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ASYMPTOTIC ANALYSIS OF A KERNEL ESTIMATOR FOR
PARABOLIC SPDE’S WITH TIME-DEPENDENT COEFFICIENTS

By M. Huebner and S. Lototsky1

Michigan State University and Massachusetts Institute of Technology

In this paper we construct a kernel estimator of a time-varying coef-
ficient of a strongly elliptic partial differential operator in a stochastic
parabolic equation. The equation is assumed diagonalizable; that is, all the
operators have a common system of eigenfunctions. The mean-square con-
vergence of the estimator is established. The rate of convergence is deter-
mined both by the smoothness of the true coefficient and by the asymptotics
of the eigenvalues of the operators in the equation.

1. Introduction. Stochastic partial differential equations arise naturally
to describe spatially distributed populations [Dawson (1980)] or the growth of
interacting populations [De (1987)]. Other applications include oceanography
where tracer evolution may be described by a stochastic PDE [see Piterbarg
and Rozovskii (1996) or Piterbarg (1998)].

After a suitable model is formulated for a particular application, it is nec-
essary to estimate relevant model parameters. In models described by linear
stochastic partial differential equations (SPDE’s), such parameters are often
the coefficients of the corresponding partial differential operators. Estimation
problems for such SPDE’s are entirely different from traditional problems of
statistical inference when the unknown function is the coefficient of the “lead-
ing” differential operator. In this case all the information about the unknown
coefficient can be extracted from the observations of the solution on a finite
time interval with a fixed amplitude of the random perturbation.

One method to construct a computable estimator utilizes finite-dimensional
projections of the observation process, for example, the firstN (spatial) Fourier
coefficients. The dimension of the projection is used to describe the asymp-
totic properties of the estimate. The number of spatial modes is also a natu-
ral asymptotic parameter from the physical point of view, as pointed out by
Piterbarg (1998). In parametric models, when the coefficient is a real number,
this approach was used by Huebner and Rozovskii (1995), who constructed the
maximum likelihood estimate on the basis of the first N Fourier coefficients
of the process, and established the conditions for consistency and asymptotic
normality of the estimate in the limit N → ∞. Two special cases of these
results were discussed earlier by Huebner, Khasminskii and Rozovskii (1993).
Parametric models for infinite-dimensional systems have also been studied
by Piterbarg and Rozovskii (1997), who analyzed the asymptotic properties of
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the maximum likelihood estimator in the discrete time sampling case. Fur-
thermore, Lototsky and Rozovskii (1999) studied parameter estimation when
the operators in the SPDE’s do not commute. Mohapl (1997) constructed con-
sistent estimators of constant coefficients occurring in a hyperbolic SPDE with
observations on a grid as the number of time and number of space observations
become larger. Other inverse problems for SPDE’s in the small noise asymp-
totics such as the estimation of a source are discussed in Chow, Ibragimov and
Khasminskii (1999).

In this paper we construct a kernel-type estimator for a time-varying param-
eter in a stochastic parabolic equation. We study the optimal rate of conver-
gence of such estimators. Although the problem of nonparametric estimation
for ordinary stochastic differential equations has received a lot of attention
[see, e.g., Ibragimov and Khasminskii (1981) and Kutoyants (1984)], little
has been done concerning nonparametric estimation for infinite-dimensional
systems. For stochastic evolution systems Ibragimov and Khasminskii (1997)
studied asymptotic properties of kernel estimators of general functions in the
small noise asymptotics when the probability measures generated by the pro-
cesses corresponding to different functions are equivalent. Other results, for
example, by Aihara (1998) and Aihara and Sunahara (1988), are concerned
with the problem of estimating a spatially varying parameter in stochastic
diffusion equations when the observation process is finite dimensional.

For a stochastic ordinary differential equation, Kutoyants (1984) proved
mean-square convergence of a kernel-type estimator for the drift term. In this
paper we utilize the methods developed by Huebner and Rozovskii (1995) and
Kutoyants (1984) to construct an estimate of a coefficient that is a function of
time in a model described by a stochastic parabolic equation.

Suppose the process u�t� x� for t ∈ �0�T� and x ∈ G ⊂ �d is governed by
the following equation:

du�t� x� = (
A0 + θ0�t�A1

)
u�t� x�dt+ dW�t� x�� t ∈ �0�T�� x ∈ G�

u�0� x� = u0�x��
with zero boundary conditions, whereW�t� x� is a cylindrical Brownian motion
in L2��0�T� ×G� and A0 + θ0�t�A1 is a strongly elliptic differential operator
with the unknown coefficient θ0�t�. Suppose we observe finitely many Fourier
coefficients u1�t�� 
 
 
 � uN�t� for all t ∈ �0�T�. Let � be the set of admissible
functions θ0. We are interested in the asymptotic properties of the kernel esti-
mator of θ0�t� as the number N of the observed Fourier coefficients increases.
To simplify the analysis, it is assumed that the equation is diagonalizable; that
is, the operatorsA0 andA1 have a common system of eigenfunctions. If the ini-
tial condition u0 is not random, then the Fourier coefficients u1�t�� 
 
 
 � uN�t�
are independent Ornstein–Uhlenbeck processes, and the drift of each process
contains the unknown function θ0�t� and the eigenvalues of the operators
A0�A1.

In Kutoyants (1984), the trend coefficient in a diffusion process was esti-
mated from the N i.i.d. copies of the process. Even though the observations
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uk in our case are not identically distributed, we use a similar approach and
consider the estimate θ̂N of θ0 as follows:

θ̂N�t� =
∫ T

0
RhN

�s− t�dXN�s��

where R is a kernel function, RhN
�s� = R�s/hN�/hN with hN → 0� N → ∞,

andXN is a certain process constructed from the observations u1� 
 
 
 � uN. We
prove the mean-square convergence of the type

lim
N→∞

sup
θ0∈�

sup
t∈�t1� t2�

NγE�θ̂N�t� − θ0�t��2 < ∞�

and explicitly compute the rate γ > 0 which is determined by the parameter
class � and the orders of the operators A0�A1.

The paper is organized as follows. In Section 2 we introduce the mathemat-
ical model and the basic notation. The main results on the asymptotic prop-
erties of the kernel-type estimator, including convergence rates, are proven in
Section 3. An example follows in Section 4.

2. The model. In this section we introduce the basic notation and ass-
umptions about the model. It is important to note that in estimation problems
where the observations are generated by finite-dimensional processes it is
assumed that either the noise intensity decreases or the time interval gets
larger. For our model both the noise intensity and the time interval stay fixed.
The notation xN ∼ yN used in the paper means that limN→∞ xN/yN = c
where c �= 0�∞.

Let ���� � ��t�0≤t≤T�P� be a stochastic basis with the usual assumptions
[see Jacod and Shiryayev (1987)] and letG be either a smooth bounded domain
in �d or a smooth d-dimensional compact manifold (without boundary). We
denote by A0 and A1 partial differential operators on G with real coefficients.
If G is a domain, then the operators are supplemented with zero boundary
conditions. We assume that

Aiu�x� =
∑

�α�≤mi

aαi �x�u�α��x�� aαi ∈ C∞
b �G�� i = 0�1�(2.1)

where α = �α1� 
 
 
 � αd�, αi = 0�1� 
 
 
 � �α� = ∑d
i=1 αi,

u�α��x� = ∂�α�u�x�
∂x

α1
1 · · · ∂xαdd

�

and the functions aαi �x� are known.
The observation process is governed by the following equation:

du�t� x�= (
A0 + θ0�t�A1

)
u�t� x�dt+ dW�t� x��

u�0� x�=u0�x��
(2.2)

where θ0 = θ0�t� is a bounded measurable function on �0�T� and W = W�t� x�
is a cylindrical Brownian motion, that is, a distribution-valued process so that,
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for every ϕ ∈ C∞
0 �G� with �ϕ�L2�G� = 1, �W�ϕ��t� is a standard Wiener process,

and for all ϕ1� ϕ2 ∈ C∞
0 �G�, E�W�ϕ1��t��W�ϕ2��s� = min�t� s� · �ϕ1� ϕ2�L2�G�

[see Walsh (1984) for more details].
A predictable process u with values in the set of distributions on C∞

0 �G� is
called a solution of (2.2) if, for every ϕ ∈ C∞

0 �G�, the equality

�u� ϕ��t� = �u0� ϕ� +
∫ t

0
�A∗

0ϕ� u��s�ds

+
∫ t

0
θ0�s��A∗

1ϕ� u��s�ds+ �W�ϕ��t�

holds with probability 1 for all t ∈ �0�T� at once, where A∗
i is the formal

adjoint of Ai, that is, an operator so that

�Aiφ1� φ2�L2�G� = �A∗
iφ2� φ1�L2�G� for all φ1� φ2 ∈ C∞

0 �G�

The following assumptions will be in force throughout the paper:

(H1) There is a complete orthonormal system �ϕk�k≥1 in L2�G� so that

A0ϕk = κkϕk� A1ϕk = νkϕk


(H2) The eigenvalues νk and κk satisfy �νk� ∼ km1/d and, uniformly in t ∈
�0�T�, µk�t� �= −�κk + θ0�t�νk� ∼ k2m/d, 2m = max�m0� m1�� which
means that

αk ≤ −�κk + θ0�t�νk� ≤ βk

for all 0 ≤ t ≤ T and some αk ∼ βk ∼ k2m/d. Recall that m0 and m1 are
the orders of the operators A0 and A1.

Assumptions (H1) and (H2) hold inmany physicalmodels [see, e.g., Piterbarg
and Rozovskii (1996)]. A typical situation is when the operators A0 and A1
commute and either A0 or A1 is uniformly elliptic and formally self-adjoint.
For the sake of completeness we included in the Appendix a precise statement
about the eigenvalues and eigenfunctions of elliptic operators. More details
can be found in Safarov and Vassiliev (1997).

To state the result about existence and uniqueness of the solution of (2.2),
we need some additional constructions. For f ∈ C∞

0 �G� and s ∈ � define

�f�2s =
∑
k≥1

k2s/d��f�ϕk�L2�G��2�

and then define the space Hs�G� as the completion of C∞
0 �G� with respect to

the norm � · �s. There is a one-to-one correspondence between the elements
v ∈ Hs�G� and sequences �vk�k≥1 so that

�v�2s =
∑
k≥1

k2s/d�vk�2 < ∞�

we call �vk� the (spatial) Fourier coefficients of v. The Fourier coefficients of the
cylindrical Brownian motion W are �wk�k≥1, independent standard Brownian
motions, and therefore W ∈ L2��× �0�T��H−s�G�� for every s > d/2.
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Proposition 2.1. Under assumptions (H1) and (H2), if u0 ∈ L2���H−s×
�G�� for some s > d/2, then there is a unique solution of �2
2� that belongs
to the space L2��× �0�T��Hm−s�G�� ∩L2���C��0�T��H−s�G���� the solution
satisfies

E sup
0≤t≤T

�u�2−s�t� +E
∫ T

0
�u�2m−s�t�dt

≤ K�d�m� s�T� θ0�
(
E�u0�2−s +T

)



Proof. This follows from Theorem 3.1.4 in Rozovskii (1990). ✷

Remark 2.2. (i) The process W in (2.2) can have an invertible correlation
operator B as long as the eigenfunctions of B are also ϕk. We can then reduce
the equation to the standard form with cylindrical Brownian motion by replac-
ing the initial condition u0 with B−1u0 and the operators Ai, i = 0�1, with
B−1AiB.

(ii) In principle, we can consider more general models, for example, equa-
tions with other boundary conditions or other types of operators. All we need
is that the operators in the equation have the properties (H1) and (H2).

3. Main result. If u = u�t� x� is a solution of (2.2) with the operators
A0�A1 satisfying (H1) and �ϕk�k≥1 is the common system of eigenfunction for
A0�A1, then uk�t� = �u�ϕk��t� is a solution of

duk�t�=−µk�t�uk�t�dt+ dwk�t��
uk�0�=u0k�

(3.1)

where µk�t� = −�κk + θ0�t�νk� and κk� νk are the eigenvalues of A0�A1. The
objective is to construct a kernel estimate of θ0�t� for every t ∈ �0�T� on the
basis of uk�t�, t ∈ �0�T�, k = 1� 
 
 
 �N.

Recall that the function R = R�t�, t ∈ �, is called a compactly supported
kernel of order K ≥ 1 if R has the following properties:

1. R�t� = 0 for large �t�,
2.

∫
�R�t�dt = 1,

3.
∫
� t

jR�t�dt = 0 for j = 1� 
 
 
 �K.

For example, R�t� = 3�3− 5t2�/8I� �t� ≤ 1, is a compactly supported kernel of
order 3. More examples and a general procedure for constructing such kernels
are presented in Devroye (1987) and Müller (1984). As usual, a scaled kernel
R�t/hN�/hN will be used with some bandwidth hN so that 0 < hN → 0,
N → ∞. The exact asymptotics of hN will be specified later.

Formally, the estimate of θ0 at point t0 is constructed as a weighted sum of
the integrals

1
hN

∫ T

0
R

(
t− t0
hN

)
duk�t� − κkuk�t�dt

uk�t�
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However, this expression must be modified, since this integral may not be
defined due to the vanishing Fourier coefficients uk�t�. Let �vN� N ≥ 1� be
a sequence of positive real numbers so that vN ↓ 0 as N → ∞. The random
processes Uk�N = Uk�N�t�, k = 1� 
 
 
 �N, t ∈ �0�T�� are defined by

Uk�N�t� =
{
1/uk�t�� �uk�t�� > vN�
1/vN� �uk�t�� ≤ vN.

To formulate the main result, we need the following weight sequence:

Fν�N =
N∑
k=1

νk�

where νk are the eigenvalues of A1.
For every t ∈ �0�T�, we define the estimate θ̂N�t� of θ0�t� as follows:

θ̂N�t� = 1
hNFν�N

N∑
k=1

∫ T

0
R

(
s− t

hN

)
Uk�N�s��duk�s� − κkuk�s�ds�
(3.2)

It is clear that a consistent estimate of θ0�t� at fixed t is possible only if the
function θ0 is sufficiently smooth. Therefore we define the class of functions
under consideration as follows.

Definition 3.1. For a positive real number β represented as β = K + α,
where K ≥ 0 is an integer and α ∈ �0�1�, denote by �

β
L the set of K times

continuously differentiable functions on �0�T� with the following properties:

(P1) For all θ ∈ �
β
L, �θ�K��t� − θ�K��s�� ≤ L�t− s�α, t� s ∈ �0�T�.

(P2) There existC1�C2�N0 > 0 so that, with µk�t� = −�κk+νkθ�t��,C1k
2m/d ≤

µk�t� ≤ C2k
2m/d for all k > N0, all t ∈ �0�T�, and all θ ∈ �

β
L.

The second condition ensures that (2.2) is solvable uniformly for θ0 ∈ �
β
L.

Note that the value of K in the representation β = K+ α is the same as the
order of the kernel. The main result of this paper follows.

Theorem 3.1. In addition to (H1) and (H2), let the following conditions
be fulfilled:

(A1) The initial condition u0 is deterministic and belongs to H−s�G� for some
s > d/2�

(A2) The orders of the operators A0 and A1 are such that q �= 2�m1 − m�/
d > −1�

(A3) The eigenvalues νk of A1 are such that �Fν�N� ∼ N1+m1/d�
(A4) The function θ0 belongs to �

β
L with β = K + α, and R is a bounded,

compactly supported kernel of order K�
(A5) hN ∼ N−�q+1�/�4β+1�� vN ∼ h

2β
NN−m/d.
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Then, for every 0 < t1 < t2 < T�

lim
N→∞

sup
θ0∈�β

L

sup
t∈�t1� t2�

N2�q+1�β/�4β+1�E�θ̂N�t� − θ0�t��2 < ∞


Remark 3.2. (i) From Huebner and Rozovskii (1995) it is known that the
condition q ≥ −1 [cf. assumption (A2)] is necessary to have a consistent esti-
mate of θ0 in our model even if θ0 is a constant. However, unlike in the constant
parameter case, a consistent estimate of the type (3.2) is not possible in the
critical case q = −1 as can be seen by analyzing the following proof.

(ii) The rate of growth of Fν�N in (A3) is an assumption about the asymp-
totics of the eigenvalues of A1. For example, if A1 is a self-adjoint elliptic
operator of order m1, then νk ∼ −km1/d and (A3) holds.

(iii) Note that the rate of convergence is determined both by the assumed
smoothness of the function θ and by the order of the kernel. An analysis of the
proof shows that if a lower order kernel is used with the order K1 < K, then
the rate of convergence will be determined by β = K1+1 instead of β = K+α.
In particular, if the coefficient is known to be infinitely differentiable, then the
rate of convergence is determined by the order of the kernel used.

Proof of Theorem 3.1. In the following,C denotes a positive real number
depending on d, t1, t2, T, the operatorsA0 andA1, the kernel R and the space
�
β
L. In particular, C does not depend on the time variable t ∈ �t1� t2� or on a

function θ0 ∈ �
β
L. The value of C can be different in different places.

Without loss of generality, assume that R is supported in �−1�1� and N is
so large that t1/hN > 2, �T − t2�/hN > 1. By (H1), we can also assume that
µk�t� > Ck2m/d for all k ≥ 1.

We split up the difference θ̂N�t� − θ0�t� into three parts θ̂N�t� − θ0�t� =
J1 +J2 +J3� which are then estimated seperately. Here

J1 = 1
hNFν�N

N∑
k−1

∫ T

0
νkR

(
s− t

hN

)(
θ0�s� − θ0�t�

)
ds�

J2 = 1
hNFν�N

N∑
k=1

∫ T

0
R

(
s− t

hN

)
Uk�N�s�dwk�s��

J3 = 1
hNFν�N

N∑
k=1

∫ T

0
νkR

(
s− t

hN

)
θ0�s�I��uk�s�� ≤ vN�

(
uk�s�
vN

− 1
)
ds


Since R has compact support and integrates to 1, we have, for every t ∈
�t1� t2� ⊂ �0�T� and all sufficiently large N,

J1 =
∫ �T−t�/hN

−t/hN
R�s�(θ0�t+ hNs� − θ0�t�

)
ds
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By the Taylor formula,

θ0�t+ τ� = θ0�t� +
K−1∑
m=1

τm

m!
θ
�m�
0 �t� + τK

K!
θ
�K�
0 �t+ γτ�

= θ0�t� +
K∑

m=1

τm

m!
θ
�m�
0 �t�

+ τK

K!

(
θ
�K�
0 �t+ γτ� − θ

�K�
0 �t�

)
� γ = γ�τ� ∈ �0�1�


Using a property of the kernel,

J1 =
∫ �T−t�/hN

−t/hN
R�s�hKN

sK

K!

(
θ
�K�
0 �t+ γhNs� − θ

�K�
0 �t�

)
ds


Property (P1) of the function class assures that �θ�K�
0 �t+γτ�−θ�K�

0 �t�� ≤ Lα�τ�α

This implies

�J1� ≤ Ch
β
N

∫ 1

−1
�s�β�R�s��ds ≤ Ch

β
N


Therefore,

�J1�2 ≤ Ch
2β
N 


The Gaussian random variable uk�t� is given by

uk�t� = u0k exp
(
−
∫ t

0
µk�s�ds

)
+

∫ t

0
exp

(
−
∫ t

s
µk�τ�dτ

)
dwk�s��

with mean

Mk�t� = u0k exp
(
−
∫ t

0
µk�s�ds

)

and variance

D2
k�t� =

∫ t

0
exp

(
−2

∫ t

s
µk�τ�dτ

)
ds


By property (P2),

Dk�t� ≥ Ck−m/d�1− e−Ct�


Note that

P
(
�uk�t�� ≤ vN

)
≤ vN
Dk�t�

and EU2
k�N�t� ≤ 2

vNDk�t�
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Indeed,

P��uk�t�� ≤ vN� = 1√
2πDk�t�

∫ vN

−vN
exp

(
−�x−Mk�t��2

2Dk�t�2
)
dx

≤ 2vN√
2πDk�t�

≤ vN
Dk�t�

�

EU2
k�N�t� = P��uk�t�� ≤ vN�

v2N

+ 1√
2πDk�t�

∫
�x�>vN

exp
(
−�x−Mk�t��2

2D2
k

)
dx

x2
�

1√
2πDk�t�

∫
�x�>vN

exp
(
−�x−Mk�t��2

2D2
k

)
dx

x2

≤ 2√
2πDk�t�

∫ +∞

vN

dx

x2
≤ 1
vNDk�t�




Now we estimate J2:

E�J2�2 = 1

h2
NF

2
ν�N

N∑
k=1

∫ T

0
R2

(
s− t

hN

)
EU2

k�N�s�ds

≤ C

h2
NF

2
ν�NvN

N∑
k=1

∫ T

0
R2

(
s− t

hN

)
ds

Dk�s�

≤ CN�m−2m1�/d−1

hNvN

∫ �T−t�/hN

−t/hN

R2�s�
1− e−C�t+shN� ds

≤ CN�m−2m1�/d−1

hNvN

∫ 1

−1
R2�s�

1− e−Ct1/2
ds ≤ CN�m−2m1�/d−1

hNvN



To estimate J3, we use an inequality for independent square integrable ran-
dom variables ξk:

E

( N∑
k=1

ξk

)2

≤ 2
N∑
k=1

var�ξk� +
( N∑
k=1

Eξk

)2




Then

E�J3�2 ≤ E

(
C

hNFν�N

N∑
k=1

∫ T

0
νkR

(
s− t

hN

)
I
(�uk�s�� ≤ vN

)
ds

)2

≤
(

C

hNFν�N

N∑
k=1

∫ T

0
νkR

(
s− t

hN

)
P
(�uk�s�� ≤ vN

)
ds

)2

+ C

F2
ν�N

N∑
k=1

E

(
1
hN

∫ T

0
νkR

(
s− t

hN

)
I
(�uk�s�� ≤ vN

)
ds

)2
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The first term on the right-hand side is bounded by
(

CvN
hNFν�N

N∑
k=1

∫ T

0
νkR

(
s− t

hN

)
ds

Dk�s�
)2

≤ Cv2NN
2m/d


The second term can be rewritten as

C

F2
ν�N

N∑
k=1

1

h2
N

∫ T

0

∫ T

0
ν2kR

(
s1 − t

hN

)
R

(
s2 − t

hN

)

×E
[
I
(�uk�s1�� ≤ vN

)
I
(�uk�s2�� ≤ vN

)]
ds1 ds2


(3.3)

Using E�I��uk�s1�� ≤ vN�I��uk�s2�� ≤ vN�� ≤ E�I��uk�s1�� ≤ vN�� ≤ C/
�vNDk�s1�� and repeating the arguments used to estimate E�J2�2, the
expression in (3.3) can be bounded by CvNNm/d−1. As a result,

E�θ̂N�t� − θ0�t��2 ≤ C ·
(
h
2β
N + N�m−2m1�/d−1

hNvN
+ vNN

m/d�vNNm/d + 1/N�
)



If hN ∼ N−�q+1�/�4β+1� and vNN
m/d ∼ h

2β
N � then E�θ̂N�t� − θ0�t��2 ≤

CN−2β�q+1�/�4β+1�� which completes the proof. ✷

4. Example. In this section we give an example to illustrate the assump-
tions of the main theorem. Suppose that u = u�t� x�� 0 < t < 1, 0 < x < 1, is
a solution of

du�t� x� = �θ0�t�=u�t� x� − u�t� x��dt+ dw�t� x��
u�0� x� = 0�

u�t� 0� = u�t� 1� = 0�

where θ0�t� is a smooth (infinitely differentiable) function so that assumptions
(H1) and (H2) hold. For example, θ0�t� = 2+sin t or θ0�t� = 3−2 cos�2t�. Using
the notation of Section 2, we have G = �0�1�, d = 1, A0 = −I (I is the identity
operator), A1 = = (the Laplace operator). Note that m0 = 0�m1 = 2m = 2 and
so q = 2�m1 − m�/d = 2. The eigenfunctions ϕk�x� = √

2 sin�πkx�, k ≥ 1,
have corresponding eigenvalues κk = −1, νk = −π2k2. The solution can be
written as

u�t� x� = ∑
k≥1

uk�t�ϕk�x��

where uk�t� satisfies
duk�t� = −�1+ θ0�t�π2k2�uk�t�dt+ dwk�t�� uk�0� = 0


The series for the solution converges in L2

(
�× �0�1��L2��0�1��

)
.

Choose R�t� = 3�3− 5t2�/8I� �t� ≤ 1, a compactly supported kernel of order
K = 3. By assumption, θ0 is smooth, and then, according to Remark 3.2 (iii),
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the rate of convergence is determined by β = 4. Following Theorem 3.1, we
take Fν�N = −π2∑N

k=1 k
2, hN = N−3/17, vN = N−41/17. The estimator is

θ̂N�t� = 1
hNFν�N

N∑
k=1

R

(
s− t

hN

)
Uk�N�s�

(
duk�s� + uk�s�ds

)
�

where

Uk�N�t� =
{
1/uk�t�� �uk�t�� > vN�
1/vN� �uk�t�� ≤ vN


By Theorem 3.1, supt0≤t≤t1 E�θ̂N�t� − θ�t��2 ≤ C�t0� t1�N−24/17.
The issues not addressed in this example are the selection of the best ker-

nel or the optimal choice of bandwidth. For example, the same asymptotical
result would hold if we chose hN = 100N−3/17 and vN = 0
1N−41/17. Also, a
better rate of convergence can be achieved by taking a higher order kernel,
but this will also increase the computational complexity. These important and
interesting finite sample issues have to be addressed in the future.

APPENDIX

Asymptotics of the eigenvalues of partial differential operators. As
before,G is either a smooth domain in �d or a smooth d-dimensional manifold.
Let A be an order-2n differential operator on G with complex coefficients. For
technical reasons we write A in the form [cf. (2.1)]

A = ∑
�α�� �β�≤n

Dα�aαβDβ�� aαβ ∈ C∞
b �G��(A.1)

where Dαu�x� = �−√−1��α�u�α��x�
 If G is a bounded domain, then the opera-
tor A is supplemented with zero boundary conditions

u�α��∂G = 0 for all �α� ≤ n− 1


The operator A is called symmetric if aαβ�x� = aβα�x� for all x ∈ G.
The function

�A�x� ξ� =
∑

�α�� �β�=n
aαβ�x�ξαξβ�

where ξα = ξ
α1
1 
 
 
 ξ

αd
d , is called the principal symbol of the operator A. The

operator A is called uniformly elliptic in G if there is a number δ > 0 so that

inf
x∈G

Re��A�x� ξ�� ≥ δ
∑

�α�=n
ξ2α

for all ξ ∈ �d.
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Proposition A.1 [Safarov and Vassiliev (1997), Remark 1.2.2]. Let A be a
symmetric operator of the form (A.1) and assume that A is uniformly elliptic
in G. Then the asymptotics of the eigenvalues corresponding to the problem
Au�x� = λu�x� is given by

λk = −ζAk2n/d + o�k2n/d��

where

ζA =
(

1
�2π�d

∫
��x� ξ���A�x�ξ�<1�

dxdξ

)−2n/d
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