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RISK-SENSITIVE DYNAMIC PORTFOLIO OPTIMIZATION WITH
PARTIAL INFORMATION ON INFINITE TIME HORIZON

BY HIDEO NAGAI AND SHIGE PENG

Osaka University and Shandong University

We consider an optimal investment problem for a factor model treated
by Bielecki and Pliska (Appl. Math. Optim. 39 337–360) as a risk-sensitive
stochastic control problem, where the mean returns of individual securities
are explicitly affected by economic factors defined as Gaussian processes.
We relax the measurability condition assumed as Bielecki and Pliska for the
investment strategies to select. Our investment strategies are supposed to be
chosen without using information of factor processes but by using only past
information of security prices. Then our problem is formulated as a kind of
stochastic control problem with partial information. The case on a finite time
horizon is discussed by Nagai (Stochastics in Finite and Infinite Dimension
321–340. Birkhäuser, Boston). Here we discuss the problem on infinite time
horizon.

1. Introduction There have been several works applying the idea of risk-
sensitive control to problems of mathematical finance. Among them, Fleming [7],
Fleming and Sheu [9], and Bielecki and Pliska [3] have studied risk-sensitive
control problems arising from portfolio management. In particular, Bielecki and
Pliska [3], which treated a factor model where the mean returns of individual
securities are explicitly affected by economic factors defined as ergodic Gauss–
Markov processes, motivates the present paper. For such model they considered an
optimal investment problem maximizing the risk-sensitized expected growth rate
per unit time of the value of the capital the investor possess under the condition that
security prices and factors have independent randomness. Since their works there
have been several works [4, 10, 11, 13] improving the independence condition
assumed in [3]. In these works as well the investment strategies are assumed
to be chosen by observing all past information of factor processes as well as
security prices. On the other hand, in the previous work [14] we relaxed the
measurability conditions for the investment strategies with no constraint as the
ones to be selected without using information of factor processes but by using
only past information of security prices in the case of a finite time horizon.
Then the problem is formulated as a kind of risk-sensitive stochastic control with
partial information. Indeed we can formulate our problem by regarding the factor
processes as system processes and security prices observation processes in terms
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of stochastic control. Under such setting up we have constructed the optimal
strategies for the optimal investment problem on a finite time horizon, which
are explicitly represented by the solutions of the ordinary differential equations
with the Riccati equations concerning filter and the value function. The results are
summarized in Section 3.

In the present paper we shall discuss the optimal investment problem on infinite
time horizon under such formulation with partial information. To consider the
problem it is necessary to study asymptotic behavior of the solution U(t;T ) of
inhomogeneous Riccati differential equation (3.6) with the terminal condition
at T , related to the value function of the problem with the time horizon T . The
inhomogeneity of the coefficients of the equations comes from filter, which is also
the solution �(t) of a Riccati differential equation (3.3) with an initial condition,
whose coefficients are all constant matrices. Under the very natural condition
(i.e., stability of the factor process under the minimal martingale measure) we
can see the solution �(t) has exponential stability as t → ∞ (cf. Section 4). The
difficulty lies in the study of asymptotics of the solution U(t;T ). Specific feature
of asymptotics of the solution U(t;T ) we obtained here is stability as t and T − t

tend to ∞ (cf. Section 5), from which we can see the asymptotic behavior of
the value function as T → ∞ and we can construct the optimal strategy for the
problem on infinite time horizon by using the solutions of the limit equations and
filter (cf. Section 6). Known results on Riccati differential equations and necessary
related notions for obtaining our results are completed in Appendix.

2. Setting up. We consider a market with m + 1 ≥ 2 securities and n ≥ 1
factors. We assume that the set of securities includes one bond, whose price is
defined by the ordinary differential equation

dS0(t)= r(t)S0(t) dt, S0(0)= s0,(2.1)

where r(t) is a deterministic function of t . The other security prices and factors
are assumed to satisfy the following stochastic differential equations:

dSi(t)= Si(t)

{
(a+AXt)

i dt +
n+m∑
k=1

σ ik dW
k
t

}
,

Si(0)= si, i = 1, . . . ,m

(2.2)

and

dXt = (b+BXt) dt +�dWt, X(0)= x ∈ R
n,(2.3)

where Wt = (Wk
t )k=1,...,(n+m) is an m+ n dimensional standard Brownian motion

process defined on a filtered probability space (�,F ,P ;Ft ). Here A,B,� are
respectively m × n, n× n, n × (m+ n) constant matrices and a ∈ R

m, b ∈ R
n.
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The constant matrix (σ ik)i=1,2,...,m;k=1,2,...,(n+m) will be often denoted by � in
what follows. In the present paper we always assume that

��∗ > 0,(2.4)

where �∗ stands for the transposed matrix of �.
Let us denote investment strategy to ith security Si(t) by hi(t), i = 0,1, . . . ,m,

and set
S(t)= (

S1(t), S2(t), . . . , Sm(t)
)∗
,

h(t)= (
h1(t), h2(t), . . . , hm(t)

)∗
and

Gt = σ
(
S(u);u≤ t

)
.

Here S∗ stands for transposed matrix of S.

DEFINITION 2.1. (h0(t), h(t)∗)0≤t≤T is said an investment strategy if the
following conditions are satisfied:

(i) h(t) is a Rm valued Gt progressively measurable stochastic process such that

m∑
i=1

hi(t)+ h0(t)= 1;(2.5)

(ii)

P
(∃ c(ω) such that |h(s)| ≤ c(ω), 0 ≤ s ≤ T

) = 1.

The set of all investment strategies will be denoted by H(T ). For simplicity
when (h0(t), h(t)∗)0≤t≤T ∈ H(T ) we will often write h ∈ H(T ) since h0 is
determined by (2.5). For given h ∈ H(T ) the process Vt = Vt(h) representing
the investor’s capital at time t is determined by the stochastic differential equation

dVt

Vt
=

m∑
i=0

hi(t)
dSi(t)

Si(t)

= h0(t)r(t) dt +
m∑
i=1

hi(t)

{
(a+AXt)

i dt +
m+n∑
k=1

σ ik dW
k
t

}
,

V0 = v.

Then, taking (2.5) into account it turns out to be a solution of

dVt

Vt
= r(t) dt + h(t)∗

(
a+AXt − r(t)1

)
dt + h(t)∗�dWt,

V0 = v,

(2.6)

where 1 = (1,1, . . . ,1)∗.
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We first consider the following problem. For a given constant θ > −2, θ �= 0,
maximize the following risk-sensitized expected growth rate up to time horizon T :

J (v, x;h;T )= −2

θ
logE

[
exp

{
−θ

2
logVT (h)

}]
,(2.7)

where h ranges over the set A(T ) of all investment strategies defined later. Then
we consider the problem maximizing the risk-sensitized expected growth rate per
unit time

J (v, x;h)= lim sup
T→∞

(
− 2

θT

)
logE

[
exp

{
−θ

2
logVT (h)

}]
,(2.8)

where h ranges over the set of all investment strategies such that h ∈ A(T ) for
each T .

Note that in our problem a strategy h is to be chosen as σ(S(u);u ≤
t) measurable process, different from the case of Bielecki–Pliska where it is
σ((S(u),Xu),u≤ t) measurable. Namely, in our case the strategy is to be selected
without using past information of the factor process Xt .

Since Vt satisfies (2.6) we have

V
−θ/2
t = v−θ/2 exp

{
θ

2

∫ t

0
η
(
Xs,hs, r(s); θ)ds

− θ

2

∫ t

0
h∗
s� dWs − 1

2

(
θ

2

)2 ∫ t

0
h∗
s��

∗hs ds
}
,

where

η(x,h, r; θ)= 1

2

(
θ

2
+ 1

)
h∗��∗h− r − h∗(a +Ax − r1).

Therefore, if θ > 0 (resp. −2 < θ < 0) our problem maximizing J (v, x;h;T ) is
reduced to the one minimizing (resp. maximizing) the following criterion:

I (x,h;T )= v−θ/2E
[

exp
{
θ

2

∫ T

0
η
(
Xs,hs, r(s); θ)ds

(2.9)

− θ

2

∫ T

0
h∗
s� dWs − 1

2

(
θ

2

)2 ∫ T

0
h∗
s��

∗hs ds
}]
.

Now we shall reformulate the above problem as a partially observable risk-
sensitive stochastic control problem. For that we set

Y it = logSi(t),
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then we can see that Yt = (Y 1
t , . . . , Y

m
t )

∗ satisfies the following stochastic
differential:

dY it = {
ai − 1

2 (��
∗)ii + (AXt)

i
}
dt +

m+n∑
k=1

σ ik dW
k
t ,(2.10)

i = 1, . . . ,m, by using Itô formula. So, setting d = (di) ≡ (ai − 1
2 (��

∗)ii), we
have

dYt = (d +AXt) dt +� dWt,(2.11)

which we shall regard as the SDE defining the observation process in terms of
stochastic control with partial observation. On the other hand, Xt defined by (2.3)
is regarded as a system process. In the present setting system noise �dWt and
observation noise � dWt are correlated in general. Note that σ(Yu, ;u ≤ t) =
σ(S(u);u ≤ t) holds since log is a strictly increasing function, so our problem
is to minimize (or maximize ) the criterion (2.9) while looking at the observation
process Yt and choosing a σ(Yu, ;u≤ t) measurable strategy h(t). Though there
is no control in the SDE (2.3) defining system process Xt criterion I (x,h;T ) is
defined as a functional of the strategy h(t) measurable with respect to observation
and the problem is the one of stochastic control with partial observation.

Now let us introduce a new probability measure P̂ on (�,F ) defined by

dP̂

dP

∣∣∣∣
FT

= ρT ,

where

ρt = exp
{
−

∫ t

0
(d +AXs)

∗(��∗)−1�dWs

− 1
2

∫ t

0
(d +AXs)

∗(��∗)−1(d +AXs)ds

}
.

(2.12)

We see that P̂ is a probability measure since it can be seen by standard arguments
(cf. [1]) that ρt is a martingale and E[ρT ] = 1. Moreover, according to Girsanov
theorem,

Ŵt =Wt +
∫ t

0
�∗(��∗)−1(d +AXs)ds(2.13)

turns out to be a standard Brownian motion process under the probability measure
P̂ and we have

dYt =�dŴt ,(2.14)

dXt = {
b+BXt −��∗(��∗)−1(d +AXt)

}
dt +�dŴt.(2.15)
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Set ξt = 1/ρt ; then we have

ξt = exp
{∫ t

0
(d +AXs)

∗(��∗)−1 dYs

− 1
2

∫ t

0
(d +AXs)

∗(��∗)−1(d +AXs)ds

}
.

(2.16)

Let us rewrite our criterion I (x,h;T ) by using new probability measure P̂ . We
have

I (x,h;T )= v−θ/2Ê
[
ξT exp

{
θ

2

∫ t

0
η
(
Xs,hs, r(s); θ)ds

− θ

2

∫ t

0
h∗
s� dWs − 1

2

(
θ

2

)2 ∫ t

0
h∗
s��

∗hs ds
}]

= v−θ/2Ê
[

exp
{
θ

2

∫ T

0
η
(
Xs,hs; r(s); θ)ds +

∫ T

0
Q(Xs,hs)

∗ dYs(2.17)

− 1

2

∫ T

0
Q(Xs,hs)

∗(��∗)Q(Xs,hs) ds
}]

= v−θ/2Ê
[
Ê

[
exp

{
θ

2

∫ T

0
η
(
Xs,hs; r(s); θ)ds

}
0T

∣∣GT
]]
,

where

0t = exp
{∫ t

0
Q(Xs,hs)

∗ dYs − 1
2

∫ t

0
Q(Xs,hs)

∗(��∗)Q(Xs,hs) ds
}

and

Q(x,h)= (��∗)−1(Ax + d)− θ

2
h= (��∗)−1

{
(Ax + d)− θ

2
(��∗)h

}
.

Set

qh(t)
(
ϕ(t)

) = Ê

[
exp

{
θ

2

∫ t

0
η
(
Xs,hs; r(s); θ)ds

}
0tϕ(t,Xt )

∣∣Gt
]
,(2.18)

then (2.17) reads

I (x,h;T )= v−θ/2Ê[qh(T )(1)].(2.19)

Hence, if θ > 0 (resp. −2 < θ < 0) our problem is reduced to minimize (resp.
maximize) I of (2.19) when taking h over H(T ).
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3. Finite time horizon case. In the present section we summarize the results
obtained in the previous paper [14]. Let us set

Lϕ = 1
2 (��

∗)ijDijϕ + (b+Bx)iDiϕ.(3.1)

Then, the following proposition can be obtained by using Itô calculus in a standard
way.

PROPOSITION 3.1 [14]. q(t)(ϕ(t)) ≡ qh(t)(ϕ(t)) satisfies the following
stochastic partial differential equation (SPDE ):

q(t)
(
ϕ(t)

)
= q(0)

(
ϕ(0)

)
+

∫ t

0
q(s)

(
∂ϕ

∂t
(s, ·)+Lϕ(s, ·)− θ

2
h∗
s��

∗Dϕ(s, ·)+ θ

2
ηs(·)ϕ(s, ·)

)
ds(3.2)

+
∫ t

0
q(s)

(
ϕ(s, ·)Q(·, hs))dYs +

∫ t

0
q(s)

(
(Dϕ)∗��∗(��∗)−1)

dYs,

where ηs(·)= η(·, hs; r(s); θ).
Now let us give the explicit representation to the solution of SPDE (3.2). For

that let us introduce the matrix Riccati equation

�̇+ (�A∗ +��∗)(��∗)−1(A�+��∗)−��∗ −B�−�B∗ = 0,

�(0)= 0
(3.3)

and the stochastic differential equation

dγt = {
Bγt + b− (�A∗ +��∗)(��∗)−1(Aγt + d)

}
dt

+ (�A∗ +��∗)(��∗)−1 dYt ,

γ0 = x.

(3.4)

The following theorem can be seen by using the methods developed in [1].

THEOREM 3.1 [14]. The solution of the SPDE (3.2) with q(0)(ϕ(0)) =
ϕ(0, x) has the following representation:

q(t)
(
ϕ(t)

) = αt

∫
ϕ(t, γt +�

1/2
t z)

1

(2π)n/2
e−|z|2/2 dz,

where

αt = exp
{∫ t

0
Q(γs,hs)

∗ dYs

− 1

2

∫ t

0
Q(γs,hs)

∗(��∗)Q(γs, hs) ds + θ

2

∫ t

0
η(γs, hs; r(s); θ) ds

}
.
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REMARK. It is known that (3.3) has a unique solution (cf. [5, 8]).

Now we shall construct optimal strategy minimizing (resp. maximizing) the
criterion (2.19) for θ > 0 (resp. −2< θ < 0). Because of Theorem 3.1 (2.19) reads

I (x,h;T )= v−θ/2Ê[αT ].(3.5)

Let us introduce the following n× n matrix Riccati differential equation:

U̇ +U

{
B − θ

θ + 2
(�A∗ +��∗)(��∗)−1A

}

+
{
B∗ − θ

θ + 2
A∗(��∗)−1(A�+��∗)

}
U

− 2θ

θ + 2
U(�A∗ +��∗)(��∗)−1(A�+��∗)U

+ 1

θ + 2
A∗(��∗)−1A= 0, U(T )= 0.

(3.6)

When we have a solution U of (3.6) we get a solution g of the following linear
differential equation on Rn:

ġ +B∗g − 2θ

θ + 2
U(�A∗ +��∗)(��∗)−1(A�+��∗)g

− θ

θ + 2
A∗(��∗)−1(A�+��∗)g

+Ub+ 1

θ + 2
{A− θ(A�+��∗)U }∗(��∗)−1(

a − r(t)1
) = 0,

g(T )= 0.

(3.7)

Furthermore, for given solutions U of (3.6) and g of (3.7) we have a solution k of
the following differential equation:

k̇ + r(t)+ tr
[
U(�A∗ +��∗)(��∗)−1(A�+��∗)

]
− θg∗(�A∗ +��∗)(��∗)−1(A�+��∗)g + 2g∗b

+ 1

θ + 2
c∗t (��∗)−1ct = 0, k(T )= 0,

(3.8)

where

ct = a − r(t)1 − θ(A�+��∗)g.
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DEFINITION. Let us denote by A(T ) the set of all investment strategy
satisfying

Ê

[
exp

{∫ T

0
=∗
s (h) dYs − 1

2

∫ T

0
=s(h)��

∗=s(h) ds
}]

= 1

where

=∗
t =

[
(γ ∗
t A

∗ + d∗)− θ(γ ∗
t U + g∗)(�A∗ +��∗)− θ

2
h∗
t (��

∗)
]
(��∗)−1.

THEOREM 3.2 [14]. If (3.6) has a solution U , then there exists an optimal
strategy ĥ ∈ A(T ) maximizing the criterion (2.7) and it is explicitly represented
as

ĥt = 2

θ + 2
(��∗)−1[

a− r(t)1 − θ(A�+��∗)g
(3.9)

+ {A− θ(A�+��∗)U }γt]
where g is a solution to (3.7) and � (resp. γt ) is the solution to (3.3) (resp. 3.4).
Moreover

J (v, x; ĥ;T )= sup
h∈A(T )

J (v, x;h;T )
(3.10)

= logv + x∗U(0)x + 2g∗(0)x + k(0)

where k is a solution to (3.8).

REMARK. It is known that (3.6) has a unique solution if θ > 0 (cf. [5, 8]).

4. Stability of filter. In the present section we study asymptotic behavior of
the solution �(t) of (3.3) as t → ∞.

LEMMA 4.1. Assume that

G := B −��∗(��∗)−1A is stable,(4.1)

then �(t)→ �̄≥ 0, t → ∞, where �̄ is a unique nonnegative definite solution of
the algebraic Riccati equation(

B −��∗(��∗)−1A
)
�̄+ �̄

(
B −��∗(��∗)−1A

)∗
− �̄A∗(��∗)−1A�̄+�

(
Im+n −�∗(��∗)−1�

)
�∗ = 0.

(4.2)

Moreover, B − (�̄A∗ +��∗)(��∗)−1A is stable.
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PROOF. We first note that (3.3) can be written as

�̇= (
B −��∗(��∗)−1A

)
�+�

(
B −��∗(��∗)−1A

)∗
−�A∗(��∗)−1A�+�

(
Im+n −�∗(��∗)−1�

)
�∗, �(0)= 0

and that

{(
Im+n −�∗(��∗)−1�

)
�∗}∗(

Im+n −�∗(��∗)−1�
)
�∗

=�
(
Im+n −�∗(��∗)−1�

)
�∗.

Because of (4.1) we see that ((Im+n−�∗(��∗)−1�)�∗,B∗ −A∗(��∗)−1��∗)
is detectable and the present lemma follows from the results by Wonham [15] and
Kucera [12] (cf. Appendix). �

REMARKS. (i) �(t) converges exponentially fast to �̄. In fact, by the
expressions

�(t)= −
∫ t

0
e(t−s)G

{
�(s)A∗(��∗)−1A�(s)

}
e(t−s)G∗

ds

+
∫ t

0
e(t−s)G�

(
Im+n −�∗(��∗)−1�

)
�∗e(t−s)G∗

ds

and

�̄= −
∫ ∞

0
esG�̄A∗(��∗)−1A�̄esG

∗
ds

+
∫ ∞

0
esG�

(
Im+n −�∗(��∗)−1�

)
�∗esG∗

ds

we see it since G is stable.
(ii) Condition (4.1) means stability of the factor process Xt under the minimal

martingale measure P̃ (cf. [6], Proposition 1.8.2 as for minimal martingale
measures), which is defined by

dP̃

dP

∣∣∣∣
FT

= exp
{
−

∫ T

0
θ∗
s dWs − 1

2

∫ T

0
|θs |2 ds

}
,

θs =�∗(��∗)−1(a +AXs − r(s)1).

5. Asymptotics of inhomogeneous Riccati equations. In what follows we
always assume that θ > 0. Then we have always a solution of (3.6). To study
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asymptotics of the solution of (3.6) we first consider the equation

˙̃
U + Ũ

(
B − θ

θ + 2
(�̄A∗ +��∗)(��∗)−1A

)

+
(
B − θ

θ + 2
(�̄A∗ +��∗)(��∗)−1A

)∗
Ũ

− 2θ

θ + 2
Ũ (�̄A∗ +��∗)(��∗)−1(A�̄+��∗)Ũ

+ 1

θ + 2
A∗(��∗)−1A= 0, Ũ (T )= 0.

(5.1)

LEMMA 5.1. Under assumption (4.1) Ũ (t;T ) converges to �U ≥ 0 as T − t →
∞, where �U is a unique nonnegative definite solution of the algebraic Riccati
equation

Ū

(
B − θ

θ + 2
(�̄A∗ +��∗)(��∗)−1A

)

+
(
B − θ

θ + 2
(�̄A∗ +��∗)(��∗)−1A

)∗
Ū

− 2θ

θ + 2
Ū (�̄A∗ +��∗)(��∗)−1(A�̄+��∗)Ū

+ 1

θ + 2
A∗(��∗)−1A= 0

(5.2)

and

B − θ

θ + 2
(�̄A∗ +��∗)(��∗)−1A

(5.3)

− 2θ

θ + 2
(�̄A∗ +��∗)(��∗)−1(A�̄+��∗)Ū

is stable.

PROOF. Because of Lemma 4.1 we see that B − (�̄A∗ +��∗)(��∗)−1A is
stable and therefore we see that (B− θ

θ+2 (�̄A
∗ +��∗)(��∗)−1A,�̄A∗ +��∗)

is stabilizable and (
√

1
θ+2�

∗(��∗)−1A,B − θ
θ+2(�̄A

∗ + ��∗)(��∗)−1A) is

detectable. Indeed, by setting K = 2
θ+2(��

∗)−1A, we see that

B − θ

θ + 2
(�̄A∗ +��∗)(��∗)−1A− (�̄A∗ +��∗)K

= B − (�̄A∗ +��∗)(��∗)−1A
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is stable. Furthermore we see that for K ′ = 2√
θ+2

�∗(��∗)−1(A�̄+��∗) ,

B∗ − θ

θ + 2
A∗(��∗)−1(A�̄+��∗)−

√
1

θ + 2
A∗(��∗)−1�K ′

= (
B − (�̄A∗��∗)(��∗)−1A

)∗
is stable. Thus the present lemma follows from the results by Wonham [15] and
Kucera [12]. �

REMARK 1. We can actually see more on the convergence in the above lemma

since ˙̃
U ≤ 0 (cf. [5]). In fact, we have supδT≤t≤(1−ε)T |Ũ (t;T ) − Ū | → 0 as

T → ∞ for each δ > 0 and 0< ε < 1.

To study asymptotics of the solution U of (3.6) we shall introduce a general
equation rather than specific one. For given continuous matrix valued functions
C(t), D(t) and R(t) ≥ 0 and a constant matrix N > 0 we consider the
inhomogeneous Riccati equation

0 = K̇T +C(t)∗KT +KTC(t)

−KTD(t)N
−1D(t)∗KT +R(t)∗R(t), KT (T )= 0.

(5.4)

On asymptotics of the solution of this equation we have the following lemma.

LEMMA 5.2. Assume that C(t), D(t) and R(t) converge exponentially fast
to C̄, D̄, R̄ respectively as t → ∞ and that (C̄, D̄) is stabilizable and (R̄, C̄)
is detectable. Then there exists κ > 0, β > 0 and T∗ > 0 such that for each
T > T0 > T∗ the solution of (5.4) on [T0, T ] satisfies

K̃T (t)+ κe−βT0K−
T (t) ≤KT (t)

(5.5)
≤ K̃T (t)+ κe−βT0K+

T (t), t ∈ [T0, T ]
where K̃T (t), t ∈ [T0, T ], is the solution of

0 = ˙̃
KT + C̄∗K̃T + K̃T C̄ − K̃T D̄N

−1D̄∗K̃T + R̄∗R̄, K̃T (T )= 0(5.6)

and K−
T (t) and K+

T (t) are the solutions of

0 = K̇−
T + C̄∗K−

T +K−
T C̄ −K−

T D̄N
−1D̄∗K̃T

− K̃T D̄N
−1D̄∗K−

T − In, K−
T (T )= 0

(5.7)

and

0 = K̇+
T + C̄∗K+

T +K+
T C̄ −K+

T D̄N
−1D̄∗K̃T

− K̃T D̄N
−1D̄∗K+

T + In, K+
T (T )= 0,

(5.8)

respectively.
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PROOF. We first note that KT (t) ≥ 0. Let us take a matrix H such that
C̄ − D̄H is stable and rewrite (5.4) by

0 = K̇T + (
C(t)−D(t)H

)∗
KT +KT

(
C(t)−D(t)H

)
− (
D(t)∗KT −NH

)∗
N−1(

D(t)∗KT −NH
) +H ∗NH +R(t)∗R(t),

KT (T )= 0.

(5.9)

Let S(t) be a solution of

Ṡ + (
C(t)−D(t)H

)∗
S + S

(
C(t)−D(t)H

)
+H ∗NH +R(t)∗R(t)= 0, S(T )= 0,

(5.10)

then we have

(S − K̇T )+ (
C(t)−D(t)H

)∗
(S −KT )+ (S −KT )

(
C(t)−D(t)H

) ≤ 0

and we see that

0 ≤KT (t)≤ S(t).

Let µ(t) be the maximum of the real part of the eigenvalues of C(t) − D(t)H .
Then, since C(t) −D(t)H → C̄ − D̄H there exists T1 such that µ(t) ≤ µ̄ < 0,
t ≥ T1. Therefore we have

‖S(t)‖ ≤ c

∫ T

t
e−µ̄(s−t)‖H ∗NH +R(s)∗R(s)‖ds

≤ c′
∫ T

t
e−µ̄(s−t) ds, t ≥ T1.

Thus we see that S(t), t ≥ T1, is uniformly bounded with respect to t and T ,
accordingly so is KT (t), t ≥ T1, and also is KT (t), t ≥ 0.

We rewrite (5.4) by

0 = K̇T + C̄∗KT +KT C̄

−KT D̄N
−1D̄∗KT + R̄∗R̄+ R̃(t), KT (T )= 0.

(5.11)

Since KT (t) is uniformly bounded and C(t),D(t) and R(t) converges exponen-
tially fast to C̄, D̄ and R̄ respectively we see that there exist κ , β > 0 such that

−κ
2
e−βtIn ≤ R̃(t)≤ κ

2
e−βtIn.(5.12)

We note that under our assumptions K̃T (t) converges to a constant matrix K̄ as
T − t → ∞ and C̄ − D̄N−1D̄∗K̄ is stable (cf. Appendix). We set

K1
T (t)= K̃T (t)+ κe−βT0K−

T (t), t ≥ T0 > 0,
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then it satisfies

0 = K̇1
T + C̄∗K1

T +K1
T C̄ −K1

T D̄N
−1D̄∗K1

T + R̄∗R̄− κe−βT0In

+ κ2e−2βT0Q1(t), K1
T (T )= 0,

(5.13)

where Q1(t)=Q1(t;T ) :=K−
T D̄N

−1D̄∗K−
T (t). Note that K−

T (t) satisfies

K̇−
T + (C̄ − D̄N−1D̄∗K̃T )∗K−

T +K−
T (C̄ − D̄N−1D̄∗K̃T )− In = 0

and C̄− D̄N−1D̄∗K̃T (t)→ C̄− D̄N−1D̄∗K̄ as T − t → ∞ and C̄− D̄N−1D̄∗K̄
is stable. We can see that K−

T (t) is uniformly bounded with respect to t and T in a
similar way to the above and therefore so is Q1(t;T ). Thus we see that by taking
sufficiently large T∗ > 0,

κ2e−2βT0Q1(t;T ) < κ

2
e−βT0In, t ≥ T0 ≥ T∗.

Hence we obtain

−κe−βT0In + κ2e−2βT0Q1(t)≤ R̃(t), t ≥ T0.

Therefore by comparison theorem of Riccati differential equation we have

K1
T (t)≤KT (t), t ∈ [T0, T ].

On the other hand, if we set

K2
T (t)= K̃T (t)+ κe−βT0K+

T (t), t ≥ T0,

then it satisfies

0 = K̇2
T + C̄∗K2

T +K2
T C̄ −K2

T D̄N
−1D̄∗K2

T + R̄∗R̄

+ κe−βT0In + κ2e−2βT0Q2(t), K2
T (T )= 0,

(5.14)

where Q2(t)=Q2(t;T )=K+
T (t)D̄N

−1D̄∗K+
T (t). Because of (5.12) we can see

that

KT (t)≤K2
T (t), t ∈ [T0, T ],

by comparison theorem of Riccati differential equation and we conclude the proof
of the lemma. �

THEOREM 5.1. Assume (4.1), θ > 0 and limt→∞ r(t) = r̄ . Then for the
solutions U(t;T ), g(t;T ) and k(t;T ) of equations (3.6), (3.7) and (3.8)
respectively it follows that

lim
T−t→∞, t→∞U(t;T )= Ū ,(5.15)

lim
T−t→∞, t→∞g(t;T )= ḡ,(5.16)

− lim
T−t→∞, t→∞ k̇(t;T )= ρ(θ),(5.17)
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where Ū ≥ 0 is the solution of (5.2), ḡ the one of{
B − 2θ

θ + 2
(�̄A∗ +��∗)(��∗)−1(A�̄+��∗)Ū

− θ

θ + 2
(�̄A∗ +��∗)(��∗)−1A

}∗
ḡ

+ Ūb+ 1

θ + 2

{
A− θ(A�̄+��∗)Ū

}∗
(��∗)−1(a − r̄1)= 0

(5.18)

and ρ(θ) is defined by

ρ(θ)= r + tr[Ū (�̄A∗ +��∗)(��∗)−1(A�̄+��∗)]
− θḡ∗(�̄A∗ +��∗)(��∗)−1(A�̄+��∗)ḡ + 2ḡ∗b

+ 1

θ + 2

(
a − r̄1 − θ(A�̄+��∗)ḡ

)∗
(��∗)−1

× (
a − r̄1 − θ(A�̄+��∗)ḡ

)
.

(5.19)

PROOF. Equation (5.14) is a consequence of Lemma 5.1 and 5.2. In fact, if
we set in (5.4) C(t) = B − θ

θ+2(�A
∗ + ��)(��∗)−1A, D(t) =�A∗ +��∗,

N−1 = 2θ
θ+2(��

∗)−1 and

R(t)=
√

1

θ + 2
�∗(��∗)−1A,

then it can be seen that Lemma 5.2 applies, taking into account Lemma 4.1 and
Lemma 5.1.

As for (5.15), owing to Lemma 5.1

B − 2θ

θ + 2
(�̄A∗ +��∗)(��∗)−1(A�̄+��∗)Ū

− θ

θ + 2
(�̄A∗ +��∗)(��∗)−1A

is stable and (5.17) has a solution ḡ. Therefore we can see that g(t;T ) is uniformly
bounded and

g(t;T )→ ḡ, T − t → ∞, t → ∞
since

B − 2θ

θ + 2
(�A∗ +��∗)(��∗)−1(A�+��∗)U

− θ

θ + 2
(�A∗ +��∗)(��∗)−1A
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converges to a stable matrix

B − 2θ

θ + 2
(�̄A∗ +��∗)(��∗)−1(A�̄+��∗)Ū

− θ

θ + 2
(�̄A∗ +��∗)(��∗)−1A

and

Ub+ 1

θ + 2
{A− θ(A�+��∗)U }∗(��∗)−1(a − r̄1)

to

Ūb+ 1

θ + 2

{
A− θ(A�̄+��∗)Ū

}∗
(��∗)−1(a− r̄1)

as T − t → ∞, t → ∞.
Since U(t;T ) converges to Ū , �(t) to �̄ and g(t;T ) to ḡ we conclude

(5.16). �

REMARK 2. Because of Remark 1 we can see more on the above convergence.
We have that supδT≤t≤(1−ε)T |U(t;T )− Ū | → 0 as T → ∞ for each δ > 0 and
0< ε < 1 and therefore supδT≤t≤(1−ε)T |g(t;T )− ḡ| → 0 as T → ∞ for each
δ > 0 and 0 < ε < 1, supδT≤t≤(1−ε)T |k̇(t;T ) + ρ(θ)| → 0 as T → ∞ for each
δ > 0 and 0< ε < 1.

6. Infinite time horizon case.

THEOREM 6.1. (i) Under the assumptions of Theorem 5.1,

sup
h

J (v, x;h)≤ ρ(θ),(6.1)

where ρ(θ) is a constant defined by (5.18).
(ii) In addition to the conditions above we assume that

Ū (�̄A∗ +��∗)(��∗)−1(A�̄+��∗)Ū < 1

θ2A
∗(��∗)−1A,(6.2)

then

h̄t = 2

θ + 2
(��∗)−1{

a − r1 − θ(A�̄+��∗)ḡ + [A− θ(A�̄+��∗)Ū ]γt}
is optimal:

J (v, x; h̄)= sup
h

J (v, x;h)= ρ(θ).
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PROOF. (i) We already know that

− 2

θT
log Ê[qh(T )(1)] = − 2

θT
log Ê[αT (h)]

≤ 1

T

(
x∗U(0;T )x + 2g∗(0;T )x + k(0;T )),

where U , g and k are solutions of (3.6), (3.7) and (3.8) respectively. Since U(t;T )
and g(t;T ) are uniformly bounded we see that

lim
T→∞

1

T

(
x∗U(0;T )x + 2g(0;T )∗x) = 0.

On the other hand, for each δ > 0 and ε > 0,

k(0;T )= −
∫ δT

0
k̇(s;T )ds −

∫ (1−ε)T
δT

k̇(s;T )ds −
∫ T

(1−ε)T
k̇(s;T )ds,

limT→∞ −k̇(s;T )= ρ(θ), uniformly on δT ≤ s ≤ (1 − ε)T and k̇(s;T ) is bound-
ed and therefore we have

lim sup
T→∞

∣∣∣∣k(0;T )
T

− ρ(θ)

∣∣∣∣ ≤ c(δ + ε).

Since δ > 0, ε > 0 are arbitrary, we see that

lim
T→∞

k(0;T )
T

= ρ(θ).

(ii) Let us set

h̄t = h̄(γt )= 2

θ + 2
(��∗)−1{

a − r1 − θ(A�̄+��∗)ḡ

+ [A− θ(A�̄+��∗)Ū ]γt},
where γt is the solution of (3.4). We define a probability measure P h̄ by

dP h̄

dP̂

∣∣∣∣
GT

= exp
{∫ T

0
Q(γs, h̄s)

∗ dYs − 1

2

∫ T

0
Q(γs, h̄s)

∗(��∗)Q(γs, h̄s) ds
}
,

then

Zt = Yt −
〈
Y.,

∫ .

0
Q(γs, h̄s)

∗ dYs
〉
t

= Yt −
∫ t

0
��∗Q

(
γs, h̄(γs)

)
ds
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is a Brownian motion with covariance��∗ under the probability measure P h̄ and
γt can be written as

dγt = {
Bγt + b− (�A∗ +��∗)(��∗)−1(Aγt + d)

+ (�A∗ +��∗)Q(γt , h̄(γt ))
}
dt

+ (�A∗ +��∗)(��∗)−1 dZt .

(6.3)

Then

Êx[αT−t (h̄)] = EP
h̄

x

[
exp

{
θ

2

∫ T−t
0

η
(
γs, h̄(γs); r; θ)ds

}]
≡ u(t, x)(6.4)

and u satisfies

∂u

∂t
+ 1

2
tr[(�A∗ +��∗)(��∗)−1(A�+��∗)D2u]

+ [
Bx + b− (�A∗ +��∗)(��∗)−1(Ax + d)

+ (�A∗ +��∗)Q
(
x, h̄(x)

)]∗
Du

+ θ

2
η(x, h̄(x); r; θ)= 0,

u(T , x)= 1,

(6.5)

and therefore µ(t, x)≡ − 2
θ

logu(t, x) satisfies

∂µ

∂t
+ 1

2
tr

[
(�A∗ +��∗)(��∗)−1(A�+��∗)D2µ

]

+ [
Bx + b− (�A∗ +��∗)(��∗)−1(Ax + d)

+ (�A∗ +��∗)Q
(
x, h̄(x)

)]∗
Dµ(6.6)

− θ

4
(Dµ)∗(�A∗ +��∗)(��∗)−1(A�+��∗)Dµ

− η
(
x, h̄(x); r; θ) = 0, µ(T , x)= 0,

provided that (6.4) has a finite value. On the other hand, if we have a solution

µ(t, x) of (6.6), then u(t, x)= e− θ
2µ(t,x) satisfies (6.5) and (6.4) has a finite value.

We set

h̄(x)≡ 2

θ + 2
(��)−1(Hx + ζ ),

H = A− θ(A�̄+��∗)Ū, ζ = a − r1 − θ(A�̄ +��∗)ḡ. Then, (6.6) has the
solution having an explicit representation such that

µ(t, x)= x∗P (t)x + 2q(t)∗x + κ(t).
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If the following equations (6.7), (6.8) and (6.9) have solutions

Ṗ + P

{
B − θ

θ + 2
(�A∗ +��∗)(��∗)−1H

}

+
{
B∗ − θ

θ + 2
H ∗(��∗)−1(A�+��∗)

}
P

(6.7)

− 2θ

θ + 2
P (�A∗ +��∗)(��∗)−1(A�+��∗)P

+ 1

θ + 2
A∗(��∗)−1A

− θ2

θ + 2
Ū(�̄A∗ +��∗)(��∗)−1(A�̄+��∗)Ū = 0, P (T )= 0;

q̇ +
(
B − θ

θ + 2
(�A∗ +��∗)(��∗)−1H

)∗
q

− θP (�A∗ +��∗)(��∗)−1(A�+��∗)q + Pb

− θ

θ + 2
P (�A∗ +��∗)(��∗)−1ζ

− θ2

θ + 2
Ū (�̄A∗ +��∗)(��∗)−1(A�̄+��∗)ḡ

+ 1

θ + 2
A∗(��∗)−1(a− r1)= 0, q(T )= 0;

(6.8)

and

κ̇ + tr[P (�A∗ +��∗)(��∗)−1(A�+��∗)]
− θq∗(�A∗ +��∗)(��∗)−1(A�+��∗)q + 2b∗q

− 2θ

θ + 2
ζ ∗(��∗)−1(A�+��∗)q

−
{

1

θ + 2
ζ ∗(��∗)−1ζ − r − 2

θ + 2
ζ ∗(��∗)−1(a − r1)

}
= 0,

κ(T )= 0.

(6.9)

Because of our assumption (6.2) we have a unique solution of the Riccati
differential equation (6.7) and therefore linear equations (6.8) and (6.9) have
always unique solutions.
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To study asymptotics of the solution P (t) of (6.7) we consider the equation

˙̃
P + P̃

{
B − θ

θ + 2
(�̄A∗ +��∗)(��∗)−1H

}

+
{
B∗ − θ

θ + 2
H ∗(��∗)−1(A�̄+��∗)

}
P̃

− 2θ

θ + 2
P̃ (�̄A∗ +��∗)(��∗)−1(A�̄+��∗)P̃(6.10)

+ 1

θ + 2
A∗(��∗)−1A

− θ2

θ + 2
Ū (�̄A∗ +��∗)(��∗)−1(A�̄+��∗)Ū = 0, P̃ (T )= 0.

Set

K1 = B − θ

θ + 2
(�̄A∗ +��∗)(��∗)−1H,

J = �̄A∗ +��∗, N−1 = 2θ

θ + 2
(��∗)−1

and

R∗R = 1

θ + 2
A∗(��∗)−1A− θ2

θ + 2
Ū (�̄A∗ +��∗)(��∗)−1(A�̄+��∗)Ū ,

then (6.10) reads

˙̃
P +K∗

1 P̃ + P̃K1 − P̃ JN−1J∗P̃ +R∗R = 0.(6.11)

When setting K = θ(��∗)−1(A�̄+��∗)Ū we see that

K1 − JK = B − θ

θ + 2
(�̄A∗ +��∗)(��∗)−1A

− 2θ

θ + 2
(�̄A∗ +��∗)(��∗)−1(A�̄+��∗)Ū

is stable because of Lemma 5.1 and we see that (K1,J) is stabilizable, and also
that (R,K1) is observable under assumption (6.2). Therefore we see that P̃ (t;T )
converges to P̄ as T → ∞, where P̄ is the unique nonnegative definite solution of
the algebraic Riccati equation

P̄ +K∗
1 P̄ + P̄K1 − P̄ JN−1J∗P̄ +R∗R = 0.(6.12)

On the other hand, by direct calculation we see that Ū satisfies (6.12) and
P̄ = Ū . Thus, owing to Lemma 5.2 we see that P (t;T ) is uniformly bounded
and converges to Ū as T − t → ∞, t → ∞.
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To study (6.8) we first note that

B − θ

θ + 2
(�̄A∗ +��∗)(��∗)−1H

− θ(�̄A∗ +��∗)(��∗)−1(A�̄+��∗)P̄

= B − θ

θ + 2
(�̄A∗ +��∗)(��∗)−1A

− 2θ

θ + 2
(�̄A∗ +��∗)(��∗)−1(A�̄+��∗)Ū

and it is stable. Therefore the solution q(t;T ) of (6.8) is uniformly bounded and
converges to q̄ as T − t → ∞, t → ∞, where q̄ is the solution of

{
B − 2θ

θ + 2
(�̄A∗ +��∗)(��∗)−1(A�̄+��∗)Ū

− θ

θ + 2
(�̄A∗ +��∗)(��∗)−1A

}∗
q̄

+ Ūb− θ

θ + 2
Ū (�̄A∗ +��∗)(��∗)−1ζ + 1

θ + 2
A∗(��∗)−1(a − r1)

− θ2

θ + 2
Ū (�̄A∗ +��∗)(��∗)−1(A�̄+��∗)ḡ = 0

and it is seen to be identical to equation (5.17). Hence we get that q̄ = ḡ.
As a consequence of the above consideration we have

lim
T−t→∞, t→∞ −κ̇(t;T )

= tr
[
Ū (�̄A∗ +��∗)(��∗)−1(A�̄+��∗)

]
− θḡ∗(�̄A∗ +��∗)(��∗)−1(A�̄+��∗)ḡ + 2ḡ∗b

− 2θ

θ + 2
ζ(��∗)−1(A�̄+��∗)ḡ

−
{

1

θ + 2
ζ ∗(��∗)−1ζ − r − 2

θ + 2
ζ ∗(��∗)−1(a− r1)

}

= r + tr
[
Ū (�̄A∗ +��∗)(��∗)−1(A�̄+��∗)

]
− θḡ∗(�̄A∗ +��∗)(��∗)−1(A�̄+��∗)ḡ + 2ḡ∗b

+ ζ ∗(��∗)−1ζ

= ρ(θ).
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Therefore, in the same way as the proof of (i), we have

lim
T→∞

κ(0;T )
T

= ρ(θ),

which implies that

− 2

θT
logu(0, x)= 1

T
µ(0, x)→ ρ(θ), T → ∞. �

APPENDIX

DEFINITION A.1. (i) The pair (L,M) of n× n matrix L and n× l matrix M
is said stabilizable if there exists l × n matrix K such that L−MK is stable.

(ii) The pair (L,F ) of l× n matrix L and n× n matrix F is called detectable if
(F ∗,L∗) is stabilizable.

Let us consider the Riccati differential equation

Ṗ +K∗
1P + PK1 − P�N−1�∗P +C∗C = 0, P (T )= 0.(A.1)

Then, the following theorem would be well known in engineering.

THEOREM A.2 [15, 12]. Assume thatN > 0 and (K1,�) is stabilizable, then
for the solution of (A.1) ∃ limT→∞P (t;T )≡ limT→∞P (t)≡ P̃ and P̃ satisfies
the algebraic Riccati equation

K∗
1 P̃ + P̃K1 − P̃�N−1�∗P̃ +C∗C = 0.(A.2)

Moreover, if (C,K1) is detectableK∗
1 − P̃�N−1�∗ is stable and the nonnegative

definite solution P̃ of (A.2) is unique.

DEFINITION A.2. (i) The pair (K,L) of n× n matrix K and n× l matrix L
is said controllable if n× nl matrix (L,KL,K2L, . . . ,Kn−1L) has rank n.

(ii) The pair (L,K) of l × n matrix and n × n matrix is said observable if
(K∗,L∗) is controllable.

It is known that if the pair (K,L) of matrices is controllable (resp. observable)
then it is stabilizable (resp. detectable) (cf. [15]).
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