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ASYMPTOTIC OPTIMALITY OF TRACKING POLICIES IN
STOCHASTIC NETWORKS

By Nicole Bäuerle

University of Ulm

Control problems in stochastic queuing networks are hard to solve.
However, it is well known that the fluid model provides a useful approx-
imation to the stochastic network. We will formulate a general class of
control problems in stochastic queuing networks and consider the corre-
sponding fluid optimization problem �F� which is a deterministic control
problem and often easy to solve. Contrary to previous literature, our cost
rate function is rather general. The value function of �F� provides an
asymptotic lower bound on the value function of the stochastic network
under fluid scaling. Moreover, we can construct from the optimal control
of �F� a so-called tracking policy for the stochastic queuing network which
achieves the lower bound as the fluid scaling parameter tends to∞. In this
case we say that the tracking policy is asymptotically optimal. This state-
ment is true for multiclass queuing networks and admission and routing
problems. The convergence is monotone under some convexity assumptions.
The tracking policy approach also shows that a given fluid model solution
can be attained as a fluid limit of the original discrete model.

1. Introduction. There exists a vast literature on optimal control of
stochastic queuing networks; see, for example, the recent books by Sennott
(1998) and Kitaev and Rykov (1995). Although the dynamic programming
technique, which is the most common solution method, is well developed, only
a few special networks allow for an explicit solution [cf. also Stidham and
Weber (1993)]. Due to the enormous state space of the problems, a numeri-
cal solution is often intractable. This has led in recent years to the study of
Brownian approximations of the network. See, for example, the survey papers
by Harrison (1996) and Williams (1998). These approximations are often more
tractable and sometimes a policy can be constructed which is optimal in a
heavy traffic regime, that is, when the work load of the system reaches its
capacity limit. On the other hand, the class of fluid models has attracted a lot
of attention recently, since it has been shown that there is a close connection
between the stability of the stochastic network and the corresponding fluid
model [see, e.g., Dai (1995), Bramson (1996) and Maglaras (1998)].
Since in examples it often turned out that the optimal control in the fluid

problem and the optimal policy in the stochastic network coincide [see, e.g.,
Bäuerle and Rieder (2000)], the question arises, whether there is also a con-
nection between the control problem in the stochastic network and the fluid
problem [cf. Avram, Bertsimas and Ricard (1995), Avram (1997), Atkins and

Received May 1999; revised October 1999.
AMS 1991 subject classifications. Primary 60K25; secondary 68M20.
Key words and phrases. Stochastic network, Markov decision process, fluid model, weak

convergence, stochastic orderings.

1065



1066 N. BÄUERLE

Chen (1995) and Meyn (1997a, 1997b)]. This is an important issue, since sev-
eral authors have shown that the optimization problem in the fluid setting is
often easy to solve. In Avram, Bertsimas and Ricard (1995) one can find numer-
ous scheduling problems which have been solved explicitly using Pontryagin’s
maximum principle. In addition, the authors give an efficient approximation
algorithm to compute the fluid optimal control. In a recent paper, Luo and
Bertsimas (1998) developed an algorithm to solve such problems with up to 100
buffers, generalizing previous work by Pullan (1995). Weiss (1995, 1996, 1997)
solved several scheduling problems in fluid reentrant lines, showing that mod-
ifications of the “last-buffer-first-served” policy are optimal.
In the literature we can find several results concerning the relation between

the control problem for stochastic queuing networks and the corresponding
fluid problem. Meyn (1997a), for example, proved in Theorem 7.2 that, in the
average cost model, the policy iteration, if initialized with a stable policy for
the fluid model, yields a sequence of relative value functions which converge
when properly normalized against the value function in the fluid model. Chen
and Meyn (1998) used this fact to suggest that the value iteration can be sped
up when initialized with the value function of the fluid model. In Atkins and
Chen (1995) one can find a large numerical study, where the optimal control
from the fluid model has been used as a heuristic for the policy in the stochas-
tic network. The performance of this implementation has been compared to
simple priority rules. It turned out that the fluid heuristic was often slightly
better than the priority rules but not always. Alanyali and Hajek (1998) con-
sidered a special routing problem and proved that the load-balancing policy
which is optimal in the associate fluid model is asymptotically optimal in
the stochastic network. However, the crucial question in general is how to
translate the optimal fluid control in an admissible policy for the stochastic
network. A direct implementation of the optimal feedback control of �F� is in
general not satisfactory [see, e.g., Kumar and Kumar (1996), Meyn (1997b)
and Maglaras (1998)]. For reentrant lines Kumar and Kumar (1996) con-
structed so-called fluctuation smoothing policies from the fluid optimal control
which perform very well. In the general setting, a first proposal came from
Meyn (1997b). He used an approach based on an affine shift of the optimal
fluid policy which is similar to the requirement of “safety stocks.” This idea
was subsequently developed in papers by Maglaras (1998, 1999a, b) who used
the BIGSTEP idea of Harrison (1996) to construct a class of policies which
he called discrete-review policies. These policies are asymptotically optimal
under fluid scaling in multiclass queuing networks, that is, when the inten-
sity of the process increases by factor γ and the jump height decreases by
the same factor. The idea is to review the state of the system at discrete time
points and compute from linear programs the actions that have to be carried
out over the next planning period. The information about the fluid model is
here put into the LP. Safety stock requirements ensure that the plans can be
processed properly.
We will now propose a new class of policies which can be constructed from

the optimal fluid control directly and are very intuitive. We will call these
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Fig. 1. Rybko–Stolyar network.

policies tracking policies. They are asymptotically optimal under fluid scal-
ing in the same sense as in Maglaras (1998) and work for a general class
of network problems. The name tracking policy is chosen, since the scaled
state process converges to the optimal fluid trajectory. In fact, it is possible
to use this approach to track every arbitrary chosen fluid trajectory. Hence,
this method works for a large class of objective functions. The approach relies
on the observation that in fluid problems the optimal control is usually piece-
wise constant [see Theorem 3.3 of Pullan (1995) or Theorem 6 of Luo and
Bertsimas (1998)]. As a numerical example we have taken the Rybko–Stolyar
network in Figure 1 [cf. Rybko and Stolyar (1992) and Maglaras (1998)]:
queues 1 and 4 are processed by server 1, while queues 2 and 3 are processed
by server 2. The service times of jobs are independent and exponentially dis-
tributed with rates µ1 = µ3 = 3 and µ2 = µ4 = 1�5. Queues 1 and 3 receive jobs
from outside according to Poisson processes with rate λ1 = λ3 = 1. The initial
state is y0 = �1�0�0�5�1� and we assume linear holding cost c1 = · · · = cn = 1
for the jobs. The optimization problem is to schedule the servers in order to
minimize the expected discounted cost. In Figure 2 we see simulation results
of the trajectory of queue 1 under the tracking policy for scaling parame-
ter γ = 10�100 and 10,000. The solid line is the optimal trajectory in the fluid
model. In Section 4 we will prove that the trajectories and value functions of
the stochastic network under the tracking policy converge against the optimal
ones of the fluid model when γ tends to ∞. Figure 3 shows a simulation result
for the trajectory of queues 1–4 respectively, with scaling parameter γ = 1000.
The solid line is again the optimal trajectory.
In Table 1 we find the value function Vγ

σγ for different scaling parameter
γ under the tracking policy σγ. The optimal cost in the fluid problem is 7�2.
From the simulation we can see that the tracking policy performs well, when
we are close to the limit, that is, in queuing systems with a large initial state
and high intensity.

2. Control problems in stochastic networks. In this section we
present a rather general model for a stochastic queuing network. The state
process is formulated as a continuous-time Markov chain �Yt� in �N0 , where
the jth component of �Yt� gives the number of jobs at queue j at time t. The
formulation we are using includes admission control, routing, service control
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Fig. 2. Trajectories for buffer 1 in the Rybko–Stolyar network with γ = 10�102�104.
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Fig. 3. Trajectories for buffers 1–4 in the Rybko–Stolyar network with γ = 103.
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Table 1
Value function under tracking policy σγ for different γ

γ 104 105 107 ∞
V
γ
σγ�y0� 7.5189 7.3522 7.2287 7.2222

and scheduling. To keep the formulation simple, we assume that arrival and
service times are independent and exponentially distributed. The model allows
us to control the transition rates of the process at each point in time in a
nonanticipating fashion. However, it is known that in this case the optimal
policy can be found among the discrete-time policies, where decisions have to
be taken at state changes only. This leads to the following Markov decision
process [see, e.g., Sennott (1998) and Tijms (1986)]: we assume that there
are N queues, and hence the state space is S = �N0 . The action space U ⊂ �K

has to be compact and convex. The generator Q = �q�y�u�y′�� of �Yt� should
satisfy the following conditions for all y�y′ ∈ S:

(i) D�y� 	= 
u ∈ U � q�y�u�y′� = 0 if y′ /∈ S� = �.
(ii) There exists a linear function b 	 U→ �N such that, for all u ∈ D�y�,∑

y′∈S
�y′ − y�q�y�u�y′� = b�u��

(iii) There exists a q ∈ �+ with supu∈U supy�y′∈S �q�y�u�y′�� < q.
The set D�y� is the set of admissible actions in state y. As usual, define

q�y�u� 	= ∑
y′ =y q�y�u�y′�.

In the Rybko–Stolyar network of the Introduction we have, for example,
U = 
u ∈ �0�1�4 �u1+u4 ≤ 1� u2+u3 ≤ 1� and D�y� = 
u ∈ U �yj = 0 ⇒ uj =
0� j = 1�2�3�4�. For u ∈ D�y� the generator is

q�y�u�y+ e1� = λ1�

q�y�u�y+ e3� = λ3�

q�y�u�y− e2� = µ2u2�

q�y�u�y− e4� = µ4u4�

q�y�u�y+ e2 − e1� = µ1u1�

q�y�u�y+ e4 − e3� = µ3u3�

The cost rate function c 	 S×U→ �+ of the general model should satisfy:

(i) c�y�u� = c1�y� + c2�u� with c1 	 �N → �+� c2 	 �K → �+;
(ii) c1 is lower semicontinuous, c2 convex.

Denote by �Tn��T0 	= 0, the sequence of jump times of the Markov process
�Yt�. A policy π = �f0� f1� � � �� for the Markov decision process is a sequence of
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decision rules fn 	 S→ U with fn�y� ∈ D�y�, where fn is applied at time Tn.
For a fixed policy π and initial state y ∈ S, there exists a family of probability
measures Pπy on a measurable space ���� � and stochastic processes �Yt� and
�πt� such that, for 0 =	 T0 < T1 < T2 < · · ·,

Yt = YTn� Tn ≤ t < Tn+1� πt = fn�YTn�� Tn ≤ t < Tn+1
and

(i) Pπy�Y0 = y� = Pπy�T0 = 0� = 1 for all y ∈ S;
(ii) Pπy0�Tn+1 − Tn > t �T0�YT0� � � � �Tn�YTn = y� = e−q�y�fn�y��t for all

y ∈ S� t ≥ 0;
(iii) Pπy0�YTn+1 = y′ �T0�YT0� � � � �Tn�YTn = y�Tn+1� = q�y�fn�y�� y′�/q�y,

fn�y�� for y�y′ ∈ S�y = y′ and 0, if y = y′.

We are interested in the discounted cost criterion and define for discount rate
β > 0

Vπ�y� = Eπy
[∫ ∞

0
e−βtc�Yt�πt�dt

]
�

The optimization problem is

V�y� = inf
π
Vπ�y��

In the remainder of the paper we assume that D�y� is compact for all y ∈ S
and the mapping u → q�y�u�y′� is continuous for all y�y′ ∈ S. Under these
assumptions, there exists an optimal stationary policy for the β-discounted
problem. Moreover, this policy is optimal among all nonanticipating policies.
The value iteration is of the form

Vn+1�y� = min
u∈U

[
1

β+ q�y�u�c�y�u� + 1
β+ q�y�u�

( ∑
y′ =y

q�y�u�y′�Vn�y′�
)]
�

Although problems of this type can, in principle, be solved by policy iteration,
the size of the state space, even for simple examples, makes this procedure
intractable. Hence, we would be satisfied with a policy which is in some sense
“good” and easily computable. Let us now introduce a scaling parameter γ > 0
for the stochastic process as follows: let 
yγ� be a sequence of initial states
such that limγ→∞ yγ/γ = y for y ∈ S. To ease notation, we will assume for our
problem that yγ = γy for all γ ∈ �, though the proofs are in a more general
setting. Denote by �Ŷγt � the state process with initial state yγ under a fixed
policy πγ = �fγn� and define by

Y
γ
t 	= 1

γ
Ŷ
γ
γt

the scaled state process. Note that �Ŷγt � is a process on the state space S = �N0 ,
whereas �Yγt � is a process on the state space �1/γ�S. If we define the policy
π̃γ = �f̃γn� on the state space �1/γ�S by f̃γn��1/γ�y� = fγn�y� and the generator
Q̃γ by q̃��1/γ�y�u� �1/γ�y′� = γq�y�u�y′�, then the corresponding process
�Ỹγt � is in distribution equal to the process �Yγt �. The scaled action process is
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defined by

π
γ
t 	= fγn�ŶγTn� if Tn ≤ γt < Tn+1�

where �Tn� are the jump times of process �Ŷγt �. As γ tends to ∞, the intensity
of the scaled process increases by factor γ, while the jump heights decrease
by the same rate. This scaling is referred to as fluid scaling. The scaled value
function is then defined by

V
γ
πγ�y� = Eπγy

[∫ ∞

0
e−βtc�Yγt � πγt �dt

]
�

The optimization problem is as before, where we now write Vγ
πγ�y� and Vγ�y�,

respectively, to make the dependence on γ explicit.
Associated with the discounted stochastic network optimization problem is

the following deterministic control problem:

�F�




∫ ∞

0
e−βtc�yt� at�dt→ min�

yt = y+
∫ t
0
b�as�ds�

yt ≥ 0�
at ∈ U� t ≥ 0�

We will call �F� the fluid problem. The value function of this problem will be
denoted by VF�y� and the optimal control and state trajectory by a∗

t and y
∗
t ,

respectively.

3. An asymptotic lower bound on the value function. In this section
we will show that the value function VF of the fluid problem �F� provides
an asymptotic lower bound on the value function Vγ

πγ of the β-discounted
stochastic network, irrespective of the chosen sequence of policies (πγ). Our
approach differs from others, since we have a rather general cost rate function
which can also depend on the action. We denote by �Yγt �, for γ ∈ �, the state
process under fixed policy πγ = �fγn� and initial state y. For the convergence
results which follow, the processes �Yγt � are defined on a common probability
space ��′�� ′�Py�. Such a probability space can be constructed. As usual, we
denote by �Yγt � ⇒ �Yt� the weak convergence of the processes as γ → ∞. We
understand the processes �Yγt � as random elements with values in DN�0�∞�,
which is the space of �N-valued functions on �0�∞� that are right continuous
and have left-hand limits and are all endowed with the Skorokhod topology.
Denote by ��U� the set of all probability measures on U endowed with the
Borel σ-algebra. The processes �πγt � are random elements of � = 
r 	 �+ →
��U� � r measurable� which is endowed with the Young topology [cf. Davis
(1993)]. It is possible to show that � is compact and metrizable. Moreover,
measurability and convergence in� can be characterized as follows [cf. Rieder
(1975)].

Lemma 1. (a) r 	 �+ → ��U� is measurable if and only if r is a transition
probability from �+ into U.
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(b) Let rn� r ∈ �. rn → r for n→ ∞ if and only if∫ ∞

0

∫
U
ψ�t� u�rnt �du�dt→

∫ ∞

0

∫
U
ψ�t� u�rt�du�dt

for all measurable functions ψ 	 �+ ×U → � such that u �→ ψ�t� u� is contin-
uous for all t ≥ 0 and

∫∞
0 supu∈U �ψ�t� u� �dt <∞.

For the next lemma and Theorem 3 we suppose that πγ = �fγ�∞ is a stationary
policy and define the process

M
γ
t = Yγt − y−

∫ t
0
b�πγs � ds�

We will first show the following result.

Lemma 2. �Mγ
t � ⇒ 0 as γ → ∞.

Proof. Let πγ = �fγ� fγ� � � �� and thus
π
γ
t = fγ�ŶγTn�� Tn ≤ γt < Tn+1�

Denote by � γ
t = σ�Yγt � the σ-algebra generated by the process �Yγt �. From the

Dynkin formula we can conclude that �Mγ
j�t��� j = 1� � � � �N, is a martingale

w.r.t. the filtration �� γ
t �. This follows, since, by definition, the generator � of

the process �Yγt � is

� g

(
1
γ
y

)
= ∑

y′

(
g

(
1
γ
y′
)

− g
(
1
γ
y

))
γq�y�fγ�y�� y′��

where g 	 �1/γ�S → �. Setting g�y� = yj� j = 1� � � � �N, it follows with
Proposition 14.13 in Davis (1993) and assumption (ii) on the generator that
�Mγ

j�t�� is a martingale. Define τn 	= inf
t ≥ 0 �Mγ
j�t� ≥ n�� n ∈N. SinceMγ

j

has jumps of size 1/γ, Mγ
j�t ∧ τn� is bounded and hence a square integrable

martingale. Using Fatou’s lemma, we obtain

Ey
[(
M

γ
j�t�

)2] ≤ lim inf
n→∞ Ey

[(
M

γ
j�t ∧ τn�

)2] = lim inf
n→∞ Ey

[〈
M

γ
j�t ∧ τn�

〉]
≤ 1
γ2
Ey [number of jumps in [0,t]] ≤ 1

γ2
qγt = O

(
1
γ

)
�

where �Mγ
j�t�� is the quadratic variation ofMγ

j�t�. Applying Doob’s inequality
gives us

Ey

[
sup
0≤s≤t

(
M

γ
j�s�

)2] ≤ 4Ey
[(
M

γ
j�t�

)2] ≤ O
(
1
γ

)
�

Hence we have �Mγ
t � ⇒ 0 for γ → ∞ on compact intervals. Applying Theorem

VI.16 in Pollard (1984), we obtain �Mγ
t � ⇒ 0 for γ → ∞. ✷
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Theorem 3. Every sequence �Yγt � πγt � has a further subsequence �Yγnt � πγnt �
such that �Yγnt � πγnt � ⇒ �Yt�Rt� and the limit satisfies, with πt 	= ∫

U uRt�du�
(i) Yt = y+ ∫ t

0 b�πs�ds;
(ii) Yt ∈ �N+ ;
(iii) πt ∈ U.

Proof. Let us interpret �πγt � as a random element �Rγt � ∈ �. Hence, πγt =∫
U uR

γ
t �du� for all t ≥ 0. The first step is to show that the sequence �Yγt �Rγt �

is tight. Due to Proposition 3.2.4 in Ethier and Kurtz (1986), we can do this
separately. As far as �Rγt � is concerned, it is trivially tight, since� is compact.
For �Yγt � we use the conditions given in Kushner (1990), Theorem 4.4. That
is, we have to check

(i) limm→∞ supγ Py��Yγt � ≥m� = 0 for all t ≥ 0�
(ii) limδ→0 lim supγ→∞ supτ≤T Ey�min
1� �Yγτ+δ −Yγτ��� = 0.

We now make use of the fact that ��Yγt −�1/γ�yγ�� is stochastically dominated
by a Poisson process �/γt � with parameter qγ and jumps of height 1/γ. With
the Chebyshev inequality we obtain

Py��Yγt � ≥m� ≤ 1
m2
Ey

[
�Yγt �2

]
≤ 1
m2

(
�qt�2 + qt

γ
+ 2qt�y

γ�
γ

+ �yγ�2
γ2

)
�

which implies (i). For (ii) we note that Ey�min
1� �Yγτ+δ −Yγτ��� ≤ δq. There-
fore, �Yγt �Rγt � is tight, which gives us a subsequence �Yγnt �Rγnt � weakly con-
verging to a limit �Yt�Rt�. By Skorokhod’s theorem [Ethier and Kurtz (1986),
Theorem 3.1.8] the process can be constructed on the same probability space
such that the convergence is almost sure. Since U is convex, we can define
πt 	= ∫

U uRt�du� ∈ U for all t ≥ 0 and πt is measurable [cf. Lemma 1(a)].
Using Lemma 1(b), we know that almost surely∫ t

0

∫
U
uRγns �du� ds→

∫ t
0
πs ds�

Together with Lemma 2, (i) and (iii) follow. Because of Yγt ∈ �N+ for all γ we
obtain (ii) and the proof is complete. ✷

Now we are able to prove the main theorem of this section.

Theorem 4. For all sequences of policies �πγ� and initial states y ∈ S, we
obtain

lim inf
γ→∞ V

γ
πγ�y� ≥ VF�y��

Proof. Suppose first that πγ = �fγ� fγ� � � �� is a stationary policy.
Let �Yγnt � πγnt � be a subsequence such that �Yγnt � πγnt � ⇒ �Yt�Rt� and
πt 	= ∫

U uRt �du�� yγn = γny for all n ∈ �. Due to the assumption on the



TRACKING POLICIES FOR NETWORKS 1075

cost function, we have

Ey

[∫ ∞

0
e−βtc�Yγnt � πγnt �dt

]
= Ey

[∫ ∞

0
e−βtc1�Yγnt �dt

]

+Ey
[∫ ∞

0
e−βtc2�πγnt �dt

]

Let us first look at the second term. Define the mapping ĉ2 	 � → �+ by

ĉ2�r� 	=
∫ ∞

0
e−βt

∫
U
c2�u�rt�du�dt�

It is easy to see that ĉ2 is continuous (cf. Lemma 1) and since U is compact,
ĉ2 is bounded on �. Since c2 is convex we can apply Jensen’s inequality and
obtain

lim
n→∞Ey

[∫ ∞

0
e−βtc2�πγnt �dt

]
= Ey

[∫ ∞

0
e−βt

∫
U
c2�u�Rt�du� dt

]

≥ Ey
[∫ ∞

0
e−βtc2�πt�dt

]
�

Note that we have “=” if c2 is linear. Now define ĉm1 	 DN�0�∞� → �+ by

ĉm1 �y� 	=
∫ m
0
e−βtcm1 �yt� dt�

where cm1 ↑ c1 and cm1 	 �N → �+ is continuous [see Lemma 7.14 in Bertsekas
and Shreve (1978)]. Hence, ĉm1 is continuous and thus ĉm1 �Yγnt � ⇒ ĉm1 �Yt�.
Therefore, we obtain with Fatou’s lemma and since the convergence cm1 ↑ c1 is
monotone

lim inf
n→∞ Ey

[∫ ∞

0
e−βtc1�Yγnt �dt

]
= lim inf

n→∞ lim
m→∞Ey

[
ĉm1 �Yγnt �]

≥ lim
m→∞ lim infn→∞ Ey

[
ĉm1 �Yγnt �]

≥ lim
m→∞Ey �ĉm1 �Yt�� = Ey

[∫ ∞

0
e−βtc1�Yt�dt

]
�

From Theorem 3 we know that the limit �Yt�πt� of every converging subse-
quence is for almost all ω an admissible state–action trajectory for the fluid
problem �F�. Hence, we have, in particular,

Ey

[∫ ∞

0
e−βtc�Yt�πt�dt

]
≥ VF�y�

and thus lim inf γ→∞V
γ
πγ�y� ≥ VF�y�. Since for arbitrary policies πγ = �fγ0�

f
γ
1� � � �� it holds that Vγ

πγ ≥ V
γ
fγ�y�, where �fγ�∞ is the optimal policy, the

statement follows. ✷
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4. Asymptotic optimality. We will show that it is possible at least for
some network models to construct a policy in such a way that the lower bound
of the last section is achieved in the limit. We will call a policy with this
property asymptotically optimal. This notion coincides with the ones used by
Meyn (1997a,b) and Maglaras (1998). Note that under Assumption 1 below
problem �F� always has an optimal solution. This follows from an existence
theorem of Baum [cf. Seierstad and Sydsæter (1987), Theorem 10, page 384].
A crucial observation for this construction is that the optimal control a∗ in
problem �F� is often piecewise constant. If, for example, the cost rate function
is c�y�u� = cy which is often the case, this statement follows from Pullan
(1995), Theorem 3.3 [cf. Luo and Bertsimas (1998)], since �F� reduces to a
separated continuous linear program. Otherwise, it is possible to construct for
every ε > 0 a piecewise constant policy which is ε-optimal [so-called “chatter-
ing theorem”; see, e.g., Kushner and Dupuis (1992), Section 4.6]. The imple-
mentation of our policy is a direct translation of the fluid solution. The policy
itself is nonstationary; that is, the decision depends also on the current time.
A state �y� t� consists now of the queue length and the time at which the jump
occurs. The policy is defined in the following way: suppose that a∗

t = u∗�ν� on
the interval �tν� tν+1�� ν = 0�1� � � � �m� t0 	= 0, and use the decision rule

fγ�y� t� = u∗�ν� if γtν ≤ t < γtν+1�
irrespective of the state Yt the network is in. This, of course, may lead to
unfeasible allocations where we want to serve a job though there is none
there. In such cases we reduce the service rate to 0. We will call a policy of
this type a tracking policy. Obviously, these policies are nonstationary and
the only necessary information about the state is which components are 0.
Therefore, this policy is particularly interesting for control problems with no
information. Also, it can be implemented in a discrete-review way as explained
in Remark 1. We will show that tracking policies are asymptotically optimal
for two important classes of control problems in stochastic networks. To do
this, we need a further assumption on the cost rate function.

Assumption 1. (i) y �→ c1�y� is increasing and convex, u �→ c2�u� is
linear.

(ii) There exist constants C0 ∈ �+� k ∈ � such that, for all y ∈ �N,

c1�y� ≤ C0�1+ �y�k��

Multiclass queuing networks [cf. Dai (1995)]. In the literature the mul-
ticlass queuing network is defined as follows: there are d single-server sta-
tions k = 1� � � � � d and server k is responsible for the jobs at queue j ∈ Kk ⊂

1� � � � �N�. Each queue j has exogenous arrivals at rate λj. The potential ser-
vice rate of sever k is µk. Upon completion of service of a job at queue j, it is
routed to queue i with probability pji, independent of all previous history. We
assume that the routing matrix P = �pji� is transient, that is,

∑∞
n=0P

n < ∞.
The optimization problem is to schedule the servers among their queues in
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order to minimize the discounted expected cost of the system. We obtain this
network as a special case of our general model in the following way: denote by

K1� � � � �Kd�� d < N, a partition of the set 
1� � � � �N�. The action space is
given by U = 
u ∈ �0�1�N � ∑

j∈Kk
uj ≤ 1� k = 1� � � � � d�, where uj is the frac-

tion of the kth server that is allocated to queue j ∈Kk. We define the matrix
A = D�I−P�, where D is an N-dimensional diagonal matrix with elements
µj ≥ 0 on the diagonal and I is the identity matrix. The linear drift function b
is now of the form b�u� = λ−ATu with λ ∈ �N+ . The set of admissible actions
in state y ∈ S is D�y� = 
u ∈ U � yj = 0 ⇒ uj = 0� j = 1� � � � �N�. Suppose
that a∗

t is the optimal control in the corresponding fluid model and a
∗
t = u∗�ν�

on �tν� tν+1�� ν = 0�1� � � � �m. The tracking policy σγ = �fγ� fγ� � � �� is formally
defined by

fγ�y� t� = u∗�ν� ∧ δ�y� if γtν ≤ t < γtν+1�
where ∧ denotes the componentwise minimum and δ�y� = �δ1�y�� � � � � δN�y��
is given by

δj�y� =
{
0� if yj = 0,
1� if yj > 0.

Note that fγ�y� t� ∈ D�y� for all t ≥ 0. We will now show the following result.

Theorem 5. Under Assumption 1, the tracking policy σγ in the multiclass
queuing network satisfies, for y ∈ S,

lim
γ→∞V

γ
σγ�y� = VF�y��

and hence σγ is asymptotically optimal.

Proof. Let us first consider a continuously defined policy πγt with corre-
sponding scaled process �Yγt � which is given by

π
γ
t = u∗�ν� ∧ δ�Yγt � if γtν ≤ t < γtν+1�

Denote by �Ȳγt � the scaled process, where we use the tracking policy σγ. The
difference between these two processes is the duration of the time intervals
on which the actions u∗�ν� ∧ δ�y� are taken. If �Tγn� is the sequence of jump
times of process �Ȳγt � and Nγ�t� 	= inf
n ∈ � � Tγn > t�, then we obtain, for
γ → ∞,

T
γ
Nγ�t� → t a.s.

This means that the change points, where we use a different server allocation
in the processes �Yγt � and �Ȳγt �, converge together a.s. Hence, �Yγt � and �Ȳγt �
have the same limit. Therefore, it suffices to prove the statement for the policy
π
γ
t . Define Y

γ
0 = y ∈ S for γ ∈ �.

On the time interval �tν� tν+1� we can think of the process �Yγt � as a Jackson
network with N servers and fixed service rates µ1u

∗
1�ν�� � � � � µNu∗

N�ν�� ν =
1� � � � �m. In this network server k is only idle when there is no job at queue k.
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This queuing discipline is called work conserving. We will now look at the
process on the time interval �0� t1� only. Under the tracking policy we have
π
γ
t = U∗

1π̂
γ
t , where U

∗
1 = diag�u∗�1�� and π̂γt ∈ �0�1�N, and our process fulfills

for all t ∈ �0� t1� [� denotes the vector � = �1� � � � �1�]

Y
γ
t = y+

∫ t
0
�λ−ATU∗

1π̂
γ
s � ds−Mγ

t ≥ 0�(1)

π̂
γ
t ∈ �0�1�N�(2) ∫ ∞

0
Y
γ
t �� − π̂γt � dt = 0�(3)

As before we can show that every sequence �Yγt � π̂γt � has a further subsequence
�Yγnt � π̂γnt � such that �Yγnt � π̂γnt � ⇒ �Yt� π̂t� and the limit satisfies, for all t ∈
�0� t1� a.s. [see Dai (1995) for the convergence of (3)],

Yt = y+
∫ t
0
�λ−ATU∗

1π̂s� ds ≥ 0�(4)

π̂t ∈ �0�1�N�(5) ∫ ∞

0
Yt �� − π̂t� dt = 0�(6)

From Chen [(1995), page 641], we know that the solution �Yt� π̂t� of (4)–(6) is
unique on the interval �0� t1� up to sets of measure 0. However, we know, by
definition, that u∗�1� is admissible for the fluid problem �F� on �0� t1�. Thus,
we get that �y∗

t ��� is the unique solution of (4)–(6) on �0� t1�. Since the limit
is independent of ω, this implies

�Yγt � π̂γt � ⇒ �y∗
t ��� on �0� t1��

Thus, in particular, Yγt1 → y∗
t1
a.s. Inductively, we obtain in this way that the

convergence holds for all t ≥ 0. Now it remains to show that limγ→∞V
γ
πγ�y� =

VF�y�. Due to the proof of Theorem 4, it is left to show that

lim
γ→∞Ey

[∫ ∞

0
e−βtc1�Yγt �dt

]
=

∫ ∞

0
e−βtc1�y∗

t �dt�

First, since c1 ≥ 0, it holds that

Ey

[∫ ∞

0
e−βtc1�Yγt �dt

]
=

∫ ∞

0
e−βtEy�c1�Yγt ��dt�

Using Assumption 1(i), we obtain that c1�Yγt � is stochastically dominated by
c1�/γt � � � � � /γt � for all t ≥ 0, where /γt is a Poisson process with parameter qγ
and jump heights 1/γ. From Bäuerle [(1998), Lemma 1], it follows that, for
all t ≥ 0 and γ ≥ γ′,

/
γ
t ≤cx /γ

′
t �
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where ≤cx is the convex ordering. For general n-dimensional random vectorsX
andY, we haveX ≤cx Y iffE�f�X�� ≤ E�f�Y�� for all f 	 �n → � convex [see,
e.g., Shaked and Shanthikumar (1994)]. Thus, we obtain, with Assumption 1,

Ey�c1�Yγt �� ≤ Ey�c1�/γt � � � � � /γt �� ≤ Ey�c1�/t� � � � � /t�� <∞�
Moreover, since c1 is also continuous, we obtain c1�Yγt � ⇒ c1�y∗

t � for all t ≥ 0.
Applying dominated covergence, we obtain

lim
γ→∞Ey�c1�Y

γ
t �� = c1�y∗

t ��

Using Assumption 1(ii), we obtain
∫∞
0 e

−βtEy�c1�/t� � � � � /t��dt < ∞, and
applying again dominated convergence yields

lim
γ→∞Ey

[∫ ∞

0
e−βtc1�Yγt �dt

]
=

∫ ∞

0
e−βtc1�y∗

t �dt�

and the statement is proven. ✷

Admission and routing problems. Under an admission and routing prob-
lem, we understand the following model: there are d external streams of jobs
arriving with intensity λk� k = 1� � � � � d, and jobs of type k can be routed to the
queues j ∈ Kk ⊂ 
1� � � � �N�. Each queue j has a server with potential ser-
vice rate µj. The optimization problem is to decide upon admission/rejection
of jobs and, in the case of admission, to decide upon the routing of the jobs
in order to minimize the discounted expected cost of the system. Our general
model specializes to an admission and routing problem in the following way:
let K1� � � � �Kd� d < N, be subsets of the set 
1� � � � �N�. The action space is
given by U = 
�u� v� ∈ �0�1�d×N × �0�1�N � ukj = 0 if j /∈ Kk�

∑
j∈Kk

ukj ≤
1� k = 1� � � � � d� 0 ≤ vj ≤ 1� j = 1� � � � �N�, where ukj is the fraction of jobs
of type k that is routed to queue j; vj is the activation level of server j. Let
λ ∈ �d+ and let D be an N-dimensional diagonal matrix with elements µj ≥ 0
on the diagonal. Thus, the linear function b is of the form b�u� = λu − Dv.
The set of admissible actions in state y ∈ S is D�y� = 
�u� v� ∈ U � yj =
0 ⇒ �λu −Dv�j ≥ 0� j = 1� � � � �N�. Suppose that a∗

t is the optimal control
in the corresponding fluid model and a∗

t = u∗�ν� on �tν� tν+1�� ν = 0�1� � � � �m.
The tracking policy is exactly defined as before. Hence we obtain the following
result.

Theorem 6. Suppose Assumption 1 is valid.

(a) The tracking policy σγ in the admission and routing problem satisfies,
for y ∈ S,

lim
γ→∞V

γ
σγ�y� = VF�y��

and hence σγ is asymptotically optimal.
(b) Vγ

σγ�y� is decreasing in γ for all y ∈ S. In particular, VF�y� is a lower
bound for all Vγ

σγ�y�.
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Proof. (a) The idea is the same as in the proof of Theorem 5. Let us
first look at the time interval �0� t1�. Since there is no rerouting, each queue
separately is an M/M/1-queue with input rates λu and output rates Dv. Thus,
we obtain

Y
γ
t ⇒ y+ �λu∗�1� −Dv∗�1��t

on �0� t1�. Using the same arguments as before, we can complete the first part
of the proof.

(b) Denote by ξγj�t� = A
γ
j�t� −Bγj�t�� j = 1� � � � �N, the difference between

a Poisson process Aγj�t� with parameter γ
∑
k λkukj and jump heights 1/γ and

a Poisson process Bγj�t� with parameter γµj and jump heights 1/γ. The proce-
sses Aγj�t� and Bγj�t� are independent, whereas the processes Aγ1�t�� � � � �Aγn�t�
are not. From Bäuerle (1998) it can be deduced that, for all γ ≥ γ′ and 0 ≤
t1 < t2 < · · · < tn <∞,(

ξ
γ
1�t1�� � � � � ξγ1�tn�� � � � � ξγN�t1�� � � � � ξγN�tn�

)
≤cx

(
ξ
γ′
1 �t1�� � � � � ξγ

′
1 �tn�� � � � � ξγ

′
N�t1�� � � � � ξγ

′
N�tn�

)
�

where ≤cx denotes the convex ordering. Now it holds that
Y
γ
j�t� = yj + ξγj�t� + sup

0≤s≤t

(−ξγj�s�)�
Since this is a convex functional, we obtain, for all γ ≥ γ′ and 0 ≤ t1 <
t2 < · · · < tn <∞,(

Y
γ
1�t1�� � � � �Yγ1�tn�� � � � �YγN�t1�� � � � �YγN�tn�

)
≤icx

(
Y
γ′
1 �t1�� � � � �Yγ

′
1 �tn�� � � � �Yγ

′
N�t1�� � � � �Yγ

′
N�tn�

)
�

where ≤icx denotes the increasing convex ordering; that is, for two random
vectors it holds that X ≤icx Y iff E�f�X�� ≤ E�f�Y�� for all f 	 �n → �
increasing, convex [see, e.g., Shaked and Shanthikumar (1994)]. Using the
assumptions on c1, we obtain

ĉ1�Yγt � ≤icx ĉ1�Yγ
′
t �

for γ ≥ γ′, and the statement follows. ✷

Corollary 7. In the multiclass queuing network, as well as in the admis-
sion and routing problem, we have, for y ∈ S under Assumption 1,

lim
γ→∞V

γ�y� = VF�y��

Proof. From the previous theorems we obtain

VF�y� = lim sup
γ→∞

V
γ
σγ�y� ≥ lim sup

γ→∞
Vγ�y�

= lim sup
γ→∞

V
γ
π̂γ�y� ≥ lim inf

γ→∞ V
γ
π̂γ�y� ≥ VF�y��
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where π̂γ is the optimal policy for scaling parameter γ, which exists due to
our assumption, and the proof is complete. ✷

Remark 1. Theorems 5 and 6 can be extended to the case where the
interarrival times and service times are i.i.d. but arbitrary [cf. Dai (1995)].

Remark 2. If the cost rate function satisfies c��1/γ�y�u� = �1/γ�c�y�u�,
then the value function Vγ

π can be expressed with the help of the original
value function Vπ . An easy substitution gives us

Vγ
π�y� = 1

γ2
Vβ/γ
π �γy��

where Vβ/γ
π is the original value function �γ = 1� with interest rate β/γ.

Remark 3. tracking policies do not necessarily have to be implemented in
an open-loop fashion. It is also possible to stop and review the state of the
system after a certain time l��y0��, where l is a concave function which tends
faster to ∞ than log, but slower than linear [cf. Maglaras (1998)]. Given the
new state y1, we compute the next tracking policy until time l��y1�� and so on.

Remark 4. There are several alternatives for the implementation of the
tracking policy. We explain the procedures here in the setting of the multiclass
queuing network. The only thing one has to make sure is that the fraction
of the server allocation to buffer j is in the long run equal to u∗

j�ν� on the
time interval �tν� tν+1�. If we are not allowed to split the server, there are two
possibilities:

(i) We interpret u∗
j�ν� as a randomized decision; that is, we do a random

experiment for each buffer independent of the history, where u∗
j�ν� is the prob-

ability that the kth server is assigned to queue j ∈Kk.
(ii) When we can write u∗

j�ν� = αj/
∑
i∈Kk

αi, with αj ∈ �0� j = 1� � � � �N,
then we can follow a so-called generalized round-robin policy [cf. Dai (1998)]:
assign the kth server in a cyclic fashion αj1 times to queue j1 ∈Kk, then αj2
times to queue j2 ∈Kk and so on.

5. Conclusion. After the stimulating paper by Meyn (1997b) there have
been some discussions about the way the optimal fluid control should be
translated into the discrete problem. Difficulties arise since the boundary
behavior of the fluid model cannot be translated in a one-to-one fashion. The
class of tracking policies we have proposed in this paper have the following
advantages:

(i) Practically every fluid model solution can be attained as a fluid limit
under a tracking policy. Thus, this approach is useful for a large variety of
objective functions and also for constrained optimization problems.
(ii) There are different alternatives for the implementation. It is, in partic-

ular, useful for control problems with no information.
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Of course, tracking policies do not always perform well when implemented;
however, they are useful when we are close to the fluid limit. This situation
occurs when the initial state is large and the system is operating with high
intensity.
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