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MINIMIZING SHORTFALL RISK AND APPLICATIONS
TO FINANCE AND INSURANCE PROBLEMS

BY HUYÊN PHAM

Université Paris 7

We consider a controlled process governed by Xx,θ = x + ∫ θ dS +Hθ ,
where S is a semimartingale, � the set of control processes θ is a convex
subset of L(S) and {Hθ : θ ∈ �} is a concave family of adapted processes
with finite variation. We study the problem of minimizing the shortfall risk
defined as the expectation of the shortfall (B − Xx,θT )+ weighted by some
loss function, where B is a given nonnegative measurable random variable.
Such a criterion has been introduced by Föllmer and Leukert [Finance
Stoch. 4 (1999) 117–146] motivated by a hedging problem in an incomplete
financial market context: �= L(S) and Hθ ≡ 0. Using change of measures
and optional decomposition under constraints, we state an existence result
to this optimization problem and show some qualitative properties of the
associated value function. A verification theorem in terms of a dual control
problem is established which is used to obtain a quantitative description
of the solution. Finally, we give some applications to hedging problems in
constrained portfolios, large investor and reinsurance models.

1. Introduction. In this paper, we study the following stochastic control
problem. Let S be an Rm-valued semimartingale on a filtered probability space
(�,F , (Ft )0≤t≤T ,P ). We denote by L(S) the set of Rm-valued predictable
processes integrable with respect to S. We prescribe a convex subset � of L(S)
and a concave family of adapted processes {Hθ : θ ∈�} with finite variation. We
consider the controlled process,

X
x,θ
t = x +

∫ t

0
θu dSu +Hθ

t , 0≤ t ≤ T .
Given x ∈ R, a control θ ∈� is said to be admissible, and we denote θ ∈A(x),
if the state process Xx,θ satisfies an arbitrary uniform lower bound and Xx,θT ≥ 0.
Given a nonnegative FT -measurable random variable B , and a loss function l, that
is, a nondecreasing and convex function on R+, we then consider the stochastic
optimization problem:

minimize E[l(B −Xx,θT )+] overall θ ∈A(x).

In the case where S is a diffusion process, �= L(S),Hθ ≡ 0, Kulldorf (1993)
and Heath (1995) have studied this problem for the loss function l(x) = 1x>0
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and for B a constant. Motivated by a hedging problem in an incomplete financial
market context, Föllmer and Leukert (1999, 2000) have extended the approach
of the last cited authors. In their model, the semimartingale process S is the
(discounted) price of risky assets, θ ∈ L(S) is an unconstrained portfolio strategy,
Hθ ≡ 0,Xx,θ is the wealth process required to be nonnegative and B is interpreted
as a nonnegative contingent claim to be hedged. It is well known that the extreme
approach of the superhedging criterion, which consists in finding an initial wealth
x and a portfolio strategy θ such that Xx,θT ≥ B or equivalently (B −Xx,θT )+ = 0,
a.s., may lead to a very expensive initial cost x. Therefore, Föllmer and Leukert
introduced the concept of quantile hedging and more generally the shortfall risk
criterion which consists in minimizing over strategies θ the expectation of the
shortfall (B −Xx,θT )+ weighted by some loss function, given an initial wealth x.
Related works also include Cvitanić and Karatzas (1999), Cvitanić (2000), Spivak
and Cvitanić (1999) in a model driven by a Brownian motion and Pham (2000) for
lower partial moments l(x)= xp/p in a general discrete time setting.

Here, we shall consider a general semimartingale S and a convex subset �
of L(S), which leads to extensions of results in constrained portfolios models
with possible jumps in price process. In addition to the stochastic integral term,
we prescribe an adapted process Hθ . In the simplest case where Hθ does not
depend on θ , this term can be interpreted as a labor income or random endowment;
see Cuoco (1997), El Karoui and Jeanblanc (1998) or Cvitanić, Schachermayer
and Wang (2000). In the general case, the term Hθ arises in large investor and
reinsurance models and can be interpreted as a cost of intervention on the gain
process

∫
θ dS.

The modern approach for solving these control problems uses probabilistic
methods rather than P.D.E. methods via the Bellman equation. This allows relaxing
the assumption of Markov state process required in the P.D.E. approach. Another
advantage is that one can prove existence results more simply and under weaker
assumptions. Finally, in some cases, one can derive explicit solutions which are
not easily obtained by P.D.E. methods. The main probabilistic tool used in the
papers of Kulldorf (1993) and Heath (1995) is the martingale representation
theorem. Föllmer and Leukert (1999, 2000) combine optional decomposition for
supermartingales of El Karoui and Quenez (1995) and Kramkov (1996) and the
Neyman–Pearson technique. In our context, we shall use the general optional
decomposition under constraints of Föllmer and Kramkov (1997). Touzi (2000)
also uses such a decomposition in the particular case of marked point processes S
arising in an insurance model.

A crucial assumption required in this optional decomposition theorem is that the
set {X0,θ : θ ∈�} be closed for the semimartingale topology. We devote a complete
section to checking this assumption in different general models which can be used
for applications in finance and insurance. In our general setting, the Neyman–
Pearson lemma cannot be applied. We shall rather apply a convex duality approach
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in order to derive a quantitative description of the solution to the minimization
problem. The main point is to state a convexity property on the upper variation
term arising from the optional decomposition under constraints.

The paper is organized as follows. Section 2 describes the notations and
general assumptions of the model and formulates the control problem precisely.
In Section 3, we introduce auxiliary probability measures and upper variation
processes which are used in Section 4 to provide a dual characterization of
constrained controlled processes by means of the optional decomposition of
Föllmer and Kramkov (1997). In Section 5, we prove existence of a solution to the
minimization problem. In Section 6, we give an explicit description of the solution
in terms of the solution to a dual control problem obtained by a convex duality
approach. Section 7 is concerned with a verification in different classes of models
of the closure property required in the optional decomposition. We conclude the
paper in Section 8 with some applications: we consider the shortfall risk problem
in the Black–Scholes model with short-sales constraints, the case of price pressure
in the Black–Scholes model and finally a reinsurance problem. Some proofs are
found in the Appendix.

2. Formulation of the control problem. We consider an Rm-valued semi-
martingale S on a probability space (�,F ,P ) equipped with a filtration F =
(Ft )0≤t≤T satisfying the usual conditions of right-continuity and completeness.
T > 0 is a fixed finite time horizon, and we assume that F0 is trivial and FT = F .
We denote by L(S) the set of all predictable R

m-valued processes integrable with
respect to S. We consider a subset� of L(S) containing the zero element and con-
vex in the following sense: for any predictable process ζ valued in [0, 1] and for
all θ1, θ2 ∈�, we have ζθ1 + (1− ζ )θ2 ∈�. We consider a family {Hθ : θ ∈�}
of adapted processes with finite variation, with initial value 0 and such that the
processH 0 is bounded. In the following, we shall denote by I the set of all nonde-
creasing adapted processes with initial value 0, and we shall assume the following
concavity property.

(Hc) For any predictable process ζ valued in [0, 1] and for all θ1, θ2 ∈�, we have

Hζθ1+(1−ζ )θ2 −
∫
ζ dHθ1 −

∫
(1− ζ ) dHθ2 ∈ I.

We say that the family {Hθ : θ ∈ �} is linear if the particular case of (Hc) is
satisfied.

(Hl) For any predictable process ζ valued in [0, 1] and for all θ1, θ2 ∈�, we have

Hζθ1+(1−ζ )θ2 −
∫
ζ dHθ1 −

∫
(1− ζ ) dHθ2 ≡ 0.

Given x ∈R and θ ∈�, we consider the controlled process,

X
x,θ
t = x +

∫ t

0
θu dSu +Hθ

t , 0≤ t ≤ T .
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We shall make the following closure property assumption. Under condition
(Hc), we shall assume that:

(CPc) The family {X0,θ − C : θ ∈ �,C ∈ I} is closed for the semimartingale
topology.

We recall that the semimartingale topology is associated to the Emery distance
between two semimartingales X1 and X2 defined as

DE(X
1,X2)= sup

|θ |≤1

(∑
n≥1

2−nE
[∣∣∣∣∫ T∧n

0
θt d(X

1
t −X2

t )

∣∣∣∣∧ 1
])
,(2.1)

where the supremum is taken over all predictable processes θ is bounded by 1. For
this metric, the space of semimartingales is complete. Under condition (Hl), we
shall assume that:

(CPl) The family {X0, θ : θ ∈�} is closed for the semimartingale topology.

These concave and closure properties are crucial in our approach and are
inspired by Föllmer and Kramkov (1997). Section 7 is devoted to a verification
of these conditions in different models.

Given x ∈R, we say that a control θ ∈� is admissible, and we denote θ ∈A(x),
if the following conditions are satisfied:

X
x,θ
t ≥ d a.s. ∀t ∈ [0, T ] for some d ∈R,(2.2)

X
x,θ
T ≥ 0 a.s.(2.3)

Consider now a nonnegative FT -measurable random variable B and introduce
a loss function l, that is, a nondecreasing and convex function defined on R+
with l(0) = 0 and l(y) > 0 for y > 0. Given x ∈ R and θ ∈ A(x), the shortfall
is defined by (B −Xx,θt )+. Our objective is to minimize over admissible controls
the expectation of the shortfall, weighted by the loss function l. We shall then study
the stochastic optimization problem,(
P(x)

)
inf

θ∈A(x) E[l(B −X
x,θ
t )+], x ∈R.

3. Auxiliary probability measures and upper variation processes. We first
recall some general definitions introduced in Föllmer and Kramkov (1997). Let Y
be a family of semimartingales, locally bounded from below, with initial value 0
and containing the constant process 0. The family Y is called predictably convex
if for any Y 1, Y 2 ∈ Y and for any predictable process ζ valued in [0, 1], we have



SHORTFALL RISK MINIMIZATION 147∫
ζ dY 1+ ∫ (1− ζ ) dY 2 ∈Y. The set P (Y) is the class of all probability measures
Q ∼ P with the following property: there exists A ∈ Ip , set of nondecreasing
predictable processes with A0 = 0, such that

Y −A is a Q-local supermartingale for any Y ∈Y.(3.1)

An upper variation process of Y under Q ∈ P (Y) is an element AY(Q) in Ip
satisfying (3.1) and such that A−AY(Q) ∈ I for any A ∈ Ip satisfying (3.1). The
set P (Y) and the upper variation process were introduced in Föllmer and Kramkov
(1997) in order to develop optional versions under constraints of the Doob–Meyer
decomposition. A crucial assumption required in their theorem is the following
closure property.

(CP) If (Y n)n is a sequence in Y which is uniformly bounded from below and
converges in the semimartingale topology to Y then we have Y ∈Y.

In our context, we consider the following family:

S = {X0, θ −H 0 : θ ∈�loc
}
,

where �loc is the set of processes θ ∈� such that X0, θ −H 0 is locally bounded
from below. S is a family of semimartingales which are locally bounded from
below, with initial value 0, and containing the constant process 0 attained for θ ≡ 0.
We also introduce the family S′ of processes in the form X − C, for X ∈ S and
C ∈ I.

The following result is easy to prove.

LEMMA 3.1. We have

P (S)=P (S′) :=P .

Under condition (Hc), the set S′ is predictably convex and the upper variation
processes of S and S′ underQ ∈P exist, are unique and are equal,

AS(Q)=AS′(Q) :=A(Q) ∀Q ∈P .

Moreover, under the particular case (Hl), the set S is predictably convex.

PROOF. LetQ ∈P (S) and A ∈ Ip such that Y −A is a Q-local supermartin-
gale for any Y ∈ S. Then, we obviously have that

Y −C −A is a Q-local supermartingale for any Y ∈ S and C ∈ I,

which shows that P (S) ⊂ P (S′). Conversely, by choosing C ≡ 0 in (3.2), we
obtain that P (S′)⊂P (S) and then that these two sets are equal.

Let U1 =X0, θ1 −H 0−C1 and U2 =X0, θ2 −H 0−C2 be two elements of S′
and ζ a predictable process valued in [0, 1]. Then, a straightforward calculation
shows that ∫

ζ dU1+
∫
(1− ζ ) dU2 =X0, θ −H 0−C,(3.2)
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where

θ = ζθ1 + (1− ζ )θ2,

C =
∫
ζ dC1 +

∫
(1− ζ ) dC2 +Hθ −

∫
ζ dHθ1 −

∫
(1− ζ ) dHθ2

.

By the convexity property on the set �, we have θ ∈ � and by the concavity
property (Hc), we have C ∈ I. Since U1 and U2 are locally bounded from below
and ζ is bounded, we deduce from (3.3) that X0, θ −H 0 is locally bounded from
below. Therefore θ ∈�loc and so

∫
ζ dU1+ ∫ (1− ζ ) dU2 lies in S′.

Since S′ is predictably convex, it follows by Lemma 2.1 of Föllmer and
Kramkov (1997) that the upper variation process AS′(Q) of S′ under some fixed
Q ∈ P (S′) = P (S) exists and is unique. Hence, Y − C − AS′(Q) is a Q-local
supermartingale for any Y ∈ S. In particular for C ≡ 0, we have that

Y −AS′(Q) is a Q-local supermartingale for any Y ∈ S.

Now, let A ∈ Ip such that Y − A is a Q-local supermartingale for any Y ∈ S.
Then, Y −C −A is a Q-local supermartingale for any Y ∈ S and C ∈ I and so by
definition of the upper variation process AS′(Q), we have A−AS′(Q) ∈ Ip . This
shows that AS′(Q) is the upper variation process of S underQ.

Finally, by similar arguments, the predictable convexity property of S is easily
checked under condition (Hl). �

4. Dual characterization of constrained controlled processes. Throughout
this section and the two following, we assume that P �=∅ and that conditions (Hc)
and (CPc) or (HI) and (CPl) hold.

We say that a nonnegative FT -measurable random variable X is dominated by
a controlled process if there exist u0 ∈R and θ ∈A(u0) such that

X ≤Xu0, θ
T , P a.s.

The following result provides a dual characterization of dominated random
variables. We shall also assume that

EQ[AT (Q)]<∞ ∀Q ∈P ,(4.1)

and that the process

ess inf
Q∈P E

Q[AT (Q)|Ft ] is bounded in (t,ω).(4.2)

These conditions are satisfied in all examples of the last section.

THEOREM 4.1. Assume that (4.1) and (4.2) hold and let X be a nonnegative
FT -measurable random variable.
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(i) Given x ∈R, there exists θ ∈A(x) such that X ≤Xx,θT a.s. if and only if

v0(X) := sup
Q∈P

EQ[X −H 0
T −AT (Q)] ≤ x.(4.3)

(ii) Suppose that v0(X) <∞ and denote by θX ∈A(v0(X)) the control process

s.t. X ≤ Xv0(X), θ
X

T , a.s. If there exists Q̂ ∈ P such that v0(X) = EQ̂[X − H 0
T −

AT (Q̂)], then we have actually X = Xv0(X), θ
X

T , and the associated controlled
process is given by

X
v0(X), θ

X

t =EQ̂[X−H 0
T +H 0

t −AT (Q̂)+At(Q̂) |Ft ], 0≤ t ≤ T .

This theorem shows that v0(X) is the least initial value allowing the domination
of X by an admissible control. In the terminology of mathematical finance, v0(X)

is called superreplication cost ofX and the associated control θX is a superhedging
strategy of X.

PROOF OF THEOREM 4.1. (i) Necessary condition. Let θ ∈ A(x) such that
X ≤Xx,θT , a.s. By condition (4.1), the nondecreasing feature ofA(Q) and since the
process Xx,θ −H 0 is bounded from below, we deduce by Fatou’s lemma that the
Q-local supermartingale Xx,θ −H 0 −A(Q) is actually a supermartingale under
Q ∈P . Therefore, we have

EQ[X−H 0
T −AT (Q)] ≤EQ[Xx,θT −H 0

T −AT (Q)] ≤ x
for anyQ ∈P and so (4.3).

Sufficient condition. Consider the bounded from below FT -measurable random
variable X0 =X−H 0

T . By (4.3), we have

sup
Q∈P

EQ[X0 −AT (Q)] = v0(X)≤ x <∞.

Then by similar arguments as in Lemma A.1 in Föllmer and Kramkov (1997),
there exists a RCLL version of the process

Vt = ess sup
Q∈P

EQ[X0 −AT (Q)+At(Q) |Ft ], 0≤ t ≤ T,

and for anyQ ∈P , the process V −A(Q) is aQ-local supermartingale. Moreover,
by (4.2), the process V is bounded from below. It is clear that under condition
(CPc) [resp. (CPl)], the family S′ (resp. S) satisfies the closure property (CP).
Therefore, by Lemma 3.1, the optional decomposition under constraints of Föllmer
and Kramkov (1997) (see their Theorem 3.1) can be applied so that the process V
admits a decomposition

V = v0(X)+U − C̃,
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where U ∈ S′ (resp. S) and C̃ is an (optional) nondecreasing process, C̃0 = 0.
Therefore, there exists θ ∈�loc such that

Vt ≤ v0(X)+X0, θ
t −H 0

t ≤Xx,θt −H 0
t , 0≤ t ≤ T .(4.4)

Since the process V is bounded from below, we deduce by (4.4) that Xx,θ is also
bounded from below so that (2.2) is satisfied. Moreover, inequality (4.4) for t = T
shows that

VT =X−H 0
T ≤Xx,θT −H 0

T ,

and so 0≤X ≤Xx,θT , P a.s., with θ ∈A(x).

(ii) Suppose that v0(X) <∞ and v0(X) = EQ̂[X − H 0
T − AT (Q̂)] for some

Q̂ ∈P . By the supermartingale property of Xv0(X), θ
X −H 0−A(Q̂) under Q̂, we

then have

EQ̂[Xv0(X), θ
X

T −X] = EQ̂[Xv0(X), θ
X

T −H 0
T −AT (Q̂)−

(
X−H 0

T −AT (Q̂)
)]

≤ v0(X)−EQ̂[X −H 0
T −AT (Q̂)] = 0.

Since Q̂ ∼ P , this proves that Xv0(X), θ
X

T = X,P a.s. Moreover, since EQ̂×
[Xv0(X), θ

X

T − H 0
T − AT (Q̂)] = v0(X), we conclude that the Q̂-supermartingale

Xv0(X), θ
X −H 0−A(Q̂) is actually a Q̂-martingale which ends the proof. �

As an immediate consequence of the last theorem, we have a necessary and
sufficient condition in terms of the set P in order for the set of admissible controls
to be nonempty.

COROLLARY 4.1. For all x ∈ R, A(x) �=∅ if and only if

v0(0)= sup
Q∈P

EQ[−H 0
T −AT (Q)] ≤ x.(4.5)

PROOF. Suppose that A(x) �=∅. Then there exists θ ∈A(x) such thatXx,θT ≥
X = 0. By Theorem 4.1, we then have v0(X) ≤ x. Conversely, suppose that
v0(0) ≤ x. Then by Theorem 4.1, there exists θ ∈A(x) such that 0 ≤ Xx,θT and
in particular A(x) is nonempty. �

5. Existence to the minimization problem. By using the dual characteriza-
tion of constrained controlled processes in the previous section, we shall reduce
the initial dynamic control problem into a static optimization problem. For any
x ∈R, we denote

C(x)=
{
XFT -measurable : 0≤X ≤ B P -a.s.

and v0(X)= sup
Q∈P

EQ[X−H 0
T −AT (Q)] ≤ x

}
.
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Notice that C(x) is nonempty if and only if x ≥ v0(0). We consider the static
problem,

J (x)= inf
X∈C(x)E[l(B −X)], x ≥ v0(0).(S(x))

The following main result proves the existence of a solution to the dynamic
problem (P(x)) and relates it to the solution of the static problem (S(x)). It also
provides some qualitative properties of the associated value function.

THEOREM 5.1. Assume that (4.1) and (4.2) hold and that l(B) ∈L1(P ).

(i) For any x ≥ v0(0), there exists X∗(x) ∈ C(x) solution of (S(x)) and B is
solution of (S(x)) for x ≥ v0(B). Moreover, if l is strictly convex, any two such
solutions coincide P -a.s.

(ii) The function J is nonincreasing and convex on [v0(0),∞), strictly
decreasing on [v0(0), v0(B)] and equal to zero on [v0(B),∞). For any x ∈
[v0(0), v0(B)], we have

sup
Q∈P

EQ[X∗(x)−H 0
T −AT (Q)] = x.(5.1)

Moreover, if l is strictly convex, then J is strictly convex on [v0(0), v0(B)].
(iii) For any x ≥ v0(0), there exists θ∗(x) ∈A(x) such that X∗(x)≤Xx,θ∗(x)T ,

P -a.s., and θ∗(x) is solution to the dynamic problem (P(x)). Moreover, we have

J (x)= inf
θ∈A(x)E

[
l(B −Xx,θT )+

] ∀ x ≥ v0(0).(5.2)

PROOF. (i) Let x ≥ v0(0) and (Xn)n ∈ C(x) be a minimizing sequence for the
problem (S(x)); that is,

lim
n→∞E[l(B −X

n)] = inf
X∈C(x)E[l(B −X)].

Since Xn ≥ 0, then by Lemma A.1.1 of Delbaen and Schachermayer (1994), there
exists a sequence of FT -measurable random variables X̂n ∈ conv(Xn,Xn+1, . . .)

such that X̂n converges almost surely toX∗(x) FT -measurable. Since 0≤ X̂n ≤ B ,
we deduce that 0≤X∗(x)≤ B . By Fatou’s lemma, we have for all Q ∈P ,

EQ[X∗(x)−H 0
T −AT (Q)] ≤ lim inf

n→∞ EQ[X̂n −H 0
T −AT (Q)]

= lim inf
n→∞ EQ[Xn −H 0

T −AT (Q)]
≤ x,

hence X∗(x) ∈ C(x). Now, since l is convex and l(B) ∈ L1(P ), we have by the
dominated convergence theorem,

inf
X∈C(x)E[l(B −X)] = lim

n→∞E[l(B −X
n)]

≥ lim
n→∞E[l(B − X̂

n)]
= E[l(B −X∗(x))],



152 H. PHAM

which proves that X∗(x) solves (S(x)). Now, suppose that x ≥ v0(B). Then
B ∈ C(x) and is obviously a solution to (S(x)), and in this case J (x)= 0.

LetX1 and X2 be two solutions of (S(x)) and ε ∈ (0,1). SetXε = (1− ε)X1+
εX2 ∈ C(x). By convexity of function l, we have

E[l(B −Xε)] ≤ (1− ε)E[l(B −X1)] + εE[l(B −X2)](5.3)

= inf
X∈C(x)E[l(B −X)].(5.4)

Suppose that P [X1 �=X2]> 0. Then by the strict convexity of l, we should have
strict inequality in (5.3), which is a contradiction with (5.4).

(ii) Let v0(0) ≤ x1 ≤ x2. Since C(x1) ⊂ C(x2), we deduce that J (x2) ≤ J (x1)

and so J is nonincreasing on [v0(0),∞). Notice also that (X∗(x1)+X∗(x2))/2 ∈
C((x1+ x2)/2). Then, by convexity of function l, we have

J

(
x1+ x2

2

)
≤ E

[
l

(
B − X

∗(x1)+X∗(x2)

2

)]
≤ 1

2
E
[
l
(
B −X∗(x1)

)]+ 1

2
E
[
l
(
B −X∗(x2)

)]
= 1

2
J (x1)+ 1

2
J (x2),

which proves the convexity of J on [v0(0),∞). We have already seen that
J (x) = 0 for x ≥ v0(B). To end the proof of assertion (ii), we now suppose that
v0(B) > v0(0) (otherwise there is nothing else to prove). First, notice that since l
is a nonnegative function, cancelling only on 0, it follows that J (x)= 0 if and only
if X∗(x)= B which implies that x ≥ v0(B). Therefore, for all b ≤ x < v0(B), we
have J (x) > 0. Let us check that J is strictly decreasing on [v0(0), v0(B)]. On
the contrary, there would exist v0(0)≤ x1 < x2 < v0(B) such that J (x1)= J (x2).
Then, there exists α ∈ (0,1) such that x2 = αx1 + (1− α)v0(B). By convexity of
function J , we should have

J (x2)≤ αJ (x1)+ (1− α)J (v0(B)
)= αJ (x1).

Since J (x1) = J (x2) > 0, this would imply that α > 1, a contradiction. Let us
now prove (5.1). On the contrary, we should have b ≤ x̃ := v0(X

∗(x)) < x. Then
X∗(x) ∈ C(x̃) and so J (x̃) ≤ E[l(B − X∗(x))] = J (x), a contradiction with the
fact that J is strictly decreasing on [v0(0), v0(B)]. Let v0(0) ≤ x1 < x2 ≤ v0(B).
We have (X∗(x1) + X∗(x2))/2 ∈ C((x1 + x2)/2). Moreover, since 0 < J(x2) <

J (x1), we have X∗(x1) �=X∗(x2). Then, by the strict convexity of function l, we
obtain

J

(
x1+ x2

2

)
≤ E

[
l

(
B − X

∗(x1)+X∗(x2)

2

)]
<

1

2
E
[
l
(
B −X∗(x1)

)]+ 1

2
E
[
l
(
B −X∗(x2)

)]
= 1

2
J (x1)+ 1

2
J (x2),
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which proves the strict convexity of J on [v0(0), v0(B)].
(iii) Fix some x ≥ v0(0). Let θ ∈ A(x) and set X = B ∧ Xx,θT = B − (B −

X
x,θ
T )+. Then 0≤X ≤ B . Since X ≤ Xx,θT , we have v0(X) ≤ x, by Theorem 4.1,

and so X ∈ C(x). We then have

E
[
l(B −Xx,θT )+

]= E[l(B −X)] ≥ J (x),
and then

inf
θ∈A(x)E

[
l(B −Xx,θT )+

]≥ J (x).(5.5)

Conversely, let X ∈ C(x). We then have v0(X) ≤ x < ∞. We deduce by
Theorem 4.1 that there exists θ ∈A(x) such that

X
x,θ
T ≥X, P -a.s.,(5.6)

and therefore, recalling that X ≤ B ,

(B −Xx,θT )+ ≤ B −X, P -a.s.(5.7)

Now, since the function l is nondecreasing, we obtain

E
[
l(B −Xx,θT )+

]≤E[l(B −X)],
which, combined with (5.5), proves (5.2). Finally, as in (5.6) and (5.7), there exists
an admissible control θ∗(x) ∈ A(x) such that X∗(x) ≤ Xx,θ∗(x)T , P -a.s., and we
have (

B −Xx,θ∗(x)T

)
+ ≤ B −X∗(x) P -a.s.,

hence,

E
[
l
(
B −Xx,θ∗(x)T

)
+
]≤E[l(B −X∗(x))]= J (x),

which proves that θ∗(x) solves problem (P(x)). �

6. Convex duality approach and structure of the solution. The purpose of
this section is to provide a quantitative description of X∗(x) and θ∗(x) solutions
of the optimization problems (P(x)) and (S(x)), and of the associated value
function J (x). In Föllmer and Leukert (1999, 2000), the Neyman–Pearson lemma
approach is emphasized in order to describe the structure of the solution to the
static problem. Here, we have an upper variation term due to the constraints
set � and the process Hθ and therefore, the Neyman–Pearson technique cannot
be applied. We shall use a convex duality approach.

We assume that the function l ∈ C1(0,∞), the derivative l′ is strictly increasing
with l′(0+) = 0 and l′(∞) = ∞. We denote by I = (l′)−1 the inverse function
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of l′. Starting from the state-dependent convex function 0 ≤ x ≤ B �→ l(B − x),
we consider its stochastic Fenchel–Legendre transform,

L̃(y,ω)= max
0≤x≤B[−l(B − x)− xy]

= −l(B ∧ I (y))− y(B − I (y))+, y ≥ 0.

We now consider the dual control problem,(
D(y)

)
J̃ (y)= inf

Q∈P E
[
L̃

(
y
dQ

dP
,ω

)
+ y dQ

dP

(
AT (Q)+H 0

T

)]
, y ≥ 0.

It is straightforward to see that J̃ is convex [0,∞).
In contrast with the problems of maximizing expected utility of terminal wealth

where existence to the dual problem is established in order to prove existence of an
optimal portfolio choice [see Kramkov and Schachermayer (1999) and Cvitanić,
Schachermayer and Wang (2000)] since we have already proved the existence of
the minimization problem (P(x)), we do not focus here on a general existence
result for the dual problem (D(y)). Our object is to provide a description of the
solution to the problem (P(x)) in function of a solution to the problem (D(y))
when it exists. This can be viewed as a verification theorem expressed in terms
of the dual control problem. In a Markovian context, this is an alternative to the
usual verification theorem of stochastic control problems expressed in terms of the
value function of the primal problem. In the last section, we shall see that the dual
control problem leads to a standard Bellman equation where the existence of a
smooth solution can be proved simply.

Recall that for x ≥ v0(B), B ∈ C(x) is solution to the static problem (S(x)). We
then consider in the sequel the case v0(0) < x < v0(B) <∞.

THEOREM 6.1. Assume that (4.1) and (4.2) hold, l(B − dT ) ∈ L1(P ) and
v0(0) < v0(B) <∞. Suppose that for all y > 0, there exists a solutionQ∗(y) ∈P
to problem (D(y)). Then:

(i) J̃ is differentiable on (0,∞) with derivative

J̃ ′(y)=−EQ∗(y)
[(
B − I

(
y
dQ∗(y)
dP

))
+
−H 0

T −AT
(
Q∗(y)

)]
,(6.1)

for all y > 0.
(ii) Let v0(0) < x < v0(B). Then, there exists ŷ > 0 that attains the infimum in

infy>0{J̃ (y)+ xy}, and we have

J̃ ′(ŷ)=−x.
The unique solution of (S(x)) is then given by

X∗(x)=
(
B − I

(
ŷ
dQ∗(ŷ)
dP

))
+
.
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There exists θ∗(x) ∈ A(x) such that X∗(x) = Xx,θ∗(x)T , P -a.s., and θ∗(x) is
solution to (P(x)). Moreover, we have

X
x,θ∗(x)
t = EQ∗(ŷ)[X∗(x)−H 0

T +H 0
t −AT

(
Q∗(ŷ)

)+At(Q∗(ŷ)) ∣∣Ft],
0≤ t ≤ T .

(iii) We have the duality relation

J (x)=max
y≥0
[−J̃ (y)− xy] ∀x > v0(0).

The proof of this theorem is based on classical arguments of convex duality
[see, e.g., Kramkov and Schachermayer (1997)] with modifications arising from
the upper variation term. More precisely, we need the following general result.

LEMMA 6.1. Assume that (4.1) holds. Then the set P is convex and the
function

P → R+,
Q �→ EQ[AT (Q)]

is convex.

PROOF. Let Q1,Q2 ∈ P ,Z1,Z2 their density processes, α ∈ [0,1] and
denote by Q ∼ P the probability measure Q = αQ1 + (1 − α)Q2 and by Z its
density process. Consider the process AQ ∈ Ip defined by

A
Q
t = α

∫ t

0

Z1
u

Zu
dAu(Q

1)+ (1− α)
∫ t

0

Z2
u

Zu
dAu(Q

2), 0≤ t ≤ T .

Fix 0≤ u≤ t ≤ T . We have, for i = 1,2,

E

[
Zt

∫ t

0

Ziv

Zv
dAv(Q

i)
∣∣∣Fu]

=Zu
∫ u

0

Ziv

Zv
dAv(Q

i)+E
[
Zt

∫ t

u

Ziv

Zv
dAv(Q

i)
∣∣∣Fu]

=Zu
∫ u

0

Ziv

Zv
dAv(Q

i)+E
[∫ t

u
Ziv dAv(Q

i)
∣∣∣Fu]

=Zu
∫ u

0

Ziv

Zv
dAv(Q

i)+E[Zit (At(Qi)−Au(Qi)) ∣∣Fu]
=Zu

∫ u

0

Ziv

Zv
dAv(Q

i)−ZiuAu(Qi)+E[Zit At(Qi) |Fu]

(6.2)

where we used the properties that Z is a P -martingale, Bayes formula and law of
iterated conditional expectations. Now, fix someU ∈ S′. For simplicity, we assume
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that U is bounded from below. The general case follows by localization arguments.
By writing that

Zt(Ut −AQt )= α
[
Z1
t Ut −Zt

∫ t

0

Z1
v

Zv
dAv(Q

1)

]

+ (1− α)
[
Z2
t Ut −Zt

∫ t

0

Z2
v

Zv
dAv(Q

2)

]
,

and using relations (6.2) for i = 1,2, we obtain by the supermartingale property
of Zi(U −A(Qi)) under P ,

E
[
Zt(Ut −AQt ) |Fu

]= αE[Z1
t

(
Ut −At(Q1)

) ∣∣Fu]
+ (1− α)E[Z2

t

(
Ut −At(Q2)

) ∣∣Fu]
− αZu

∫ u

0

Z1
v

Zv
dAv(Q

1)− (1− α)Zu
∫ u

0

Z2
v

Zv
dAv(Q

2)

+ αZ1
uAu(Q

1)+ (1− α)Z2
uAu(Q

2)

≤ αZ1
u

(
Uu −Au(Q1)

)+ (1− α)Z2
u

(
Uu −Au(Q2)

)
− ZuAQu + αZ1

uAu(Q
1)+ (1− α)Z2

uAu(Q
2)

= Zu(Uu −AQu ).
This proves the supermartingale property under P of Z(U − AQ) and so the
supermartingale property underQ of U −AQ. ThereforeQ ∈P and by definition
of the upper variation process, we have AQ − A(Q) ∈ Ip and so AT (Q) ≤ AQT .
Moreover, applying (6.2) for u= 0 and t = T , we have

EQ[AT (Q)] ≤ E[ZTAQT ]
= αE[Z1

T AT (Q
1)] + (1− α)E[Z2

T AT (Q
2)]

= αEQ1[AT (Q1)] + (1− α)EQ2[AT (Q2)]
which proves the convexity of function Q ∈P �→EQ[AT (Q)]. �

Given Lemma 6.1, the proof of Theorem 6.1 is standard and is then reported in
the Appendix.

7. Closure property. This section is concerned with the verification of the
concave and closure properties formulated in Section 2, in different classes of
models useful for applications in finance and insurance.
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7.1. Constrained portfolios. In this model, we suppose that � is closed
in L(S) with respect to the metric dE(θ1, θ2)=DE(∫ θ1 dS,

∫
θ2 dS) where DE

is the Emery distance in (2.1) defining the semimartingale topology. We consider
Hθ ≡ 0 so that the controlled process Xx,θ = x+ ∫ θ dS is interpreted as a wealth
process of a constrained portfolio strategy θ in a financial market model of price
process S. For the case where�=L(S), this corresponds to the incomplete market
model. When � = {θ ∈ L(S) : θi ≥ 0, 1 ≤ i ≤ l}, this corresponds to a no short-
selling model on the first l assets.

Obviously, the linear condition (Hl) is satisfied. The closure property (CPl)
follows from Mémin’s theorem (1980), which states that the space of stochastic
integrals is closed for the semimartingale topology.

7.2. Labor income model. We consider the same model as in the previous
paragraph, but we prescribe in addition an adapted process (pt ) such that∫ T

0 |pt |dt <∞, a.s. We consider then for all θ ∈ �, the adapted process with
finite variation,

Hθ
t =

∫ t

0
pu du, 0≤ t ≤ T .

The process p represents an income rate per unit of time. Again, the linear
condition (Hl) is obvious. The closure property (CPl) follows from the invariance
of the Emery distance in (2.1) under translation.

7.3. Concave model. We assume that S is a continuous semimartingale with
canonical decomposition,

St = S0 +Mt +At, t ∈ [0, T ].
We denote by 〈M〉 the sharp bracket process of M . We shall assume that 〈M〉
is absolutely continuous with respect to the Lebesgue measure on [0, T ] and we
define the predictable m×m-matrix valued process σ = (σt )0≤t≤T by

〈M〉t =
∫ t

0
σu du, t ∈ [0, T ].(7.1)

We assume, following the terminology of Schweizer (1994), that S satisfies the
structure condition, in the sense that there exists a predictable Rm-valued process
λ= (λt )0≤t≤T such that

At =
∫ t

0
d〈M〉uλu du=

∫ t

0
σuλu du, t ∈ [0, T ].(7.2)

We assume that ∫ T

0
λ′t σtλt dt is bounded,(7.3)
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where ′ stands for the transposition. We refer to Schweizer (1994) for an
interpretation of

∫ T
0 λ
′
t σtλt dt as a mean-variance tradeoff. Finally, we shall make

the additional nondegeneracy assumption:

σt is definite positive a.s. ∀ t ∈ [0, T ].(7.4)

We are given a closed convex set K of Rm containing 0 and a measurable
function h(t, z) of [0, T ] × K into R such that the function h(t, ·) is concave
in z ∈ K and satisfies the property: there exists k ≥ 0, ∀z1, z2 ∈ K , ∀α ∈ [0,1],
∀t ∈ [0, T ], ∣∣h(t, αz1 + (1− α)z2

)∣∣≤ k(1+ |h(t, z1)| + |h(t, z2)|).(7.5)

We also assume that the function h(t, ·) is Lipschitz in z ∈ K uniformly in
t ∈ [0, T ] and either (i) K is bounded or (ii) the m × m matrix σt is uniformly
elliptic a.s. for all t ∈ [0, T ]: there exists c > 0 such that ξ ′σ ct ξ ≥ c|ξ |2, a.s.,
∀ξ ∈Rm, ∀ t ∈ [0, T ].

We consider � = {θ ∈ L(S) :
∫ T

0 |h(t, θt )|dt <∞, a.s., and θt ∈ K, a.s. ∀ t ∈
[0, T ]}. We prescribe then for all θ ∈�, the adapted process with finite variation,

Hθ
t =

∫ t

0
h(u, θu) du, 0≤ t ≤ T .

Such a concave model is used in applications for large investor models [see Cuoco
and Cvitanić (1998)] and insurance models [see Touzi (2000)].

The following lemma states the concave and closure properties (Hc) and (CPc).

LEMMA 7.1. (i) The family {Hθ = ∫ h(t, θt ) dt : θ ∈�} satisfies (Hc).
(ii) The set {X0, θ −C = ∫ θ dS+ ∫ h(t, θt ) dt −C : θ ∈�, C ∈ I} is closed for

the semimartingale topology.

For the proof see the Appendix.

8. Applications.

8.1. Short-sales constraints in the Black–Scholes model. We consider the
standard Black–Scholes model where the underlying stock price process is given
by a geometric Brownian motion,

dSt = St(µdt + σ dWt), S0 = s0,
where µ≥ 0, σ > 0 andW is a Brownian motion on a probability space (�,F ,P )
equipped with the filtration generated byW . For simplicity, we set the interest rate
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to zero. The wealth process starting from an initial capital x ∈ R and a trading
strategy θ ∈L(S), number of units invested in the stock, is then written as

X
x,θ
t = x +

∫ t

0
θu dSu = x +

∫ t

0
θuSu(µdu+ σ dWu).

We impose no short-sales constraints on trading strategies,

θt ∈K = [0,∞) a.s. ∀ t ∈ [0, T ].
This model is a particular case of the one considered in Section 7.2. We
have � = �loc = {(θt )0≤t≤T adapted process,

∫ T
0 θ

2
t dt <∞ and θt ≥ 0, a.s.,

0 ≤ t ≤ T }. It is well known from the martingale representation theorem for
martingales that all probability measures Q∼ P have a Radon–Nikodym density
of the form dQ/dP = ZρT , where

dZ
ρ
t =−ρtZρt dWt, Z

ρ
0 = 1,

and ρ ∈D = {(ρt )0≤t≤T adapted process,
∫ T

0 ρ
2
t dt <∞ and E[ZρT ] = 1}. Since

S = {X0, θ : θ ∈�loc} is a cone of semimartingales, P is the set of all probability
measuresQ∼ P such thatX0, θ is aQ-local supermartingale for any θ ∈�loc and
the upper variation process of Q ∈P is zero. By Girsanov’s theorem, we obtain

P = {P ρ =ZρT · P :ρ ∈DC}
with

DC =
{
ρ ∈D :ρt ≥ µ

σ
a.s., 0≤ t ≤ T

}
.

We consider the problem of minimizing the shortfall risk of an European call
option B = g(ST )= (ST −κ)+ and for a loss function l satisfying the assumptions
of Section 6. Notice that from Corollary 4.1, the set of admissible controls A(x) is
nonempty iff x ≥ v0(0)= 0. We fix now some initial wealth x ≥ 0. The dynamic
version of the dual control problem (D(y)) is

J̃ (t, s, y)= inf
ρ∈DC

E

[
L̃

(
y
Z
ρ
T

Z
ρ
t

, s
ST

St

)]
, (t, s, y) ∈ [0, T ] ×R+ ×R+,(8.1)

where L̃(y, s)=−l(g(s)∧ I (y))− y(g(s)− I (y))+. We have J̃ (y)= J̃ (0, s0, y).
The Bellman equation associated to this control problem is

−∂v
∂t
−µs ∂v

∂s
− 1

2
σ 2s2 ∂

2v

∂s2 + sup
r≥µ/σ

[
−1

2
r2y2 ∂

2v

∂y2 + σrsy
∂2v

∂s∂y

]
= 0,(8.2)

together with the terminal boundary condition v(T , s, y) = L̃(y, s). Define now
the positive constant process in Dc by

r∗ = µ
σ
.

The new proposition shows that r∗ is the optimal control for (8.1) or (D(y)).
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PROPOSITION 8.1. The value function of the dual control problem is equal
to Ṽ where

Ṽ (t, s, y)=E
[
L̃

(
y
Zr
∗
T

Zr
∗
T

, s
ST

St

)]
, (t, s, y) ∈ [0, T ] ×R+ ×R+.(8.3)

PROOF. We only sketch the main arguments of the proof. Using classical
regularity results for parabolic linear P.D.E. and the Feynman–Kac formula [see,
e.g., Friedman (1975)], we have that the function Ṽ lies in C1,2([0, T ], R+ ×R+)
and is solution of

−∂v
∂t
−µs ∂v

∂s
− 1

2
σ 2s2 ∂

2v

∂s2
− 1

2
r∗2y2 ∂

2v

∂y2
+ σr∗sy ∂

2v

∂s∂y
= 0,(8.4)

with the boundary condition Ṽ (T , s, y)= L̃(y, s). Moreover, using the dominated
convergence theorem, it is easy to check that one can differentiate Ṽ with respect
to y inside the expectation operator in (8.3), so that for all (t, s, y) ∈ [0, T ] ×R+
×R+,

∂Ṽ

∂y
(t, s, y)=−E

{
Zr
∗
T

Zr
∗
T

[(
g

(
s
ST

St

)
− I

(
y
Zr
∗
T

Zr
∗
T

))
+

]}
.

From this last expression, we deduce that ∂
2Ṽ
∂y2 ≥ 0 and ∂2Ṽ

∂s∂y
≤ 0. Recalling that

µ ≥ 0, we then see that Ṽ is solution to the Bellman equation (8.2). Now, by
the dynamic programming principle, one proves by standard arguments [see, e.g.,
Fleming and Soner (1993)] that the lower semicontinuous envelope of J̃ is a
viscosity supersolution of the Bellman equation (8.2) and then by the maximum
principle, Ṽ ≤ J̃ . Since the converse inequality is obvious by definition of J̃ , this
shows that Ṽ = J̃ and r∗ is the optimal associated (constant) control. �

Proposition 8.1 shows that the solution to the dual problem does not depend
on y and is equal to Q∗(y) = Pµ/σ . This is the unique martingale measure of
the unconstrained Black–Scholes model. Such a model was considered by Föllmer
and Leukert (1999). Since their optimal strategy satisfies a posteriori the constraint
θ∗t (x)≥ 0, then it is also the solution to the no short-sales constraints model.

8.2. Price pressure in the Black–Scholes model. We consider a variation of the
Black–Scholes model where the drift of the underlying price process is affected by
the investor’s strategy for the following:

d�St =�St (µ̄(θt ) dt + σ dWt),
where µ̄(z)= µ+ f (z) and

f (z)=
{
−az|z| , if z �= 0,

0, otherwise,
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for some µ ∈ R, σ > 0 and a > 0. This means that buying stock depresses its
expected return while shorting it increases the expected return. This example is
taken from Cuoco and Cvitanić (1998). The wealth process starting from an initial
wealth x and a strategy θ , amount invested in the stock, is then be written as

X
x,θ
t = x +

∫ t

0

θu

�Su
d�Su = x +

∫ t

0
θu(µdu+ σ dWu)+

∫ t

0
θuf (θu) du.

We assume no constraints on trading strategies,K =R. This is a particular case of
the model considered in Section 7.3 with the function h equal to h(t, z)= zf (z).
The family S = {X0,θ : θ ∈ L(W)} is a cone of semimartingales so that P is the
set of probability measuresQ∼ P such thatX0,θ is aQ-local supermartingale for
any θ ∈ L(W) and the upper variation process is zero. Keeping the same notations
as in the previous paragraph, we deduce by Girsanov’s theorem that the dynamics
of X0,θ under P ρ , ρ ∈D , is

dX
x,θ
t = θt [f (θt )+µ− σρt ]dt + θtσ dWρ

t ,

where Wρ =W + ∫ ρ dt is a P ρ-Brownian motion. It follows that P ρ ∈P if and
only if

sup
z∈R

[zf (z)+ z(µ− σρt)]<∞ a.s., 0≤ t ≤ T,

or equivalently |µ − σρt | ≤ a a.s., 0 ≤ t ≤ T . We obtain then the following
characterization of P :

P = {P ρ =ZρT · P :ρ ∈Da},
where

Da =
{
ρ ∈D :

µ− a
σ
≤ ρt ≤ µ+ a

σ
a.s., 0≤ t ≤ T

}
.

We consider the problem of minimizing the shortfall risk of a constant B in R

(e.g., a riskless asset) for a loss function l satisfying assumptions of Section 6.
Notice that from Corollary 4.1, the set of admissible trading strategies A(x) is
nonempty iff x ≥ v0(0) = 0. The dynamic version of the dual control problem
(D(y)) is

J̃ (t, y)= inf
ρ∈Da

E

[
�L
(
y
Z
ρ
T

Z
ρ
T

)]
, (t, y) ∈ [0, T ] ×R+,(8.5)

where �L(y) = −l(B ∧ I (y)) − y(B − I (y))+. We have J̃ (y) = J̃ (0, y). The
Bellman equation associated to this control problem is

−∂v
∂t
+ sup

µ−a
σ
≤r≤µ+a

σ

[
−1

2
r2y2 ∂

2v

∂y2

]
= 0,
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together with the terminal boundary condition v(T , y) = L̃(y). By similar
arguments as in the proof of Proposition 8.1 (using convexity of the function J̃
in y), one proves that the optimal control of (8.5) is given by the constant process,

r∗ =
{ µ− a

σ
, if µ> a,

0, if µ≤ a.

8.3. A reinsurance problem. We consider an insurance company which
reinsures a fraction 1 − θt of the incoming claims. The times of arrival of the
claims are modelled by a Poisson process (Nt) with constant intensity π and the
magnitude of the incoming claims is constant, equal to δ ≥ 0. The premium rate per
unit of time received by the company is a constant α ≥ 0 and the premium rate per
unit of time paid by the company to the reinsurer is β ≥ α. We shall consider here
a fair premium reinsurance rate, that is, β = δπ . The risk process of the insurance
company is governed by

dX
x,θ
t = [α − β(1− θt )]dt − θt δ dNt,

X
x,θ
0 = x.

The reinsurance trading strategy is constrained to remain in K = [0,1]. This is a
particular case of the model in Section 7.3 with the function h equal to h(t, z) =
α−β(1− z). Assuming that the probability space (�,F ,P ) is equipped with the
filtration generated by the Poisson process, it is well known from the martingale
representation theorem for random measures [see, e.g., Brémaud (1981)] that
all probability measures Q ∼ P have a Radon–Nikodym density of the form
dQ/dP =ZρT where

dZ
ρ
t = (ρt − 1)Zρt − dÑt, Z

ρ
0 = 1,

Ñ =N − ∫ π dt is the P -compensated martingale of N and ρ ∈D = {(ρt )0≤t≤T
predictable process: ρt > 0, a.s., 0 ≤ t ≤ T ,

∫ T
0 | lnρt | + ρtdt < ∞ and

E[ZρT ] = 1}. By Girsanov’s theorem, the dynamics of X0,θ under P ρ := ZρT ·P is

dX
0,θ
t = [α− β + βθt (1− ρt )]dt − θt δ dÑρt ,

where Ñρt = Nt −
∫
ρπ dt is the P ρ-compensated martingale of N . The set S

is equal to {(X0,θ − (α − β)t)0≤t≤T : θ ∈ �loc}. The predictable compensator of
(X

0,θ
t − (α − β)t)0≤t≤T , θ ∈�loc, under P ρ , ρ ∈D , is

A
p,θ
t =

∫ t

0
βθu(1− ρu) du, 0≤ t ≤ T .

We then deduce that P = {P ρ :ρ ∈D} and the upper variation process of P ρ is

At(P
ρ)=

∫ t

0
β(1− ρu)+ du, 0≤ t ≤ T .
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We consider the problem of minimizing the shortfall risk of a constant B in R

interpreted as a benchmark upper constant level for a loss function l satisfying
assumptions of Section 6. By Corollary 4.1, the set of admissible reinsurance
strategies A(x) is nonempty iffx ≥ b= (β−α)T . We fix now some initial reserve
x ≥ b. The dynamic version of the dual control problem (D(y)) is then written as

J̃ (t, y)= inf
ρ∈DE

[
L̃

(
y
Z
ρ
T

Z
ρ
T

)
+ y

∫ T

t

Z
ρ
u

Z
ρ
t

(
β(1− ρu)+ + α − β)du],(8.6)

for all (t, y) ∈ [0, T ]×R+, where L̃(y)=−l(B∧I (y))−y(B−I (y))+. We have
J̃ (y)= J̃ (0, y). The Bellman equation associated to this control problem is

−∂v
∂t
+ y(β − α)
+ sup
r>0

[
−
(
v(t, ry)− v(t, y)− (r − 1)y

∂v

∂y
(t, y)

)
π − yβ(1− r)+

]
= 0,

together with the terminal boundary condition v(T , y) = L̃(y). By similar
arguments as in the proof of Proposition 8.1 (using convexity of the function
J̃ in y), one can prove that the optimal control of (8.6) is the constant process
r∗ ≡ 1 corresponding to the probability measure Q∗(y) = P . Therefore, by
Theorem (6.1), the solution of (S(x)) is X∗(x) ≡ x and so the solution to the
shortfall risk minimization problem is the trivial reinsurance strategy θ∗(x) ≡ 0.
The insurance company optimally reinsures all of its incoming claims.

APPENDIX

A.1. Proof of Theorem 6.1. We recall that the function L̃ is given by

L̃(y,ω)= max
0≤x≤B[−l(B − x)− xy](A.1)

=−l(B ∧ I (y))− y(B − I (y))+, y ≥ 0,(A.2)

and the maximum in (A.1) is attained for

χ(y,ω)= (B − I (y))+, y ≥ 0.(A.3)

The function L̃(·,ω) is convex, differentiable on (0,∞) with derivative

L̃′(y,ω)=−χ(y,ω), y ≥ 0.(A.4)

(i) Let y > 0. Then for all δ > 0, we have

J̃ (y + δ)− J̃ (y)
δ

≤ 1

δ
E

[
L̃

(
(y + δ)dQ

∗(y)
dP

,ω

)
− L̃

(
y
dQ∗(y)
dP

,ω

)]
+EQ∗(y)[AT (Q∗(y))+H 0

T

]



164 H. PHAM

≤−EQ∗(y)
[
χ

(
(y + δ)dQ

∗(y)
dP

,ω

)]
+EQ∗(y)[AT (Q∗(y))+H 0

T

]
,

where we used (A.4) and convexity of L̃(·,ω). By Fatou’s lemma, we deduce that

lim sup
δ↘0+

J̃ (y + δ)− J̃ (y)
δ

≤−EQ∗(y)
[
χ

(
y
dQ∗(y)
dP

,ω

)
−H 0

T −AT
(
Q∗(y)

)]
.

(A.5)

Similarly, for all δ < 0, y + δ > 0, we have

J̃ (y + δ)− J̃ (y)
δ

≥−EQ∗(y)
[
χ

(
(y + δ)dQ

∗(y)
dP

,ω

)
−H 0

T −AT
(
Q∗(y)

)]
.

From the expression (A.3) of χ and since−H 0
T is bounded from below, there exists

a nonnegative constant cte (independent of δ) such that

cte−AT (Q∗(y)) ≤ χ((y + δ)dQ∗(y)
dP

,ω

)
−H 0

T −AT
(
Q∗(y)

)
(A.6)

≤ B −H 0
T −AT

(
Q∗(y)

)
.(A.7)

Therefore, under the assumption that v0(B) <∞ and (4.1), one can apply the
dominated convergence theorem to deduce that

lim inf
δ↗0−

J̃ (y + δ)− J̃ (y)
δ

≥−EQ∗(y)
[
χ

(
y
dQ∗(y)
dP

,ω

)
−H 0

T −AT
(
Q∗(y)

)]
.

(A.8)

Relations (A.5)–(A.8) and convexity of the function J̃ imply the differentiability
of J̃ and provide the expression (6.1) of �J ′.

(ii) The function y �→ fx(y) = J̃ (y)+ xy is convex on (0,∞). Let us check
that

lim
y→∞fx(y)=∞ ∀x > v0(0).(A.9)

Indeed, by noting that L̃(y,ω)≥−l(B), we have

J̃ (y) ≥ inf
Q∈P E

[
−l(B)− y dQ

dP

(−H 0
T −AT (Q)

)]
=−E[l(B)] − y sup

Q∈P
EQ[−H 0

T −AT (Q)]

= −E[l(B)] − yv0(0).



SHORTFALL RISK MINIMIZATION 165

We deduce that fx(y) ≥ −E[l(B)] + y(x − v0(0)), which proves (A.9). We now
check that for all v0(0) < x < v0(B), there exists y0 > 0 such that fx(y0) < 0. On
the contrary, we should have

E

[
L̃

(
y
dQ

dP
,ω

)
+ y dQ

dP

(
AT (Q)+H 0

T

)]+ xy > 0 ∀y > 0, ∀Q ∈P

and then

x > E

[
−1

y
L̃

(
y
dQ

dP
,ω

)
− dQ
dP

(
H 0
T +AT (Q)

)] ∀y > 0, ∀Q ∈P .

Since −L̃(ydQ/dP,ω)/y ≥ 0 and −L̃(ydQ/dP,ω)/y converges to BdQ/dP
as y goes to infinity, we deduce by Fatou’s lemma that

x ≥EQ[B −H 0
T −AT (Q)

] ∀Q ∈P ,

and then x ≥ v0(B), a contradiction. Since fx(0) = 0 , we deduce that for all
v0(0) < x < v0(B), the function fx(·) attains an infimum for ŷ > 0 and since J̃ ,
and so fx , is differentiable on (0,∞), we have f ′x(ŷ)= 0; that is, J̃ ′(ŷ)=−x.

Fix some y > 0 and let Q be an arbitrary element of P . Denote

Qε = (1− ε)Q∗(y)+ εQ, ε ∈ (0,1).
By Lemma 6.1, Qε ∈P so that by definition of J̃ , we have

0≤ 1

ε
E

[
L̃
(
y
dQε

dP
,ω
)−�L(y dQ∗(y)

dP
,ω
)

y
+
(
dQε

dP
− dQ

∗(y)
dP

)
H 0
T

]

+ 1

ε
E

[
dQε

dP
AT (Q

ε)− dQ
∗(y)
dP

AT
(
Q∗(y)

)]

≤ 1

ε
E

[
L̃
(
y
dQε

dP
,ω
)− L̃(y dQ∗(y)

dP
,ω
)

y
+
(
dQε

dP
− dQ

∗(y)
dP

)
H 0
T

]

+E
[
dQ

dP
AT (Q)− dQ

∗(y)
dP

AT
(
Q∗(y)

)]

≤E
[
−
(
dQ

dP
− dQ

∗(y)
dP

)(
χ

(
y
dQε

dP
,ω

)
−H 0

T

)]

+E
[
dQ

dP
AT (Q)− dQ

∗(y)
dP

AT
(
Q∗(y)

)]
,

where the second inequality follows from the convexity of the function Q ∈
P �→ EQ[AT (Q)] (see Lemma 6.1) and the third inequality from (A.4) and the
convexity of L̃. We obtain then

EQ
[
χ

(
y
dQε

dP
,ω

)
−H 0

T −AT (Q)
]

≤EQ∗(y)
[
χ

(
y
dQε

dP
,ω

)
−H 0

T −AT
(
Q∗(y)

)]
.

(A.10)
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Similarly as in (A.7), there exists a nonnegative constant cte independent of ε such
that

cte−AT (Q∗(y)) ≤ χ(y dQε
dP

,ω

)
−H 0

T −AT (Qε)

≤ B −H 0
T −AT

(
Q∗(y)

)
.

Therefore, by the dominated convergence theorem and Fatou’s lemma applied,
respectively, to the right-hand side and left-hand side of (A.10), we have

EQ
[
χ

(
y
dQ∗(y)
dP

,ω

)
−H 0

T −AT (Q)
]

≤EQ∗(y)
[
χ

(
y
dQ∗(y)
dP

,ω

)
−H 0

T −AT
(
Q∗(y)

)]
.

From (6.1) and (A.3), this can be written also as

sup
Q∈P

EQ
[
χ

(
y
dQ∗(y)
dP

,ω

)
−H 0

T −AT (Q)
]
≤−J̃ ′(y),

for all y > 0. By choosing y = ŷ defined above, we get

sup
Q∈P

EQ
[
χ

(
ŷ
dQ∗(ŷ)
dP

,ω

)
−H 0

T −AT (Q)
]
≤ x,(A.11)

which proves that X∗(x)= χ(ŷ dQ∗(ŷ)
dP

,ω) lies in C(x).
Moreover, by definition (A.1) of L̃ and by definition of X∗(x), we have for all

X ∈ C(x),

L̃

(
ŷ
dQ∗(ŷ)
dP

,ω

)
+ ŷ dQ

∗(ŷ)
dP

(
AT

(
Q∗(ŷ)

)+H 0
T

)
=−l(B −X∗(x))− ŷ dQ∗(ŷ)

dP

(
X∗(x)−H 0

T −AT
(
Q∗(ŷ)

))(A.12)

≥−l(B −X)− ŷ dQ
∗(ŷ)
dP

(
X−H 0

T −AT
(
Q∗(ŷ)

))
.(A.13)

Taking expectation under P in (A.12) and (A.13) and using the facts that

EQ
∗(ŷ)[X∗(x)−H 0

T −AT
(
Q∗(ŷ)

)]=−J̃ ′(ŷ)= x,(A.14)

EQ
∗(ŷ)[X−H 0

T −AT
(
Q∗(ŷ)

)]≤ x,(A.15)

we obtain that

E
[
l
(
B −X∗(x))]≤E[l(B −X)],

which proves that X∗(x) is a solution to problem (S(x)). Relations (A.11)
and (A.14) show that Q∗(ŷ) attains the supremum in supQ∈P EQ[X∗(x)−H 0

T −
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AT (Q)], and by Theorem 4.1, this proves that there exists θ∗(x) ∈A(x) such that
X∗(x)=Xx,θ∗(x)T , a.s., θ∗(x) is a solution of the dynamic problem (P(x)) and the
associated controlled process is given as in assertion (ii) of Theorem 6.1.

(iii) By definition (A.1) of the function L̃, we have for all x ∈ R, y ≥ 0,
X ∈ C(x), Q ∈P ,

−l(B −X)− y dQ
dP

(
X−H 0

T −AT (Q)
)≤ L̃(y dQ

dP
,ω

)
+ y dQ

dP

(
AT (Q)+H 0

T

)
,

hence by taking expectation under P ,

−E[l(B −X)] − yx ≤E
[
L̃

(
y
dQ

dP
,ω

)
+ y dQ

dP

(
AT (Q)+H 0

T

)]
and therefore,

sup
y≥0
[−J̃ (y)− xy] ≤ J (x) ∀x ∈R.(A.16)

For x ≥ v0(B), we have J (x) = 0 = −J̃ (0). Fix now v0(0) < x < v0(B). From
relations (A.12) and (A.14), we have

J̃ (ŷ)=−E[l(B −X∗(x))]− ŷE[dQ∗(ŷ)
dP

(
X∗(x)−H 0

T −AT
(
Q∗(ŷ)

))]
=−J (x)− xŷ,

which proves that J (x)=−J̃ (ŷ)− xŷ. The proof is complete. �

A.2. Proof of Theorem 7.1. (i) The convexity property of the set � follows
from the convexity of the set K and the condition (7.5). For any predictable
process ζ valued in [0,1] and for all θ1, θ2 ∈�, we have

Hζθ1+(1−ζ )θ2 −
∫
ζ dHθ1 −

∫
(1− ζ ) dHθ2

=
∫ (
h
(
t, ζt θ

1
t + (1− ζt )θ2

t

)− ζth(t, θ1
t )− (1− ζt )h(t, θ2

t )
)
dt,

which lies in I by the concave property of h(t, ·). Hence, property (Hc) is satisfied.
(ii) To prove the closure property, we shall use the following properties of the

semimartingale topology stated in Mémin (1980).

(P1) (V n)n is a sequence of semimartingales converging to V in the semi-
martingale topology iff there exists a sequence [also denoted (V n)n] and a proba-
bility measure Q∼ P with bounded density dQ/dP such that (V n)n is a Cauchy
sequence in M2(Q)⊕A(Q) where M2(Q) is the Banach space of Q-square in-
tegrable martingales and A(Q) is the Banach space of predictable processes with
finite Q-integrable variation.
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(P2) The semimartingale topology is invariant under a change of equivalent
probability measure.

STEP 1. Let

Un =X0, θn −Cn =
∫
θn dS +

∫
h(t, θvt ) dt −Cn, n ∈N,

be a sequence converging to U in the semimartingale topology. By (P1) there
exists a subsequence [also denoted (Un)n] and a probability measure Q ∼ P

with bounded density dQ/dP such that (Un)n is a Cauchy sequence in M2(Q)⊕
A(Q). Denote by S0 +MQ +AQ the canonical decomposition of S in the space
M2(Q)⊕A(Q). Then, the canonical decomposition of Un in M2(Q)⊕A(Q) is

Un =
∫
θn dMQ+DQ,n,

where

DQ,n =
∫
θn dAQ+

∫
h(t, θnt ) dt −Cn.

Indeed, fix n and let N +D be the canonical decomposition of Un in M2(Q)⊕
A(Q). Since θn is integrable with respect to the Q-semimartingale S, there exists
a decomposition S = S0 +M ′ + A′ (under Q) such that

∫
θn dS = ∫

θn dM ′ +∫
θn dA′. Hence Un can be decomposed into

Un =
∫
θn dM ′ +D′n,

where

D′n =
∫
θn dA′ +

∫
h(t, θnt ) dt −Cn.

Since S (resp. Un) is a special semimartingale, it follows that A′ (resp. D′n) has
a locally integrable variation and its predictable compensator is AQ (resp. D);
see Proposition 2.14 in Jacod (1979). Therefore, the predictable compensator
of

∫
θn dA′ is

∫
θn dAQ and since

∫
h(t, θnt ) dt − Cn is a predictable process,

we deduce by uniqueness of the canonical decomposition that D = ∫
θn dAQ +∫

h(t, θnt ) dt − Cn and so N = ∫
θn dMQ. We deduce that

∫
θn dMQ converges

in M2(Q) to
∫
θn dMQ for some predictable process θ , and DQ,n converges

in A(Q).

STEP 2. Let us now prove that
∫
θn dS converges in the semimartingale

topology to
∫
θ dS. By (P2), it suffices to prove that

∫
θn dAQ converges to∫

θ dAQ in A(R) for some probability measure R ∼ P defined later. Denote by
Z = (Zt )0≤t≤T the density process of the probability measure Q. Since ZT =
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dQ/dP is bounded, it follows that 〈Z,M〉 exists and by Girsanov’s theorem, we
have

M
Q
t =Mt −

∫ t

0

1

Zu−
d〈Z,M〉u, 0≤ t ≤ T .(A.17)

Since M is a continuous martingale, we also know that 〈MQ〉 = 〈M〉 = ∫
σ dt .

Since S = S0 +M +A= S0 +MQ +AQ, we deduce from (A.17) that

A
Q
t =At + �At, 0≤ t ≤ T,

where

�At =
∫ t

0

1

Zu−
d〈Z,M〉u, 0≤ t ≤ T .

Now, by writing that
∫
θn dMQ converges in M2(Q) to

∫
θ dMQ and that 〈MQ〉

= ∫ σ dt , we have

EQ
[∫ T

0
(θnt − θt )′σt(θnt − θt ) dt

]
→ 0,(A.18)

as n goes to infinity. In the following, we denote by V (·) the variation process of a
finite variation process. From (7.2), the variation process of

∫
(θn−θ)′ dA satisfies

V

(∫
(θn − θ)′ dA

)
T

=
∫ T

0
|(θnt − θt )′σtλt |dt

≤
∫ T

0

√
(θnt − θt )′σt(θnt − θt )

√
λ′tσtλt dt

≤
(∫ T

0
λ′t σtλt dt

)1/2(∫ T

0
(θnt − θt )′σt(θnt − θt ) dt

)1/2

.

By condition (7.3) and relation (A.18), this shows that∫
θn
′
dA→

∫
θ ′ dA in A(Q),(A.19)

as n goes to infinity.
Let us define the continuous predictable process with finite variation

Gt = exp
(
−
∫ t

0

1

Z2
u

d〈Z〉u
)
, 0≤ t ≤ T,

and denote Lt =Z2
t Gt , 0≤ t ≤ T . By Itô’s formula, we have

Lt = 1+ 2
∫ t

0
ZuGu dZu +

∫ t

0
Gu d([Z] − 〈Z〉)u, 0≤ t ≤ T,

where [Z] is the quadratic variation process of Z and 〈Z〉 its predictable
compensator. Since G and Z are bounded, it follows that L is a strictly positive
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P -martingale with L0 = 1. Hence, it defines a probability measure R ∼ P with
density process L,

dR

dP

∣∣∣∣
Ft

=Lt, 0≤ t ≤ T .

By the Kunita–Watanabe inequality and condition (7.1), we have

ER
[
V

(∫
(θn − θ)′ d�A

)
T

]
≤
(
ER

[∫ T

0
(θnt − θt )′σt (θnt − θt ) dt

])1/2(
ER

[∫ T

0

1

Z2
t

d〈Z〉t
])1/2

≤ (cte)
(
EQ

[∫ T

0
(θnt − θt )′σt (θnt − θt ) dt

])1/2(
E

[∫ T

0

Lt

Z2
t

d〈Z〉t
])1/2

≤ cte
(
EQ

[∫ T

0
(θnt − θt )′σt (θnt − θt ) dt

])1/2

(E〈Z〉T )1/2

≤ cte
(
EQ

[∫ T

0
(θnt − θt )′σt (θnt − θt ) dt

])1/2

,

(A.20)

where we used the fact that dR/dQ= ZTGT is bounded, Bayes formula and the
properties that Lt/Z2

t =Gt ≤ 1 and E〈Z〉T = E(Z2
T ) <∞. By using (A.18), the

last inequality (A.20) shows that∫
θn
′
d�A→

∫
θ ′ d�A in A(R),(A.21)

as n goes to infinity. Therefore, by (A.19), (A.21) and since dR/dQ is bounded,
we deduce that ∫

θn
′
dAQ→

∫
θ ′ dAQ in A(R),(A.22)

as n goes to infinity.

STEP 3. We now show that under one of the conditions (i) or (ii),
∫
h(t, θnt )×

dt − Cn converges to
∫
h(t, θt ) dt − C, for some C ∈ I, in the semimartingale

topology. By (A.18), we have (possibly along a subsequence)

(θnt − θt )′σt (θnt − θt )→ 0 a.s. for all t ∈ [0, T ],(A.23)

as n goes to infinity. Therefore, by condition (7.4), we deduce that

θnt → θt a.s. for all t ∈ [0, T ],(A.24)

and so θt ∈ K a.s., for all t . Suppose first that condition (i): K is bounded, is
satisfied. Then by (A.24) and the dominated convergence theorem, we have

EQ
[∫ T

0
|h(t, θnt )− h(t, θt )|dt

]
→ 0,(A.25)
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as n goes to infinity. Suppose now that condition (ii): σt is uniformly elliptic a.s. for
all t , is satisfied. Then by (A.18), we deduce also that (A.25) holds. Therefore, this
shows that θ ∈� and that

∫
h(t, θnt ) dt converges to

∫
h(t, θt ) dt in A(Q) and in

particular for the semimartingale topology. Moreover, since DQ,n = ∫ θn dAQ +∫
h(t, θnt ) dt − Cn converges in A(Q) and in particular in A(R), it follows from

(A.22) that Cn also converges in A(R) to some predictable process C. Since
|Cnt −Ct | ≤ V (Cn−C)T , we deduce that Cnt converges to Ct a.s. (possibly along a
subsequence) for all t ∈ [0, T ] and so C inherits the nondecreasing property of Cn,
hence C ∈ I. We have then proved that

U =
∫
θ dS +

∫
h(t, θt ) dt −C

=X0,θ −C,
which ends the proof. �
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