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WEIGHTED APPROXIMATIONS OF TAIL PROCESSES FOR
ß-MIXING RANDOM VARIABLES1

By Holger Drees

University of Cologne

While the extreme value statistics for i.i.d data is well developed, much
less is known about the asymptotic behavior of statistical procedures in the
presence of dependence. We establish convergence of tail empirical pro-
cesses to Gaussian limits for β-mixing stationary time series. As a conse-
quence, one obtains weighted approximations of the tail empirical quantile
function that is based on a random sequence with marginal distribution
belonging to the domain of attraction of an extreme value distribution.
Moreover, the asymptotic normality is concluded for a large class of esti-
mators of the extreme value index. These results are applied to stationary
solutions of a general stochastic difference equation.

1. Introduction. In many fields one must assess the potential risk that
an extremal event may lead to serious damages or losses. For example,
extremely high water levels may cause a dike to break and large negative
stock returns can result in high financial losses or even bankruptcy. If this
catastrophical event can be described by the occurrence of a large real obser-
vation, for that purpose one needs reliable estimators of the probability that
a given high threshold is exceeded.
To be more concrete, assume that the observations can be modelled by ran-

dom variables (r.v.’s)Xi, 1 ≤ i ≤ n, with common distribution function (d.f.) F.
If these r.v.’s may be assumed independent, then classical extreme value theory
provides the necessary tools for estimating the upper tail of F. For this, one
assumes that F belongs to the weak domain of attraction of some unknown
extreme value d.f. Gγ [in short: F ∈ D�Gγ�], that is,

�

(
a−1n

(
max
1≤i≤n

Xi − bn
))
−→ Gγ weakly(1.1)

for suitable normalizing constants an > 0 and bn ∈ � and

Gγ�x� �= exp�−�1+ γx�−1/γ�� 1+ γx > 0�

which is interpreted as exp�e−x� for γ = 0. It is well known that up to a
scale and location parameter these are the only possible nondegenerate lim-
iting d.f.’s under linear normalization. Note that, in case of i.i.d. data, (1.1) is

Received August 1999; revised April 2000.
1Supported in part by ONR Grant N00014-93-1-0043 and European Union TMR Grant ERB-

FMRX-CT 960095.
AMS 1991 subject classifications. Primary 60F17, 62M10; secondary 60G70, 62G20.
Key words and phrases. ARCH-process, dependent, extreme value index, Hill estimator,

invariance principle, statistical tail functional, stochastic difference equation, tail empirical
distribution function, tail empirical quantile function, time series, β-mixing.

1274



APPROXIMATIONS OF TAIL PROCESSES 1275

equivalent to

n�1−F�anx+ bn�� −→ − logGγ�x�� x ∈ ��

Under this assumption the so-called extreme value index γ largely deter-
mines the behavior of 1−F�x� as x tends to the right endpoint of the support
of F, and so the estimation of γ is the crucial step in the analysis of the upper
tail. Consequently, it has received a lot of attention since the seminal papers
by Hill (1975) and Pickands (1975). Starting from an approximation of the
tail empirical quantile function (q.f.), in foregoing papers [Drees (1998a,b)] we
developed a general theory for estimators of the extreme value index that can
be represented as a smooth functional of the tail empirical q.f.
However, often a certain dependency between the data can be observed,

so that the application of the aforementioned theory for i.i.d.-models is not
appropriate. For instance, returns on shares usually reveal a nonlinear depen-
dence structure, which often is modelled by (generalized) ARCH-processes
(see Section 4 for details). Further examples were discussed by Embrechts,
Klüppelberg and Mikosch (1997) and Reiss and Thomas (1997). While the
probabilistic extreme value theory for stationary time series is well estab-
lished [see Leadbetter, Lindgren and Rootzén (1983)], unfortunately much less
is known about the statistical side of the problem. In particular, by and large
the mathematical results about the estimation of the extreme value index
based on dependent r.v.’s are restricted to the popular Hill estimator in case
of heavy tails, that is, for γ > 0 [see Hsing (1991), Resnick and Stǎricǎ (1997,
1998) and Stǎricǎ (1999)]. It is the main goal of the present paper to estab-
lish approximations of tail processes that render it possible to carry over the
general theory of the estimation of γ from the i.i.d-case.
An important contribution to this goal was made by Rootzén (1995), who

proved a limit theorem for the tail process of β-mixing time series. Let �Ui�i∈�
be a sequence of uniformly distributed r.v.’s. Recall that it is called (strictly)
stationary if � ��Ui�i∈�� = � ��Un+i�i∈�� for all n ∈ �, and it is β-mixing (or
absolutely regular) if

β�k� �= sup
l∈�

E

(
sup

A∈�∞l+k+1

∣∣P�A��l
1� −P�A�

∣∣) −→ 0

as k → ∞, where �l
1 and �∞l+k+1 denote the σ-fields generated by �Ui�1≤i≤l

and �Ui�l+k+1≤i<∞, respectively. The class of β-mixing time series includes
recurrent Markov chains under mild conditions and, more specifically, ARMA-,
ARCH- and GARCH-models, where often the mixing coefficients β�k� vanish
with an exponential rate; see Doukhan [(1995), Section 2.4] for details.
The basic result of Rootzén (1995) gives conditions under which the tail

empirical process

en �=
(
�nvn�−1/2

n∑
i=1

(
1�Ui>1−vnx
 − vnx

))
x∈�0�1�
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pertaining to �Ui�1≤i<n converges weakly to a Gaussian process e as vn → 0
and nvn→∞.
However, since both processes en and e are close to 0 in the neighborhood

of 0, the convergence en → e bears little information about the most extreme
observations Ui > 1 − vnx for small x. In order to prove a counterpart of
the limit Theorem 2.1 of Drees (1998a) for the tail empirical q.f. in case of β-
mixing sequences, we need a stronger assertion about the asymptotic behavior
of en nearby the origin, which can be provided by weighted approximations of
the type

en
q
−→ e

q
weakly in D�0�1��(1.2)

where D�0�1� denotes the Skorohod space on the unit interval and q� �0�1� →
�0�∞� is a suitable weight function tending to 0 as x tends to 0. Throughout
the paper, we will restrict attention to functions q ∈ D�0�1� satisfying

inf
x∈�ϑ�1�

q�x� > 0 ∀ ϑ > 0 and xν� log x�µ = O�q�x�� as x ↓ 0(1.3)

for some ν ∈ �0�1/2� and µ ∈ �, although similar results can be proved if
xν� log x�µ is replaced by more general functions that are ν-varying at 0.
It turns out that the assumptions of Rootzén’s result are sufficient to

verify (1.2) if ν < 1/4. Furthermore, under somewhat stronger conditions
we obtain weighted approximations for all ν < 1/2 and for ν = 1/2 if µ >
1/4 (Theorems 2.2 and 2.3). In Section 3 we employ these results to derive
weighted approximations of the tail empirical q.f. of β-mixing stationary time
series whose marginal d.f. belongs to the weak domain of attraction of an
extreme value distribution. Then we conclude the asymptotic normality of a
general class of estimators of the extreme value index. In Section 4, these
results are applied to solutions of stochastic difference equations, including
ARCH(1) time series. All proofs are collected in Section 5.

2. Approximations of uniform tail empirical processes. We start
with a slight improvement of Rootzén’s (1995) limit theorem for uniform tail
empirical processes. For this, we assume that there exists a sequence ln→∞
and a function r� �0�1�2→ � such that

(C1)

lim
n→∞

β�ln�
ln

n+ ln�nvn�−1/2 log2�nvn� = 0�

(C2)

lim
n→∞

l

lnvn
Cov

(
ln∑
i=1

1�Ui>1−vnx
�
ln∑
i=1

1�Ui>1−vny


)
= r�x�y� ∀ 0 ≤ x�y ≤ 1�
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(C3) There exists a constant C such that

1
lnvn

Var

(
ln∑
i=1

1�1−vny<Ui≤1−vnx


)
≤ C�y− x� ∀ 0 ≤ x < y ≤ 1� n ∈ ��

(2.1)

Theorem 2.1. If �Ui�i∈� is a stationary, β-mixing sequence of uniformly
distributed random variables that meets the conditions (C1)–(C3), then

en −→ e weakly in D�0�1��(2.2)

where e is a centered continuous Gaussian process with covariance function r.

For the proof, the r.v.’s Ui, 1 ≤ i ≤ n, are divided into blocks of length ln.
Condition (C1), which is slightly weaker than the corresponding condition (5.1)
in Rootzén (1995), ensures on the one hand that ln is sufficiently large such
that blocks that are not adjacent are asymptotically independent, and on the
other hand that ln does not grow too fast such that the contribution of a single
block to the process en is negligible.
(C2) is a natural condition if one wants to prove convergence of en toward

a Gaussian limit. Observe that from (C2) one may conclude that the left-hand
side of (2.1) converges to r�y�y� − 2r�x�y� + r�x� x�, which can be bounded
by a multiple of y− x, provided r is Lipschitz continuous in both arguments.
By condition (C3) we require that this boundedness holds true uniformly for
0 ≤ x < y ≤ 1. Although this assumption seems rather technical, it cannot be
omitted without a substitute, for in Rootzén (1998) a β-mixing time series with
exponentially decreasing β-coefficients is given that satisfies the conditions
(C1) and (C2), but nevertheless the process en does not converge. On the other
hand, if the sequence �Ui�i∈� is ρ-mixing with mixing coefficients

ρ�k� �= sup
X∈L2��l

1��Y∈L2��∞i+k+l�

�Cov�X�Y��
�Var�X�Var�Y��1/2

(with L2�� � denoting the space of square integrable � , �-measurable func-
tions) satisfying

∑∞
i=1 ρ�2i� <∞ [e.g., ρ�k� ≤ const� log−2 k], then (C3) is auto-

matically fulfilled [Shao (1993), Lemma 2.3]. Moreover, it is satisfied if the
size of each cluster of exceedances over a sufficiently high threshold has finite
second moment. For details and further sufficient conditions for (C3) we refer
to Rootzén (1995).
It turns out that the conditions (C1)–(C3) are sufficient to prove a weighted

approximation for the uniform tail empirical process if the weight function
q�x� does not converge to 0 too fast as x tends to 0, or the sequence ln grows
sufficiently slowly.
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Theorem 2.2. Suppose that the weight function q satisfies (1.3) with ν <
1/4; or ν = 1/4 and µ > 1/4; or ν ≤ 1/2, µ > 1/4 if ν = 1/2 and sn→ 0, where

sn �=

l2n�nvn�−1 log4�nvn� log log�nvn�� if ν = µ = 1/4,
l2n�nvn�−1 log5−4µ�nvn�� if ν = 1/4� µ < 1/4,
l2n�nvn�−3�1−2ν�/�2�1−ν�� log−3µ/�1−ν��nvn�� if ν > 1/4.

(2.3)

Then, under the conditions of Theorem 2�1� convergence (1.2) holds true.

It is well known that in the case of independent r.v.’s Ui convergence (1.2)
holds if �x log log x�1/2 = o�q�x�� as x ↓ 0. In the present situation, for ν =
1/2, which again is the best achievable value, condition (2.3) reads as ln =
o�log3µ�nvn��; hence one may obtain an approximation of the tail empirical
process for a β-mixing sequence that is almost as accurate as in the i.i.d.-case,
provided the mixing coefficients converge to 0 sufficiently fast. If, for example,
�Ui�i∈� is geometrically β-mixing, that is, β�k� = O�ηk� for some η ∈ �0�1�,
and vn = n−b for some b ∈ �0�1�, then one may choose ln = �−2 log n/ log η�
and (1.2) holds for q�x� ≥ const� x1/2� log x�µ with µ > 1/3.
In Theorem 2.2 we impose a stronger condition on the sequence ln than in

Theorem 2.1 to obtain a weighted approximation of en with ν > 1/4. Alter-
natively, one may strengthen the boundedness condition (C3) by considering
fourth instead of second moments.

(C3∗) There exists a constant C such that

1
lnvn

E

(
ln∑
i=1

1�1−vny<Ui≤1−vnx


)4
≤ C�y− x� ∀ 0 ≤ x < y ≤ 1� n ∈ ��

Note that condition (C3∗) implies (C3) and, in addition, lnvn → 0, that is,
the average number of exceedances in each block vanishes asymptotically.
This, however, is a natural assumption in the blocks approach [see Rootzén
(1995), (2.5)]. Again in view of Shao [(1993), Lemma 2.3], (C3∗) is automatically
satisfied if the sequence of random variables is ρ-mixing with

∑∞
i=1 ρ

1/2�2i� <
∞, or if the fourth moment of the size of a cluster of exceedances is finite.

Theorem 2.3. Suppose �Ui�i∈� is a stationary, β-mixing sequence of uni-
formly distributed random variables satisfying (C1), (C2) and (C3∗). Then
convergence (1.2) with q according to (1.3) holds true for ν < 1/2 and for
ν = 1/2 and µ > 1/4.

Remark 1. (i) A close inspection of the proof of Theorems 2.1–2.3 shows
that the conditions (C3) and (C3∗) can be weakened in that the inequalities
are merely required for all 0 ≤ x < y ≤ 1 and n ∈ � such that y − x ≥ λn
for some sequence λn = o�min��nvn�−1/2� �nvn�−1/�2�1−ν�� logµ/�1−ν��nvn���. For,
in view of (5.11), these weaker conditions are sufficient to ensure the moment
inequalities (5.1) and (5.14), respectively.
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(ii) Utilizing a standard quantile transformation technique, one can derive
analogs to Theorems 2.1–2.3 for more general marginal d.f.’s F. However, in
general this requires a nonlinear normalization of the argument of the tail
empirical d.f., whereas a limit theorem for tail empirical processes of the type((

n�1−F�dn��
)−1/2 n∑

i=1

(
1�Xi>cnx+dn
 − �1−F�cnx+ dn��

))
x∈�0�F−1�1��

require that F belongs to the domain of attraction of an extreme value distri-
bution. For details we refer to Rootzén (1995).

3. Tail empirical quantile functions and statistical tail functionals.
Consider a stationary, β-mixing sequence �Xi�i∈� with marginal d.f. F ∈
D�Gγ�. In this section we investigate the asymptotic behavior of the pertaining
tail empirical quantile function (q.f.),

Qn�t� �= F−1n
(
1− kn

n
t
)
=Xn−�knt��n� t ∈ �0�1��

which is based on the kn + 1 largest order statistics max1≤i≤n Xi = Xn�n ≥
Xn−1�n ≥ · · · ≥Xn−kn�n. Here F

−1
n denotes the empirical q.f. and �kn�n∈� is an

intermediate sequence; that is, kn→∞ and kn/n→ 0.
These investigations are motivated by the fact that many estimators of the

extreme value index can be represented as a statistical tail functional, that is,
as T�Qn� for some functional T. Hence, under suitable regularity and smooth-
ness conditions on T, one can deduce limit theorems for such estimators from
approximations ofQn using the well-known δ-method. For i.i.d. sequences this
program was worked out in Drees (1998a,b).
Again we first examine the case of uniformly distributed r.v.’s Ui. More

precisely, we want to derive weighted approximations for

Vn�t� �=
n

kn
�1−Un−�knt��n�� t ∈ �0�1�

from Theorems 2.2 and 2.3. Here kn corresponds to nvn in Section 2, which is
the average number of observations taken into account by en. However, note
that we must consider en�t�, t ∈ �0�1+ ε� for some ε > 0 to ensure that with
probability tending to 1 at least kn + 1 observations are taken into account.
A key ingredient in the proof of weighted approximations for the uniform

tail empirical q.f. Vn are the following “in-probability linear bounds.” Analo-
gous results for the whole empirical q.f. are well known for i.i.d. r.v.’s [see, e.g.,
Shorack and Wellner (1986), inequality (10.4.1)] and were established by Puri
and Tran [(1980), Theorem 1.1] for ϕ-mixing sequences.

Lemma 3.1. Fix some ε > 0. Let �Ui�i∈� be a stationary, β-mixing sequence
of uniformly distributed r.v.’s such that the conditions (C1) and (C3) hold for
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all 0 ≤ x < y ≤ 1+ ε and vn = kn/n. Then

sup
t∈�1/�2kn��1�

Vn�t�
t
= OP�1��(3.1)

sup
t∈�0�1�

t

Vn�t�
= OP�1��(3.2)

Now we are ready to deduce a weighted approximation for Vn from
Theorem 2.2 or Theorem 2.3 using Vervaat’s (1972) lemma.

Corollary 3.1. Suppose that, for vn = kn/n and some fixed ε > 0� the
conditions of Theorem 2�2 or Theorem 2�3 are fulfilled where (C2), (C3) and
(C3∗), respectively, hold for all 0 ≤ x < y ≤ 1+ ε� Then

k
1/2
n �Vn − Id�

q
1�1/�2kn��1� −→

e

q
weakly in D�0�1��

(Here Id denotes the identity function �0�1� � t �→ t on the unit interval.)

Next we consider more general marginal d.f.’s F. Using quantile transfor-
mation techniques, from Corollary 3.1 one may deduce weighted approxima-
tions for the process(

n√
kn
f

(
F−1

(
1− kn

n
t

))(
Qn�t� −F−1

(
1− kn

n
t

)))
t∈�0�1�

(3.3)

if F possesses a sufficiently regular Lebesgue density f in the right tail. Com-
pare Drees and de Haan (1999), where this program is carried out for the case
of i.i.d. observations under very weak conditions on F−1. However, since the
normalizing factor in (3.3) depends on the tail of the density function, a dif-
ferent type of approximations for Qn suits better for applications in extreme
value statistics.
Recall that F ∈ D�Gγ� if and only if

R�λ� t� �= F−1�1− λt� −F−1�1− λ�
a�λ� −F−1γ �t� −→ 0(3.4)

as λ ↓ 0, where a� �0�1� → �0�∞� is a normalizing function and

F−1γ �t� �= �− logGγ�−1�t� =
t−γ − 1
γ

�

which is interpreted as − log t if γ = 0. In Drees (1998a), Lemma 2.1, it was
shown that this convergence even holds uniformly:

sup
t∈�0� t0�

tγ+η�R�λ� t�� −→ 0
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for all t0� η > 0. Hence to any fixed t0 > 1 there exists an intermediate
sequence kn such that

k1/2n sup
t∈�0� t0�

tγ+1

q�t� �R�kn/n� t�� −→ 0�(3.5)

provided q satisfies (1.3) for some ν ≤ 1/2.
In addition to (3.5), we need the following counterparts of the conditions

(C1)–(C3) and (C3∗): There exist a constant ε > 0 and a sequence �ln�n∈� such
that

(C̃1)

lim
n→∞

β�ln�
ln

n+ lnk−1/2n log2 kn = 0�

(C̃2)

lim
n→∞

n

lnkn
Cov

(
ln∑
i=1

1�Xi>F
−1�1−�kn/n�x�
�

ln∑
i=1

1�Xi>F
−1�1−�kn/n�y�


)
= r�x�y�

∀0 ≤ x�y ≤ 1+ ε�
(C̃3) For some constant C,

n

lnkn
Var

(
ln∑
i=1

1�F−1�1−�kn/n�y�<Xi≤F−1�1−�kn/n�x�


)
≤ C�y− x�

∀ 0 ≤ x < y ≤ 1+ ε� n ∈ ��

(C̃3∗) For some constant C,

n

lnkn
E

(
ln∑
i=1

1�F−1�1−�kn/n�y�<Xi≤F−1�1−�kn/n�x�


)4
≤ C�y− x�

∀ 0 ≤ x < y ≤ 1+ ε� n ∈ ��

Theorem 3.1. Suppose �Xi�i∈� is a stationary, β-mixing time series with
continuous marginal d�f� F ∈ D�Gγ� and let �kn�n∈� be an intermediate seq-
uence satisfying (3.5) for some t0 > 1� In addition, assume that either

(i) �C̃1�–�C̃3� hold and q fulfills the conditions of Theorem 2�2 for vn =
kn/n� or
(ii) �C̃1�� �C̃2� and �C̃3∗� hold and q satisfies (1.3) with ν < 1/2� or with
ν = 1/2 and µ > 1/4�

Then there exist versions of the tail empirical q�f� Qn and a centered Gaussian
process e with covariance function r such that

sup
t∈�0�1�

tγ+1

q�t�

∣∣∣∣k1/2n

(
Qn�t� −Dn

a�kn/n�
−F−1γ �t�

)
− t−�γ+1�e�t�

∣∣∣∣ −→ 0(3.6)
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in probability, where

Dn �=
{
F−1�1− kn/n�� if limt↓0 tγ+1/q�t� = 0,
Xn�n + a�kn/n�/γ� else.

Remark 2. Remark 1(i) applies analogously in the present situation. Fur-
thermore, one may drop the continuity assumption for F, if one replaces
1�F−1�1−kn/ny�<Xi≤F−1�1−kn/nx�
 in the conditions �C̃3� and �C̃3∗�, respectively, by
1�F−1�1−kn/ny�≤Xi≤F−1�1−kn/nx�
, provided the natural condition lnkn/n→ 0 holds.
To see this, we replace the definition of Ui in the proof of Theorem 3.1 by

Ui �= ŨiF�Xi− 0�+ �1− Ũi�F�Xi�, where Ũi are i.i.d. uniformly distributed
r.v.’s that are independent of �Xi�i∈�. Then the r.v.’s Ui are uniformly dis-
tributed [Moore and Spruill (1975), Lemma 3.2] and condition (C1) is obtained
from �C̃1� and Theorem 1.1.1 of Doukhan (1995). Moreover, it is easily seen
that{

1− kn
n
y < Ui ≤ 1− kn

n
x

}
⊂
{
F−1

(
1− kn

n
y

)
≤Xi ≤ F−1

(
1− kn

n
x

)}
�

so that the conditions (C3) and (C3∗), respectively, are obvious. Finally, (C2)
can be derived from �C̃2�, for the modified condition �C̃3� implies

n

lnkn
Var

(
ln∑
i=1

(
1�Ui>1−�kn/n�x
 − 1�Xi>F

−1�1−�kn/n�x�

))
−→ 0�

Since the representation Xi = F−1�Ui� still holds true in the present more
general situation, the proof can be completed in the same way as in the case
of a continuous marginal d.f.

The assertion of Theorem 3.1 can be rewritten as a weak convergence result
in a suitable normed space. Let

Dγ�q �=
{
z� �0�1� → �

∣∣ lim
t↓0
�z�t��tγ+1/q�t� = 0� �z�t�tγ+1/q�t��t∈�0�1� ∈ D�0�1�

}
be a function space equipped with the (semi)norm

�z�γ� q �= sup
t∈�0�1�

�z�t��tγ+1/q�t��

with the convention 0/0 �= 0. Because in general a constant function and
hence F−1γ need not belong to Dγ�q, we define

�F−1γ �t� �=
{
t−γ/γ� if γ �= 0,
− log t� if γ = 0

and �Dn �= Dn − a�kn/n�1�γ �=0
/γ. Furthermore, let eγ�t� �= t−�γ+1�e�t�, t ∈
�0�1�. Then (3.6) is equivalent to

k1/2n

(Qn − �Dn

a�kn/n�
− �F−1γ

)
−→ eγ weakly in Dγ�q�(3.7)
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Next we turn to statistical tail functionals T�Qn� used as estimators of the
extreme value index, where T� span�Dγ�q� 1� → � is a functional such that
T�Dγ�q

is ��Dγ�q������-measurable (with � denoting the respective Borel
σ-field). In view of (3.7), the following conditions ensure the asymptotic nor-
mality of the estimator:

(T1)

T�az+ b� = T�z� ∀a > 0� b ∈ �� z ∈ Dγ�q�

(T2)

T� �F−1γ � = γ�
(T3) T is Hadamard differentiable at �F−1γ tangentially to Cγ�q �= �z ∈ Dγ�q�

z��0�1� ∈ C�0�1�
 with derivative T′γ, which means

For all sequences λn ↓ 0 and Dγ�q ∈ zn→ z ∈ Cγ�q one has

T� �F−1γ + λnzn� −T� �F−1γ �
λn

−→ T′γ�z��(3.8)

where T′γ; Cγ�q → � is a continuous linear functional [see Gill (1989),
page 102].

The limit distribution of T�Qn� is more easily described in terms of the
following alternative representation of the derivative T′γ. According to the
Riesz representation theorem there exists a unique signed measure νT�γ on
[0, 1] satisfying ∫

�0�1�
t−�γ+1�q�t��νT�γ��dt� <∞(3.9)

such that

T′γ�z� =
∫
�0�1�

z�t�νT�γ�dt� ∀ z ∈ Cγ�q�

Corollary 3.2. If convergence (3.6) holds and T meets the conditions (T1)–
(T3), then

�
(
k1/2n �T�Qn� − γ�

) −→ � �0� σ2
T�γ� weakly

with σ2
T�γ �=

∫
�0�1�2�st�−γ+1r�s� t�ν2T�γ�ds� dt�.

The heuristic explanation for the asymptotic normality is given by the fol-
lowing calculations:

T�Qn� = T
(
Qn − �Dn

a�kn/n�

)
≈ T� �F−1γ + k−1/2n eγ� ≈ T�F−1γ � + k−1/2n T′γ�eγ�

= γ + k−1/2n

∫
eγ dνT�γ�
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where the integral is � �0� σ2
T�γ�-distributed. Likewise, one may prove con-

sistency of the statistical tail functional T�Qn� if one merely assumes the
continuity of T at �F−1γ instead of (T3). For details we refer to Drees (1998a).
Condition (T3) can be weakened in so far as one requires convergence (3.8)

only for sequence �F−1γ + λnzn ∈ �Dγ�q where �Dγ�q ⊂ Dγ�q is some subset such
that P�Qn ∈ �Dγ�q
 → 1 [cf. Drees (1998a), Remark (i) following Theorem
3.2]. Then conditions (T1)–(T3) are fulfilled by many well-known estimators
of the extreme value index, including the Pickands (1975) estimator and a cer-
tain class of generalized probability weighted moment estimators [see Drees
(1998a), Example 3.1]. Perhaps the most prominent example is the maximum
likelihood estimator γ̂�ML� in a generalized Pareto model, obtained as the first
component of a solution �γ� σ� of the likelihood equations

1
kn

kn∑
i=1

(
1− γ

σ
�Xn−i+1�n −Xn−kn�n�

)−1
= 1
γ + 1 �

1
kn

kn∑
i=1

log
(
1− γ

σ
�Xn−i+1�n −Xn−kn�n�

)
= γ

with γ > −1/2 [see Smith (1987) for further details]. In Drees [(1998a),
Example 4.1], it was shown that the functional pertaining to the maximum
likelihood estimator meets the conditions (T1)–(T3) with q�t� = tε for an arbi-
trary ε > 0 and measure

νML� γ�dt� =
�γ + 1�2

γ
�tγ − �2γ + 1�t2γ�dt+ �γ + 1�ε1�dt�(3.10)

pertaining to its Hadamard derivative at �F−1γ , where ε1 denotes the Dirac

measure concentrated at 1. Hence, under the conditions of Corollary 3.2, γ̂�ML�
n

is asymptotically normal with asymptotic variance σ2
ML� γ �=

∫
�0�1��st�−�γ+1�×

r�s� t�ν2ML� γ�ds�dt�.
On the other hand, some estimators of γ are merely scale invariant, but

not location invariant, that is, the pertaining functional satisfies

T�az� = T�z� ∀ a > 0� z ∈ span�Dγ�q�1�(T1∗)

instead of (T1); the most popular estimator of that type is the Hill estimator,

γ̂
�H�
n �= 1

kn

kn∑
i=1

log
Xn−i+1�n
Xn−kn�n

�

which is suitable only for γ > 0. Indeed, it was shown in Drees (1998b) that for
estimating γ ≤ 0, location invariant estimators clearly outperform statistical
tail functionals that merely fulfill (T1*). Therefore, here we restrict ourselves
to positive extreme value indices.
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For estimators that are not location invariant, an additional bias term
related to

6n �=
�Dn

a�kn/n�
= F−1�1− kn/n�

a�kn/n�
− 1
γ

has to be taken into account. For that reason, we need an extra condition on
kn describing the ratio between the asymptotic bias and standard deviation:

k1/2n 6n −→ λ ∈ �0�∞��(3.11)

Corollary 3.3. Suppose convergence (3.6) holds with γ > 0� the func-
tional T satisfies the conditions (T1*), (T2) and (T3), and the sequence �kn�n∈�
fulfills (3.11). Then

λ <∞ �⇒ �
(
k1/2n �T�Qn� − γ�

)
−→ � �λνT�γ�0�1�� σ2

T�γ� weakly�

λ = ∞ �⇒ 1
6n

�T�Qn� − γ� −→ νT�γ�0�1� in probability�

The proof can be copied from Drees (1998b), Theorem 3.1 [see also Drees
(1998c), Theorem 2.8]. Note that (3.9) guarantees that νT�γ[0, 1] is well defined.
As an example, we consider Hill’s estimator. The corresponding functional

TH�z� �=
∫ 1
0 log�z�t�/z�1��dt satisfies (T1*), (T2) and the weakened version of

(T3) with appertaining measure

νH�γ�dt� = γ�tγ dt− ε1�dt��
[Drees (1998b), Example 3.1; see Drees (1998c), Example 2.6, for a formu-
lation that comes closer to the present notation]. Thus, in case of λ < ∞,
Corollary 3.3 yields the asymptotic normality of γ̂�H�n , too.
It is worth mentioning that one may take more order statistics into account,

that is, choose a larger number kn, if a second order strengthening of the
condition (3.4) can be obtained for the underlying d.f. F ∈ D�Gγ�. Then in

general the limit distribution of k1/2n �T�Qn�−γ� has a nonvanishing bias even
for location invariant functionals. See Drees (1998a–c) for analogous calcula-
tions in case of i.i.d. data.
As we have seen, once the assumptions of Theorem 3.1 are checked,

Corollaries 3.2 and 3.3 immediately yield the limit distributions of many pop-
ular estimators for γ with virtually no expenditure, since the measure νT�γ
pertaining to these estimators are determined in the foregoing papers, Drees
(1990a–c). Moreover, there the classes of possible measures νT� ν that can occur
in the context of Corollaries 3.2 and 3.3, respectively, are characterized and for
a given smooth family �νγ�γ∈I, with I ⊂ � denoting an interval, a functional T
is constructed such that νT�γ = νγ for all γ ∈ I. Hence all possible limit distri-
butions of statistical tail functionals are known and for a given family of limit
distributions one may construct an estimator with this prescribed asymptotic
behavior. In the next section, the power of this approach is demonstrated by
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the example of times series that can be described by a stochastic difference
equation.
Finally, it is worth mentioning that, in view of (C2), one may estimate the

covariance function r of the Gaussian process e consistently by an empirical
covariance function based on a division of the whole sample in �1/ln� blocks
of length ln. This estimate can be used to construct a consistent estimator
of σ2

T�γ and thus of confidence intervals to a given asymptotic confidence
coefficient.

4. Solutions of stochastic difference equations. In financial time
series one often observes that the absolute values or the squares of the data
show a much more pronounced autocorrelation than the original observations.
Engle (1982) tried to capture this feature by modeling the data by an auto-
regressive conditional heteroskedastic (ARCH) time series. For example, an
ARCH(1) time series is a stationary solution �Yi�i∈� of the stochastic differ-
ence equation

Yi = �α0 + α1Y2
i−1�1/2Zi� i ∈ ��

where α0� α1 > 0 are real parameters and Zi� i ∈ �, are i.i.d. innovations with
EZi = 0 and VarZi = 1. More generally, we consider difference equations of
the type

Xi = AiXi−1 +Bi� i ∈ �(4.1)

where �Ai�Bi�� i ∈ �, are i.i.d. �0�∞�2-valued random vectors. Notice that
Xi = Y2

i satisfies (4.1) with Ai = α1Z2
i and Bi = α0Z2

i . A list of further appli-
cations of model (4.1) can be found in Vervaat (1979). For sake of simplicity,
throughout this section we assume that the distribution of �A1�B1� is abso-
lutely continuous, although this assumption can be weakened considerably
[see Stǎricǎ (1999) for details].
The tail behavior of a stationary solution of (4.1) was first studied by Kesten

(1973) under the following moment assumptions:

(S1) There exists κ > 0 such that

EAκ
1 = 1� E

(
Aκ

1 max�logA1�0�
)
<∞ and EBκ

1 ∈ �0�∞��
Then, according to Theorem 5 of Kesten (1973), there exists a distributionally
unique stationary solutionXi� i ∈ �, of (4.1) such that the d.f.F ofXi satisfied
1−F�x� ∼ cx−κ as x→∞ for some constant c > 0; in particular, F ∈ D�Gγ�
with γ = 1/κ.
This result was refined by Goldie (1989), who gave a characterization of a

constant ρ > 0 such that

1−F�x� = cx−1/γ(1+O�x−ρ/γ�)(4.2)
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as x→∞ under the additional moment assumptions
(S2) There exists ξ > 0 such that EAκ+ξ

1 <∞ and EBκ+ξ
1 <∞.

By a simple inversion it can be concluded thatF−1�1−t� = �t/c�−γ�1+O�tρ��
as t ↓ 0, which in turn implies (3.4) with a�λ� = γF−1�1 − λ�. Moreover, the
left-hand side of (3.5) is of the order k1/2n �kn/n�ρ and thus converges to 0 if

kn = o�n2ρ/�2ρ+1���(4.3)

Next we check the conditions (C̃1)–(C̃3). According to Doukhan (1995),
Corollary 2.4.1, the time series is geometrically β-mixing; that is, β�k� =
O�ηk� for some η ∈ �0�1�. Hence (C̃1) holds for

ln = �−2 log n/ logη�(4.4)

and

log2 n log4�log n� = o�kn��(4.5)

Lemma 4.1. If ln is given by (4.4) and kn = o�n/ln�� then the conditions
�̃C2� and �̃C3� hold with

r�x�y� = min�x�y� +
∞∑
j=1

(
x
∫ y/x
0

P

{
j∏
i=1

Ai > tγ

}
dt

+y
∫ x/y
0

P

{
j∏
i=1

Ai > tγ

}
dt

)
�

(4.6)

The proof of �̃C2� is essentially due to Stǎricǎ (1999), Lemma 3.2.
Since the marginal d.f. F of a nondegenerate stationary solution of (4.1)

is continuous [Vervaat (1979), Theorem 3.2], Theorem 3.1 applies. Here we
restrict ourselves to a particular weight function where the extra condition
sn→ 0 is not needed.

Corollary 4.1. If the conditions (S1), (S2) and (4.2) hold and kn satis-
fies (4.3) and (4.5), then there exist versions of Qn and e such that

sup
t∈�0�1�

tγ+3/4

1− log t

∣∣∣∣k1/2n

(
Qn�t�

γF−1�1− kn/n�
− �F−1γ �t�

)
− t−�γ+1�e�t�

∣∣∣∣ −→ 0

in probability.

Next, using Corollaries 3.2 and 3.3, we investigate the asymptotic behav-
ior of the aforementioned maximum likelihood estimator γ̂�ML�

n and the Hill
estimator γ̂�H�n for the extreme value index γ. Recall that generally the latter
only works for γ > 0, which holds true in the present situation, whereas the
maximum likelihood estimator is suitable in case of γ > −1/2 (and a modifi-
cation may be used for estimating arbitrary γ ∈ ��. Both estimators can be
represented as a statistical tail functional, but only γ̂�ML�

n is location invariant.
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In view of (3.10), Corollary 3.2 yields

� �k1/2n �γ̂�ML�
n − γ�� −→ � �0� σ2

ML� γ� weakly�

where straightforward calculations utilizing r�tx� ty� = tr�x�y� show that

σ2
ML� γ =

�γ + 1�4
γ2

∫ 1

0

∫ 1

0
�st�−1�1− �2γ + 1�sγ��1− �2γ + 1�tγ�r�s� t� ds dt

+ 2�γ + 1�
3

γ

∫ 1

0
s−1�1− �2γ + 1�sγ�r�s�1�ds+ �γ + 1�2r�1�1�

= �γ + 1�2r�1�1��
In case of the Hill estimator, first notice that a�λ� = γF−1�1 − λ� implies

6n = 0. Therefore, under the conditions of Corollary 4.1, Corollary 3.3 yields

�
(
k1/2n

(
γ̂
�H�
n − γ

))
−→ � �0� σ2

H�γ� weakly�

with

σ2
H�γ = γ2

(∫ 1

0

∫ 1

0
�st�−1r�s� t� ds dt

− 2
∫ 1

0
s−1r�s�1� ds+ r�1�1�

)
= γ2r�1�1��

This result was proved previously by Stǎricǎ (1999) under the additional
assumption kn = o�nγ/�γ+1��, which is very restrictive if γ is close to 0.
It is remarkable that, compared with the i.i.d. case, the asymptotic variance

is increased by the same factor r�1�1� > 1 for both estimators. This, however,
does not hold true for other estimators of γ, like, for example, the Pickands
estimator; for this and many other popular estimators of γ, the asymptotic
normality can be established in a similar way as an immediate consequence
of Corollaries 3.2 and 3.3.
The calculation of the covariance function r and the asymptotic variance

as well as applications to ARCH- and GARCH-processes were discussed by
Stǎricǎ (1999). There it was shown by the example of the foreign exchange
rate between Japanese yen and U.S. dollar that in applications to real finan-
cial time series one should expect a much higher asymptotic variance and
hence much wider confidence intervals than in the i.i.d. case. More precisely,
in that case an estimate of 9�32±0�46 for the factor r�1�1� was obtained. Con-
sequently, it is important not to use the formula for the asymptotic variance
derived from the classical extreme statistics for i.i.d. r.v.’s, which would delude
into assuming an estimation error much smaller than the actual one. For
GARCH (1,1) time series, an alternative approach leading to more precise
estimates of the extreme value index was introduced by Stǎricǎ (1999).
Here we restrict ourselves to mentioning that r can be estimated directly

using (4.6) if the distribution of the innovations Zi are known. Moreover, in a
semiparametric ARCH- or GARCH-model this distribution can be estimated
using kernel estimators (Drost and Klaassen (1997); see also Drost, Klaassen
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and Werker (1997)] and then, in a second step, one may calculate a plug-in
estimator of the covariance function as an alternative to the nonparametric
procedure suggested at the end of Section 3.

5. Proofs. In the sequelK andKi, i ∈ �, denote generic constants which
may vary from line to line and may depend on µ, ν and ε but not on n, x, δ,
ϑ or η.

Proof of Theorem 2.1. Denote by �Yn�j�x��x∈�0�1��1 ≤ j ≤ mn �= �n/
�2ln��, i.i.d. stochastic processes with the same distribution as ��nvn�−1/2×∑ln

i=1�1�Ui>1−vnx
 − vnx��x∈�0�1�. Employing condition (C1) and a basic result
by Eberlein (1984) about approximations of β-mixing sequences by i.i.d. seq-
uences, it was shown by Rootzén [(1995), Lemma 5.1] that for the proof of (2.2)
it suffices to verify the tightness of the process Sn �=

∑mn

j=1Yn�j.
For this, fix some sequence A �= An = o��nvn�−1/2) such that �nvn�−1 = o�A�

and 1/A ∈ �. Then, by (C3) and the proof of Lemma 5.4 of Rootzén (1995),
one has

E�Sn�iA� −Sn�jA��4 ≤K
(
l2n
nvn
�i− j�A+ �i− j�2A2

)
(5.1)

for all 0 ≤ i, j ≤ 1/A. Next apply Móricz’ (1982) theorem (with γ = 4, f�b�m� =
mA and ϕ�t�m� =K�l2n/�nvn� +mA�1/4) to obtain for all δ > 0,

E

(
max

j∈�i+1�����min��1+δ/A��1/A�

�Sn�iA� −Sn�jA��4

)

≤K�δ/A�A
(�log�δ/A�/ log 2�∑

k=0

( l2n
nvn
+ ��δ/A�2−k�A

)1/4)4

≤Kδ
(�log�δ/A�/ log 2�∑

k=0

(( l2n
nvn

)1/4
+ �δ2−k�1/4

))4
≤Kδ

(
l2n
nvn

log4�δ/A� + δ
)
�

(5.2)

Hence, in view of (C1), for all ε�η > 0 there exists a δ > 0 such that eventually

P

{
max

j∈�i+1�����min��i+δ/A��1/A�

�Sn�iA� −Sn�jA�� > ε

}

≤Kδ
(
l2n
nvn

log4�δ/A� + δ
)
ε−4 < ηδ

for all i ∈ �0� � � � �1/A−1
. Using �nvn�1/2A→ 0, one can conclude in a similar
way as in the proof of Lemma 5.6 of Rootzén (1995) that for all ε�η > 0 there
exists a δ > 0 such that eventually for all x ∈ �0�1�,

P

{
sup

y∈�x�min�x+δ�1��
�Sn�x� −Sn�y�� > ε

}
< ηδ

and thus the asserted tightness by Theorem 8.3 of Billingsley (1968). ✷
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Proof of Theorem 2.2. We take up the approach by Shao and Yu (1996).
Since en1�ϑ�1�/q→ e1�ϑ�1�/q by Theorem 2.1 and inf x∈�ϑ�1� q�x� > 0, it suf-

fices to prove that

lim
ϑ↓0

lim sup
n→∞

P

{
sup

x∈�0�ϑ�
�en�x�/q�x�� > ε

}
= 0�(5.3)

lim
ϑ↓0

P

{
sup

x∈�0�ϑ�
�e�x�/q�x�� > ε

}
= 0(5.4)

for all ε > 0. In the sequel, we assume w.l.o.g. that q�x� = xν� log x�µ for x ∈
�0�ϑ� and ϑ sufficiently small such that q is increasing and q/Id is decreasing
on �0�ϑ�.
It is readily seen that for the proof of (5.3) it suffices to verify that

lim
ϑ↓0

lim sup
n→∞

P
{
sup

x∈�0�ϑ�
�Sn�x�/q�x�� > ε

}
= 0(5.5)

(cf. proof of Theorem 2.1). For this, fix some (small) η > 0 and let

in �= min
{
i ∈ �

∣∣�nvn�1/2 ≤ η q

Id
�ϑe−�i+1��

}
�

Observe that for S̃n�x� �= Sn�x� + �nvn�−1/2mnlnvnx one has

sup
x∈�ϑe−�i+1��ϑe−i�

�Sn�x�� ≤ S̃n�ϑe−i� + �nvn�1/2
ϑ

2
e−i�

where by the monotonicity of q/Id and the definition of in,

�nvn�1/2ϑe−i ≤ ηϑe−i
q

Id
�ϑe−�i+1�� ≤ εq�ϑe−�i+1��

for i ≥ in and η ≤ ε/e. Therefore, we obtain by the Chebyshev inequality,

P

{
sup

x∈�0�ϑe−in �
�Sn�x�/q�x�� > ε

}

≤
∞∑
i=in

P
{
S̃n�ϑe−i� > εq�ϑe−�i+1��/2}

≤K
∞∑
i=in
�nvn�1/2

Id
q
�ϑe−�i+1��(5.6)

≤Kη
∞∑
i=in

e�in−1��1−ν�
∣∣∣∣ log�ϑe−�in+1��log�ϑe−�i+1��

∣∣∣∣µ

≤Kη
∞∑
j=0

e−j�1−ν�
(
1+ j

in + 1− logϑ
)−µ

≤Kη −→ 0

as η ↓ 0.
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Next let

Ai �= Ai�n�ϑ� ε �= εq�ϑe−�i+1���nvn�−1/2�(5.7)

Since Sn��j − 1�Ai� − Ai�nvn�1/2/2 ≤ Sn�x� ≤ Sn�jAi� + Ai�nvn�1/2/2 for all
x ∈ ��j− 1�Ai, jAi�, we may conclude in the same way as in the proof of (5.2),
using the Chebyshev inequality and Móricz’ theorem, that

P

{
sup

x∈�ϑe−in �ϑ�
�Sn�x�/q�x�� > ε

}

≤
in−1∑
i=0

P

{
max

�ϑe−�i+1�/Ai�≤j≤�ϑe−i/Ai�+1
�Sn�jAi��

+ Ai�nvn�1/2/2 > εq�ϑe−�i+1��
}

(5.8)

≤
in−1∑
i=0

P

{
max

�ϑe−�i+1�/Ai�≤j≤�ϑe−i/Ai�+1
�Sn�jAi�� > εq�ϑe−�i+1��/2

}

≤K
in−1∑
i=0

ϑe−i
(
l2n
nvn

log4��ϑe−i/Ai� + 2� +ϑe−i
)
q−4�ϑe−�i+1���

Moreover,

in=1∑
i=0
�ϑe−i�2q−4�ϑe−�i+1�� ≤K

∫ ∞
1
�ϑe−t�2−4ν� log�ϑe−t��−4µ dt(5.9)

≤K
∫ ϑ/e
0

u1−4ν� log u�−4µdu −→ 0

as ϑ ↓ 0 if ν < 1/2, or ν = 1/2 and µ = 1/4. In view of (5.6)–(5.9), for (5.5) it
remains to prove that for all sufficiently small η, ϑ > 0,

l2n
nvn

in−1∑
i=0

e−i log4��ϑe−i/Ai� + 2�q−4�ϑe−�i+1�� −→ 0(5.10)

as n→∞.
From the definition of in it is easily see that

e−in # �nvn�−1/�2�1−ν�� logµ/�1−ν��nvn�(5.11)

and in # log�nvn�. [Here, an # bn means an = O�bn� and bn = O�an�.]
Because of

log�ϑe−i/Ai� ∼ log
(
�nvn�1/2

Id
q

(
ϑe−�i+1�

))
∼ log

�Id/q��ϑe−�i+1��
�Id/q��ϑe−�in+1�� ∼ �1− ν��in − i��
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the left-hand side of (5.10) is of the order

l2n
nvn

in−1∑
i=0

e�4ν−1�i�in − i�4�i+ 1− logϑ�−4µ

= O
(
l2n
nvn

log4�nvn�
in−1∑
i=0

e�4ν−1�i�i+ 1− logϑ�−4µ
)
�

(5.12)

Thus, for ν < 1/4, and for ν = 1/4 and µ > 1/4, convergence (5.10) is immedi-
ate from (C1).
If ν = 1/4 and µ = 1/4 or µ > 1/4, then the sum on the right-hand side

of (5.12) is of the order log in and i
1−4µ
n , respectively, and (5.10) is a consequence

of sn→ 0.
Finally, for 1/4 < ν ≤ 1/2, the sum on the left-hand side of (5.12) can be

rewritten as

e�4ν−1�ini−4µn

in∑
j=1

e−�4ν−1�jj−4
(
1− j− 1+ logϑ

in

)−4µ

= O(e�4ν−1�ini−4µn

in∑
j=1

e−�4ν−1�jj4+4max�µ�0�
) = O(e�4ν−1�ini−4µn

)
= O(�nvn��4ν−1�/�2�1−ν�� log−3µ/�1−ν��nvn�)�

where in the second step the inequality inj − j�j − 1 + logϑ� ≥ in has been
used, which holds for j ∈ �1� in
 and hence for 1 ≤ j ≤ in. Now (5.10) can be
derived from (5.12) and sn→ 0.
To prove (5.4), first note that by (C2) and (C3),

E�e�y� − e�x��2 = r�y�y� − 2r�x�y� + r�x� x� ≤ C�y− x��
Hence Lemma 4.1.3 of Fernique (1975) yields for sufficiently small ϑ,

P

{
sup

x∈�0�ϑ�
�e�x�/q�x�� > ε

}

≤
∞∑
i=0

P

{
sup

x∈�ϑe−�i+1��ϑe−i�
�e�x�� > ε�ϑe−�i+1��ν� log�ϑe−�i+1���µ

}

≤K
∞∑
i=0

(
1−C�K1�ϑe−�i+1��ν−1/2� log�ϑe−�i+1���µ�

)
≤K

∞∑
i=0
�ϑe−�i+1��1/2−ν� log�ϑe−�i+1���−µ

× exp (−K1�ϑe−i��2ν−1�� log�ϑe−�i+1���2µ
)

≤Kϑ1/2−ν� logϑ�−µ
∞∑
i=0

e−�1/2−ν�i exp
(−K1i

2µ�ϑe−i�2ν−1)�
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where C denotes the standard normal d.f. Now (5.4) follows from the fact that
the last sum is bounded, provided ν < 1/2, or ν = 1/2 and µ > 0. ✷

Proof of Theorem 2.3. It suffices to verify that

lim
ϑ↓0

lim sup
n→∞

P

{
sup

x∈�ϑe−in �ϑ�
�Sn�x�/q�x�� > ε

}
= 0(5.13)

[cf. (5.8)], because the rest of the proof of Theorem 2.2 can be copied literally.
By condition (C3∗), E�Yn�1�y� − Yn�1�x��j ≤ Clnvn�nvn�−j/2�y − x� for all
0 ≤ x ≤ y ≤ 1 and j ∈ �2�4
. Hence, using Burkholder’s inequality we obtain

E�Sn�y� −Sn�x��4 ≤K�mnE�Yn�1�y� −Yn�1�x��4

+mn�mn − 1��E�Yn�1�y� −Yn�1�x��2�2�

≤K
(y− x
nvn

+ �y− x�2
)
�

Since, according to the definition of in and (5.11), Ai defined by (5.7) is of larger
order than �nvn�−1, in particular

E�Sn�jAi� −Sn�lAi��4 ≤K�l− j�2A2i �(5.14)

By the same arguments as used for proving (5.8) one may conclude that

P

{
sup

x∈�ϑe−in �ϑ�
�Sn�x�/q�x�� > ε

}
≤K

in−1∑
i=0
�ϑe−i�2q−4�ϑe−�i+1��

and thus (5.9) implies (5.13). ✷

Proof of Lemma 3.1. Denote by En the tail empirical d.f.,

En�x� �=
1
kn

n∑
i=1

1�Ui>1−�kn/n�x
�(5.15)

Check that

Vn�t� = inf�x � En�x� > t
 = E−1n �t+ 0��(5.16)

Hence (3.1) is equivalent to

lim
λ→∞

lim sup
n→∞

P
{

sup
t∈�1/�2kn��1�

E−1n �t�
t

> λ
}

= lim
λ→∞

lim sup
n→∞

P
{
En�λt� < t for some t ∈ �1/�2kn�� 1�

} = 0�

By the same arguments as in the proof of Theorem 2.1 [see Rootzén (1995),
proof of Lemma 5.1], it suffices to prove that

lim
λ→∞

lim sup
n→∞

P
{
Ẽn�λt� < t/2 for some t ∈ �1/�2kn��1�

} = 0�
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where Ẽn =
∑mn

j=1Znj andZn�j, 1 ≤ j ≤mn �= �n/�2ln��, are i.i.d. copies of the
process �k−1n

∑ln
i=1 1�Ui>1−xkn/n
�x>0, that is, �En�x��x∈�0�1+ε� =d �k−1/2n Sn�x� +

xmnln/n�x∈�0�1+ε� with Sn defined in the proof of Theorem 2.1.
Using the tightness of �Sn�x��x∈�0�1+ε�, which can be verified in the same

way as in the proof of Theorem 2.1, the Chebyshev inequality and (C3),
one obtains

P
{
Ẽn�λt� < t/2 for some t ∈ �1/�2kn��1�

}
≤ P�Ẽn�1+ ε� < 1/2

+P{Ẽn�λt� < t/2 for some t ∈ �1/�2kn�� �1+ ε�/λ�

}
≤ P

{
Sn�1+ ε� < k1/2n

(
1
2
− 1+ ε
2+ ε

)}

+P
{
Ẽn��1+ ε�e−�i+1��

1+ ε
2λ

e−i

for some 0 ≤ i ≤ in� λ �= �log�2�1+ ε�kn/λ��
}

=
in� λ∑
i=1

P

{
Sn��1+ ε�e−�i+1�� < k1/2n �1+ ε�

(
e−i

2λ
− e−�i+1�

2+ ε

)}
+ o�1�

≤
in� λ∑
i=0

mnC
ln
n
�1+ ε�e−�i+1�k−1n �1+ ε�−2

∣∣∣∣e−i2λ
− e−�i+1�

2+ ε

∣∣∣∣−2 + o�1�
≤ K

ein�λ

kn

∣∣∣∣1λ − 1
�2+ ε�e

∣∣∣∣−2 + o�1�
≤ K

λ

∣∣∣∣1λ − 1
�2+ ε�e

∣∣∣∣−2 + o�1�
→ 0 as λ→∞

and thus (3.1).
Likewise, for the proof of (3.2) it suffices to verify that

lim
λ→∞

lim sup
n→∞

P
{
Ẽn�t/λ� ≥ t/�2+ δ� for some t ∈ �0�1�

} = 0

for some δ > 0, which in turn is a consequence of

P
{
Ẽn�t/λ� ≥ t/�2+ δ� for some t ∈ �0�1�}

≤ P

{
Ẽn

(2+ δ
λkn

)
≥ 1
kn

}
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+P
{
Ẽn�e−i� ≥

λ

2+ δe
−�i+1�

for some 0 ≤ i ≤ in� λ �= �log�λkn/�2+ δ���
}

≤ mnln
2+ δ
λn

+
in� λ∑
i=0

P

{
Sn�e−i� ≥ k1/2n

(
λe−�i+1�

2+ δ −
e−i

2

)}

≤ 2+ δ
2λ
+

in� λ∑
i=0

C

2
e−ik−1n e2i

(
λ

�2+ δ�e −
1
2

)−2

≤ 2+ δ
2λ
+Kλ

(
λ

�2+ δ�e −
1
2

)−2
→ 0 as λ→∞� ✷

Proof of Corollary 3.1. According to Theorem 2.1 the assumptions
ensure that �en�x��x∈�0�1+ε� → �e�x��x∈�0�1+ε� weakly. Because of en = k1/2n �En−
Id� with En defined by (5.15), −e =d e and (5.16), an obvious modification of
Vervaat’s (1972) Theorem 1 leads to k1/2n �Vn − Id� → e weakly in D�0�1�. It
remains to prove that

lim
ϑ↓o

lim sup
n→∞

P

{
sup

t∈�1/�2kn��ϑ�
k1/2n

�Vn�t� − t�
q�t� > η

}
= 0

for all η > 0 (cf. proof of Theorem 2.2). For that purpose, we may assume
w.l.o.g. that q�t� = tν� log t�µ� t ∈ �0�ϑ� for sufficiently small ϑ > 0 so that q is
increasing and q/Id is decreasing.
According to Lemma 3.1, for fixed δ > 0 there exists λ > 0 such that

lim sup
n→∞

P

{
sup

t∈�1/�2kn��1�

�Vn�t� − t�
t

> λ

}
< δ�

Therefore, with tn �= sup�t ∈ �0�ϑ��λk1/2n t/q�t� ≤ η
 we have

lim sup
n→∞

P

{
sup

t∈�1/�2kn�� tn�
k1/2n

�Vn�t� − t�
q�t� > η

}
< δ�

Furthermore, (5.16) implies

P

{
sup

t∈�tn�ϑ�
k1/2n

Vn�t� − t
q�t� > η

}
= P

{
En�t+ ηq�t�k−1/2n � < t for some t ∈ �tn�ϑ�

}
= P

{
en�t+ ηq�t�k−1/2n � < −ηq�t� for some t ∈ �tn�ϑ�

}
�

(5.17)
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Observe that ηq�t�k−1/2n ≤ λt for all t ∈ �tn�ϑ� which implies

inf
t∈�tn�ϑ�

q�t�
q�t+ ηq�t�k−1/2n �

≥ inf
t∈�tn�ϑ�

q�t�
q��λ+ 1�t� ≥

1
2
�λ+ 1�−�ν+1�

for all sufficiently small ϑ > 0. Hence, the convergence of the right-hand side
of (5.17) to 0 as ϑ tends to 0 is an immediate consequence of (5.3).
Likewise one obtains

lim
ϑ↓0

lim sup
n→∞

P

{
sup

t∈�tn�ϑ�
−k1/2n

Vn�t� − t
q�t� > η

}
= 0

and thus the assertion. ✷

Proof of Theorem 3.1. Essentially we follow the lines of the proof of
Theorem 2.1 in Drees (1998a). Again we may assume that q�t� = tν� log t�µ on
some neighborhood of 0. Let τ �= 0 if tγ+1/q�t� → 0 as t ↓ 0 (i.e., if ν < γ + 1,
or ν = γ + 1 and µ > 0), and τ �= 1/2 else.
Since F is continuous, the r.v.’s Ui �= F�Xi� are uniformly distributed.

Moreover, Xi = F−1�Ui� and hence Qn = F−1�1 − Vnkn/n� almost surely.
Consequently,

sup
t∈�τ/kn�1�

tγ+1

q�t�k
1/2
n

∣∣∣∣Qn�t�−F−1�1−kn/n�
a�kn/n�

−F−1γ �Vn�t��
∣∣∣∣

≤ sup
t∈�0�Vn�1��

tγ+1

q�t�k
1/2
n �R�kn/n�t�� sup

t∈�τ/kn�1�

( t

Vn�t�
)γ+1q�Vn�t��

q�t� −→0

(5.18)

in probability, where in the last step (3.5) and Lemma 3.1 were utilized.
Next we check that the assumptions of Corollary 3.1 are satisfied.

Condition (C1) follows from �C̃1� and the fact that the mixing coefficients
β�k� for the sequence �Ui�i∈� are less than or equal to the coefficients per-
taining to �Xi�i∈� [see, e.g., Doukhan (1995), equality 1.1(2′)]. (C̃2), (C̃3) and
(C̃3∗), respectively, combined with the equivalence

Xi > F−1
(
1− kn

n
x

)
⇐⇒ Ui > 1− kn

n
x

imply the corresponding conditions for the sequence �Ui�i∈�. Hence, according
to Corollary 3.1, k1/2n �Vn − Id�/q1�1/�2kn��1� → e/q weakly in D�0�1�. By virtue
of Skorohod’s representation theorem, we may assume that the convergence
holds a.s. Thus, by the mean value theorem applied to t �→ t−γ, there exist
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ξt ∈ �0�1� such that

sup
t∈�1/�2kn��1�

tγ+1

q�t�k
1/2
n

∣∣∣F−1γ �Vn�t�� −F−1γ �t� − k−1/2n t−�γ+1�e�t�
∣∣∣

≤ sup
t∈�1/�2kn��1�

1
q�t�

∣∣∣(1+ ξt�Vn�t�/t− 1�
)−�γ+1�

k1/2n �Vn�t� − t� − e�t�
∣∣∣

≤ sup
t∈�1/�2kn��1�

k
1/2
n �Vn�t� − t�

q�t�
∣∣∣(1+ ξt�Vn�t�/t− 1�

)−�γ+1� − 1∣∣∣+ o�1��
(5.19)

Now recall that for all η > 0,

lim
ϑ↓0

lim sup
n→∞

P

{
sup

t∈�1/�2kn��ϑ�

k
1/2
n �Vn�t� − t�

q�t� > η

}
= 0

and for all ϑ ∈ �0�1�,

lim sup
n→∞

P

{
sup
t∈�ϑ�1�

∣∣∣(1+ ξt�Vn�t�/t− 1�
)−�γ+1� − 1∣∣∣ > η

}
= 0�

Together with the stochastic boundedness of k1/2n �Vn�t� − t�/q�t� and �1 +
ξt�Vn�t�/t − 1��−�γ+1� uniformly for t ∈ �1/�2kn��1�, this shows the conver-
gence of (5.19) to 0 in probability. If tγ+1/q�t� → 0 as t ↓ 0, then one even
gets convergence uniformly for t ∈ �0�1�, because Vn�t� = Vn�1/�2kn�� for
t ∈ �0�1/�2kn�� and

sup
t∈�0�1/�2kn��

tγ+1

q�t�k
1/2
n

∣∣∣F−1γ �t� −F−1γ �1/�2kn��
+ k−1/2n

(
t−�γ+1�e�t� − �2kn�γ+1e�1/�2kn��

)∣∣∣
= OP

(
sup

t∈�0�1/�2kn��

t

q�t�k
1/2
n + sup

t∈�0�1/�2kn��

�e�t��
q�t�

)
= oP�1��

A combination with (5.18) yields the assertion in case of tγ+1/q�t� → 0.
Otherwise we have γ < −1/2 and hence the convergence follows from

sup
t∈�1/�2kn��1�

tγ+1

q�t�k
1/2
n

∣∣∣∣Dn −F�1− kn/n�
a�kn/n�

∣∣∣∣
= sup

t∈�1/�2kn��1�

tγ+1

q�t�k
1/2
n

∣∣∣∣Qn�1/�2kn�� −F�1− kn/n�
a�kn/n�

+ 1
γ

∣∣∣∣
= sup

t∈�1/�2kn��1�

tγ+1

q�t�k
1/2
n

∣∣∣∣�2kn�γγ
+ k−1/2n �2kn�γ+1e�1/�2kn��

∣∣∣∣+ oP�1� = oP�1�
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and

sup
t∈�0�1/�2kn��

tγ+1

q�t�k
1/2
n

∣∣∣∣Qn�t� −Dn

a�kn/n�
−F−1γ �t� − k−1/2n t−�γ+1�e�t�

∣∣∣∣
≤ sup

t∈�0�1/�2kn��

k
1/2
n t

γq�t� +
�e�t��
q�t� = oP�1�� ✷

Proof of Lemma 4.1. According to Stǎricǎ [(1999), Lemma 3.2(e)] and
Rootzén (1995), (2.4) ⇐⇒ (2.6),

n

lnkn
Cov

( ln∑
i=1

1�Xi>F
−1�1−kn/ln�u
�

ln∑
i=1

1�Xi>F
−1�1−kn/n�v


)

−→ �max�u� v��−1/γ +
∞∑
j=1

(
v−1/γ

∫ ∞
u/v

P

{ j∏
i=1

Ai > t−1
}
γt−�1/γ+1� dt

+ u−1/γ
∫ ∞
v/u

P

{ j∏
i=1

Ai > t−1
}
γt−�1/γ+1� dt

)

for all u� v > 0. Since the left-hand side is a monotone function of u and v
for all n, the convergence holds locally uniformly. Hence, in view of (3.4) with
a�λ� = γF−1�1−λ�, we may replace F−1�1−kn/n�u by F−1�1−�kn/n�u−1/γ�.
A change of variables x = u−1/γ and y = v−1/γ leads to (C̃2).
For the proof of (C̃3), let

∏
i+1� j �=

∏j
k=i+1Ak and Yi+1� j �=

∑j
k=i+1

∏
k+1� j×

Bk. Then an iteration of the stochastic difference equation (4.1) yields Xj =
Yi+1� j+

∏
i+1� j Xi�1 ≤ i < j, where �Yi+1� j�

∏
i+1� j� and Xi are independent.

Next observe thatEAξ
1 < 1 for ξ ∈ �0� κ� [see, e.g., Stǎricǎ (1999), (2.8)]. Hence,

with In�x�y� �= �F−1�1− kn/ny��F−1�1− kn/nx��, one has

P�Xi ∈ In�x�y��Xj ∈ In�x�y�


≤ P

{
Xi ∈ In�x�y��Yi+1� j > F−1

(
1− kn

n
y

)/
2
}

+P
{
Xi ∈ In�x�y��

∏
i+1� jXi > F−1

(
1− kn

n
y

)/
2
}

≤ P{Xi ∈ In�x�y�
}
P

{
Xj > F−1

(
1− kn

n
y

)/
2
}
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+
∫
In�x�y�

P

{∏
i+1� ju > F−1

(
1− kn

n
y
)/

2
}
F�du�

≤ kn
n
�y− x�

(
1−F

(
F−1

(
1− kn

n
y
)/

2
))

+
∫
In�x�y�

E

(∏ξ
i+1� j

)(
F−1�1− �kn/n�y�

2u

)−ξ
F�du�

≤ kn
n
�y− x�21+1/γ kn

n
y+ �EAξ

1�j−i2ξ
kn
n

∫ y
x

(
F−1�1− �kn/n�y�
F−1�1− �kn/n�v�

)−ξ
dv�

where in the last step (4.2) and a change of variables were used. The Potter
bounds [Bingham, Goldie and Teugels (1987), Theorem 1.5.6] yield∫ y

x

(
F−1�1− �kn/n�y�
F−1�1− �kn/n�v�

)−ξ
dv ≤ 2

∫ y
x
�y/v�ξγ+τ dv

= 2y
1− ξγ − τ

(
1− �x/y�1−ξγ−τ

)
≤ 2
1− ξγ − τ �y− x�

for τ ∈ �0�1− ξγ�. Thus, for generic constants Ki,

E

(
ln∑
i=1

1�Xi∈In�x�y�


)2

=
ln∑
i=1

P
{
Xi ∈ In�x�y�

}
+ 2 ∑

1≤i<j≤ln
P
{
Xi ∈ In�x�y��Xj ∈ In�x�y�

}
≤ lnkn

n
�y− x� +K1

(
lnkn
n

)2
�y− x� +K2

lnkn
n

∞∑
j=1
�EAξ

1�j�y− x�

≤ K3
lnkn
n
�y− x��

and thus condition (C̃3). ✷
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