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COMPOUND POISSON APPROXIMATION FOR COUNTS OF
RARE PATTERNS IN MARKOV CHAINS AND EXTREME

SOJOURNS IN BIRTH–DEATH CHAINS

By Torkel Erhardsson

Royal Institute of Technology, Stockholm

We consider the number of overlapping occurrences up to a fixed time
of one or several “rare” patterns in a stationary finite-state Markov chain.
We derive a bound for the total variation distance between the distribution
of this quantity and a compound Poisson distribution, using general results
on compound Poisson approximation for Markov chains by Erhardsson. If
the state space is �0�1� and the pattern is a head run (111 · · ·111), the
bound is completely explicit and improves on an earlier bound given by
Geske, Godbole, Schaffner, Skolnick and Wallstrom. In general, the bound
can be computed by solving five linear equation systems of dimension at
most the number of states plus the sum of the lengths of the patterns.
We also give approximations with error bounds for the distributions of the
first occurrence time of a head run of fixed length and the longest head run
occurring up to a fixed time. Finally, we consider the sojourn time in an
“extreme” subset of the state space by a stationary birth–death chain and
derive a bound for the total variation distance between the distribution of
this quantity and a compound Poisson distribution.

1. Introduction. In this paper we consider two random quantities which
both count the number of certain “rare” events occurring in Markov chains. In
both cases, our objective is to construct approximating compound Poisson dis-
tributions for the distributions of these quantities and explicit error bounds
for the approximations. The first quantity is the number of overlapping oc-
currences up to a fixed time of one or several “rare” patterns in a stationary
finite-state Markov chain. The second quantity is the sojourn time in an “ex-
treme” part of the state space by a stationary birth–death chain. A short
background is first given.

Occurrences of finite sequences (“patterns,” or “words”) in a Markov chain
on a finite state space (“alphabet”) have been studied from various aspects
for a long time and by many people. A complete list of references would be
very long; for just a few examples, see Chapter B of Aldous (1989), Gordon,
Schilling and Waterman (1986), Godbole and Papastavridis (1994), Wang and
Ji (1995), Stefanov and Pakes (1997) and the references in these. A number
of results have been obtained, including moments, distributional transforms,
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or limit theorems, for quantities like the following:

1. The first occurrence time of a pattern.
2. The length of the longest pattern of a specified kind occurring up to a fixed

time.
3. The number of overlapping or nonoverlapping occurrences of one or several

patterns up to a fixed time.
4. The number of occurrences of one or several patterns up to the first occur-

rence of a particular pattern.

A typical area of application for these results is the analysis of nucleotide
sequences in DNA molecules. Sometimes attention is restricted to the cases
when the Markov chain is an i.i.d. sequence, or the state space of the chain is
S = �0�1� (or both). In the latter case we speak about coin-tossing problems,
and the particular pattern 111 · · ·111 is called a head run.

In the present paper, which is based on Chapter 4 of Erhardsson (1997),
we consider the number of overlapping occurrences up to a fixed time in the
chain of one or several “rare” patterns. We derive an explicit bound for the
total variation distance between the distribution of this quantity and a com-
pound Poisson distribution. Why is this a natural thing to do? In view of the
rarity of the pattern(s) which we are counting, the first idea would be to find
an approximating Poisson distribution, or a Poisson limit theorem. However,
patterns with self-overlap (i.e., the end part of the pattern is identical to the
initial part) will tend to occur in clumps, which could make an approximation
with a Poisson distribution quite poor. A properly chosen compound Poisson
distribution is in such cases often a much better alternative.

Among earlier related results, Wang and Ji (1995) derive compound Poisson
limit theorems for the number of overlapping occurrences of patterns, while
approximating compound Poisson distributions and total variation distance
error bounds are given in Geske, Godbole, Schaffner, Skolnick and Wallstrom
(hereafter GGSSW) (1995), Schbath (1995), and Roos and Stark (1996). The
three latter papers all use some variation on Stein’s method for compound
Poisson approximation to derive the error bounds; for an introduction to Stein’s
method, see Barbour (1997). GGSSW and Schbath both use Stein’s method
for discrete Poisson process approximation, an approach which is described
in Section 10.4 in Barbour, Holst and Janson (1992). Roos and Stark use the
method in Roos (1994), which is based on the compound Poisson Stein equation
derived in Barbour, Chen and Loh (1992).

Here, we use the results in Erhardsson (1999), which are also based on
the compound Poisson Stein equation, but along different lines than in Roos
(1994). It will be shown that an approximating compound Poisson distribution
and a total variation distance error bound can be found for the number of
head runs, with very little computational effort, by applying Theorem 4.3 in
Erhardsson (1999) to a certain embedded Markov chain. The error bound is
a significant improvement on the bound in GGSSW (1995) in the case when
the expected number of head runs is large; hence, we confirm a conjecture by
GGSSW that such an improvement should be possible. Using the related but
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more general Theorem 5.1 in Erhardsson (2000), we also give approximations
with error bounds for the distributions of the first occurrence time of a head
run of fixed length and the longest head run occurring up to a fixed time. We
then show how the argument used for head runs can be extended to counts of
general patterns, giving error bounds which can be computed by solving five
linear equation systems of dimension at most the number of states plus the
sum of the lengths of the patterns.

The second quantity considered in this paper is the sojourn time in an
“extreme” part of the state space up to a fixed time by a stationary birth–
death chain. Birth–death chains are reversible and have well-known explicit
expressions for probabilities of hitting a subset of the state space before hitting
another subset, and for expected first hitting times of subsets. Hence, applying
the results in Erhardsson (1999) is rather easy. This enables us to extend
some limit theorems given by Serfozo (1980) and Berman (1986) by giving
total variation distance error bounds for the corresponding approximations.

The rest of the paper is organized as follows. In Section 2 we give some
notation and definitions. In Section 3, we give an approximating compound
Poisson distribution and a total variation distance error bound for the number
of head runs. In Section 4 we derive approximations and error bounds for the
first occurrence time of a head run and the longest head run. In Section 5
we show how the results for head runs can be generalized to the number of
occurrences of one or several arbitrary patterns in a finite-state Markov chain.
Finally, in Section 6 we give an approximating compound Poisson distribution
and an error bound for the sojourn time in an “extreme” subset of the state
space by a stationary birth–death chain.

2. Preliminaries. We use the following notation for sets of numbers:R =
the real numbers, Z = the integers, R+ = �0�∞�, Z+ = �0�1�2� � � �� and
Z′

+ = �1�2� � � ��.
For any random element X in some measurable space 
S�� �, we denote

the distribution of X by � 
X�.
For any measurable space 
S�� �, we denote by 
SZ�� Z� the space of all

functions f� Z → S, equipped with the σ-algebra generated by the cylinder
sets. A random element in 
SZ�� Z� is called a random sequence. We define,
for each A ∈ � , t ∈ Z, k ∈ Z+ and s = �� � � � x−1� x0� x1� � � �� ∈ SZ, the
functional τt� kA � SZ → Z+ by

τ
t� k
A 
s� �= inf

{
j > τ

t�k−1
A 
s��xt+j ∈ A

} ∀k ≥ 1�

τ
t�0
A 
s� �= 0�

and we define the functional τ̄t� kA � SZ → Z+ by

τ̄
t� k
A 
s� �= inf

{
j > τ

t�k−1
A 
s��xt+j ∈ A

} ∀k ≥ 2�

τ̄
t�1
A 
s� �= inf

{
j ≥ 0�xt+j ∈ A

}
�

τ̄
t�0
A 
s� �= 0�
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For brevity we will use the notation τtA
·� �= τ
t�1
A 
·�, τA
·� �= τ

0�1
A 
·�, τ̄tA
·� �=

τ̄
t�1
A 
·� and τ̄A
·� �= τ̄

0�1
A 
·�.

Throughout the paper, η denotes a two-sided stationary Markov chain (in
discrete time) on a finite state space 
S�� � (where � is the power set of S).
Hence, η is a random element in 
SZ�� Z�. For brevity, we define PA
η ∈
·� �= P
η ∈ · �η0 ∈ A� and EA
f
η�� �= E
f
η��η0 ∈ A� for each A ∈ � and
each measurable f� SZ → R+; if A = �x� is a singleton, we write Px
η ∈
·� �= P�x�
η ∈ ·� and Ex
f
η�� �= E�x�
f
η��. For each A ∈ � , t ∈ Z and

k ∈ Z+, we use for brevity the notation τ
t� k
A �= τ

t� k
A 
η�, τtA �= τtA
η�, τA �=

τA
η�, τ̄t� kA �= τ̄
t� k
A 
η�, τ̄tA �= τ̄tA
η� and τ̄A �= τ̄A
η�. We denote by ηR the

reverse Markov chain of η, that is, the random element in 
SZ�� Z� defined
by ηRt �= η−t for each t ∈ Z. It is well known that ηR is also a stationary
Markov chain. If η has transition matrix p, then the transition matrix of ηR

will be denoted by pR.
For any two probability measures ν1 and ν2 on any measurable space 
S�� �

we define the total variation distance dTV
ν1� ν2� in the usual way as

dTV
ν1� ν2� �= sup
A∈�

∣∣ν1
A� − ν2
A�∣∣�
We denote by CP
λ1� λ2� � � �� the compound Poisson distribution with param-

eters �λk�k ∈ Z′
+�, where λk ≥ 0 for each k ∈ Z′

+ and 0 < λ �= ∑∞
k=1 λk < ∞.

By this we mean the distribution � 
∑M
i=1Ti�, where the random variables

�Ti� i ∈ Z′
+� and M are independent, P
Ti = k� = λk/λ for each k ∈ Z′

+ and
i ∈ Z′

+, and M ∼ Po
λ�. � 
T1� is called the compounding distribution. In
the case when the compounding distribution is geometric with parameter θ
[i.e., λk/λ = 
1 − θ�k−1θ for each k ∈ Z′

+], CP
λ1� λ2� � � �� is called the Pólya–
Aeppli
λ� θ� distribution.

3. Counts of head runs.

Theorem 3.1. Let � be a stationary Markov chain on the state space �0�1�
with transition matrix p, defined by

p �=
(
1− β β

1− α α

)
�

where α� β ∈ 
0�1�. For each n ≥ r ≥ 1, define M
n� r� �= ∑n
i=r I��i−r+1 =

· · · = �i = 1�. Then,

dTV
(
� 
M
n� r���Pólya–Aeppli
λ�1− α�)
≤H
λ� θ�

(
2r+ 2+ 4α

1− α
+ 2β


1− α�2
)

n− r+ 1�µ
r�2

+ (
2
1− α�r+ 2α

)
µ
r��
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where µ
r� = P
�1 = · · · = �r = 1� = 
αr−1β/
1− α+ β��, and λ = 
n − r +
1�µ
r�
1−α�. Also,H
λ� θ� �= 

λ
1−α��−1∧1�eλ, unless α ≤ 1

2 , in which case,

H
λ� θ� �= 1
λ
1−α�
1−2α�

(
1

4λ
1−α�
1−2α� + log+(2λ
1−α�
1−2α�))∧1�

Proof. We define an embedded Markov chain η on the state space S =
�0� � � � � r� in the following way:

ηt �= min
{
i ∈ Z+�Xt−i = 0

} ∧ r ∀ t ∈ Z�

It is easily shown that η has transition matrix p′, defined by

p′ �=




1− β β 0 · · · 0 0 0

1− α 0 α · · · 0 0 0

1− α 0 0 · · · 0 0 0

���
���

���
� � �

���
���

���

1− α 0 0 · · · 0 α 0

1− α 0 0 · · · 0 0 α

1− α 0 0 · · · 0 0 α




�

The reason for introducing η is that the quantity we are interested in,M
n� r�,
can be expressed as

∑n
i=r I�ηi = r�, that is, as the number of visits by η to the

“rare” set S1 �= �r� during the time �r� � � � � n�. Then η is a stationary irre-
ducible Markov chain on a finite state space, and the stationary distribution
µ is easily calculated:

µ
i� =




1− α

1− α+ β
� if i = 0,

αi−1β
(

1− α

1− α+ β

)
� if i ∈ �1� � � � � r− 1�,

αr−1β
1− α+ β

� if i = r.

Hence, η is Harris recurrent, so Theorem 4.3 in Erhardsson (1999) can be ap-
plied. This theorem gives a bound for dTV
� 
M
n� r��� CP
λ1� λ2� � � ���, where
λk �= 
n− r+ 1�P
Z0 = k� for each k ∈ Z′

+. Here,

Z0 �= I�η0 ∈ S0�
τS0−1∑
i=1

I�ηi ∈ S1��

where S0 ⊂ Sc
1 is a singleton. We choose S0 = �0�, which is natural and

convenient in the present situation. Since S1 = �r� is also a singleton, it
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follows as in Remark 3.1 in Erhardsson (1999) that CP
λ1� λ2� � � �� is the Pólya–
Aeppli
λ� θ� distribution, with parameters

θ �= Pr
τ0 < τr� = 1− α�

λ �= 
n− r+ 1�µ
r�θ = 
n− r+ 1� αr−1β
1− α+ β


1− α��

or equivalently, that

λk �= 
1− θ�k−1θλ = 
n− r+ 1�
1− α�2βαr+k−2
1− α+ β

∀k ∈ Z′
+�

The bound given in Theorem 4.3 in Erhardsson (1999) is the following:

dTV
(
� 
M
n� r���Pólya–Aeppli
λ�1− α�)
≤ 2H
λ� θ�

(
E
τS0

Z0� + µ
S1�
E
τ̄S0

�
µ
S0�

)

n− r+ 1�µ
S1�

+ 2P
τS1
< τS0

��
where H
λ� θ� is defined as above; see also Proposition 3.2 and Theorem 3.1
in Erhardsson (1999). All quantities appearing in the bound can be explic-
itly computed. From Theorem 4.4 in Erhardsson (1999) we get, since S1 is a
singleton,

E
τS0
Z0� =

E
τS1
I�η0 ∈ S0� τS1

< τS0
�� + 2µ
S1�ES1


τS1
I�τS1

< τS0
��

PS1

τS0

< τS1
�

+ µ
S1�ES1

τS0

I�τS0
< τS1

��
PS1


τS0
< τS1

�

= rµ
r�
1− α� + 2µ
r�α+ µ
r�
1− α�
1− α

=
(
r+ 2α

1− α
+ 1

)
µ
r��

Also,

E
τ̄S0
� =

r∑
i=1

µ
i�Ei
τ0� =
r∑
i=1

µ
i� 1
1− α

= β


1− α�
1− α+ β�
and for the last term in the bound we get

P
τS1
< τS0

� = µ
0�βαr−1 + · · · + µ
r�α = (
1− α�r+ α
)
µ
r�� ✷

Remark 3.1. As mentioned in Section 1, GGSSW (1995) also derive an
approximating compound Poisson distribution for � 
M
n� r��, and a total
variation distance error bound. They use the Stein–Chen method for discrete
Poisson process approximation to find a bound for the total variation distance
between the distribution of a certain sequence of indicator variables and that
of a sequence of independent Poisson distributed random variables; from this
an error bound for a compound Poisson approximation can be deduced. It is
worth noting that, although the approach of the present paper is different
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from the one of GGSSW we still end up proposing exactly the same approxi-
mating compound Poisson distribution as them. Moreover, GGSSW arrive at
the following total variation distance error bound (their Theorem 2.1):

dTV
(
� 
M
n� r���Pólya–Aeppli
λ�1− α�) ≤ 
6r+ 16�nµ
r�2 + 2µ
r��

As is pointed out in GGSSW (1995), this bound has the drawback of being
unnecessarily large for large values of nµ
r�. They also write, “It would be
interesting to see whether our results could be further improved upon using
Stein’s method directly, along the lines of the development in Barbour, Chen
and Loh (1992) or Roos (1994).” Not considering the values of the constants, a
comparison to the bound in Theorem 3.1 shows that the latter bound contains
the factor H
λ� θ� in the first term. As a consequence, the bound is much
smaller than the bound in GGSSW (1995) for large values of nµ
r� (provided
that α ≤ 1

2 ).

Remark 3.2. If the parameters α, β and r depend on n in such a way that
lim supn→∞ α < 1 and

0 < lim inf
n→∞ nµ
r� ≤ lim sup

n→∞
nµ
r� <∞�

then Theorem 3.1 implies that for some explicit C <∞ and n large enough,

dTV
(
� 
M
n� r���Pólya–Aeppli
λ�1− α�) ≤ Crµ
r��

where C is particularly small if in fact lim supn→∞ α < 1
2 . If, in addition to the

above, limn→∞ rµ
r�/α = 0, then it follows from Remark 6.1 in Erhardsson
(1999) that for some explicit 0 < C ≤ C′ <∞ and n large enough,

Cα ≤ dTV
(
� 
M
n� r���Po

n− r+ 1�µ
r��) ≤ C′α�

In other words, the error in the simple Poisson approximation for � 
M
n� r��
converges to 0 no faster and no slower than α.

Remark 3.3. If α, β and r depend on n in such a way that lim supn→∞ α < 1
2

and limn→∞ nµ
r� = ∞, then, for some explicit C <∞ and n large enough,

dTV
(
� 
M
n� r���Pólya–Aeppli
λ�1− α�) ≤ C log

(
nµ
r�)rµ
r��

In this situation it is natural to consider a normal approximation for W ∼
Pólya–Aeppli
λ�1− α�. The first three moments of the geometric distribution
with parameter 1− α are easily calculated:

m1 =
1

1− α
� m2 =

1+ α


1− α�2 � m3 =
1+ 4α+ α2


1− α�3 �

so we get, as in Theorem 6.2 in Erhardsson (1999),

sup
x∈R

∣∣∣P( W− 
n− r+ 1�µ
r�√
1+ α�/
1− α�
n− r+ 1�µ
r� < x

)
−�
x�

∣∣∣
≤ 0�8
1+ 4α+ α2�√
1+ α�3
1− α�
n− r+ 1�µ
r� �
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4. The first and the longest head run.

Theorem 4.1. Let � be the stationary Markov chain defined in Theo-
rem 3.1. For each n ≥ r ≥ 1, define N
n� r� �= ∑n

i=r I��i = 0��i+1 = · · · =
�i+r = 1�. Then

dTV
(
� 
N
n� r���Po

n− r+ 1�
1− α�µ
r��)
≤ (

1− exp
−
n− r+ 1�
1− α�µ
r��)(2
1− α�r+ 2+ 2β
1− α

)
µ
r��

where µ
r� �= αr−1β/
1− α+ β�.

Proof. Let η be the embedded Markov chain defined in the proof of The-
orem 3.1. Clearly, N
n� r� = ∑n

i=r I�ηi = 0� τir < τi0�. Moreover, since η is
stationary and regenerative (it regenerates at the times of visits to S0 = �0�),
it contains an embedded stationary renewal reward process [see Section 3 in
Erhardsson (2000)], for which the renewals �Xi� i ∈ Z� are the times of visits
by η to �0�, ordered in such a way that · · · < X−1 < X0 ≤ 0 < X1 < · · ·, and
the corresponding rewards �Yi� i ∈ Z� are defined by Yi �= I�τXi

r < τ
Xi

0 � for
each i ∈ Z. Hence, Theorem 5.1 in Erhardsson (2000) is applicable, and gives
the following bound:

dTV

(
� 
N
n� r���Po

(

n− r+ 1�E
Yo

0�
E
To

0�
))

≤
(
1− exp

(
−
n− r+ 1�E
Yo

0�
E
To

0�
))(

2
E
To

0Y
o
0�

E
To
0�

+ E
To
0
To

0 − 1��E
Yo
0�

E
To
0�

)
�

where P

To
0�Y

o
0� ∈ ·� = P

X1�Y0� ∈ · �X0 = 0� = P

τ0� I�τr < τ0�� ∈

· �η0 = 0�. Clearly E
Yo
0� = P0
τr < τ0� = βαr−1, and it follows from the Palm

inversion formula for regenerative random sequences that E
To
0� = 1/µ
0� =


1− α+ β�/
1− α� and that

E
To
0
To

0 − 1��
2E
To

0�
= E
τ̄0� =

β


1− α�
1− α+ β� �

Finally, recalling the definition of Z0 from the proof of Theorem 3.1, it follows
from the proof of Theorem 4.4 in Erhardsson (1999) that

E
To
0Y

o
0�

E
To
0�

= E
(
τ0I�Z0 > 0��) = E

(
τS1

I�η0 ∈ S0� τS1
< τS0

�)
+ µ
S1�ES1

(
τS1

I�τS1
< τS0

�)+ µ
S1�ES1

(
τS0

I�τS0
< τS1

�)
= rµ
r�
1− α� + µ
r�α+ µ
r�
1− α� = 

1− α�r+ 1�µ
r�� ✷
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Corollary 4.1. Let � be the stationary Markov chain defined in Theo-
rem 3.1. Define Tr �= min�t ∈ Z+��t+1 = · · · = �t+r = 1�. Then,

sup
x∈R+

∣∣P(
1− α�µ
r�Tr > x
)− e−x

∣∣ ≤ (
4
1− α�r+ 3+ α+ 2β

1− α

)
µ
r��

Proof. Let η be the embedded Markov chain defined in the proof of The-
orem 3.1. Clearly, Tr = τ̄rr, and P
τ̄rr > k� = P
∑r+k

i=r I�ηi = r� = 0� for each
k ∈ Z+, implying that

∣∣P(
1− α�µ
r�Tr > x
)− e−x

∣∣
≤
∣∣∣∣P
(
N

([
x


1− α�µ
r�
]
+ r� r

)
= 0

)
− e−x

∣∣∣∣
+
∣∣∣∣P
(
τ̄rr >

[
x


1− α�µ
r�
])

−P

(
N

([
x


1− α�µ
r�
]
+ r� r

)
= 0

)∣∣∣∣
≤ dTV

(
�

(
N

([
x

µ
r�
1− α�
]
+ r� r

))
�

Po
(([

x

µ
r�
1− α�
]
+ 1

)

1− α�µ
r�

))

+ 
1− α�µ
r�e−x + 2P
τr < τ0�

≤
(
4
1− α�r+ 3+ α+ 2β

1− α

)
µ
r� ∀x ∈ R+� ✷

Corollary 4.2. Let � be the stationary Markov chain defined in Theo-
rem 3.1. Define Mn �= max�r ∈ Z+�

∑n
i=r I��i−r+1 = · · · = �i = 1� > 0�, and

let an �= log
β
1− α�n/α
1− α+ β��/ log
1/α� for each n ∈ Z′
+. Then,

∣∣∣∣P(Mn − an ≤ x
)−P

([
W

log
1/α� + ρ
an�
]
− ρ
an� ≤ x

)∣∣∣∣
≤
(
5
1− α��x+ an� + 6− 2α+ 2β

1− α

)
µ
�x+ an� + 1�

∀x ∈ �−an� n− an��
whereW is Gumbel distributed, that is, P
W ≤ x� = exp
−e−x� for each x ∈ R,
and ρ� R→ �0�1� is defined by ρ
x� �= x− �x�.

Proof. This corollary complements Theorem 1 in Gordon, Schilling and
Waterman (1986) in the case of (uninterrupted) head runs, by giving a bound
for the error in the approximation of � 
Mn� with their “integerized extreme
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value” distribution. Let η be the embedded Markov chain defined in the proof
of Theorem 3.1. Clearly, Mn = max�r ∈ Z+�

∑n
i=r I�ηi = r� > 0�, and

P
Mn ≤ k� = P
∑n
i=k+1 I�ηi = k+ 1� = 0� for each k ∈ Z+, implying that

∣∣∣∣P(Mn − an ≤ x
)−P

([
W

log
1/α� + ρ
an�
]
− ρ
an� ≤ x

)∣∣∣∣
≤
∣∣∣∣P(N
n� �x+ an� + 1� = 0

)−P

([
W

log
1/α� + ρ
an�
]
− ρ
an� ≤ x

)∣∣∣∣
+ ∣∣P(Mn ≤ �x+ an�

)−P
(
N
n� �x+ an� + 1� = 0

)∣∣
≤ dTV

(
� 
N
n� �x+ an� + 1���
Po

n− �x+ an��
1− α�µ
�x+ an� + 1��)

+ �x+ an�
1− α�µ
�x+ an� + 1� + 2P
τ�x+an�+1 < τ0�

≤
(
5
1− α��x+ an� + 6− 2α+ 2β

1− α

)
µ
�x+ an� + 1�

∀x ∈ �−an� n− an�� ✷

5. Counts of general patterns. Let � be a stationary irreducible Mar-
kov chain on a finite state space E, with transition matrix p and stationary
distribution µ. For each r ∈ Z+, let Sr be the space of sequences e1e2 · · · er of
length r of elements in E which are such that µ
e1�p
e1� e2� · · ·p
er−1� er� > 0.
For each s = e1e2 · · · er ∈ Sr and each 0 ≤ l ≤ r, define the initial part of
length l as e1e2 · · · el, and the end part of length l as er−l+1er−l+2 · · · er. Let
ω �= �s1� � � � � sN�, where si �= ei�1ei�2 · · · ei� ri ∈ Sri

for each i ∈ �1� � � � �N�,
and assume that si is not an end part of sj for any i �= j, i� j ∈ �1� � � � �N�.
For each n ≥ max1≤i≤N ri, define M
n�ω� �= ∑N

i=1
∑n

j=ri I��j−ri+1 = ei�1� � � � �
�j = ei� ri�. Can we find an approximating compound Poisson distribution for
� 
M
n�ω��, and an error bound for this approximation?

This problem can be dealt with, at least in principle, in the same man-
ner as the problem of compound Poisson approximation for the number of
head runs treated in Section 3. We introduce the embedded Markov chain
η, taking values in the space Sr, where r �= max1≤i≤N ri, defined by ηi �=

�i−r+1��i−r+2� � � � � �i� for each i ∈ Z. We modify Sr into Smod

r by “lumping”
together certain subsets of Sr into singletons. We lump together a set into a
singleton if it belongs to one of the following two types:

1. A set containing those sequences in Sr which end with a particular initial
part of one (or several) of the sequences in ω, but not with any other strictly
longer initial part.

2. A set containing those sequences in Sr which end with a particular element
in E, and which do not belong to any set of type 1.
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Since � is stationary and irreducible, the same holds for η, so Theorem 4.3
in Erhardsson (1999) can again be used. In this case, the theorem gives

dTV
(
� 
M
n�ω���CP
λ1� λ2� � � ��

)
≤ 2H
λ1� λ2� � � ��

(
ES1


τS0
� +ES1


τS0

ηR�� + E
τ̄S0

�
µ′
S0�

)
nµ′
S1�2

+ 2P
τS1
< τS0

��
where µ′ is the stationary distribution of η, the set S1 consists of the elements
in Smod

r which end with sequences in ω, and the set S0 is a single element

in Sc
1 ⊂ Smod

r . Moreover, λk = nP
I�η0 ∈ S0�
∑τS0−1

i=1 I�ηi ∈ S1� = k� for each
k ∈ Z′

+, and H
λ1� λ2� � � �� �= 

λ1�−1 ∧ 1� exp
∑∞
k=1 λk�, unless �kλk�k ∈ Z′

+�
is monotonically decreasing towards 0, in which case

H
λ1� λ2� � � �� �=
1

λ1 − 2λ2

(
1

4
λ1 − 2λ2�
+ log+(2
λ1 − 2λ2�

)) ∧ 1�

If S1 is a singleton, then CP
λ1� λ2� � � �� = Pólya–Aeppli
λ� θ�, where θ =
PS1


τS0
< τS1

� and λ = ∑∞
k=1 λk = nµ′
S1�θ. The generating function for

the parameters �λk�k ∈ Z′
+�, and the quantities appearing in the bound, can

be found as solutions to linear equation systems with dimensions at most
card
Smod

r � − 1 ≤ card
E� +∑N
i=1 ri; see Section 5 in Erhardsson (1999).

Example 5.1. Let the state space of � be E = �A�C�G�T� and let the
set of patterns for which we want to count the number of occurrences be
ω = �ACACA� (thus, ω contains only one pattern). The state space Smod

r of
the embedded Markov chain η then consists of the following eight elements:
ACACA, ACAC, ACA (not preceded by AC), AC (not preceded by AC), A (not
preceded by AC), C (not preceded by A), G, and T. The transition matrix p′ of
η is

p′ �=




0 pA�C 0 0 pA�A 0 pA�G pA�T

pC�A 0 0 0 0 pC�C pC�G pC�T

0 pA�C 0 0 pA�A 0 pA�G pA�T

0 0 pC�A 0 0 pC�C pC�G pC�T

0 0 0 pA�C pA�A 0 pA�G pA�T

0 0 0 0 pC�A pC�C pC�G pC�T

0 0 0 0 pG�A pG�C pG�G pG�T

0 0 0 0 pT�A pT�C pT�G pT�T




�

In this situation, the “rare” set is of course S1 = �ACACA�. S0 could be
chosen as any singleton in Smod

r except �ACACA�; the optimal choice depends
on p.
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We finally give a more explicit (but less sharp) result for counts of general
patterns, which has some resemblance to Theorem 2.3 in GGSSW (1995) and
Theorem 4 in Schbath (1995). For simplicity, we assume that S0 is chosen as
the singleton in Smod

r formed by lumping together those sequences in Sr which
end with s0, where s0 = e0�1e0�2 · · · e0�m ∈ Sm (1 ≤ m ≤ r) is not an end part
of an initial part of any sequence in ω and has no sequence in ω as an end
part. (We can always augment ω with s0 before constructing Smod

r so that this
assumption can be satisfied.)

Theorem 5.1. Let � be a stationary irreducible aperiodicMarkov chain on
a finite state space E, with transition matrix p and stationary distribution µ.
Let ω �= �s1� � � � � sN�, where si �= ei�1ei�2 · · · ei� ri ∈ Sri

for each i ∈ �1� � � � �N�,
and assume that si is not an end part of sj for any i �= j, i� j ∈ �1� � � � �N�.
For each n ≥ r �= max1≤i≤N ri, define M
n�ω� �= ∑N

i=1
∑n

j=ri I��j−ri+1 =
ei�1� � � � � �j = ei� ri�. Define the space Smod

r , the Markov chain η, the set S1 ⊂
Smod
r , the singleton S0 ⊂ Smod

r , the parameters �λk�k ∈ Z′
+�, and the constant

H
λ1� λ2� � � �� as in the previous paragraphs. Then, for each a ∈ 
0�1�,

dTV
(
� 
M
n�ω���CP
λ1� λ2� � � ��

)
≤ 2H
λ1� λ2� � � ��


1− a�µ′
S0�
(

1
µ′
S0�

([
log

(
4a2µ
e0�1�2µ̌

)
logβ1

]
+m

)

+
[
log

(
4a2µ
e0�m�2µ̌

)
logβ1�R

]
+ r

)
nµ′
S1�2

+ 2

1− a�µ′
S0�

([
log

(
4a2µ
e0�m�2µ̌

)
logβ1�R

]
+ r

)
µ′
S1��

where µ′ is the stationary distribution of η, µ̌ �= miny∈E µ
y�, β1 is the second

largest eigenvalue of the matrix ppR and β1�R is the second largest eigenvalue

of the matrix pRp.

Proof. Theorem 4.3 in Erhardsson (1999) applied to the Markov chain η
gives

dTV
(
� 
M
n�ω���CP
λ1� λ2� � � ��

)
≤ 2H
λ1� λ2� � � ��

×
(
ES1


τS0
� +ES1


τS0

ηR�� + µ′
Sc

0�
µ′
S0�

ESc
0

τS0

�
)
nµ′
S1�2

+ 2ES1

τS0


ηR��µ′
S1��

(5.1)
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where we also used the fact that

P
τS1
< τS0

� = P
τ̄S1
< τ̄S0

� ≤
∞∑
i=0

P
ηi ∈ S1� τ̄S0
> i�

=
∞∑
i=0

P
(
ηR0 ∈ S1� τS0


ηR� > i
) = ES1


τS0

ηR��µ′
S1��

To find bounds for the expectations in (5.1), we note that if there exists con-
stants n1 ∈ Z′

+ and C < 1 such that supx∈Sc
0
Px
τ̄S0

> n1� ≤ C, then, for any
B ⊂ Sc

0,

EB
τ̄S0
� =

∞∑
i=0

PB
τ̄S0
> i� ≤

∞∑
i=0

(
sup
x∈Sc

0

Px
τ̄S0
> n1�

)�i/n1�

≤
∞∑
i=0

C�i/n1� = n1

1−C
�

Theorem 2.1 in Fill (1991) tells us that for any irreducible aperiodic Markov
chain � on a finite state space E with stationary distribution µ, it holds that

dTV
(
Px
�n ∈ ·�� µ)2 ≤ 1

4µ
x�β
n
1 ∀x ∈ E�n ∈ Z+�

This implies that, for each x ∈ Sc
0 and n ≥m,

Px
τ̄S0
> n� ≤ 1−Px
ηn ∈ S0�

≤ 1−
(
µ
e0�1� −

1
2

√
βn−m+1
1

µ̌

)+
m−1∏
i=1

p
e0� i� e0� i+1��

so that we may choose the constants n1 ∈ Z′
+ and C < 1 above as

n1 �=
[
log

(
4a2µ
e0�1�2µ̌

)
logβ1

]
+m� C �= 1− 
1− a�µ′
S0��

Analogous calculations for the reverse chain ηR give the remaining bounds. ✷

Remark 5.1. If ω depends on n in such a way that lim supn→∞ nµ′
S1� <
∞, and if E, p and S0 do not depend on n, then Theorem 5.1 implies that for
some C <∞ and n large enough,

dTV
(
� 
M
n�ω���CP
λ1� λ2� � � ��

) ≤ Crµ′
S1��

To compute C explicitly we must bound the eigenvalues β1 and β1�R. For
further information on this topic, see Fill (1991).
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6. Birth–death chains. By a birth–death chain (or a general random
walk on Z+), we mean an irreducible Markov chain on the state space Z+
with a transition probability p defined by

p
j� k� �=




pj� if k = j+ 1,

rj� if k = j,

qj� if k = j− 1,

0� otherwise.

It is convenient to define, for each i� k ∈ Z+,

πi�k �=




pi

qk

k−1∏
j=i+1

pj

qj
� if i < k,

qi
pk

i−1∏
j=k+1

qj

pj

� if i > k,

1� if i = k.

It is easily checked that πi�k = πi�jπj�k for each i� j� k ∈ Z+ such that
i ≤ j ≤ k, and that �π0� k�k ∈ Z+� defines a reversible measure on Z+. If∑

i∈Z+ π0� i < ∞, then the birth–death chain is positive recurrent with the
unique stationary distribution µ, defined by

µ
k� �= π0� k∑
i∈Z+ π0� i

∀k ∈ Z+�

For any birth–death chain η it is well known that, for each a� k� b ∈ Z+ such
that a ≤ k ≤ b,

Pk
τa < τb� =
(b−1∑
s=a

1
psπ0� s

)−1 b−1∑
r=k

1
prπ0� r

�(6.1)

Likewise, for any positive recurrent birth–death chain η,

Ek
τi� =




k−1∑
r=i

∞∑
j=r+1

πr�j

pr

� if i < k,

i∑
r=k+1

r−1∑
j=0

πr�j

qr
� if i > k.

(6.2)

Equation (6.1) is Theorem 3.7 in Chapter 5 of Durrett (1991). It can also be
verified that (6.1) is the unique bounded solution of Poisson’s equation, as
in Proposition 5.2(i) in Erhardsson (1999). Similarly, (6.2) satisfies Poisson’s
equation as in Proposition 5.2(iii) in Erhardsson (1999), but it is not neces-
sarily a bounded solution. However, in this case a coupling argument can be
used; see Section 3 in Chapter 4 of Erhardsson (1997).
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Theorem 6.1. Let η be a stationary birth–death chain. Let S1 ⊂ Z′
+, and

define zmin �= min�z ∈ S1�. Then,

dTV

(
�

( n∑
i=1

I�ηi ∈ S1�
)
�CP
λ1� λ2� � � ��

)

≤ 2H
λ1� λ2� � � ��

×
(
2
∑
k∈S1

µ
k�
µ
S1�

k−1∑
r=0

∞∑
j=r+1

πr�j

pr

+
∞∑
k=1

µ
k�
µ
0�

k−1∑
r=0

∞∑
j=r+1

πr�j

pr

)
nµ
S1�2

+ 2
( ∞∑
k=zmin

µ
k� +
zmin−1∑
s=0

1
psπ0� s

−1 zmin−1∑
k=1

µ
k�
k−1∑
r=0

1
prπ0� r

)
�

(6.3)

where λk = nP
I�η0 = 0�∑τ0−1
i=1 I�ηi ∈ S1� = k� for each k ∈ Z′

+. If S1 =
�z� (z ∈ Z′

+), then CP
λ1� λ2� � � �� = Pólya–Aeppli
λ� θ�, where θ = Pz
τ0 <
τz� and λ �= ∑∞

k=1 λk = nµ
0�P0
τz < τ0� = nµ
z�Pz
τ0 < τz�. Moreover,
H
λ1� λ2� � � �� �= 

λ1�−1 ∧ 1� exp
λ�, unless �kλk�k ∈ Z′

+� is monotonically
decreasing towards 0, in which case

H
λ1� λ2� � � �� �=
1

λ1 − 2λ2

(
1

4
λ1 − 2λ2�
+ log+(2
λ1 − 2λ2�

)) ∧ 1�

Proof. The proof follows from Theorem 4.3, Remark 3.1 and Proposi-
tion 3.2 in Erhardsson (1999), using also the reversibility of η, (6.1) and (6.2).

Example 6.1. Berman (1986) considers a stationary birth–death chain
η with transition probabilities satisfying the following conditions: p0 = 1,
limj→∞pj = p < 1

2 and pj + qj = 1 for each j ∈ Z+. He claims (but does
not explicitly prove) the following compound Poisson limit theorem (his Theo-
rem 6.1):

�

(�Bz�∑
i=1

I�ηi = z�
)

d−→ Pólya–Aeppli
µ
0�� q� as z→ ∞�

where Bz �= ∑z
r=0
1/prπ0� r�. However, our Theorem 6.1 yields a slightly dif-

ferent result. Clearly, for each p′ such that p < p′ < 1
2 , there exists a N ∈ Z+

such that pj ≤ p′ and qj ≥ q′ �= 1−p′ for each j > N, and also two constants
1 ≤ Cp < ∞ and 0 < Cq ≤ 1 such that pj ≤ Cpp

′ for each j ∈ Z+ and
qj ≥ Cqq

′ for each j ∈ Z′
+. Therefore, µ
k�/µ
0� = π0� k ≤ 
Cp/Cq�N
p′/q′�k

for each k ∈ Z′
+, and

k−1∑
r=0

∞∑
j=r+1

πr�j

pr

≤
(
Cp

Cq

)N 1
q′

k−1∑
r=0

1
1− p′/q′ =

(
Cp

Cq

)N k

q′ − p′ ∀k ∈ Z′
+�
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Also,

Bk

µ
k�
µ
0� =

k∑
r=0

π0� k

prπ0� r
=

k−1∑
r=0

πr�k
pr

+ 1
pk

∀k ∈ Z′
+�

which implies

1 ≤ Bk

µ
k�
µ
0� ≤

(
Cp

Cq

)N 1
q′ − p′ +

1
inf j∈Z+ pj

∀k ∈ Z′
+�

Hence, if p > 0 then, for some C <∞ and z ∈ Z+ large enough,

dTV

(
�

(�Bz�∑
i=1

I�ηi = z�
)
�Pólya–Aeppli
λ� θ�

)
≤ Cz

(
p′

q′

)z
�

where

θ = qz

(
1− Bz−2

Bz−1

)
� λ = �Bz�µ
0�P0
τz < τ0� =

�Bz�
Bz−1

µ
0��

Since limz→∞Bz = ∞ and limz→∞Bz/Bz+1 = p/q [both results according to
Lemma 2.1 in Berman (1986)], it holds that

Pólya–Aeppli
λ� θ� d−→ Pólya–Aeppli
(
q

p
µ
0�� q− p

)
as z→ ∞�

a limiting distribution which is not completely identical to the one given in
(the unproven) Theorem 6.1 in Berman (1986).

Example 6.2. Serfozo (1980) considers a stationary birth–death chain η
with the following transition probabilities: p0 = 1, pj = p < 1

2 for each j ∈ Z′
+,

and qj = 1−p =� q for each j ∈ Z′
+. He proves the following compound Poisson

limit theorem (in his Corollary 3.1):

�

(�az�∑
i=1

I�ηi = z�
)

d−→ Pólya–Aeppli
(
q− p

2q
� q− p

)
as z→ ∞�

where az �= 
q/p−1�−1
q/p�z. This result can be extended, using Theorem 6.1.
First,

πj�k =




(
p

q

)k−j
� if 0 < j < k,

1
p

(
p

q

)k
� if 0 = j < k,

which implies that

µ
k� = π0� k∑∞
j=0 π0� j

=




q− p

2q
� if k = 0,

q− p

2pq

(
p

q

)k
� if k > 0,
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and that
∞∑
k=z

µ
k� = q− p

2pq

∞∑
k=z

(
p

q

)k
= q− p

2pq

(
p

q

)z 1
1− p/q

= 1
2p

(
p

q

)z
�

Moreover,

k−1∑
r=0

∞∑
j=r+1

πr�j

pr

= 1
p

k−1∑
r=0

∞∑
j=r+1

(
p

q

)j−r

= 1
p

(
p/q

1− p/q

)
k = k

q− p
∀k ∈ Z′

+�

akµ
k� =
1

q/p− 1

(
q

p

)k q− p

2pq

(
p

q

)k
= 1

2q
∀k ∈ Z′

+�
(z−1∑
s=0

1
psπ0� s

)−1 z−1∑
k=1

µ
k�
k−1∑
r=0

1
prπ0� r

= q/p− 1

q/p�z − 1

z−1∑
k=1

1
2q

(
1−

(
p

q

)k)

= q− p

2pq
(
1− 
p/q�z)

(
p

q

)z(
z− 1− p

q− p

(
1−

(
p

q

)z−1))
�

Hence,

dTV

(
�

(�az�∑
i=1

I�ηi = z�
)
�Pólya–Aeppli
λ� θ�

)

≤ 2H
λ1� λ2� � � ��
(

2z
q− p

+ q


q− p�3
)
�az�

(
q− p

2pq

)2(p
q

)2z

+ 1
p

(
p

q

)z
+ 
q− p�
z− 1� − p

(
1− 
p/q�z−1)

1− 
p/q�z
1
pq

(
p

q

)z
�

where

θ = q− p

1− (
p/q

)z � λ = �az�

q− p�2

2pq
(
1− 
p/q�z)

(
p

q

)z
�

The bound converges to 0 as z → ∞. Moreover, limz→∞ θ = q − p and
limz→∞ λ = 
q− p�/
2q�.

Example 6.3. Serfozo (1980) proves (also in his Corollary 3.1), for the
same birth–death chain as in Example 6.2, that

�

(�az�∑
i=1

I�ηi ≥ z�
)

d−→ CP
λ1� λ2� � � �� as z→ ∞�
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where λ = 
q− p�/
2q� and
λk
λ

=
k∑
i=1

gi∗
k�
(
p

q

)i−1(
1− p

q

)
∀k ∈ Z′

+�

Here, gi∗
·� denotes g convoluted with itself i times, and the function g�Z′
+ →

�0�1� is defined by

g
2i− 1� = 
−1�i−1
2p

(
1/2
i

)(
4pq

)i ∀ i ∈ Z′
+�

g
2i� = 0 ∀ i ∈ Z′
+�

(6.4)

This result can also be extended using Theorem 6.1. It holds that
∞∑
k=z

kµ
k� = q− p

2pq

(
p

q

) ∞∑
k=z

k

(
p

q

)k−1
= q− p

2pq

(
p

q

)
d
dx

[
xz

1− x

]
x=p/q

= q− p

2pq

(
p

q

)
1− p/q�z+ p/q(
1− p/q

)2
(
p

q

)z−1
= 
q− p�z+ p

2p
q− p�
(
p

q

)z
�

Hence,

dTV

(
�

(�az�∑
i=1

I�ηi ≥ z�
)
CP
λ1� λ2� � � ��

)

≤ 2H
λ1� λ2� � � ��
(

2z
q− p

+ 2p
q− p� + q


q− p�3
)
�az�

(
1
2p

)2(p
q

)2z

+ 1
p

(
p

q

)z
+ 
q− p�
z− 1� − p

(
1− 
p/q�z−1)

1− 
p/q�z
1
pq

(
p

q

)z
�

where

λ = �az�µ
0�P0
τz < τ0� = �az�µ
z�Pz
τ0 < τz�

= �az�

q− p�2

2pq
(
1− 
p/q�z)

(
p

q

)z
�

and it follows as in the proof of Corollary 3.1 in Serfozo (1980) that

λk
λ

= Pz

(τ0−1∑
i=1

I�ηi ≥ z� = k

)

=
k∑
i=1

gi∗
k�
(
1− 1− p/q

1− 
p/q�z
)i−1( 1− p/q

1− 
p/q�z
)

∀k ∈ Z′
+�

The bound converges to 0 as z→ ∞. Moreover, limz→∞ λ = 
q− p�/
2q�, and

lim
z→∞

λk
λ

=
k∑
i=1

gi∗
k�
(
p

q

)i−1(
1− p

q

)
∀k ∈ Z′

+�
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