and B cards remaining
in the bottom stack, then the probability that the next card dropped is from
the top stack is A/�A + B�. The special case p = 1/2 is the dovetail shuffle
of [3].
Mixing properties of the dovetail shuffle are elegantly set out by Bayer

and Diaconis in [3], following earlier work by Aldous [1]. There is a cutoff phe-
nomenon for large decks: If the deck hasN cards, then for largeN the number
of repetitions of the shuffle required for the distribution to approach to within
total variation distance 1/e of the uniform distribution on all permutations is
about �3/2� log2 N, and the transition to uniformity is rapid. [Recall that the
total variation distance between two probability distributions µ� ν on a finite
set � is defined to be �1/2�∑x∈� �µ�x� − ν�x��.] In particular, if dN�n� is the
total variation distance to the uniform distance after n repetitions, then for
every ε > 0,

lim
N→∞

inf
n≤��3/2�−ε� log2 N

dN�n� = 1(1)

and

lim
N→∞

sup
n≥��3/2�+ε� log2 N

dN�n� = 0�(2)
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Bayer and Diaconis show that the transition to uniformity is even more rapid:
see [3] for a precise statement.
It is natural to conjecture that a cutoff phenomenon holds in the p-shuffle,

for any value of the parameter p. Moreover, it is tempting for the nonexpert to
suspect that routine modifications of the Aldous and Bayer–Diaconis analyses
would establish the cutoff. Unfortunately, this is not the case. The dovetail
shuffle has a special property not shared by any other p-shuffle: the proba-
bility distribution on the permutation group induced by one repetition of the
dovetail shuffle is uniform on all “riffle permutations.” (A riffle permutation
is defined to be a permutation with either one or two rising sequences, that
is, a permutation which may result from one repetition of a p-shuffle.) This
uniformity permits an exact formula for the distribution of the deck after n
repetitions; see [3]. No such exact formula is available for the p-shuffle in gen-
eral. Exact formulas for the eigenvalues of the transition probability matrices
of the p-shuffles have recently been obtained (see [4] and [5]) but it does not
seem that these can be used to determine the mixing rates.
The main result of this paper is an explicit bound on the rate of convergence

for the p-shuffle. For each p ∈ �0�1�, let q = 1 − p, and define constants Cp

and C∗p by

Cp =
3+ θp

−4 log�p2 + q2�(3)

and

C∗p =
2

− log�p2 + q2� �(4)

where θ = θp is the unique real number such that

pθ + qθ = �p2 + q2�2�(5)

Observe that Cp < C∗p, and that C1/2 = 3/�2 log 2�.

Theorem 1. There exists an open neighborhood of p = 1
2 such that for all

p in this neighborhood, it takes at least �Cp − ε� logN and no more than
�C∗p + ε� logN repetitions of the p-shuffle to randomize a deck of size N. In
particular, if dN�x� represents the total variation distance between the uniform
distribution and the distribution of the state of the deck after �x� repetitions of
the shuffle, then for any ε > 0,

lim
N→∞

dN��1− ε�Cp logN� = 1(6)

and

lim
N→∞

dN��1+ ε�C∗p logN� = 0�(7)
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The result (7) is due to Jason Fulman [8]. (See also [7] for discussion of
a related shuffling model.) A short proof of (7) is given in Section 2.3 below;
see Corollary 3. The relation (6) is considerably harder. Its proof is given in
Section 3. If the cutoff phenomenon does indeed occur for the p-shuffle, the
cutoff must occur considerably before C∗p logN, at least when p = 1/2, since
C∗1/2 is strictly larger than �3/2 log 2�. Thus, if the cutoff phenomenon occurs,
C∗p is not the right constant. We conjecture the right constant is Cp, at least
for p sufficiently near 1/2:

Conjecture 1. For p sufficiently near 1
2 , there is a “cutoff phenomenon” at

Cp logN, that is �in light of �6��, for any ε > 0,

lim
N→∞

dN��1+ ε�Cp logN� = 0�(8)

A heuristic argument in favor of this conjecture is given in Section 4. It
seems likely that for every p ∈ �0�1� the cutoff phenomenon occurs at Cp logN
for a suitable constant Cp, but our arguments are valid only for p near 1

2 .
However we will show (Proposition 1) that for all p > 1

2 ,

dN

(
�1− ε� logN

logp−1

)
= 1(9)

for every ε > 0. Numerical analysis shows that for p > 0�71,

1
logp−1

>
3+ θp

−4 log�p2 + q2� �

Therefore, if for every p ∈ �0�5�1� the cutoff phenomenon occurs at Cp logN
for some constant Cp, and if our conjecture above is correct, then the function
p �→ Cp cannot be analytic in the parameter p.
Let q = 1−p. There is an obvious “duality” between the p-shuffle and the

q-shuffle: if one turns the deck upside down, then performs a p-shuffle, then
turns the deck upside down again, the result is a q-shuffle. Thus, any result
concerning the mixing rate of iterated p-shuffles holds also for q-shuffles.
Henceforth, we shall assume that 1/2 ≤ p < 1.

2. Preliminaries

2.1. The associated dynamical system. Imagine that the p-shuffle is per-
formed infinitely many times, independently, on a deck of size N whose cards
are initially labeled 1�2� � � � �N from bottom to top. Each card i will have an
orbit,

xi = xi1� x
i
2� � � � �

the sequence of 0’s and 1’s recording which stack (top = 1, bottom = 0) the
card visits at each step. Note that the orbits of distinct cards are different,
with probability 1, because on each repetition of the shuffle the conditional
probability that cards i and j will be put in different stacks (given the history
of the deck up to that repetition) is bounded below by a positive number.
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Lemma 1. The lexicographic order on the set of orbits �x1� x2� � � � � xN� coin-
cides with the original order of the cards in the deck.

Proof. This follows from the nature of the riffling process. If card i is
below card j originally, then it will stay below for as long as the orbits of the
two cards coincide, because in each riffle cards are dropped one at a time from
the bottoms of the two stacks. Thus, at the first time they are in different
stacks, card i will be in the bottom stack (0) and card j will be in the top
stack (1). Hence, xi ≤ xj in the lexicographic order. ✷

Lemma 2. The unordered collection of sequences x1� x2� � � � � xN is a ran-
dom sample of N independent Bernoulli-p processes. Equivalently, a version
of the set �x�i��1≤i≤N of orbits may be obtained by lex-ordering N independent
Bernoulli-p sequences �xi�1≤i≤N.

For the proof, see [6], Chapter 4D, for the case p = 1
2 ; the general case is

essentially the same.
The preceding lemmas imply that a version of the random walk on the

permutation group �N induced by independent repetitions of the p-shuffle
may be (re)constructed from the realizations of N independent Bernoulli-p
sequences x1� x2� � � � � xN. The position of the card i with orbit x�i� in the deck
after n shuffles is determined as follows: apply the shift σ n times to each of
the sequences xj, and then determine the relative order of σnx�i� in the set
�σnx1� � � � � σnxN�.

2.2. Example. In this example, the deck has N = 5 cards labelled a, b, c,
d, e. The following table shows the arrangement of cards in the deck (from
top to bottom) after n = 0�1�2�3�4 repetitions of the shuffle:

Position n = 0 n = 1 n = 2 n = 3 n = 4

1 e e d d d
2 d b c a a
3 c d e c c
4 b c a b b
5 a a b e e.

The next table shows the first seven entries of each orbit:

e 0 0 0 1 0 1 1
d 0 1 0 0 0 0 0
c 0 1 0 1 0 1 0
b 1 0 1 1 0 0 1
a 1 1 1 0 0 0 1.

Observe that the fifth entry of each orbit is 0, indicating that each card is
in the “bottom” stack of the fourth riffle. Since the “top” stack is empty, the
relative order of the cards is unchanged by the fourth riffle; that is, the fourth
riffle permutation is the identity. Note that the same would be true if all the
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cards were in the “top” stack, that is, if the fifth entries of the orbits were
all 1 instead of 0. This illustrates that the sequence of permutations does not
uniquely determine the set of orbits.

2.3. The associated random graph. The state of the deck after n repeti-
tions of the p-shuffle may be described in terms of a random graph � = �N

n

and an independent random permutation � (uniformly distributed on the per-
mutation group �N). This representation will facilitate comparison with the
uniform distribution.
Let the orbits of the cards be x�i�, 1 ≤ i ≤ N, as described in Section 2.1

above. Assume that the cards are labeled so that the original composition of
the deck is 1�2� � � � �N, from bottom to top; thus, in the lexicographic order,

x�1� ≤ x�2� ≤ · · · ≤ x�N��

Say that cards i� j have the same n-orbit if the orbits x�i� and x�j� coincide in
their first n entries. Note that if i and j have the same n-orbit and i < j then
for every i < i′ < j the cards i and i′ have the same n-orbit. Define � = �N

n

to be the (random) graph with vertex set �N� = �1�2� � � � �N� and edge set �
consisting of those pairs �i� i + 1� such that cards i and i + 1 have the same
n-orbit. Observe that � is completely determined by the set of n-orbits, that
is, by the N× n Bernoulli Matrix,

M =M�N�n� =




x11 x12 · · · x1n

x21 x22 · · · x2n

· · ·

xN1 xN2 · · · xNn �




and consequently is independent of the (unordered) set of n-shifted orbits,{
σnx�i� i ∈ �N�}�

Example. In the example described in Section 2.2 above, the graph � 5
4

has no edges, because the 4-orbits of the five cards are distinct. However, the
graph � 5

3 has an edge connecting vertices 2 and 3, because cards c and d have
the same 3-orbit.
For a permutation π of �N� define the � -modification π� of π to be the

permutation obtained by ordering the assignments within each clique of � .
(A clique of � is a maximal connected set of vertices.) Thus, for each singleton
clique i (i.e., for each card i with a unique n-orbit),

π� �i� = π�i��
for each doubleton clique i� i+ 1,

π� �i� = π�i� and π� �i+ 1� = π�i+ 1� if π�i� < π�i+ 1��
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but
π� �i� = π�i+ 1� and π� �i+ 1� = π�i� if π�i� > π�i+ 1�

and so on. Observe that, on the event that � has no edges, π� = π.

Lemma 3. Let Xn = XN
n be the permutation representing the state of the

deck after n independent repetitions of the p-shuffle. (The ith entry Xn�i� is
the position of card i in the deck after n repetitions of the shuffle.) Let � be
the random graph associated to an N× n Bernoulli matrixM� and let � be a
random permutation independent of M with the uniform distribution on �N.
Then the � -modification of � is a version of Xn.

Proof. A version of the random walk �Xk�k≥1 may be constructed fromN
independent Bernoulli-p processes x1� x2� � � � � xn by the procedure described
in Section 2.1 above. Write

xi = zi1z
i
2 · · · zinyi1yi2 · · · �

zi = zi1z
i
2 · · · zin�

yi = yi1y
i
2 · · · �

The orbits of the cards i = 1�2� � � � �N are obtained by lex-ordering the N
sequences xi. This may be done in two steps: first, rearrange the rows by
ordering the finite sequences zi; this may result in some ties. Second, rear-
range the rows by ordering the infinite sequences yi within any ties left by
the first step. Since the rearrangement in the first step depends only on the
values of the finite sequences zi, the ordering of the infinite sequences yi

after the first stage is completely random. In particular, the assignment of
row number i to the relative rank of the y-sequence in row i after the first
step is a random permutation � independent of the finite sequences zi and
uniformly distributed on the set �N. The permutation representing the deck
after n P-shuffles is, clearly, obtained from � by � -modification, where � is
the random graph obtained from the Bernoulli matrix z. ✷

Corollary 1. dN�n� ≤ P�� �= �� �.
Proof. Recall that dN�n� is the total variation distance between the uni-

form distribution and the distribution of the deck after n repetitions of the
p-shuffle. Since � has the uniform distribution and �� has the same distribu-
tion as the random permutation resulting from n repetitions of the p-shuffle,
by the preceding lemma, it follows that

dN�n� = 1
2

∑
π∈�N

∣∣P��� = π� −P�� = π�∣∣
= 1

2

∑
π∈�N

∣∣P��� = π and � �= �� � −P�� = π and � �= �� �
∣∣

≤ 1
2

∑
π∈�N

P��� = π and � �= �� � + 1
2

∑
π∈�N

P�� = π and � �= �� �

= P�� �= �� �� ✷
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Define

τ = τN = min�n  no two rows ofM�N�n� are the same��(10)

Since the rows ofM�N�∞� are independent sequences of i.i.d. Bernoulli-p ran-
dom variables, τN is almost surely finite. Clearly, if n ≥ τN then the random
graph � = �N

n has no edges, and so �� = �. This implies the corollary.

Corollary 2. dN�n� ≤ P�τN > N�.

Observe that τN is a strong stationary time in the sense of [2]. It is likely
that the bounds on dN�n� obtained via Corollary 2 are loose.

Corollary 3. limN→∞ dN��1+ ε�C∗p logN� = 0.

Proof. The entries of the matrix M�N�n� are i.i.d. Bernoulli-p random
variables; thus, the probability that any two given rows are identical is
�p2 + q2�n. It follows that the expected number of pairs of identical rows is(

N
2

) (
p2 + q2)n < N2(p2 + q2)n�

If n ≥ �1 + ε�C∗p logN, then �p2 + q2�n ≤ N−2�1+ε�. Consequently, by the
Chebyshev–Markov inequality, for n = ��1+ ε�C∗p logN�,

P�τN > N� = P
{
M�N�n� has two identical rows

} ≤N−2ε −→ 0

as N→∞. ✷

2.4. Entropy and information. The construction of the preceding section
shows that the distribution of the permutation Xn representing the state of
the deck after n p-shuffles is completely determined by the distribution of the
random graph � . When p �= 1

2 this distribution may be rather complicated;
for instance, when p > 1

2 cliques are more likely in certain “cold spots” of
the deck where n-orbits are more likely to contain more than the average
number np of 1’s. This is because when p �= 1

2 , not all n-orbits are equally
likely, and, in fact, the likelihoods of different n-orbits may be on entirely
different orders of magnitude. It will ultimately be necessary to estimate the
number of different n-orbits with likelihood on a given order of magnitude.
These estimates will involve entropy and information numbers, about which
we gather some basic information here.
For an n-orbit x = x1x2 · · ·xn (a 0–1 sequence of length n) let x̄ =

∑
xi/n

be the relative frequency of 1’s. For α ∈ �0�1�� ε > 0 and k ≤ n define

$n = �0�1�n

and
$ε
n�α� = �x ∈ $n  �x̄− α� < ε��
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Define the Shannon entropy function H�β� and the Kullback–Leibler infor-
mation function I�p�β� by

H�β� = −β logβ− �1− β� log�1− β� for 0 < β < 1�

I�p�β� = −β logp− �1− β� log q for 0 < β�p < 1�

The following well-known lemma is an easy consequence of Stirling’s
formula.

Lemma 4. For each α ∈ �0�1� and each ε > 0 small enough that 0 < α−ε <
α+ ε < 1,

lim
n→∞

1
n
log

∣∣$ε
n�α�

∣∣ = max
�β−α�≤ε

H�β��

Fix p ∈ � 12 �1�. For each sequence x = x1x2 · · ·xn ∈ $n, define the likelihood

λ�x� =
n∏
i=1
�pxiq1−xi��

Corollary 4. For each α ∈ �0�1� and ε > 0, and for every fixed integer
k ≥ 1,

lim
n→∞

1
n
log

( ∑
x∈$ε

n�α�
λ�x�k

)
= max
�β−α�≤ε

�H�β� − kI�p�β���

This is a routine consequence of Lemma 4 and the continuity of the func-
tions H and I in their arguments.
Fix p ∈ � 12 �1�, and for t ≥ 0 define

ψ�t� = log�pt + qt��(11)

pt = pt/�pt + qt��(12)

qt = qt/�pt + qt� = 1− pt�(13)

Since p > 1
2 , the function t �→ pt is strictly increasing in t, with p0 = 1

2
and p∞ = 1. Moreover, ψ�t� is strictly decreasing in t, with ψ�0� = log 2 and
ψ�∞� = −∞. Consequently, since ψ�2� < 0, there is a unique θ > 0 such that
ψ�θ� = 2ψ�2�; this is the value singled out in the statement of Theorem 1.
Notice that for every t > 0,

ψ′�t� = pt logp+ qt log q = −I�p�pt��(14)

where I�·� ·� is the Kullback–Leibler information function. Since pt is increas-
ing in t� I�p�pt� is decreasing in t, and therefore ψ�t� is strictly convex in t.
The functions H�I and ψ are related by the identities

H�pt� = tI�p�pt� + ψ�t� = −tψ′�t� + ψ�t��(15)

which shows that −H�pt�, considered as a function of −I�p�pt�, is the
Legendre transform of ψ�t�.
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3. Proof of Theorem 1. We have already proved the easy inequality (7)
in Corollary 3 above. It remains to prove the hard inequality (6). Fix p > 1

2
and C < Cp, and let

n = �C logN�(16)

be the number of repetitions of the p-shuffle. As usual,N is the cardinality of
the deck. In this section we will show that if p− 1

2 is sufficiently small then

lim
N→∞

dN�n� = 1�(17)

Since the total variation distance dN�n� is, for fixed N, nonincreasing in n,
we may assume in proving (17) that C is arbitrarily close to Cp. Recall that
C1/2 = 3/�2 log 2�, so for p near 1

2 �Cp is close to 3/�2 log 2�. Consequently, if
β > 0 is small then for p near 1

2 and C near Cp,

pn < N−1−β�(18)

3.1. Clumping. There are (at least) two obstructions to mixing for
p-shuffles, clumping and cold spots. The term clumping refers to a tendency
for a large numbers of cards at the top or bottom of the deck to remain in
their original order. This may occur in the p-shuffle for p near 0 or 1 because
the deck is, with high probability, so unevenly divided that cards in one of
the two stacks do not have a chance to be mixed with cards from the other.
The term cold spots refers to the existence of predictable areas of the deck in
which unusually large numbers of neighboring pairs i� i+1 tend to remain in
their original order. For p near 1

2 , the existence of cold spots is the obstruction
that persists for large values of n, while for p > 0�71 clumping is the persis-
tent obstruction. The following lemma shows that clumping will occur when
C < 1/ logp−1.

Proposition 1. For any p ∈ � 12 �1�, if C < 1/ logp−1 then limN→∞ dN�n�
= 1.

Proof. If C < 1/ logp−1, then there exists ε > 0 such that pn ≥N−1+ε for
allN. But pn is the probability that a randomly chosen card will have n-orbit
111 · · ·1. Since the N orbits are independent, it follows that, with probabil-
ity approaching 1 as N → ∞, the number of cards with n-orbit 111 · · ·1 is
at least Nε/2. On this event, the �Nε/2� topmost cards of the deck remain in
their original order after n shuffles. But for a completely random (that is uni-
formly distributed) permutation, the length of the longest run of consecutive
cards that remain in their original order is, with probability approaching 1 as
N → ∞, smaller than �logN�2. (To see this, observe that the probability
that 2k consecutive cards remain in order is smaller than 2−k, because, in a
completely random permutation, the probability that two neighboring cards
remain in order is 1/2, and these events are independent for nonoverlapping
pairs.) ✷
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3.2. Cold spots. The existence or nonexistence of “cold spots” in the deck
depends on the statistics of the random graph � associated to the set of
n-orbits (see Section 2.3). Let � be the edge set of � ; define

� = �i ∈ �N� �i� i+ 1� ∈ � ��
For a subsetH ⊂ �N� let ∂H be the (inner) boundary ofH in �N�, that is, the
subset of H consisting of all points at distance 1 from �N� −H.

Proposition 2. Suppose that there exist nonrandom subsets H = HN of
�N� such that for some ε > 0 all three of the following conditions are met
as N→∞:

�H� −→ ∞�(19)

�∂H� = O��H�1/2��(20)

and

P��� ∩H� ≥ �H�1/2+ε� → 1�(21)

Then

lim
N→∞

dN�n� = 1�

Note. The sets H = HN are the “cold spots.” Aldous [1] states the special
case p = 1

2 and H = �N�, but his proof appears to have serious gaps.

To prove Proposition 2, we will show that under the hypotheses (19), (20)
and (21), a recognizably large number of pairs of neighboring cards in HN

remain in their original order after n repetitions of the shuffle. For any per-
mutation π and an index i ∈ �N− 1� define ζi = ζi�π� by

ζi=1 if π�i� < π�i+ 1��
ζi=0 if π�i� > π�i+ 1��

(22)

The number of alignments inH is defined to be
∑

i∈H ζi. Let � be a completely
random permutation, and let �� be the � -modification of �. Observe that the
random variables ζi��� are Bernoulli- 12 , so the expected number of alignments
in H is �H�/2.

Lemma 5. For any interval J = �a� a+ 1� � � � � b� ⊂ �N− 1�,

E

(∑
i∈J

ζi��� �
∣∣∣∣∣�
)
≥ 1

2 �J� + 1
6 �� ∩J� − 3�
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Proof. For a fixed graph � = ��N��� � whose vertex set is �N� and whose
edge set � is contained in ��i� i + 1� 1 ≤ i ≤ N − 1�, define a sequence of
subgraphs �k = ��N���k� by taking for the edges set �k the set of all edges
�i� i+ 1� ∈ � such that i ≤ k. The edges sets of these graphs are nested, with
�0 = ��N���� and �N = � , and �k+1 is obtained from �k by adjoining at
most the single edge �k+ 1� k+ 2� to the edge set of �k.
A completely random permutation � may be constructed by attaching inde-

pendent, identically distributed uniform-(0,1) random variables Ui to the
indices i = 1�2� � � � �N and defining ��i� to be the relative rank of Ui in
the set �Uj�1≤j≤N. The �k-modification of � is obtained by first permuting
the r.v.’s Ui within �k-cliques so that the U’s within cliques are ordered, then
setting ��k

�i�to be the relative rank of the U attached to the index i. Con-
sider first the graph �0. Since its edge set is empty, the �0-modification of �
is identical to �; consequently.

E

(∑
i∈J

ζi���0
�
∣∣∣∣∣�0

)
= 1

2 �J��

Now consider the change in ζi���k
� when k is incremented to k + 1. For

those k such that k+ 2 < a (a is the leftmost index in J), none of the values
ζi� i ∈ J, is affected, since adding (at most) the single edge �k+ 1� k+ 2� does
not change the U attached to any i ∈ J. Hence, if k+ 2 < a, then

E

(∑
i∈J

ζi���k+1�
∣∣∣∣∣�k+1

)
= E

(∑
i∈J

ζi���k
�
∣∣∣∣∣�k

)
�

Next, consider k ≥ b (b is the rightmost index in J), Adding the edge �k+ 1�
k+2� changes only the rightmost clique; consequently, the only value ζi� i ∈ J,
that may be affected is at the i immediately to the left of the rightmost clique
in J. Hence, ∣∣∣∣∣E

(∑
i∈J

ζi���N
�
∣∣∣∣∣�N

)
−E

(∑
i∈J

ζi���b−1�
∣∣∣∣∣�b−1

)∣∣∣∣∣ ≤ 1�

Similarly, if k = a − 2 or k = a − 1, the only values of ζi� i ∈ J, that may be
affected are ζa and ζa+1, and so∣∣∣∣∣E

(∑
i∈J

ζi���a−1�
∣∣∣∣∣�a−1

)
−E

(∑
i∈J

ζi���0
�
∣∣∣∣∣�0

)∣∣∣∣∣ ≤ 2�

Finally, consider the changes in the values ζi when k is incremented to
k + 1 for a ≤ k < b. If the edge �k + 1� k + 2� is not added, then obviously
nothing is changed. If �k+ 1� k+ 2� is added, then at most three values ζi are
affected: ζk+1� ζk+2 and ζi for the index i immediately to the left of the clique
containing the vertex k+1. Let c be the size of the �K-clique containing k+1,
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and let c′ be the size of the �K-clique containing i. Conditional on �K and
�K+1, respectively,

ζi���k
�∼Bernoulli-(1/(c+c′

c

))
� ζi���k+1� ∼Bernoulli-

(
1/
(
c+c′+1
c+1

))
�

ζk+1���k
�∼Bernoulli-�1/�c+ 1��� ζk+1���k+1� ∼Bernoulli-1�

ζk+2���k
�∼Bernoulli-�1/2�� ζk+2���k+1� ∼Bernoulli-�1/�c+ 2���

Thus, the net change in (conditional) expectation is

E

(∑
i∈J

ζi���k+1�
∣∣∣∣∣�k+1

)
−E

(∑
i∈J

ζi���k
�
∣∣∣∣∣�k

)

= 1− 1
2
+ 1
c+ 2 −

1
c+ 1 +

1(
c+c′+1
c+1

) − 1(
c+c′
c

)(23)

≥ 1
2
− 1
6
− 1
6
= 1
6
�

Consequently, the conditional expectation is incremented by at least 1/6 for
every edge �k+ 1� k+ 2� of � in J, so

E

(∑
i∈J

ζi���b−1�
∣∣∣∣∣�b−1

)
−E

(∑
i∈J

ζi���a−1�
∣∣∣∣∣�a−1

)
≥ 1
6
�J ∩� �� ✷

Lemma 6. For any set H ⊂ �N− 1�,

var

(∑
i∈H

ζi��� �
∣∣∣∣∣�
)
≤ 3�H��

Proof. Let 21� 22� � � � � 2m be the cliques of � , listed in order from left to
right. Each index i is in a unique clique 2j, so

∑
i∈H

ζi =
m∑
j=1

Zj�

where

Zj =
∑

i∈H∩2j
ζi�

Within any clique, all ζi must be 1 except for the rightmost index i, so Zj −
�H ∩ 2j� + 1 is a Bernoulli random variable. Furthermore, the values of ζi’s
in different cliques are independent unless the cliques are neighbors, so Zj

and Zk are uncorrelated unless �k − j� ≤ 1. It follows that the conditional
variance of

∑
Zj is no larger than three times the number of cliques that

intersect H. ✷
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Proof of Proposition 2. We will compare the distributions of
∑

i∈H ζi���
and

∑
i∈H ζi��� � for a completely random permutation � independent of � .

Recall that the random variables ζi��� are Bernoulli- 12 , and that ζi��� and
ζj��� are independent unless �i−j� ≤ 1. Consequently,

∑
i∈H ζi��� has expec-

tation �H�/2 and variance O��H��, and hence by Chebyshev’s inequality,

P

{∑
i∈H

ζi��� ≥ �H�/2+ �H�1/2+ε/4
}
−→ 0

as N→∞�
Now consider the distribution of

∑
H ζi��� �. The set H may be partitioned

into nonoverlapping intervals J1�J2� � � � � Jm; by hypothesis (20), m =
O��H�1/2�. Consequently, by hypotheses (19) and (21) and Lemmas 5 and 6,
with probability approaching 1 as N→∞,

E

(∑
i∈H

ζi��� �
∣∣∣∣∣�
)
≥ 1
2
�H� + �H�1/2+ε/2

and

var

(∑
i∈H

ζi��� �
∣∣∣∣∣�
)
= O��H���

Thus, by Chebyshev’s inequality,

P

{∑
i∈H

ζi��� � ≤ �H�/2+ �H�1/2+ε/4
}
−→ 0

as N → ∞. This proves that the total variation distance between the dis-
tributions of

∑
i∈H ζi��� � and

∑
i∈H ζi��� converges to 1 as N → ∞, so

dN�n� → 1. ✷

3.3. Existence of cold spots for C < Cp. Proposition 2 implies the conver-
gence (17) holds provided there are predictable “cold spots” H = HN of the
deck satisfying relations (19)–(21) asN→∞. In this section we will show that
such cold spots exist for p near 1

2 and n = �C logN� for a constant C ∈ �0�Cp�
with C close to Cp.
Define m to be the (least) integer nearest to the solution of(

ppθqqθ
)m =N−1/2+δ

for a small constant δ > 0 to be specified later. Here θ = θp where θp is defined
by (5). Observe that m is the (least) integer nearest to the solution m′ of

m′I�p�pθ� = � 12 − δ� logN�(24)

Observe that m < n, because p > 1
2 and p

n < 1/N, by relation (18). Loosely
speaking, the cold spot will be those intervals of the deck in which cards have
m-orbits with relative frequency of 1’s approximately pθ. Unfortunately, the
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precise definition of H = HN must be somewhat more complicated, because
Proposition 2 requires that the sets H be nonrandom.
For each sequence x = x1x2 · · ·xm ∈ $m, set tx = P�ξ1ξ2 · · · ξm ≤ x1x2 · · ·

xm�, where ξ1� ξ2� � � � are i.i.d. Bernoulli-p and ≤ is the lexicographic order.
The numbers tx, for x ∈ $m, partition the unit interval into subintervals
Jx = �tx� tx + λ�x�� of varying lengths λ�x�. These intervals are indexed
so that if U is uniformly distributed on [0,1] and x�U� is the index of the
interval Jx containing U then the entries xi of x�U� are i.i.d. Bernoulli-p.
Consequently, the length λ�x� of the interval Jx coincides with likelihood
λ�x� = �m

i=1p
xiq1−xi . Fix ε > 0 (small), and define

H =HN =
{
i ∈ �N� i/N ∈ ⋃

x∈$ε
m

Jx

}
�

where

$ε
m = $ε

m�pθ�
is the set of all m-orbits x for which the relative frequency of 1’s is within ε
of pθ. Note that the definition involves the as-yet unspecified constants δ > 0
and ε > 0.
The next two propositions state that for suitably chosen constants δ� ε > 0,

the hypotheses of Proposition 2 are satisfied provided that p is sufficiently
near 1

2 and C is close to Cp. Consequently, their proofs will complete the proof
of the assertion (17).

Proposition 3. For sufficiently small ε > 0� �H� → ∞ and �∂H� =
O��H�1/2� as N→∞.

Proof. The setH consists of all integers contained in the nonoverlapping
intervals NJx, where x ∈ $ε

m. Hence, the boundary ∂H has cardinality no
larger than 2�$ε

m�. For each x ∈ $ε
m, the relative frequency of 1’s in x is within

ε of pθ, so the likelihood λ�x� (which is also the length of Jx) satisfies

λ�x� ≥ pmpθ−mεqmqθ+mε !N−1/2+δ�p/q�−mε�
Consequently, the length of each interval NJx contained in H is at least a
positive multiple (independent ofN) ofN1/2+δ�p/q�−mε. For sufficiently small
ε > 0, this is at least N�1+δ�/2. Thus, �H� → ∞ as n → ∞. Since N ≥ �H� ≥
�$ε

m�N�1+δ�/2, the cardinality of $ε
m cannot be larger than N�1−δ�/2; it follows

that the cardinality of ∂H cannot be larger than 2N�1−δ�/2. Since each interval
NJx contained in H has length at least N�1+δ�/2, this implies that �∂H� =
o��H�1/2�. ✷

Proposition 4. Assume that p− 1
2 is small. For sufficiently small δ� ε > 0,

there exists α > 0 such that

lim
N→∞

P
{�� ∩H� ≥ �H�1/2+α} = 1�(25)
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The remainder of this section is devoted to the proof of this proposition.
Since� ∩H is difficult to deal with directly, we will begin by finding a random
set H′, defined solely in terms of orbit properties, for which the size of the
intersection � ∩H′ is more easily estimated, and such that H′ ⊂ H with
probability approaching 1 as N→∞. Fix 0 < ε′ < ε; define

H′ = {i x�i� ∈ $ε′
m�pθ� ∩ 2

}
�

where x�i� denotes the m-orbit of the ith card and 2 is the set of all finite 0–1
sequences whose last two entries are, in order, 01.

Lemma 7. Fix δ > 0. For 0 < ε′ < ε and ε > 0 sufficiently small,

lim
N→∞

P�H′ ⊂H� = 1�

Proof. Recall that the assignment of m-orbits to cards may be made as
follows: start with N independent Bernoulli-p sequences, and attach labels
i = 1�2� � � � �N to the sequences so that the natural order on the set of labels i
coincides with the lexicographic order on the attached sequences; then discard
all but the first m entries of each sequence. A stochastically equivalent way
to make the assignment is as follows: drop N points independently from the
uniform distribution on [0,1], and label the points U�i� in accordance with
their relative order in [0,1] (thus, U�1�� U�2�� � � � �U�N� are the order statistics
of a random sample of N uniforms). Then replace each U�i� by the (unique)
sequence x = x�i� ∈ $m such that U�i� ∈ Jx. That these constructions are
equivalent follows from the definition of the intervals Jx.
Let x ∈ $ε′

m�pθ� ∩ 2. Since x ∈ 2, its last two entries are 01. Consequently,
the sequences x−� x+ ∈ $m immediately to the left and right of x in the lexi-
cographic order are the sequences obtained from x by replacing the last two
entries 01 by 00 and 10, respectively. These replacements change the relative
frequency of 1’s by at most 1/N which, for sufficiently large N, is less than
ε − ε′; hence, x−� x+ ∈ $ε

m. Thus, if i ∈ H′, the intervals NJx�i��NJx�i�− and
NJx�i�+ are all contained in H.
LetFN be the empirical distribution function of the sampleU1�U2� � � � �UN.

The construction of the sequences x�i� forces the inequalities

FN

(
tx�i�−

) ≤ i

N
≤ FN

(
tx�i� + λ�x�

)
�

Now let i ∈ H′. By the last paragraph, each of the intervals NJx�i��NJx�i�−
and NJx�i�+ is contained in H. By the proof of Proposition 3, if ε > 0 is
sufficiently small then each interval Jx such thatNJx ⊂H has length at least
�Jx� ≥ N�−1+δ�/2. Thus, if i ∈ H′, either i/N is in one of the three intervals
Jx�i��Jx�i�−�Jx�i�+ and hence i ∈H, or

max
t∈�0�1�

√
N�FN�t� − t� ≥Nδ/2�
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But the Kolmogorov–Smirnov theorem implies that

lim
N→∞

P

{
max
t∈�0�1�

√
N�FN�t� − t� ≥Nδ/2

}
= 0� ✷

Lemma 8. Define τ to be the number of triplets, that is, the number of
indices i ∈ �N� such that cards i� i + 1, and i + 2 all have the same n-orbit.
Similarly, define κ to be the number of quadruplets, that is, the number of
indices i ∈ �N� such that cards i� i + 1� i + 2 and i + 3 all have the same
n-orbit. For each ρ > 0, if p is sufficiently near 1

2 and if Cp −C is sufficiently
small, then as N→∞,

Eτ = O�Nρ�(26)

and

Eκ = O
(
N−1/2+ρ) = o�1��(27)

Proof. The (unordered) set of n-orbits has the same distribution as
a set of N independent, identically distributed Bernoulli-p sequences of
length n. There are

(
n
3

)
possibilities for triplets; for each, the probability that

their n-orbits coincide is �p3 + q3�n. Similarly, there are (N4 ) possibilities for
quadruplets; and for each possibility the probability that their n-orbits coin-
cide is �p4 + q4�n. Consequently,

Eτ =
(
N

3

)
�p3 + q3�n ≤N3 exp�ψ�3�C logN�

and

Eκ =
(
N

4

)
�p4 + q4�n ≤N4 exp�ψ�4�C logN��

As p→ 1
2 ,

ψ�3� −→ −2 log 2�
ψ�4� −→ −3 log 2�

and

Cp −→ 3/�2 log 2��
Consequently, if p − 1

2 is small and Cp − C is small, then relations (26) and
(27) will hold as N→∞. ✷

Lemma 9. Assume that p is near 1
2 . Then for every δ

′ ∈ �0� δ�,

lim
N→∞

P��� ∩H′� ≥N1+2δ′ exp�mH�pθ� + �n−m�ψ�2��� = 1�(28)

Note. Here H�pθ� denotes the Shannon entropy function evaluated at pθ.
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Proof. Recall that i ∈ � if and only if �i� i + 1� ∈ � , that is, if and only
if the cards i and i+ 1 have the same n-orbit. In addition, i ∈H′ if and only
if its m-orbit is an element of $ε′

m = $ε′
m�pθ�. Consequently, the cardinality of

� ∩H′ is bounded below by the number of distinct n-orbits x = x1x2 · · ·xn
such that (i) at least two cards have n-orbit x and (ii) x1x2 · · ·xm ∈ $ε′

m. Thus,
by the inclusion–exclusion formula,

�� ∩H′� ≥ ∑
x∈$ε′

m

�ξ2�x� − ξ3�x� − ξ4�x� − · · ·��

where ξk�x� is the number of k-sets of cards with the same n-orbit y and
y1y2 · · ·ym = x. Now∑

x∈$ε′
m

ξ3�x� ≤ τ and
∑
x∈$ε′

m

ξk�x� ≤ κ ∀ k ≥ 4�

where τ and κ are the number of triplets and quadruplets, respectively. By
Lemma 8, for each ρ > 0 there exists β = βρ > 0 such that if p − 1

2 < β and
Cp − C < β then Eτ < Nρ and Eκ ≤ N−�1/2�+ρ for all sufficiently large N.
Hence, by the Markov inequality,

lim
N→∞

P�τ > N2ρ� = 0 and lim
N→∞

P�κ ≥ 1� = 0�

We will prove below that Y =∑x∈$ε′
m
ξ2�x� is, with probability approaching 1

as N→∞, much larger than N2ρ. Therefore, to prove Lemma 9 it suffices to
prove that (28) holds with �� ∩H′� replaced by Y.
We shall estimate the expectation and variance of the random variable Y

by appealing to Corollary 4 of Section 2.4. First,

EY = E
∑
x∈$ε′

m

ξ2�x� =
(
N

2

)
�p2 + q2�n−m ∑

x∈$ε′
m

λ�x�2�

By Corollary 4, there exist constants γ = γ�ε′� satisfying γ → 0 as ε′ → 0
such that all sufficiently large N,∑

x∈$ε′
m

λ�x�2 ≥ exp�mH�pθ� − 2mI�p�pθ� −mγ��

hence, by (24), if ε′ > 0 is sufficiently small then

EY ≥ 1
2

(
1− 1

N

)
N1+2δ exp�mH�pθ� −mγ + �n−m�ψ�2��

≥N1+2δ′′ exp�mH�pθ� + �n−m�ψ�2��
(29)

for some 0 < δ′ < δ′′ < δ. Observe that, if p is near 1
2 and C is near Cp,

this is at least N�1/2�−ρ for arbitrarily small ρ > 0, and so is of larger order of
magnitude than Eτ.
The variance of Y is also easily estimated. Write

Y = ∑
x∈$ε′

m

ξ2�x� =
∑

i�j∈�N� i<j
Yij�
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where Yij is the indicator of the event that the n-orbits xi and xj coincide
and their common truncations fall in $ε′

m (here the n-orbits are taken to
be randomly ordered). The random variables Yij are identically distributed
Bernoullis. If i� j� i′� j′ are distinct indices then Yij and Yi′j′ are indepen-
dent; if i� i′� j are distinct indices, Yij and Yi′j are not independent, but∑

i<i′<j YijYi′j = τ, which has expectation O�Nρ�. Consequently,

var�Y� ≤ E
∑
x∈$ε′

m

ξ2�x� +O�Nρ��(30)

The result now follows from relations (29) and (30), by Chebyshev’s
inequality. ✷

Proof of Proposition 4. Recall that m is the (least) integer nearest the
solution m′ of (24). Recall that H consists of the nonoverlapping intervals
NJx, where x ∈ $ε

m. Since the length of Jx is λ�x�, Corollary 4 implies that,
for some γ = γ�ε� > 0 satisfying γ→ 0 as ε→ 0,

�H� =N
∑
x∈$ε

m

λ�x� ≤Nem
′H�pθ�−m′I�p�pθ�+m′γ =N−1/2+δem

′H�pθ�+m′γ�

Therefore, by Lemmas 7 and 9, it suffices to prove that for some α > 0 and
some 0 < δ′ < δ,

(
N1/2+δ exp�mH�pθ� +mγ�

)1/2+α ≤N1+2δ′ exp�mH�pθ� + �n−m�ψ�2���

Each side of this inequality may be expressed as N raised to a power, using
equations (16) and (24) relating n�m, andN. It suffices to show that the power
on the left side is less than the power on the right side. Since γ� δ and α may
be taken arbitrarily small, they may be set equal to zero before comparing the
powers. Thus, it suffices to prove that

1+ H�pθ�
I�p�pθ�

< 4+ 2 H�pθ�
I�p�pθ�

+ 2
(
2c− 1

I�p�pθ�
)
ψ�2��

Now recall, by (15), that H�pθ� = θI�p�pθ� +ψ�θ�; hence, the last inequality
reduces to

3+ θ+ ψ�θ�
I�p�pθ�

+ 2ψ�2�
(
2c− 1

I�p�pθ�
)
> 0�

But ψ�θ� = 2ψ�2�, so this is equivalent to

3+ θ+ 4ψ�2�C > 0�

Since 0 = 3+θ+4ψ�2�Cp, by definition of Cp, and since C < Cp and ψ�2� < 0,
the inequality 3+ θ+ 4ψ�2�C > 0 is in fact true. ✷
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4. A heuristic argument. In this section we give a heuristic argument
in favor of Conjecture 1. This argument is based on a rough analysis of the
Radon–Nikodym derivative dQ/dP, where P and Q are, respectively, the uni-
form distribution and the distribution of the deck after n repetitions of the
p-shuffle.
Recall (Lemma 3) that a version �� of the random permutation induced

by n repetitions of the p-shuffle may be constructed as follows: start with a
completely random (uniformly distributed) permutation �. Build a random
graph � from an �N × n� Bernoulli matrix X, independent of �, by putting
edges between neighboring indices i� i + 1 such that the ith and �i + 1�th
largest (lexicographically) rows ofX are the same. Then use the random graph
� to modify � by ordering assignments in � -cliques. Let Q and P be the
distributions of the random permutations �� and �, respectively.
Lemma 8 above implies that if p − 1/2 and C − Cp are small (here n =

�C logN�) then (i) the expected number of “triplets” (vertices i such that the
graph � contains edges connecting i to i+ 1 and i+ 1 to i+ 2) is of order no
more than Nρ, where ρ < 1/2; and (ii) the expected number of “quadruplets”
is o�1�. If � had neither triplets nor quadruplets, then for any permutation
π, the only information about which of the distributions P�Q might have
“generated” π in the values π�i� and π�i+ 1� would be in the value of ζi�π�,
the indicator of the event π�i� < π�i + 1�. Under P, this random variable is
Bernoulli-1/2, while under Q, it is Bernoulli-qi. Here qi = �1/2��1+ ρi�, and

ρi = ρ
N�n
i = P�Ki��

whereKi =K
N�n
i is the event that the orbits of cards cards i and i+1 coincide

up to time n. If the information in the random variables ζi were independent,
then the Radon–Nikodym derivative �dQ/dP� would be the product of the
likelihood ratios for the Bernoulli random variables ζi,

dQ

dP
�π� =

N−1∏
i=1
�1+ ρi�ζi�1− ρi�1−ζi �(31)

If n were sufficiently large that all of the coincidence probabilities ρi were
small, then (31) could be rewritten as

dQ

dP
�π� = 1+

N−1∑
i=1

ξiρi + · · · �(32)

where ξi = 2ζi − 1 and · · · indicates higher order terms. Now the random
variables ξ1� ξ3� � � � are independent under P, as are the random variables
ξ2� ξ4� � � � � and each ξi has mean zero and variance 1 under P. Consequently,
if n = �C logN� for some C > Cp, then Proposition 5 below would imply that,
under P, as N→∞,

dQ

dP

P−→ 1�(33)

which would, in turn, imply the truth of Conjecture 1.
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Proposition 5. Let n = �C logN�. Then

C > Cp $⇒ lim
N→∞

N∑
i=1

ρ2i = 0�(34)

C < Cp $⇒ lim
N→∞

N∑
i=1

ρ2i = ∞�(35)

We shall omit the proof of this result, since we have not been able to make
the rest of the argument rigorous. It seems likely to us that, although the
expression (31) for the Radon–Nikodym derivative dQ/dP is not exact, it is
nevertheless close enough to the true value that the remainder of the argu-
ment remains valid.
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