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COMPOUND POISSON APPROXIMATION: A USER’S GUIDE

By A. D. Barbour1�2 and O. Chryssaphinou2

Universität Zürich and University of Athens

Compound Poisson approximation is a useful tool in a variety of appli-
cations, including insurance mathematics, reliability theory, and molecu-
lar sequence analysis. In this paper, we review the ways in which Stein’s
method can currently be used to derive bounds on the error in such approx-
imations. The theoretical basis for the construction of error bounds is
systematically discussed, and a number of specific examples are used for
illustration. We give no numerical comparisons in this paper, content-
ing ourselves with references to the literature, where compound Poisson
approximations derived using Stein’s method are shown frequently to
improve upon bounds obtained from problem specific, ad hoc methods.

1. Motivation. Many probability models [Aldous 1989] involve rare, iso-
lated and weakly dependent clumps of interesting occurrences. A typical exam-
ple is that of clusters of extreme events, such as earthquakes of magnitude
exceeding 4�0; when one event occurs, several more may follow in quick suc-
cession, before normality returns. Clusters of events can then be expected to
take place almost “at random,” according to a Poisson process, in which case
the number of clusters occurring in a given time interval would have a distri-
bution close to a Poisson distribution Po�λ� with some mean λ, and the sizes
of the individual clumps might well also be assumed to be approximately
independent and identically distributed with some distribution �. If these
assumptions were precisely true, the total number W of occurrences would
then have a compound Poisson distribution CP �λ���, the distribution of the
sum of a random Po�λ�-distributed number of independent random variables,
each with distribution �: more formally, CP �λ��� is defined by

CP �λ��� = �

(
M∑
j=1

Yj

)
= �

(∑
i≥1

iMi

)
�

for any λ > 0 and any probability distribution � on �, where �Yj� j ≥ 1�
are independent, have distribution � and are independent also of M ∼ Po�λ�
and where �Mi� i ≥ 1� are independent, with Mi ∼ Po�λµi�. The former rep-
resentation is that which ties in with the description above. The latter is an
equivalent definition, which emphasizes that the number of clumps of each
size i ≥ 1 itself has a Poisson distribution and that these numbers are inde-
pendent; this structure can also be useful.
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In practice, the assumptions above are usually not satisfied exactly; the
clumps may occur only approximately as a Poisson process, and the clump
sizes may not quite be independent. If this is the case, and if the CP �λ���
distribution is being used to approximate the distribution of W, it is impor-
tant to know how accurate the approximation really is. In this paper, we are
interested in showing how to quantify this closeness, when W = ∑

γ∈� Xγ is
a countable sum of nonnegative integer valued random variables �Xγ� γ ∈ ��.
We review estimates for the distance between � �W� and CP �λ���, for suit-
ably chosen λ and �, with respect to the Kolmogorov distance dK and the total
variation distance dTV, where, for probability distributions P and Q on �+,

dK�P�Q� �= sup
j≥0

	P
�0� j� −Q
�0� j�	�

dTV�P�Q� �= sup
A⊂�+

	P
A −Q
A	�

The Xγ are to be thought of as being generally weakly dependent, apart possi-
bly from some strong local dependence, but we retain generality and flexibility
by avoiding as far as possible making any specific assumptions in this respect.

1.1. Insurance. A simple model of an insurance portfolio assumes a finite
number n of insured risks, each of which may lead to a claim with a small prob-
ability, independently of all the others. The distribution of the total number
N of claims is then well approximated by the Poisson distribution Po�λ�, with
λ =∑n

j=1 pj, even if the claim probabilities pj are not equal. Furthermore, as
observed by Michel (1988) [see also Le Cam (1965)], if all claim amounts are
independent and identically distributed, the difference in terms of total vari-
ation distance between the distribution of the aggregated claim amount and
an appropriate compound Poisson distribution is no greater than the total
variation distance � ≤ λ−1 ∑n

i=1 p
2
i [Barbour and Hall (1984)] between the

distribution of the total number of claims N and Po�λ�. If the occurrences of
claims are weakly dependent, but the claim amounts are still independent and
identically distributed, Goovaerts and Dhaene (1996) have noted that Michel’s
observation can still be applied and that the new value of �, which will usu-
ally be larger than λ−1 ∑n

i=1 p
2
i , because of the dependence, can be estimated

using the Stein–Chen method [Barbour, Holst and Janson (1992), hereafter
BHJ (1992)].

In many insurance applications, however, there may be strong local depen-
dence between claim occurrences. For instance, in storm damage insurance,
the (rare) single occurrence of a tornado in a particular town may lead to
some random number of claims on the portfolio. Since the distribution of this
number of claims may well depend on the time of year, the preceding argu-
ment, even assuming independent and identically distributed individual claim
amounts, cannot be applied, because the aggregate claim amounts resulting
from occurrences of tornados are no longer independent and identically dis-
tributed. Despite this, it still seems reasonable to suppose that the distribution
of the total number of claims is close to a compound Poisson distribution in
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total variation, in which case, if once again the individual claim amounts are
independent and identically distributed, the distribution of the aggregated
claim amount is itself at least as close in total variation to an appropriate
compound Poisson distribution, again by Michel’s observation. To exploit this
idea, if the possibility of substantial local dependence between the random
claim numbers is also to be allowed, it is necessary to have an equivalent of the
Stein–Chen method, which quantifies the error in total variation when approx-
imating the distribution of a sum of nonnegative random variables, most of
them taking the value zero with high probability, by a compound Poisson dis-
tribution. Once such an equivalent has been developed, there is the further
advantage that one can dispense with Michel’s observation and the assump-
tion of independent and identically distributed individual claim amounts and
prove compound Poisson approximations to the total claim amount directly.

1.2. Reliability. We consider a system of n linearly arranged components,
having independent lifetimes with common distribution function F, connected
in such a way that the system fails if at least k consecutive components fail.
This reliability system is called the Consecutive-k-out-of-n�F [C�k�n�F�] sys-
tem. Over the last two decades, the C�k�n�F� and related systems have been
extensively studied by many authors. One can find a rich literature in Chao,
Fu and Koutras (1995). The advantages of using such a system are that it
has higher reliability than a series system, but is less expensive to build
than a parallel system. It has applications in telecommunication systems, oil
pipelines, vacuum systems, computer ring networks, spacecraft relay stations
and many other engineering systems.

The reliability of this system—the probability that it has not failed—has
been exactly determined, but the explicit formula is quite complicated, espe-
cially if n and k are large. For this reason, upper and lower bounds for the reli-
ability have been derived. In this context, the Stein–Chen method for Poisson
approximation has proved a powerful tool. The approach is as follows. For
any fixed time T, we associate independent Bernoulli Be�p� random variables
J1� � � � � Jn with the components, where p = 1 − F�T�; Ji takes the value
1(0) if the ith component works(fails), i = 1� � � � � n. We then define the ran-
dom variable W = ∑n−k+1

i=1 Ii, where Ii =
∏i+k−1
j=i �1 − Jj� takes the value 1 if

all the components i� i+ 1� � � � � i+ k− 1 fail and 0 in all other cases. Clearly,
the C�k�n�F� system fails if and only if W > 0. Although the components
themselves work independently, the indicators Ii are locally dependent, tend-
ing to occur in clusters. Nonetheless, the random variable W is reasonably
well approximated by a Poisson distribution Po�λ� with λ =∑n−k+1

j=1 qk, where
q = 1−p, provided that p is small. This has been established using the Stein–
Chen “local” approach [BHJ (1992), (8.4.2), Chryssaphinou and Papastavridis
(1990), Godbole (1991) and Roos (1993)], and the argument works equally well
for more general situations, such as when the failure probabilities may differ
from component to component. However, the probability ��W = 0� is more
accurately estimated by using a Poisson approximation for the distribution of
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the number of clusters, or, alternatively, a compound Poisson approximation
to the distribution of W.

Some more complicated problems, which arise in the design of reliable elec-
tronic devices and in pattern detection, inspired Salvia and Lasher (1990)
to consider a planar version of the above system. They introduce the two-
dimensional consecutive-k-out-of-n�F �C�k2� n2�F�� system, which consists of
n×n components placed on a square grid; it fails if there is a square subgrid
of size at least k×k with all its components failed. The exact reliability of this
system is not known, and thus approximations to it are essential. Salvia and
Lasher (1990) obtained bounds for the reliability of the system by relating it
to certain C�k�n�F� systems. Koutras, Papadopoulos and Papastavridis (1993)
proposed bounds using results of Arratia, Goldstein and Gordon (1989, 1990),
using the Stein–Chen method for Poisson approximation.

With the same assumptions about the operating behavior of the components
as for the C�k�n�F� system, we define the random variable W = ∑n−k+1

i� j=1 Iij,
where Iij = I[all components in a k×k subgrid with left lowermost component
�i� j� are failed]. Then the reliability of the system is just ��W = 0�. The
indicators Iij and Ii′j′ are independent unless 	i − i′	 ≤ k− 1 and 	j − j′	 ≤
k− 1 but the local dependence between the Ii� j is now frequently relatively
strong. For example, the conditional probability that Ii+1� j = 1 given that
Ii� j = 1 is qk, as compared with the unconditional probability of qk

2
. Thus the

indicators Ii� j tend to occur in clusters, and the random variable W is best
approximated by a compound Poisson distribution. The reliability ��W = 0� is
then approximated by e−ƐN, where N is the number of clusters, rather than
by the Poisson approximation e−ƐW, the two quantities differing inasmuch as
ƐW = CƐN, where C is the expected cluster size: see Barbour, Chryssaphinou
and Roos (1995, 1996).

1.3. Sequence matching. Biological systematics has been revolutionized by
the discovery of the double helix and the genetic code and by the development
of cheap, fast and automatic sequencing machines. The degree of relationship
between closely related species can now be assessed in terms of the similar-
ity of their genomes. For more distant species, relationship at the DNA level
may well have become obscured because too many random mutations have
occurred since divergence, but functionally vital elements of the amino acid
sequences composing their proteins are still likely to have been conserved.
Thus unusual similarity between (parts of) sequences can be used as evidence
for relationship. It then becomes important to be able to determine what mea-
sure of similarity can be interpreted as unusual.

The simplest model is to suppose that two finite sequences x and y of
length n from the same finite alphabet � (	� 	 = 4 for DNA, 	� 	 = 20 for
amino acid sequences) are to be compared, which, on the null hypothesis of
no relation, are each independently composed of letters drawn independently
from � with the same probability distribution �. A measure of relatedness
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might be the count W =∑n−m
i�j=1 Iij, where

Iij =
m∏
l=0

I�xi+l = yj+l��

the number of pairs of subsequences of length m+ 1 from the two sequences
which exactly match, where m is to be suitably chosen. The indicators Iij
and Ii′j′ are independent unless either 	i − i′	 ≤ m or 	j − j′	 ≤ m, so that
dependence between the Iij is in general weak; however, the conditional prob-
ability that Ii+1� j+1 = 1 given that Iij = 1 is typically substantial (at least
1/	� 	), so that matching pairs tend to occur in local clusters. Hence a com-
pound Poisson distribution is a suitable candidate for approximating the dis-
tribution of W. There are, of course, many generalizations of the model, the
most important, for the purposes of practical algorithms, being to allow some
degree of mismatching in the pairs of interest, through insertions and dele-
tions of sequence segments and through the replacement of one amino acid by
another similar one; see Neuhauser (1994, 1996).

2. Compound Poisson approximation.

2.1. The Poisson process approach. A first approach to compound Poisson
approximation for sums of dependent indicators is to proceed by way of Poisson
point process approximation. This is a very natural idea in the context of an
underlying process consisting of rare, isolated and weakly dependent clumps
of events. In such a system, the locations of the clumps, when suitably defined,
occur more or less as a Poisson process on the index set �, and, if the sizes of
the clumps are added to � as an extra index dimension, then the process of
clump locations and sizes on �×� is also almost a Poisson process. The typical
strategy is to assign a location to each clump by using exactly one of the indices
γ ∈ � as the representative of each clump and to replace W = ∑

γ∈� Xγ by a
sum

W = ∑
γ∈�

∑
l≥1

lIγl�(2.1)

where Iγl now denotes the indicator of the event that γ is the index of the
representative of a clump of size l; thus, for each clump, exactly one of the Iγl
takes the value 1, and no index γ is representative of more than one clump.
Poisson process approximation in total variation to the point process % =∑

γ∈�
∑

l≥1 Iγl	l, where 	l denotes the point mass at l, is then accomplished
by using Stein’s method for Poisson process approximation, and compound
Poisson approximation in total variation to the random variable W = ∑

γ∈�∑
l≥1 lIγl, with exactly the same error estimate, follows as a consequence.

There have been many successful applications of this approach, a number of
which are given in Arratia, Goldstein and Gordon (1989, 1990).
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To formulate the results, we introduce some notation. For each �γ� l� ∈ �×�,
let B�γ� l� ⊂ �×� be a set containing 
γ ×�, and set

b1 = ∑
�γ� l�∈�×�

∑
�β�j�∈B�γ�l�

ƐIγlƐIβj� b2 = ∑
�γ�l�∈�×�

∑
�β�j�∈B�γ� l�
�β�j��=�γ� l�

Ɛ�IγlIβj��(2.2)

b3 = ∑
�γ� l�∈�×�

Ɛ	Ɛ
Iγl − ƐIγl	σ�Iβj� �β�j� /∈ B�γ� l��	�(2.3)

The set B�γ� l� can be thought of as indexing the immediate neighborhood
of �γ� l�, and should be chosen so that the indicators Iβj, whose indices �β�j�
do not belong to it, collectively have little or no influence on the value of Iγl.
The degree of influence from outside the immediate neighborhood, aggregated
over all �γ� l�, is measured by b3. An alternative expression for it is

b3 = ƐN
∑

�γ� l�∈�×�

wγlƐ

∣∣∣∣��Iγl = 1 	 σ�Iβj� �β�j� /∈ B�γ� l���
��Iγl = 1� − 1

∣∣∣∣�
where N �=∑

�γ�l�∈�×� Iγl denotes the total number of clumps, and the wγl are
the weights ƐIγl/ƐN. This represents b3 as the product of ƐN and a weighted
average of a measure of the dependence of the distribution of Iγl on what
happens outside its immediate neighborhood, the events in σ�Iβj� �β�j� /∈
B�γ� l��. Local dependence, which should also be weak for a Poisson process
approximation to be good, is summarized in b2. This quantity can be inter-
preted in a similar way, as the product of ƐN and a weighted average of the
expected number of further clumps occurring in the immediate neighborhood
of an index pair �γ� l�, conditional on Iγl = 1. Finally, b1 has a similar interpre-
tation, as ƐN times a weighted average, but now of the unconditional expected
number of clumps with index pairs �β� l� ∈ 
�γ� l� ∪ B�γ� l�; this is a mea-
sure of the “extent” of the neighborhoods, and should also be small if Poisson
process approximation is to be accurate. Thus the choice of the sets B�γ� l� is
critical to the success of the approach.

With these definitions, the following compound Poisson estimate, derived by
way of a Poisson process approximation, can be proved as in Arratia, Goldstein
and Gordon [(1990), Section 4.2.1], with improved coefficients of b1 and b2 from
BHJ [(1992), Theorem 10.A].

CPA PP. If W = ∑
γ∈�

∑
l≥1 lIγl is as defined above, and λ �= ∑

γ∈�
∑

l≥1

ƐIγl = ƐN and µl �= λ−1 ∑
γ∈� ƐIγl, l ≥ 1, then

dTV�� �W��CP �λ���� ≤ b1 + b2 + b3�(2.4)

By choosing the sets B�γ� l� carefully, very good results can be obtained, as
long as λ is not too large.

There are two drawbacks to the point process approach. First, the identifi-
cation of a unique representative for each clump (“declumping”) is rarely nat-
ural and can pose difficulties. Second, if λ is large, the error estimates derived
in this way are frequently far from accurate, because the error involved in
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point process approximation in total variation is often much larger than that
for compound Poisson approximation to � �W�. However, the point process
approach still provides flexible, useful and explicit error estimates for com-
pound Poisson approximation.

Example A. Let Xij = IiI�Yi ≥ j�, 1 ≤ i ≤ n, j ≥ 1, be a double array of
indicators, in which the Ii ∼ Be �pi� are independent, and the Yi ∼ ��i� are
independent of each other and of the Ii. Set

W =
n∑
i=1

∑
j≥1

Xij =
n∑
i=1

IiYi�

“Declumping” is easily achieved by using representatives γ ∈ 
1�2� � � � � n ×

1, denoted for short by i, and then defining Iil = IiI�Yi = l� for each i� l.
Then λ = ∑n

i=1 pi and µl = λ−1 ∑n
i=1 piµ

�i�
l , and, taking B�i� l� = 
i × � for

each i, it also follows that b1 = ∑n
i=1 p

2
i and b2 = b3 = 0. The Poisson process

estimate CPA PP thus immediately implies that

dTV�� �W��CP �λ���� ≤
n∑
i=1

p2
i �(2.5)

To illustrate the implications of (2.5), let p�n� be chosen in such a way
that p�n� → 0 and np�n� → ∞ as n → ∞, and consider three choices of the
pi = p

�n�
i and ��i� = ��in�.

Case (a). Suppose that p�n�
i = p�n� and ��in� = � for all i. Then (2.5) gives

a total variation error bound of np�n�2 for approximation by CP �np�n����;
however, the true error is actually much less, being at most p�n�.

Case (b). Suppose that the p�n�
i and ��in� are as in Case (a) for 2 ≤ i ≤ n,

and that � is such that µ1 > 0; suppose also that p�n�
1 = 1

2 and that ��1n� = 	1
for all n. Then (2.5) gives an error estimate of at least 1/4 for approximation
by CP �λn��n�, where

λn = �n− 1�p�n� + 1
2 and �n = λ−1

n

{�n− 1�p�n��+ 1
2	1

}�
here, the true error in fact tends to 0 with n, being of orderO�p�n�+�np�n��−1�.

Case (c). Suppose that everything is as in Case (b), except that now
�
2�+ = 1, so that, in particular, µ1 = 0. In this case, the error estimate
of order O�1� furnished by (2.5) is of the correct order.

The contrast between Cases (b) and (c) indicates that improving upon the
error estimates for compound Poisson approximation that are derived using
the point process approach is likely to be a delicate matter.
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2.2. The direct approach. If ƐW is large but finite, there is advantage to be
gained by taking a direct approach by way of Stein’s method for the compound
Poisson distribution, introduced in Barbour, Chen and Loh (1992). Here, there
is no need to rewrite W = ∑

γ∈� Xγ in “declumped” form. Instead, for each γ,
decompose W into nonnegative integer valued random variables in the form

W =Wγ +Zγ +Uγ +Xγ�(2.6)

where, for the representation to be useful, Wγ should be almost independent
of �Xγ�Uγ�, and Uγ and Zγ should not be too large: the sense in which these
requirements are to be interpreted becomes clear shortly. Such a decomposi-
tion is often realized by partitioning the indices 
1�2� � � � � n into subsets 
γ,
Sγ, Nγ and Tγ and setting

Uγ = ∑
β∈Sγ

Xβ and Zγ = ∑
β∈Nγ

Xβ

[Roos (1994)]; Sγ contains those Xβ, β �= γ, which strongly influence Xγ,
Tγ those Xβ whose cumulative effect on �Xγ�Uγ� is negligible, and Nγ the
remainder. This procedure is the analogue of the “local” approach to Poisson
approximation [BHJ (1992), pages 9 and 10], which is recovered, for 0–1 val-
ued Xγ, by taking Sγ = � and hence Uγ = 0. Define the parameters λ and �
of the canonical approximating compound Poisson distribution as follows.

Canonical parameters:

λµl=
1
l

∑
γ∈�

Ɛ
XγI�Xγ +Uγ = l�� l ≥ 1�

λ=∑
l≥1

λµl =
∑
γ∈�

Ɛ

{( Xγ

Xγ +Uγ

)
I�Xγ +Uγ ≥ 1�

}
�

(2.7)

Note that, if the Xγ are 0–1 valued and Sγ = �, then µ1 = 1 and all other µi
are zero, and λ = ƐW, all consistent with the simple Poisson approximation.

Then, setting π
�γ�
jk = j��Xγ = j, Uγ = k�/m1γ, j ≥ 1, k ≥ 0, where m1γ =

ƐXγ, define the four following quantities which appear in the error estimates
and which should be small for the estimates to be good:

δ1 = ∑
γ∈�

m1γ
∑
j≥1

∑
k≥0

π
�γ�
jk Ɛ

∣∣∣∣��Xγ = j�Uγ = k	Wγ�
��Xγ = j�Uγ = k� − 1

∣∣∣∣�(2.8)

δ2 = 2
∑
γ∈�

Ɛ
{
XγdTV�� �Wγ	Xγ�Uγ��� �Wγ��

}�(2.9)

δ3 = ∑
γ∈�

Ɛ
{
XγdW�� �Wγ	Xγ�Uγ��� �Wγ��

}�(2.10)

δ4 = ∑
γ∈�

{
Ɛ�XγZγ� + ƐXγƐ
Xγ +Uγ +Zγ

}
�(2.11)
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In (2.10), the distance dW is the Wasserstein L1 metric on probability mea-
sures over �+:

dW�P�Q� = sup

f∈Lip1

∣∣∣ ∫ fdP−
∫
fdQ

∣∣∣�
where Lip1 = 
f� 	f�r� − f�s�	 ≤ 	r− s	� r� s ∈ �+.

The quantities δl, 1 ≤ l ≤ 4, can be interpreted as follows. To start with, δ4
is an analogue of b1+b2 in (2.2), combining the effects of local dependence and
neighborhood size, and it reduces to the corresponding element in the Poisson
“local” bounds [BHJ (1992), (1.28)] if the Xγ are 0–1 valued and Sγ = �. Two
points should be noted. First, the two weighted averages are now multiplied by
the expectation

∑
γ∈� ƐXγ of W, and not by the expected number λ of clumps.

Second, in the term∑
γ∈�

Ɛ�XγZγ� = ƐW
∑
γ∈�

w′
γ

∑
l≥1

l��Xγ = l�
ƐXγ

Ɛ�Zγ	Xγ = l��

where the weights w′
γ are defined by w′

γ �= ƐXγ/ƐW, the average is over
conditional expectations of Zγ given the value of Xγ, and does not include any
contribution from the strongly dependent Uγ; the effect of the Uγ is already
accounted for in the definition of the canonical parameters (2.7).

Each of the quantities δ1, δ2 and δ3 is a measure of the effect of any long
range dependence on the joint distribution of �Xγ�Uγ�, and can be contrasted
with b3 in (2.3). In δ2 and δ3, it is expressed in terms of the effect on the distri-
bution of the “distant” Wγ exercised by the value of �Xγ�Uγ�, measured either
in terms of total variation or Wasserstein distance. In δ1, the dependence is
rewritten in terms of the effect on the distribution of �Xγ�Uγ� exercised byWγ.
All three can be viewed as weighted averages of measures of dependence at a
distance, multiplied by ƐW. For independent Xi, one can take Zi = Ui = 0,
for which choice δ1 = δ2 = δ3 = 0, and δ4 reduces to

∑n
i=1�ƐXi�2.

Remark. The distances d�� �Wγ	Xγ�Uγ��� �Wγ�� appearing in (2.9) and
(2.10) are often bounded by constructing random variables W1� i� l

γ and W2� i� l
γ

on the same probability space, for each i ≥ 1 and l ≥ 0, with � �W1� i� l
γ � =

� �Wγ	�Xγ�Uγ� = �i� l�� and � �W2� i� l
γ � = � �Wγ�, in such a way that W1� i� l

γ

and W2� i� l
γ are close—for instance, so that they coincide with high probabil-

ity. In practice, it is often easier to make a coupling of � �Wγ	�Xγ�Uγ�Yγ� =
�i� l� y�� and � �Wγ�, where Yγ summarizes additional information, for exam-
ple the exact knowledge of �Iβ�β ∈ Sγ� rather than just the value of Uγ. This
causes no extra difficulty, since it is always the case that

Ɛ
Xγd�� �Wγ	Xγ�Uγ��� �Wγ�� ≤ Ɛ
Xγd�� �Wγ	Xγ�Uγ�Yγ��� �Wγ���

In terms of these quantities, the following estimate can be established:
see Roos (1994), Barbour and Utev [(1999), Theorem 1.9], Barbour [(1999),
Equations (5.13) and (5.14)].
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CPA 1A. There exist constants

HK
l =HK

l �λ��� ≤HTV
l =HTV

l �λ���� l = 0�1�

which do not involve W in any way, such that, if λ and � are the canonical
parameters, then

dK�� �W�� CP �λ����≤ ε0H
K
0 + ε1H

K
1 �

dTV�� �W�� CP �λ���≤ ε0H
TV
0 + ε1H

TV
1 �

(2.12)

in either bound, one can take �i� ε0 = min�δ1� δ2� and ε1 = δ4, or �ii� ε0 = 0
and ε1 = δ3 + δ4.

In general, when evaluating δ2 and δ3, it is often possible to compute the dis-
tances between distributions by means of couplings. Variant (ii), when applied
with Zi = 0, gives the analogue of the Poisson coupling estimate; variant (i)
leads to the analogue of the Poisson local estimate [BHJ (1992), Theorems 1.B
and 1.A, respectively].

If approximation by another compound Poisson distribution with param-
eters λ′ and �′ is preferred, a similar estimate is available [Barbour (1999),
Compound Poisson Estimate 2]. One advantage of allowing distributions other
than the canonical compound Poisson distribution as approximations is that
the canonical distribution may be very complicated, whereas an approxima-
tion of the same order may be obtainable with a very simple compound Poisson
distribution.

CPA 1B. For any choices λ′ and �′, we have

dK�� �W�� CP �λ′��′� ≤ ε′0H
′K
0 + ε′1H

′K
1 �

dTV�� �W�� CP �λ′��′� ≤ ε′0H
′TV
0 + ε′1H

′TV
1 �

(2.13)

where H
′K
l =HK

l �λ′��′� and H′TV
l =HTV

l �λ′��′� for l = 0�1, and where

ε′0 = ε0 + 	λm1 − λ′m′
1	 and ε′1 = ε1 + λm1dW�Q′�Q��(2.14)

with ε0 and ε1 as for CPA 1A; here m1 = ∑
l≥1 lµl, and the probability mea-

sures Q and Q′ on � are such that Q
i = iµi/m1 and Q′
i = iµ′
i/m

′
1. In

particular, if λ′m′
1 = λm1, then ε

′
0 = ε0.

Remark. If λ′m′
1 = λm1, then one can instead take

ε′1 = ε1 +
∑
l≥1

l�l− 1�	λ′µ′
l − λµl	(2.15)

[Roos (1994), Theorem 3]. The formulas for the elements λµl from the canon-
ical parameters are easy to obtain from (2.7), and the alternative parameters
λ′ and �′ are usually chosen for their simplicity, so that this quantity is easy
to compute.



974 A. D. BARBOUR AND O. CHRYSSAPHINOU

In order to exploit CPA 1A and CPA 1B, it thus remains to find suitable
bounds for HK

l �λ��� and HTV
l �λ���, l = 0�1. In the Poisson case, � = 	1, it is

known that

HTV
0 �λ�	1� ≤ min
1�

√
2/eλ� HTV

1 �λ�	1� ≤ min
1� λ−1�(2.16)

[BHJ (1992), Lemma 1.1.1 and Remark 10.2.4]. If bounds with similar
λ-dependence could also be found for general compound Poisson distributions,
the estimates of CPA 1A and CPA 1B would greatly improve upon the error
estimates derived in CPA PP. The reason for this is quite simple. In the con-
stituents δl, 1 ≤ l ≤ 4, of the bounds given in CPA 1A and CPA 1B, as also
in b1, b2 and b3 of CPA PP, average measures of dependence at each location
are multiplied by the mean of W or by λ, the mean number of clumps, each
of which increases in proportion to the overall size of the system. Bounds of
this magnitude are an intrinsic feature of total variation approximation for
Poisson processes, and are thus unavoidable in CPA PP, but, as in the Poisson
case, the same need not be true of total variation approximation to � �W�. In
particular, whenever HTV

1 �λ��� = O�λ−1� is true, the elements in the estimate
CPA 1A involving ε1 can be made independent of the system size, since the fac-
tor λ−1 neutralizes the growth of the multiplying factor ƐW in δ3 and δ4: this
is particularly advantageous for variant (ii) of the estimates. Unfortunately,
the only known analogue of (2.16) for general � is the bound

HTV
l �λ��� ≤ min
1� �λµ1�−1eλ� l = 0�1�(2.17)

proved in Barbour, Chen and Loh (1992). This bound can be useful for small λ,
but for larger λ the exponential factor rapidly makes itself felt. What is more,
it is shown in Barbour and Utev (1998) that there can be no general analogue
of (2.16) in which the bounds decrease with λ.

Placing some restrictions on �, however, better bounds can be obtained.
Under the condition

iµi ≥ �i+ 1�µi+1� i ≥ 1�(2.18)

it follows that [Barbour, Chen and Loh(1992)]

HTV
0 �λ��� ≤ min

{
1�

1√
λ�µ1 − 2µ2�

(
2 − 1√

λ�µ1 − 2µ2�

)}
�

HTV
1 �λ��� ≤ min

{
1�

1
λ�µ1 − 2µ2�

(
1

4λ�µ1 − 2µ2�

+ log+
2λ�µ1 − 2µ2�
)}

�

(2.19)

Alternatively, if the condition

θ �=m−1
1 �m2 −m1� < 1/2(2.20)

holds, where m2 �=∑
l≥1 l

2µl, then it follows that

HTV
0 �λ��� ≤ 1

�1 − 2θ�√λm1

� HTV
1 �λ��� ≤ 1

�1 − 2θ�λm1
�(2.21)
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[Barbour and Xia (1999)], these latter bounds being of exactly the same order
in λ as those of (2.16) for the Poisson distribution. Note that, for the canonical
parameters λ and �,

θ = ∑
γ∈�

Ɛ�XγUγ�
/∑

γ∈�
ƐXγ(2.22)

is a weighted average of the conditional expectations of the excess clump sizes
Uγ at γ, given the possible positive values of Xγ; if the Xγ are indicators and
the pairs �Xγ�Uγ� are identically distributed, then θ = Ɛ�Uγ	Xγ = 1�.

Neither of the conditions (2.18) and (2.20) allows the approximating com-
pound Poisson to be too far from a Poisson distribution—indeed, in the lat-
ter case, it follows that m1 < 3/2 and hence that µ1 > 1/2. Nonetheless,
there are many applications, for example in the area of scan statistics, in
which a Poisson approximation is a reasonable but crude first approximation,
and approximation by a compound Poisson distribution which is not too far
from the Poisson can be very much better. In such cases, the bounds (2.19)
and (2.21) combined with the error estimates given in CPA 1A and CPA 1B
can prove extremely effective; see, for example, (3.4), (3.7) and (3.20) below. For
Kolmogorov distance, sharper bounds under Condition (2.18) are also available
[Barbour and Xia (2000)]:

HK
0 �λ��� ≤ min

{
1�

√
2

eλµ1

}
� HK

1 �λ��� ≤ min
{

1
2
�

1
λµ1 + 1

}
�(2.23)

If neither (2.18) nor (2.20) holds, there is as yet no simple fix, though the
theorems in Section 2.3 frequently make it possible to obtain approximation
errors of best asymptotic order, albeit with unpalatable constants.

Example A (Continued). Define � = 
�i� j�� 1 ≤ i ≤ n�j ≥ 1, and use
the decomposition (2.6) with Uij = ∑

l�=j Xil and Zij = 0. Then the pair
�Xij�Uij� is independent of Wij, so that δ1 = δ2 = δ3 = ε0 = 0, and ε1 =
δ4 = ∑n

i=1 p
2
i �ƐYi�2; λ = ∑n

i=1 pi and µl = λ−1 ∑n
i=1 piµ

�i�
l are as before. Then

the direct estimate CPA 1A gives

dTV�� �W�� CP �λ���� ≤HTV
1 �λ���

n∑
i=1

p2
i �ƐYi�2�(2.24)

If condition (2.20) holds, then in Case (a) the bound (2.21) implies an error
estimate of �1−2θ�−1m1p�n�, of the correct asymptotic order; in Case (b), the
error estimate is less than

�1 − 2θ�−1{m1p�n� + �4�n− 1�m1p�n��−1}�
again of the correct asymptotic order; Case (c) is incompatible with condi-
tion (2.20).

If condition (2.18) holds with µ1 > 2µ2 andm1 < ∞, then in Cases (a) and (b)
the bound (2.19) leads to error estimates which are asymptotically slightly
larger, the order being in both cases multiplied by a factor of log
np�n�;
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again, Case (c) is impossible. If neither of conditions (2.18) and (2.20) are
satisfied, the error estimate derived from (2.24) using (2.17) becomes rapidly
worse as n increases and is useless if m1 = ∞.

Comparison with the Poisson process estimate. If a “declumping” has been
achieved, one can also use it in conjunction with CPA 1A and 1B. If W =∑

γ∈�
∑

l≥1 lIγl, as in (2.1), with
∑

l≥1 Iγl ∈ 
0�1 for each γ, decompose W as

in (2.6), but with �̂ = �×� in place of �, taking

Xγl = lIγl� Uγl = 0� Zγl =
∑

�β�j�∈B�γ� l�
�β�j��=�γ� l�

jIβj� Wγl =
∑

�βj�/∈B�γ�l�
jIβj�(2.25)

where B�γ� l� is as for CPA PP. The canonical parameters λ and � defined
using (2.7) are exactly as for CPA PP, and we can take ε0 = δ1 = b∗3 and
ε1 = δ4 = b∗1 + b∗2 in CPA 1A and 1B, where

b∗1 =
∑

�γ� l�∈�×�

∑
�β�j�∈B�γ�l�

jlƐIγlƐIβj�

b∗2 =
∑

�γ� l�∈�×�

∑
�β�j�∈B�γ�l�
�β�j��=�γ�l�

jlƐ�IγlIβj��

b∗3 =
∑

�γ� l�∈�×�

lƐ	Ɛ
Iγl − ƐIγl	σ�Iβj� �β�j� /∈ B�γ� l��	�

(2.26)

This gives the following estimate.

CPA 1C. In the setting of CPA PP, for any choices λ′ and �′, we have

dK�� �W�� CP �λ′��′�� ≤ ε′0H
′K
0 + ε′1H

′K
1 �

dTV�� �W�� CP �λ′�′�� ≤ ε′0H
′TV
0 + ε′1H

′TV
1 �

(2.27)

where H
′K
l =HK

l �λ′��′� and H′TV
l =HTV

l �λ′��′� for l = 0�1, where b∗1, b
∗
2 and

b∗3 are as defined in �2�26�, and where, as in �2�14�,

ε′0 = b∗3 + 	λm1 − λ′m′
1	 and ε′1 = b∗1 + b∗2 + λm1dW�Q′�Q��(2.28)

Comparing the error estimate in (2.27) to that of (2.4), note that the quan-
tities b∗t are larger than the corresponding bt, because of the factors j and l.
Thus CPA 1C is never better than CPA PP unless the HTV

l �λ��� are small.
This is the case under condition (2.20) as soon as λ becomes large, and then
CPA 1C is substantially better than CPA PP; the same is typically true if
condition (2.18) is satisfied. In other circumstances, CPA PP is normally
preferable to CPA 1C, and the direct estimates CPA 1A and 1B are only com-
petitive if a more advantageous decomposition of W as in (2.6) can be found,
without using the declumping.
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2.3. Improved estimates. The weakness of the estimates CPA 1A–1C when
the HTV

l �λ��� are not small suggests that modification of the original Stein
argument is needed. One such approach was exploited in Barbour and Utev
(1998, 1999).

CPA 2A. If W is decomposed as in �2�6�, and if λ > 2�� and δl�1 ≤ l ≤ 4,
are as in �2�7�–�2�11�, then, for any λ′ > 2 and �′ satisfying λ′m′

1 = λm1, and
such that

∑
j=1 µ

′
jr

j <∞ for some r > 1 and that �′ is aperiodic ��′
l�+ < 1
for all l ≥ 2�, we have

dTV�� �W�� CP �λ′��′�� ≤ �λ′�−1/2ε0S0��′� + �λ′�−1ε′1S1��′�

+��W ≤ φ��′�λm1�S2��′��
(2.29)

whenever λ′m′
1 ≥ 
2�1 − φ��′��−1, where 3/4 < φ��′� < 1 and Sl��′� < ∞,

0 ≤ l ≤ 2, and where ε0 and ε
′
1 are as given in �2�14� and CPA 1A.

The detailed way in which φ��′� is to be chosen and in which the Sl��′�
depend on the radius of convergence of the power series

∑
j≥1 µ

′
jz

j and on
the nearness of �′ to being periodic are explicitly specified in Barbour and
Utev (1999). The third term in (2.29) is a penalty incurred in modifying the
straightforward Stein argument. Similar estimates for Kolmogorov distance
are given in Barbour and Utev (1998), under less restrictive conditions on �′.

Note that if a “declumping” has been achieved as in (2.1), then CPA 2A
can be applied with ε0 = b∗3 and ε1 = b∗1 + b∗2, as defined in (2.26), giving the
following estimate.

CPA 2B. If W is declumped as in �2�1� and if λ > 2 and � are as for
CPA PP, then, for any λ′ > 2 and �′ satisfying λ′m′

1 = λm1, and such that∑
j≥1 µ

′
jr

j < ∞ for some r > 1 and that �′ is aperiodic ��′
l�+ < 1 for all
l ≥ 2�, we have

dTV�� �W�� CP �λ′��′�� ≤ �λ′�−1/2ε0S0��′� + �λ′�−1ε′1S1��′�

+��W ≤ φ��′�λm1�S2��′��
(2.30)

whenever λ′m′
1 ≥ 
2�1 − φ��′��−1, where 3/4 < φ��′� < 1 and Sl��′� < ∞,

0 ≤ l ≤ 2 and where ε0 = b∗3 and ε
′
1 is as given in �2�28�.

The advantage of CPA 2A over CPA 1B is that good behavior as λ increases
is obtained under much less restrictive conditions on �′ than those of (2.18)
and (2.20). Strong restrictions on the form of �′ are replaced by requiring the
existence of an exponential moment and an aperiodic �, and the latter con-
dition is essential. For fixed aperiodic �′ having a finite exponential moment,
the coefficients of ε0 and ε′1 are of exactly the same satisfactory λ-order as
in the Poisson case (2.16), and, provided that λ is reasonably large, the third
term in (2.29) may be relatively unimportant. This makes for excellent asymp-
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totic orders in the error estimates. The disadvantage is that the expressions
for Sl��′� given in Barbour and Utev (1999), while explicit, are very compli-
cated, and can be expected to be quite large in practical applications: thus
error estimates of the correct asymptotic order may be obtained at the cost
of unreasonably large constant factors. In the same way, CPA 2B frequently
improves upon CPA PP in the asymptotic order of the error estimate, at the
expense of introducing unwieldy constant factors.

Example A (Continued). Suppose that
∑

j≥1 µjz
j has radius of convergence

greater than 1 and that � is aperiodic. Take λ′ and �′ to be the canonical
parameters. In Cases (a) and (b), the Sl��n� are bounded uniformly in n, and
φ��n� is bounded away from 1. Hence, from (2.29), error estimates O�p�n� +
exp
−np�n�α� for some α > 0 are obtained, with Bernstein’s inequality being
used to derive the exponential bound for the third term in (2.29). This is of the
ideal O�p�n��, except when np�n� → ∞ very slowly with n. At first sight, it
appears that the same error estimate should also follow in Case (c), contradict-
ing the fact that the true distance in total variation is O�1�. The reason why
this estimate is not obtained in case (c) is that the distribution �n approaches
a periodic limit � as n→ ∞, and the Sl��n� become unbounded.

In situations where asymptotic rates of approximation are of interest, both
λ = λn and � = �n typically vary with n. In such cases, the error estimate
given in CPA 2A depends on n not only in the obvious way, through the quan-
tities λ′

n, ε0 = ε
�n�
0 and ε′1 = ε′1

�n�, but also because the Sl��′
n�, l = 0�1�2, and

φ��′
n� depend on n through their dependence on �′

n. This latter dependence is
in general quite complicated. However, the following result, which is proved in
Månsson [(1999), Proposition 2.3], is useful in showing that, for asymptotics,
a single choice often suffices for the Sl and for φ.

Proposition. Suppose that � is an aperiodic probability measure on � and
that the �′

n are such that, for some r0 > 1 and c > 0,

�i� sup
n≥1

∑
j≥1

µ′
jnr

j
0 <∞�

�ii� inf
n≥1

µjn ≥ cνj for each j ≥ 1�

Then

S∗
l �= sup

n≥1
Sl��′

n� <∞� l = 0�1�2 and 3/4 < φ∗ �= sup
n≥1

φ��′
n� < 1�

and CPA 2A holds for each n, with S∗
l and φ∗ in place of Sl��′

n� and φ��′
n�,

whenever infn≥1 λ
′
n > 
2�1 −φ∗�−1.

The proposition can then be combined with the estimate CPA 2A to give
good asymptotic rates in a wide variety of problems.
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3. Examples.

3.1. Runs.
A. Success runs. The problem of success runs is very well known in the

literature, having already been considered by von Mises (1921) in the context
of Poisson approximation. It is the simplest prototype for many problems in
the general area of reliability and sequence analysis [Arratia, Goldstein and
Gordon (1989, 1990), Arratia, Gordon and Waterman (1990)], and gives a good
test of the effectiveness of the various compound Poisson approximations.

To formulate the problem, consider the independent identically distributed
Bernoulli random variables ξ1� � � � � ξn, where ��ξi = 1� = p = 1 − ��ξi = 0�,
i = 1� � � � � n. We are interested in compound Poisson approximation to the
number of k-runs of consecutive 1’s. In order to avoid trivialities and edge
effects, we assume that n > 4k − 3 and we identify all indices of the form
i + nj for j ∈ Z. We define Iγ = ∏γ+k−1

i=γ ξi and W = ∑
γ∈� Iγ, � = 
1� � � � � n

and set ψ �= ƐIγ = pk. It is clear that the random variable W counts the
number of locations among the first n at which a run of 1’s of length at least
k begins. It is also clear that runs of 1’s occur in “clumps”; that is, if there is
a run of 1’s of length k beginning at position γ, then with probability p there
will also be a run of 1’s of length k at position γ+1, with probability p2 a run
of length k beginning at position γ + 2 and so forth. This is an example, with
average clump size 1 + p+ p2 + p3 + · · ·, of the “Poisson clumping heuristic”
described by Aldous (1989).

We start by applying the Poisson process approach, as in Arratia, Goldstein
and Gordon (1990). Defining the random variable R = ∑

γ∈� Xγ, where Xγ =
�1 − ξγ−1�Iγ, with X1 = I1 we observe that R+∏n

i=1 ξi counts the number of
clumps and is approximately Poisson Po�ƐR� distributed with mean

ƐR = ψ��n− 1��1 − p� + 1��

For interesting results, we want ƐR to be bounded away from 0, which is
essentially the condition that k ≤ log1/p�n�1 − p��. Note that if we are inter-
ested in the distribution Mn of the longest of these 1’s runs, then we have
��Mn < k� = ��R = 0�.

The size of each clump minus 1 is the length by which the associated run
of 1’s exceeds k and is approximately distributed as a geometric random vari-
able with parameter p. Furthermore, the clump sizes are almost independent
of each other and of the total numberR of clumps, so that the distribution ofW
is approximately Poisson Po�ƐR� compounded by geometric Ge�p�, the Pólya–
Aeppli distribution PA�ƐR�p�: this is equivalently expressed as CP �λ��� with

λ = ƐR� µl = pl−1�1 − p�� l ≥ 1�(3.1)

Although a clump size l could take any value between 1 and n, we shall
simplify the calculation by considering only l ∈ L = 
1�2� � � � � �n/2� − k − 1,
and declump by defining Iγl = �1 − ξγ−1�ξγξγ+1 � � � ξγ+k+l−2�1 − ξγ+k+l−1� for
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�γ� l� ∈ �×L; then the random variable

W∗ = ∑
γ∈�

∑
l∈L

lIγl =W− n
n∏
i=1

ξi −
∑
γ∈�

n−k∑
�n/2�−k

lIγl

satisfies

dTV�� �W��� �W∗�� ≤ pn + np�n/2�−2�

Now take

B�γ� l� = 
�β�j�� j ∈ L�γ − k− j ≤ β ≤ γ + k+ l
and apply the estimate CPA PP. Simple calculations show that

b1 ≤ n�1 − p�ψ2
2 + �2k+ 1��1 − p�� b2 ≤ 2n�1 − p�ψ2� b3 = 0�(3.2)

and hence the error estimate that results from CPA PP isO�nkψ2� = O�kψƐW�.
We next turn to the direct approximations CPA 1A and 1B, as exemplified

in the thesis of Roos (1993). We define neighborhoods of dependence for each
γ ∈ �, taking into account the dependence structure of the problem:

Sγ = 
γ − �k− 1�� � � � � γ − 1� γ + 1� � � � � γ + k− 1�
Nγ = 
γ − 2�k− 1�� � � � � γ − k� γ + k� � � � � γ + 2�k− 1��
Tγ = �\

γ ∪Sγ ∪Nγ�

Under the above partioning of �, we have a decomposition of the random
variable W as in (2.6), with

Wγ = ∑
β∈Tγ

Iβ� Uγ = ∑
β∈Sγ

Iβ and Zγ = ∑
β∈Nγ

Iβ�

We observe that 	Sγ	 = 	Nγ	 = 2�k − 1� and that 
Iβ� β ∈ Sγ ∪ 
γ are
independent of 
Iβ� β ∈ Tγ for each γ ∈ �, so that δ2 = δ3 = δ4 = 0.
Furthermore, we have∑

γ∈�
��ƐIγ�2 + ƐIγƐ
Uγ +Zγ� = �4k− 3�nψ2�

∑
γ∈�

Ɛ
IγZγ = 2�k− 1�nψ2

and thus, by CPA 1A,

dTV�� �W�� CP �λ���� ≤ HTV
1 �λ���∑

γ∈�
��ƐIγ�2

+ ƐIγƐ
Uγ +Zγ + Ɛ
IγZγ�
= HTV

1 �λ����6k− 5�nψ2



COMPOUND POISSON APPROXIMATION 981

and the canonical parameters λ and � are as given in (2.7). These can be
explicitly computed:

λµi = ni−1Ɛ
IkI�Uk + Ik� = i
= npki−1��I1 + · · · + Ik−1 + Ik+1 + · · · + I2k−1 = i− 1	Ik = 1�
= npki−1��Vk−1 +V′

k−1 = i− 1��
whereVk−1 andV′

k−1 are independent and Ge�p� truncated at k−1 distributed
random variables. Evaluating the last probability, we get

λµi =


nψpi−1�1 − p�2� if i = 1� � � � � k− 1;

i−1nψ
2pi−1�1 − p�
+ �2k− i− 2�pi−1�1 − p�2� if i = k� � � � �2k− 2;

�2k− 1�−1nψp2k−2� if i = 2k− 1;

λ =
2k−1∑
i=1

λµi�

Finally, Roos (1993) showed that condition (2.18) is satisfied if p ≤ 1/3, so
that HTV

1 �λ��� can be bounded using (2.19). Writing M = λ�µ1 − 2µ2� =
npk�1 − p�2�1 − 2p�, we derive the error estimate

dTV�� �W�� CP �λ���� ≤
{
1 ∧ 1

M

[
1

4M
+ log+ 2M

]}
�6k− 5�nψ2�(3.3)

The estimate (3.3), O�kψ log�nψ��, is a big improvement over the bound
O�nkψ2� obtained by using CPA PP and (3.2), whenever ƐW = nψ is at all
large. Furthermore, condition (2.20) is satisfied for p < 1/5, since θ ≤ 2p/
�1 − p�, and (2.21) then gives the error estimate

dTV�� �W�� CP �λ���� ≤ �6k− 5�ψ�1 − p�/�1 − 5p��(3.4)

of even better asymptotic O�kψ�. It is shown in Barbour, Chryssaphinou
and Vaggelatou [(1999), (2.9)] that the canonical compound Poisson dis-
tribution can be replaced, using (2.15), by the Pólya–Aeppli distribution
PA�nψ�1 − p�� p� [see (3.1)], if 4kψ�1 − p�/�1 − 5p� is added to the error
estimate. The Markov chain approach of Erhardsson (1999), outlined in
Section 3.6, also gives an approximation of the same order when p < 1/5,
but with a better constant factor.

If (essentially) no restriction on p is to be imposed, the estimate CPA 2A
is still available; this has been applied in Eichelsbacher and Roos [(1999),
Section 3.1] to give an error O�kψ + exp�−αknψ�� for some αk > 0, with an
unspecified constant. The term involving the exponential comes from the third
term in (2.29). Finally, Barbour and Xia (1999) examined the same problem
in the special case where k = 2. Using a much less straightforward argument
and a slightly different approximating compound Poisson distribution, they
obtained an explicit error estimate O�ψ�nψ�−1/2�, which is surprisingly even
better than the best of the estimates above, which in this case is O�ψ�.
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B. Increasing sequences. Consider a sequence X1� � � � �Xn of independent
random variables with the same continuous distribution F, and the events

Xi−r+1 < · · · < Xi of appearances of increasing sequences of length r, for i =
r� � � � � n. Pittel (1981) and Révész (1983) considered the limiting behavior of
random variables closely related to the number W of appearances of the above
event in a sequence of n such trials; we shall approximate its distribution by a
compound Poisson distribution, using the estimate CPA 1C. This W could well
be used as a test for local dependence in a supposedly random X-sequence,
such as the innovations in a supposedly GARCH(1, 1) process, being used to
model a financial time series, or in ARCH and ARMA processes, as well as in
quality control; see Wolfowitz (1944) and Engle (1995).

We first define the indicators

Ii = I�Xi−r+1 < · · · < Xi� for i = r� � � � � n�

so that W = ∑n
i=r Ii, with Ɛ�W� = �n− r+ 1�ψ and ψ �= 1/r!. Then, in order

to achieve a declumping, we define the indicator random variable Ii� k for the
event “a k-clump occurs at the ith trial”; that is,

Ii� k = I�Xi−r > Xi−r+1 < · · · < Xi < · · · < Xi+k−1 > Xi+k�� k ≥ 1�

In this definition, it is assumed that there is a doubly infinite sequence of
random variables Xi, i ∈ �, at our disposal, so that edge effects play no
role. This simplifies the analysis, but introduces an error, in that we actually
approximate the distribution of a new “declumped” random variable Ŵ =∑n

i=r
∑

k≥1 kIi�k, which is not quite the same as W; however, W differs from Ŵ
only when, in the infinite sequence, either X0 < X1 < · · · < Xr or Xn−r+1 <
· · · < Xn < Xn+1, and hence

��W �= Ŵ� ≤ 2
�r+ 1�! =

2ψ
r+ 1

�(3.5)

The indicator Ii� k is dependent only on the random variables Xi−r� � � �,
Xi+k, and is thus independent of all the indicators Ij� l for which j+ l < i− r
or j − r > i + k. This observation leads us to define the neighborhoods of
dependence by

B�i� k� �= 
�j� l�� i− l− r ≤ j ≤ i+ k+ r ∩ �
1� � � � � n ×���(3.6)

ensuring that b∗3 = 0. The quantities b∗1 and b∗2, given in (2.26), can then be
bounded, and the canonical parameters λ and �, as given for CPA PP, can be
determined; taking into account the conditions (2.20) and (2.18), this leads to
the following bounds:

1. If r ≥ 4, then

dTV�� �W�� CP �λ���� ≤ 4�r+ 1�2
��r− 1�2 − 8��+ 2ψ

r+ 1
�(3.7)
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2. If r ≥ 2, then

dK�� �W�� CP �λ���� ≤
{
2ƐW ∧ 4

� r
r+1 − 1

r+2 + �ƐW�−1�

}
�+ 2ψ

r+ 1
�(3.8)

where

� �= rψ

{
r+ 1
r− 1

}
� ƐW = �n− r+ 1�ψ�

λ �= �n− r+ 1�r
�r+ 1�! � µk �= �r+ 1�!

r

(
k+ r− 1
�k+ r�! − k+ r

�k+ r+ 1�!
)
� k ≥ 1�

We note that the above bounds are both O�rψ�. For more details, further
applications and the relevant literature; see Chryssaphinou and Vaggelatou
(1999a).

3.2. Reliability systems.
A. The two-dimensional consecutive-k-out-of-n:F system. The system

C�k2� n2:F� consists of n2 independent components, each with lifetime dis-
tribution F, placed on a square grid of size n. It fails if there is a square
subgrid of side k with all its k2 components failed. Let the set � = ��i� j�� 1 ≤
i� j ≤ n−k+1� and let Aγ ≡ Aij denote the k×k subgrid with left lowermost
component �i� j��

Aγ = (�i+ x− 1� j+ y− 1� � x�y = 1� � � � � k
)
�

We fix a time T, and define the indicators Iγ = I [all components in Aγ are
failed at time T] for each γ ∈ �, setting W =∑

γ∈� Iγ. The random variable W
counts the number of possibly overlapping k×k squares with all components
failed in the system. Clearly the reliability of the system is given by ��W = 0�,
and ψ �= ƐIγ = qk

2
, where q = 1 −F�T�.

We first apply the estimate CPA 1A, as in Barbour, Chryssaphinou and
Roos (1996), to approximate the distribution of W by an appropriate compound
Poisson distribution CP �λ���. Our first step is to define the neighborhoods of
dependence Sγ, Nγ and Tγ for each γ ∈ �. Here, we take Sγ = �β ∈ �� β �=
γ� 	β ∩ γ	 = k2 − k�, consisting of the k × k subgrids Ai−1� j�Ai+1� j�Ai� j+1,
Ai�j−1. We observe that there are �n− k+ 1�2 possible positions of the k× k
subgrid Aγ, of which 4 are corners, 4�n− k− 1� are borders and the remain-
ing �n − k − 1�2 are interior to �, and that then 	Sγ	 is equal to 2, 3 and 4,
respectively. Next we take Tγ = �γ ∈ �� γ ∩ β = �� for all β ∈ Sγ ∪ 
γ so
that δ2 = δ3 = δ4 = 0, and assign the remaining k× k subgrids to Nγ. Since
	Sγ	 ≤ 4, we find that 	Sγ	 + 	Nγ	 ≤ �2k + 1�2 − 1. Then W can be written in
the form

W =Wγ +Zγ +Uγ + Iγ

as in (2.6), where Uγ =∑
γ∈Sγ

Iγ, Zγ =∑
γ∈Nγ

Iγ and Wγ =∑
γ∈Tγ

Iγ.
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We now compute the value of δ4 from (2.11), obtaining

∑
γ∈�

�ƐIγ�2 = �n− k+ 1�2ψ2�

∑
γ∈�

ƐIγƐ
Uγ +Zγ = ∑
γ∈�

∑
β∈Sγ∪Nγ

ƐIγƐIβ

≤ �n− k+ 1�2��2k+ 1�2 − 1�ψ2�∑
γ∈�

Ɛ
IγZγ = ∑
γ∈�

∑
β∈�bγ

Ɛ
IγIβ

≤ �n− k+ 1�2ψ2

×
(
�8k− 4�ψ+ 4

(
k−1∑
r=1

k−1∑
s=1

qk
2−rs +

k−2∑
s=1

qk
2−ks

))
�

where the complicated sums arise because of the differing overlaps possible
between two k× k squares.

Next we compute the canonical parameters from (2.7), obtaining

λµr=
1
r

∑
γ∈�

Ɛ

{
IγI

[
Iγ +

∑
β∈Sγ

Iβ = r

]}

= 1
r

n−k+1∑
i=1

n−k+1∑
j=1

Ɛ
IijI�Iij + Ii� j−1 + Ii−1� j + Ii� j+1 + Ii+1� j = r�

= r−1ψ
4π1�r� + 4�n− k− 1�π2�r� + �n− k− 1�2π3�r�

(3.9)

for r = 1� � � � �5, and λ =∑5
r=1 λµr, where

π1�r� = �

[ ∑
β∈Sγ

Iβ = r− 1	Iγ = 1

]
= �

[
Bi�2� qk� = r− 1

]
for the corner indicators,

π2�r� = �

[ ∑
β∈Sγ

Iβ = r− 1	Iγ = 1

]
= �

[
Bi�3� qk� = r− 1

]
for the border indicators,

π3�r� = �

[ ∑
β∈Sγ

Iβ = r− 1	Iγ = 1

]
= �

[
Bi�4� qk� = r− 1

]
for the interior indicators.
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Hence, applying the approximation CPA 1A, we have

dTV�� �W��CP�λ����≤HTV
1 �λ����n− k+ 1�2

×ψ

(
�4k2 + 12k− 3�ψ

+4

(
k−1∑
r=1

k−1∑
s=1

qk
2−rs +

k−2∑
s=1

qk
2−ks

))
�

(3.10)

In reliability applications, it is usual to suppose that λ ≤ λm1 = �n−k+ 1�2ψ
is small and the reliability high, in which case the bound HTV

1 �λ��� ≤ eλ

from (2.17) is adequate.
In the above example, the computation of λ and � is not very complicated,

since we have only to calculate five terms, and the resulting error estimate
is uniformly O�q2k−1� in λ ≤ 1. This provides an improvement on the O�qk�
obtainable by using the Poisson “local” approach, by the factor O�qk−1�. Big-
ger improvements still could be obtained by expanding the set Sγ, but at the
cost of more complicated calculations needed to determine λ and �. The same
approach is still valid for the case of unequal failure probabilities, when com-
puter algebra can be used to evaluate the canonical parameters. From tables
[see Barbour, Chryssaphinou and Roos (1996)], one can see that these error
estimates are mostly comparable to or better than those presented by Fu and
Koutras (1994), though, for k = 2, the Stein–Chen method is not good in either
the Poisson or the compound Poisson approach.

For larger λ, relevant for reliability calculations if the system tolerates up
to a large number m of failed k× k squares before it collapses, note that

λ�m2 −m1� =
5∑

r=1

r�r− 1�λµr ≤ 4qkλm1�

so that θ ≤ 4qk. Thus, from (2.21), we can take �n − k + 1�2ψHTV
1 �λ��� =

�1 − 8qk�−1, provided that 8qk < 1, yielding an error estimate which is still
of asymptotic O�q2k−1�. If 8qk ≥ 1 and λ is large, a larger neighborhood Sγ is
needed, if accurate approximation is to be achieved, together with the asymp-
totically sharper estimate of CPA 2A. For the latter, a bound on ��W ≤ φƐW�
for φ < 1 is also required; Janson’s (1990) inequality shows, for instance, that
here

��W ≤ φƐW� ≤ exp
−αƐW/�1 + 4k2qk�
for some α = α�φ� > 0: see Eichelsbacher and Roos [(1999), Section 3.3].

B. Multiple failure mode systems. Reliability systems which are subject
to more than one type of failure are also of interest; see Barlow, Hunter
and Proschan (1963), Ross (1979), Satoh, Sasaki, Yuge and Yanasi (1993) and
Koutras (1997). The system that we discuss here is also a generalization of
consecutive-k-out-of-n:F system C�k�n:F�, but in a different direction from
that of C�k2� n2:F�. We consider a system consisting of n linearly arranged
components, in each of which any one of r defects may be present. The system
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fails if, for any 1 ≤ i ≤ r, at least ki consecutive components have the defect
of type i. We denote such a system by C�k1� � � � � kr�n:F�. With the n compo-
nents, we associate the sequence of random variables X�n� = 
X1� � � � �Xn
taking values in � = 
0�1� � � � � r, assuming it to be generated by a sta-
tionary Markov chain. The state 
0 denotes a correctly functioning com-
ponent, while 
i denotes a component defect of type i. Such a model can
arise as the equilibrium distribution of a reversible nearest neighbor birth
and death process, in which a correctly functioning component can become
defective, or a defective component return to normal working (for example,
after repair), with suitably chosen rates depending only on the states of the
immediately neighbouring components: see, for example, Preston (1973). In
Chryssaphinou and Vaggelatou (1999b), this model is successfully analyzed
by using CPA 1C and a declumping. The techniques required are more com-
plicated than those used above, because of the Markov dependence, and are
similar in spirit to those that we use in Section 3.4, when counting the occur-
rences of copies of a word in a string of letters. The error bounds that they
obtain are O�ψ log�1/ψ�max1≤i≤r ki�, where ψ = ∑r

i=1 ψi and ψi = ��X1 =
X2 = · · · =Xki

= i�, and where the constants implicit in the order depend on
the transition matrix of the underlying Markov chain.

C. Connected-s systems. Many reliability systems can be represented as
graphs G�V�E� with V a set of vertices (machines) and E a set of edges
(connections) between them; see Chen, Hwang and Li (1993). Here, we suppose
that the n vertices are independently subject to failure, with probabilities qi,
1 ≤ i ≤ n. The system has a collection of s-vertex “sensitive” subsets, often
minimal cut sets in the underlying graph, and the system fails if there are at
least m such subsets with all vertices failed. The two-dimensional consecutive-
k-out-of-n:F system is a particular example of a connected-k2 system.

Let � denote the set of all sensitive sets and γ = �k1� � � � � ks� its typical
element, where k1� � � � � ks are the indices of the s vertices. Set Iγ = I [all
vertices in the set γ are failed], and W = ∑

γ∈� Iγ; then the reliability of
the system is equal to ��W ≤ m − 1�, and ƐW = ∑

γ∈�
∏
i∈γ qi. To define

neighborhoods of dependence, we first specify the minimum numberR of items
in common to α and γ when α ∈ Sγ. The possible choices of R are 1�2� � � � � s−1.
Note that the choice of R = s leads to the Poisson “local” approach. For
1 ≤ R ≤ s− 1, we define the sets:

Sγ�R� = 
α ∈ �\
γ� 	α ∩ γ	 = r� r = R� � � � � s− 1�
Nγ�R� = 
β� 	β ∩ α	 ≥ 1 for some α ∈ 

γ ∪Sγ�R�\

γ ∪Sγ�R��
Tγ�R� = �\

γ ∪ �vsγ �R� ∪ �bγ�R��

With the above definitions, and after some computations, CPA 1A implies that

dTV�� �W��CP�λ�R����R��� ≤HTV
1 �λ�R����R��Q�R�qs−R+1

max ƐW�(3.11)
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where

Q�R� = 
1 + max
γ∈�

	Sγ�R�	 + 2 max
γ∈�

	Nγ�R�	

and qmax is the largest failure probability of an individual item.
Thus, for equal q’s, if 	�	 is large and q small, but ƐW = 	�	ψ is of order 1,

where ψ �= qs, compound Poisson approximation is reasonable with R = 1 if
Q�1� is much less than 	�	. If, instead, ƐW is large, the approximation CPA 2A
can be used to show that the error in compound Poisson approximation is
ψQ�1� + ��W ≤ φƐW� for suitable φ < 1, and Janson’s (1990) inequality can
be used to bound the latter probability. However, if the structure of Sγ�1� is
complicated, it may be difficult to compute the canonical parameters, either
numerically or by using computer algebra. In such cases, a larger value of R
and correspondingly smaller Sγ�R� can be chosen, which will however give an
error estimate of higher order: we adopted this strategy in the C�k2� n2� F�
example, taking R = k2 −k. Finally, we note that the Poisson estimate is typ-
ically poorer than the compound Poisson estimates, but that Poisson approxi-
mation may be much easier to achieve.

The above general approach is illustrated in Barbour, Chryssaphinou and
Roos (1996), where the reliability of a model called “the double pipeline” is
approximated by an appropriate compound Poisson using CPA 1A.

3.3. Scan statistics.
A. Two-dimensional scan statistics. As an example of the application of

compound Poisson approximation to scan statistics, we take the two dimen-
sional discrete scan statistic which was applied by Glaz (1996) to the problem
of detecting minefields; see also Chen and Glaz (1996). Other applications are
to be found in Glaz, Naus, Roos and Wallenstein (1994) and in Barbour and
Månsson (2000).

A two-dimensional rectangular region R = �0�L1� × �0�L2� is inspected
for the occurrence of certain events. Fix n1� n2 ≥ 1, and divide R into n1n2
subregions

Jl1� l2
�= ��l1 − 1�h1� l1h1� × ��l2 − 1�h2� l2h2�� 1 ≤ li ≤ ni�

each of size h1 ×h2, where hi = Li/ni; set � = 
�i� j�� 1 ≤ i ≤ n1 −k1 +1� 1 ≤
j ≤ n2 − k2 + 1. For γ ∈ �, let the random variable Yγ count the number of
events that occur in the subregion Jγ. Set Bi�j = 
�l1� l2�� i ≤ l1 ≤ i + k1 −
1� j ≤ l2 ≤ j+ k2 − 1 and define the random variable

Sγ = ∑
β∈Bγ

Yβ� γ ∈ ��

which counts the total number of events in the rectangular subregion Bγ of R,
which consists of k1k2 adjacent smaller subregions. If Sγ exceeds a level m,
then we will say that m events are clustered within the region. Finally, the
two-dimensional discrete scan statistic is defined by

Sk = max
Sγ� γ ∈ �� k = �k1� k2��
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It is of interest to test the null hypotheses of randomness under which it
is assumed that the Yβ are independent distributed according to a binomial
distribution with parameters N and p0 versus the alternative that they are
distributed according to a binomial with parameters N and p1, with p1 > p0.

In order to deal with the testing procedure, an accurate approximation for
the distribution ��Sk ≥ m� is necessary. A compound Poisson approximation
is used for this. To derive one, we associate the random variable Sk with the
random variable

W = ∑
γ∈�

Iγ where Iγ = I�Sγ ≥m��

Clearly, the random variable W counts the number of sets of k1 × k2 rectan-
gular subregions in which at least m events occur. Thus we have

��W ≥ 1� = ��Sk ≥m��
Assuming a Bernoulli model for the number of events in each h1 × h2 sub-
region, we observe that the problem of approximating � �W� by a compound
Poisson distribution can be approached in very much the same way as the two-
dimensional consecutive k-out-of-n�F system C�k2� n2�F�. In fact, C�k2� n2�F�
is then a particular case of the two-dimensional discrete scan statistic, with
k1 = k2 = k, n1 = n2 = n and m = k2. The extra generality in the choices
of dimensions k and n makes essentially no difference to the argument, but
allowing m < k1k2 is a significant change, since, as m becomes smaller, the
dependence between neighboring k1 × k2 sets decreases more slowly with
decreasing degree of overlap. Thus, in the notation of Section 3.2(C), a large
choice of R such as k1k2−max
k1� k2 may no longer give an adequate approx-
imation. In principle, the choice R = 1 would be good, but the computa-
tion of ��R� may only be feasible using a computer. If the Bernoulli model
were replaced by the more general binomial model, an analogous approach
could still be used, though the computation of ��R� would become still more
involved.

B. Linear conditional scan statistics. The next example concerns one-
dimensional scan statistics, used when testing for clustering among a fixed
number n of points. This problem has been studied by many authors, and has
been applied in a variety of fields, including geology, medicine and nuclear
physics. For references, see Glaz and Balakrishnan (1999).

Let X1� � � � �Xn be independent and identically distributed observations
from the uniform distribution on the interval (0,1], and let Yt�w� be the
number of Xi’s contained in the scanning interval �t� t+w�. The scan statis-
tic Sw, also called the linear conditional scan statistic, is defined by Sw =
max0<t<1−w Yt�w�. Because the points are on the line, the events 
Sw ≥ m
can simply be rewritten as 
Ww�m ≥ 1, where

Ww�m �=
n−m+1∑
i=1

Ii and Ii �= I�X�i+m−1� −X�i� < w��
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with X�j� denoting the j’th order statistic. Thus the problem is rephrased in
terms of counting short �m−1�-spacings. Even so, exact evaluation of the tail
probabilities of the scan statistic is a complicated problem, and as the sample
size n increases, even with moderate values of m and small values of w, it
becomes practically impossible.

When nw is small, BHJ [(1992), Corollary 7.C.2] proved a Poisson approx-
imation to � �Ŵw�m�, where Ŵw�m �=∑n

i=1 Îi and

Îi � = Ii� 1 ≤ i ≤ n−m+ 1�
Îi = I�1 +X�i+m−1−n� −X�i� < w�� n−m+ 2 ≤ i ≤ n�

For these random variables, ψ �= ƐÎi is the same for all i, being given by

ψ = ��Bi�n− 1�w� ≥m− 1� ∼ �nw�m−1/�m− 1�!�
and thus ��Ww�m �= Ŵw�m� ≤ �m − 1�ψ. The error that they obtained is
ψ1/�m−1� and is thus unlikely to be accurate for m ≥ 3. The reason for this is
that the indicators Ii are dependent. However, indicators Ii and Ij are close
to being independent if 	i − j	 ≥ m − 1, for m fixed and sufficiently large n.
Since the indicators Ii and Ij for 	i− j	 ≤m− 1 are positively correlated, we
expect that the 1’s tend to occur in clusters, while the number of such clusters
approximately follows a Poisson distribution. Thus the approximation of the
distribution of Ww�m by a suitable CP�λ��� distribution arises in a natural
way, giving

��Sw ≥m� = ��Ww�m ≥ 1� ≈ 1 − exp
−λ�
Glaz, Naus, Roos and Wallenstein (1994), in work closely related to Roos
(1993), use an approach based on CPA 1A to obtain a compound Poisson
approximation, with error O�ψ�1 + log+ λ��, using 2m − 1 nonzero µj’s; they
also give a simpler approximation, involving only m nonzero µj’s, with the
same order of error, using CPA 1B. The evaluation of λ and the µj was accom-
plished using the clumping heuristic of Aldous (1989). Huffer and Lin (1997)
suggested an alternative compound Poisson approximation.

3.4. Occurrences of a word in a sequence of letters. Let 
%i� i ≥ 0 be
independent and identically distributed random variables taking values in a
set (alphabet) F = 
ω1� � � � � ωq, q ≥ 2, with probabilities ps = ��%i = ωs�,
s = 1� · · · � q, i ≥ 0. Let A = α1 � � � αk be a fixed string or word of length k. We
define the random variableWwhich counts the overlapping appearances of the
word A in the sequence %1� � � � � %n. Chryssaphinou and Papastavridis (1988),
using generating functions and combinatorial arguments, proved that the ran-
dom variable W converges in distribution to a compound Poisson distribution
under quite general conditions. BHJ (1992) examined the accuracy of Poisson
approximation for � �W� taking into account the set of periods (see Theorem
8.F). In Example 10.4.2 of the same reference, the case of small periods was
examined using a compound Poisson approximation, the accuracy of which is
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always much better. Applying CPA PP, together with combinatorial arguments
based on the set of principal periods of A, Chryssaphinou, Papastavridis and
Vaggelatou (1999) obtained an upper bound on the total variation distance
between � �W� and an appropriate compound Poisson distribution, but of the
same accuracy as that obtained by BHJ (1992). As we shall see later, we can
obtain sharper error estimates.

This model has been used to solve problems which arise in many areas. In
particular, for a finite sequence %1� � � � � %n of letters taken from the alphabet

A�C�G�T, the above mentioned results have proved useful for determining
critical values for test statistics in the analysis of DNA sequences. For more
literature see Arratia, Goldstein and Gordon (1989, 1990), Arratia, Martin,
Reinert and Waterman (1996), BHJ (1992) and Waterman (1995).

The assumption of independent %i is not a good one for DNA sequences.
In what follows, we show how to derive compound Poisson approximation for
sequences modelled by Markov chains, as in Schbath (1995). We assume that
the finite sequence %n = 
%1� � � � � %n of random variables, taking values in
the alphabet � = 
A�C�G�T, arises from a stationary realization of an
irreducible, aperiodic, homogeneous Markov chain on the finite state space
� ; the more general case of an m-order chain can be treated as a first-order
chain on � m. Let H�αi� αi+1� denote the first order transition probabilities of
the chain, and π�αi� the invariant probability of αi.

Define the indicator random variables Iγ, with γ ∈ � = 
1� � � � � n − k + 1,
by Iγ = I�%γ = α1� � � � � %γ+k−1 = αk�; then W = ∑

γ∈� Iγ. We say that A
has period p if αi = αi+p for all i = 1� � � � � k − p, and let 
 �A� denote the
set of periods of A. We also define the set of “principal periods” 
 ′�A� of A,
consisting of the minimal period and of those which are not a multiple of it.

Schbath (1995), applying CPA PP, proved that if the ƐW are bounded as
n→ ∞, then � �W� can be approximated by a compound Poisson distribution.
Her argument runs much as follows. First, replace W by a random variable W∗

which is easier to analyze, defined using the entire doubly infinite stationary
sequence 
%i−∞≤i≤∞. Set

Iγl � = I�an l-clump of A’ s starts at γ in the infinite sequence��
W∗ � = ∑

γ∈�

∑
l≥1

lIγl�

An l-clump consists of exactly l overlapping occurrences of A, whose union
does not overlap any preceding or subsequent occurrence of A. Only the
sequence %�n� is observable in practice, and the definition of Iγl may involve ξi
for indices i /∈ 
1�2� � � � � n, so that we are actually interested in the random
variable W rather than W∗. However, W �= W∗ only if a copy of A in the
infinite sequence overlaps one of the ends of the interval 
1�2� � � � � n, so that

dTV�� �W��� �W∗�� ≤ ��W �=W∗� ≤ 2�k− 1�ψ�(3.12)
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where

ψ �= ƐIγ = π�A� = π�α1�
k−1∏
i=1

H�αi� αi+1��

The bound (3.12), of order kψ, is no larger than other terms in the later
estimates. Furthermore,

ƐIγl = �1 −L�2Ll−1ψ where L = ∑
p∈
 ′�� �

p∏
i=1

H�αi� αi+1��(3.13)

so that ƐW∗ = �n− k+ 1�ψ = ƐW.
In order to apply CPA PP to W∗, we begin by defining the neighborhoods

B�γ� l�. In doing so, we introduce an integer r which determines their size
and which can then be chosen to minimize the estimates obtained. Denote by
Z�γ� l� the set which contains the positions of the letters defining the random
variable Iγl. We say that the indices �γ� l� and �β�j� are not neighbors if the
respective Z�γ� l� and Z�β�j� are separated by at least r positions, r > 0.
Then the neighborhood Br�γ� l� is given by

Br�γ� l� = 
�β�j�� − �j+ 2�k− r ≤ β− γ ≤ �l+ 2�k+ r ∩ �×��

With the above neighborhoods, computing the quantities (2.2), one obtains
[Schbath (1995)]

b
�r�
1 ≤ 2�n− k+ 1��kψ+ �2k+ r+ 1�ψ∗�ψ∗

and

b
�r�
2 ≤ 2

πinf
�n− k+ 1��kψ+ �r− k+ 1�ψ∗� + 4

π�α1�
�n− k+ 1�kψ2�

where

ψ∗ = ∑
l≥1

ƐIγl = ψ�1 −L�

and πinf �= mina∈� π�a�. The long range dependence term b3 of (2.3) can be
bounded using the geometric ergodicity of the Markov chain 
ξi [Schbath
(1995)], showing that b�r�3 = O�n2ρr� for some 0 ≤ ρ < 1. Hence, combining
CPA PP with (3.12) through the triangle inequality, it follows that

dTV�� �W��CP�λ���� ≤ C1n�k+ r+ 1�ψ2 +C2n
2ρr + 2kψ�(3.14)

where the quantities C1 and C2 are O�1�, the parameters λ and � are given
by

λµl = �n− k+ 1�ƐIγl� λ = �n− k+ 1�ψ�1 −L�
and r can be chosen at will.

To illustrate the possible asymptotics, let n = nm, A = Am and k = km all
depend on m ≥ 1, in such a way that ψm �= π�Am� → 0 as m→ ∞. Note that
the quantities ψ and ψ∗ are typically geometrically small as functions of k,
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so that if the mean Ɛ�Wm� = nmψm is kept bounded then km/ log nm stays
bounded away from 0 and ∞. Taking r = rm = 3 log nm/ log�ρ−1�, the error
estimate (3.14) is then O�ψm log�ψ−1

m ��.
For the same sequence of words Am, one could instead count the number

of copies of Am appearing in a sequence of letters from the Markov chain of
length growing faster with m; for example, nm = �ψ−c

m �, for any fixed c > 1.
In this case, the error estimate (3.14) is O�ψ2−c

m log�ψ−1
m ��, which is not even

small with m if c ≥ 2. Here we see the advantage of the improved compound
Poisson estimates. If we again take rm = 3 log nm/ log�ρ−1�, the estimate (2.30)
can be computed to be of order

ψm log�ψ−1
m � + ��W ≤ φƐW��(3.15)

for some φ < 1, and, for c > 1, the regenerative structure of the finite Markov
chain can be used to show that the latter term is of smaller order. Hence the
improved estimate CPA 2A yields a much better asymptotic order for c > 1
than does CPA PP, by a factor of ψc−1

m .
For small enough values of L, conditions (2.18) and (2.20) are satisfied: con-

dition (2.18) if L ≤ 1/2, allowing (2.27) to be applied using the bounds (2.19)
and (2.23), and condition (2.20) if L < 1/5, in which case (2.27) can be applied
with the bounds (2.21). Details and some numerical examples are given in
Barbour, Chryssaphinou and Vaggelatou [(2000, Section 3]. The Markov chain
approach of Erhardsson (1999) (see Section 3.6) can also be applied. The error
estimates obtained from his theorems are not quite so explicit as those derived
from (2.27), but they are of comparable accuracy when ƐW is small, and of sim-
ilar O�ψm log�ψ−1

m �� in the asymptotic setting considered above. Erhardsson
(1997) also considers the number of appearances of words from a prescribed set
of words A�i�, 1 ≤ i ≤ l; see also Chryssaphinou, Papastavridis and Vaggelatou
(2000).

Reinert and Schbath (1998) consider the joint distribution of the numbers
of copies of each of a finite set of words in a sequence of n letters. Their
approximations are expressed in terms of independent compound Poisson dis-
tributions, and are valid only under a hypothesis which restricts the possible
overlapping of clumps of a single word with clumps of another. They do so
by applying CPA PP. This is an example of the generality and usefulness of
the point process approach; as yet, there is no bivariate analogue of the direct
compound Poisson approach to use as an alternative.

3.5. Sequence matching. Let ξ1� � � � � ξm and η1� � � � � ηn be two independent
sequences of independently chosen letters from a finite alphabet � , the ξi
chosen according to a distribution σ and the ηj according to ν. Fix k and set

Iij �= I�ξi = ηj� ξi+1 = ηj+1� � � � � ξi+k−1 = ηj+k−1��
so that

W �=
m−k+1∑
i=1

n−k+1∑
j=1

Iij
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counts the number of times that pairs of matching strings of length k can be
found in the two sequences. In molecular sequence applications, an observed
value of W higher than that expected according to the above model would
indicate evolutionary relationship between the two sequences. Previous work
[Arratia, Goldstein and Gordon (1989), Neuhauser (1996)] has largely con-
centrated on approximating ��W = 0�, which, by then varying k, translates
into a statement about the length of the longest matching run; with this in
mind, the strategy is typically to replace W by a random variable which
counts distinct clumps of k-runs, and to approximate its distribution by a
Poisson random variable. Here, as also in Månsson (1999), we use compound
Poisson approximation to treat the whole distribution of W and to provide
rather explicit estimates for the accuracy of the approximations obtained. Our
approach is based on that of Månsson (1999) and also uses some refinements
from Neuhauser (1996).

In order to simplify the canonical parameters (2.7) of the approximating
compound Poisson distribution, we work instead with the random variable

W′ �=
m∑
i=1

n∑
j=1

Iij�

derived from the ξ- and η-sequences by using the “torus convention” ξi+m = ξi,
ηj+n = ξj for all i� j ∈ �. Since

0 ≤W′ −W =
m∑
i=1

n∑
j=n−k+2

Iij +
m∑

i=m−k+2

n−k+1∑
j=1

Iij�

it is immediate that

dTV�� �W��� �W′�� ≤ �m+ n− k+ 1��k− 1�ψ�(3.16)

where ψ �= pk and we assume that 0 < p �= ∑
α∈� σανα < 1. The random

variable W′ has expectation

ƐW′ =mnpk�

and we are typically interested in values of k less than, say, 2 log�mn�/
log�1/p�, so that ƐW′ is not extremely small. In order to construct a suit-
able decomposition of the form W′ = Iij + Uij + Zij + Wij, as in (2.6), we
note that the indicators most strongly dependent on Iij are those of the form
Ii+l�j+l with 	l	 ≤ k− 1, so we take

Uij = ∑
1≤	l	≤k−1

Ii+l�j+l

and

Zij =
( ∑

�r� s�∈Nij

Irs

)
− Iij −Uij�
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where

Nij = 
�r� s�� min
	r− i	� 	s− j	 ≤ 2�k− 1��

This yields W′ = Iij +Uij +Zij +Wij, in such a way that Wij is independent
of the pair �Iij�Uij�, so that ε0 = 0 in CPA 1A(i).

The canonical parameters for compound Poisson approximation are essen-
tially the same as those for success runs, but with the new definition of p and
with n replaced by mn:

λµi =


mnψpi−1�1 − p�2� if i = 1� � � � � k− 1;
i−1mnψ
2pi−1�1 − p�

+�2k− i− 2�pi−1�1 − p�2� if i = k� � � � �2k− 2;

2k− 1−1mnψp2k−2� if i = 2k− 1;

λ =
2k−1∑
i=1

λµi�

As before, condition (2.18) is satisfied if p ≤ 1/3, and condition (2.20) is
satisfied with �1 − 2θ�−1 = �1 − p�/�1 − 5p� if p < 1/5; once again, a Pólya–
Aeppli PA �mnψ�1−p�� p� approximation would contribute at most an extra
4kψ�1 − p�/�1 − 5p� to the total variation error estimate given below. To
compute ε1 of CPA 1A(i), it is immediate that

ƐIijƐ�Iij +Uij +Zij� ≤ �4k− 3��m+ n�ψ2�(3.17)

and all that remains is to bound Ɛ�IijZij�.
In order to express the result, we define three further quantities:

q1 �=
∑
α∈�

σ2
ανα� q2 �= ∑

α∈�
σαν

2
α�

γ+ �=max
α∈�

γα� whereγα �= p−1σανα�
(3.18)

noting that pγ+ ≥ qi ≥ p2, i = 1�2. We then observe that there are at most
2kn pairs �r� s� ∈ Nij such that 	r − i	 ≤ k − 1 and 	s − j	 ≥ k, for each of
which Ɛ�IijIrs� ≤ qk2, that there are at most 2kn pairs �r� s� ∈ Nij such that
	r− i	 ≥ k and 	s−j	 ≥ k, for each of which Ɛ�IijIrs� = p2k and that there are
at most 4k2 pairs �r� s� ∈Nij such that 	r− i	 ≤ k− 1 and 	s− j	 ≤ k− 1, for
each of which

Ɛ�IijIrs� ≤ max

{ ∑
α∈�

σα�σανα�k�
∑
α∈�

να�σανα�k
}
≤ �pγ+�k�

Swapping the roles of r and s in the first two cases, this finally gives the bound

Ɛ�IijZij� ≤ 2k�mqk1 + nqk2� + 2k�m+ n�p2k + 4k2�pγ+�k�(3.19)
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Hence, in particular, adding over the mn possible pairs �i� j� and using the
improved bounds (2.23) and (2.21), we deduce from CPA 1A(i) and (3.16) that

dK�� �W��CP�λ����≤ 1
�1 − p�2 + λ−1

�1 + �2� p ≤ 1/3�

dTV�� �W��CP �λ����≤ 1 − p

1 − 5p
�1 + �2� p < 1/5�

(3.20)

where

�1 �=2k
m�q1/p�k + n�q2/p�k + 3�m+ n�pk + 2kγk+�
�2 �=k�m+ n�pk�

(3.21)

In the case when p ≥ 1/5, as would be the case in the important application
to the four-letter DNA alphabet with (almost) uniform distributions over the
letters, the total variation estimate above cannot be used. However, it is once
more possible to apply CPA 2A, to get error estimates of almost the same
asymptotic order. The only essential difficulty lies in showing that the tail
probability in (2.29) is small. Here, one can apply the exponential lower tail
bounds of Janson [(1998, Theorem 10], which extend Suen’s (1990) inequality
to cover the event appearing in (2.29). This leads to the result that, whatever
the value of p < 1, one has

dTV�� �W��CP�λ���� = O��1 + e−αƐW
′ ��(3.22)

uniformly in �1 ≤ 1, for some α > 0. This makes for very good asymptotics
whenever ƐW → ∞ at all fast; when this is not the case, the error estimate
derived from CPA PP is usually close to best possible.

Most emphasis has previously been placed on asymptotics in which m and n
tend to infinity in such a way that both logm/ log n and λ converge to finite,
nonzero limits. Using (3.20) and (3.21), we can make more precise statements
about how well the distribution of W is then being approximated, under less
restrictive conditions (provided that p is in the permitted ranges). For m and n
given, set

k = kmn �= log�mn�/ log�1/p� − cmn�(3.23)

for any c = cmn ≥ 0, and define

l1 = l1�m�n� �= logm/ log�mn�� l2 = l2�m�n� �= 1 − l1�(3.24)

note also that then ƐW = p−c. Considering the elements of (3.21), we imme-
diately have

�m+ n�pk = �m−1 + n−1�p−c(3.25)

and

2kγk+ ≤
{

2 log�mn�
log�1/p�

}
�mnpc�−δ0�(3.26)
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where δ0 �= log�1/γ+�/ log�1/p�. Then, defining

δi = δi�m�n� �=
{

log�p/qi�
li log�1/p� − 1

}
� i = 1�2�(3.27)

we also have

�qi/p�k = pk�1+δi�li = p−c�1+δi�li exp
−li log�mn��1 + δi��
i = 1�2, which, from the definition of li, and because �1 + δi�li ≤ 1 in view
of (3.27) and qi ≥ p2, implies that

m�q1/p�k ≤m−δ1p−c� n�q2/p�k ≤ n−δ2p−c�(3.28)

Thus �1 is bounded, uniformly in c ≥ 0, by the rather explicit formula{
2 log�mn�
log�1/p�

}(
p−c�m−δ1 + n−δ2 + 3�m−1 + n−1��

+
{

2 log�mn�
log�1/p�

}
�mnpc�−δ0

)
�

(3.29)

which is small so long as δ1�m�n� and δ2�m�n� are sufficiently positive and c
is not too large; �2 is small if �1 is. In asymptotic terms, one would require
that

l∗i �= lim sup
m�n→∞

li�m�n� < log�p/qi�
log�1/p� �(3.30)

since then

lim inf
m�n→∞ δi ≥

log�p/qi�
l∗i log�1/p� − 1 > 0� i = 1�2�

and then ensure that c was at most some suitably small multiple of log n,
corresponding to a growth in ƐW of order at most �mn�δ, for some small
δ > 0. Previous asymptotics have mostly assumed that ƐW remains fixed,
so that this last condition was automatically satisfied.

As already observed in Neuhauser (1996), condition (3.30) is stronger than
is actually necessary for the approximation to be accurate asymptotically. To
see why this is, write Iij in the form∑

k∈Sk

Iij�k�(3.31)

where

Sk �=
{
k ∈ �

	� 	
+ � ∑

α∈�
kα = k

}
� Iij�k �= ∏

α∈�
I�Kij�α = kα��

and where

Kij�α �= #
l� 0 ≤ l ≤ k− 1� ξi+l = ηj+l = α� α ∈ � �

Then it is possible for Ɛ�Zij 	 Iij�k = 1� to be very large for values of k for
which ƐIij�k is small, with a significant contribution to Ɛ�IijZij� resulting. In
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such circumstances, the element m�q1/p�k + n�q2/p�k in �1 may be unduly
pessimistic. This element derives from the inequality

	g�l+Zij +Wij� − g�l+Wij�	IijI�Uij = l− 1�
≤  �g ZijIijI�Uij = l− 1��

(3.32)

used in deriving the basic compound Poisson estimates, which may give a
larger result than the alternative inequality

	g�l+Zij +Wij� − g�l+Wij�	IijI�Uij = l− 1�
≤ 2 g I�Zij ≥ 1�IijI�Uij = l− 1�

if Zij is likely to be large when Iij = 1. So instead, using (3.31), we can use
both inequalities to arrive at the bound∣∣∣∣Ɛ{Iijg�W� −∑

l≥1

IijI�Uij = l− 1�g�l+Wij�
}∣∣∣∣

≤  �g ∑
k∈B

Ɛ�Iij�kZij� + 2 g ∑
k/∈B

ƐIij�k�
(3.33)

where B ⊂ �
	� 	
+ can be chosen at will; we take

B �= 
k ∈ Sk� 	kα − kγα	 ≤ εkγα� α ∈ � �
for a suitably chosen ε > 0.

The random vector Kij, conditional on Iij = 1, has the multinomial distri-
bution MN�k�γα� α ∈ � �, and hence∑

k/∈B
Ɛij�k ≤ ψ

∑
α∈�
γα �=0

��	Kij�α − kγα	 > εkγα��

thus giving a contribution to (3.33) of at most

2 g ψ ∑
α∈�
γα �=0

{
ε−1�1+ε� exp
−λε2/2�2+ε�}+2ε−1 exp
−λε2/2�2−ε�}}�(3.34)

if kε ≥ 2, this last from the tail bounds for the binomial distribution given in
BHJ [(1992), Proposition A.2.5]. For k ∈ B, splitting Nij as before, only the
2kn pairs �r� s� with 	r − i	 ≤ k − 1 and 	s − j	 ≥ k and the 2km pairs with
	r − i	 ≥ k and 	s − j	 ≤ k − 1 need to be estimated differently. For the first
set, we have

Ɛ�Irs 	 Iij�k = 1� ≤ ∏
α∈�

νkγα�1−ε�α

for each �r� s�, giving a total contribution to (3.33) of at most

 �g 2knψ exp
−k�1 − ε�v2 log�1/p��(3.35)

where

v1 �= 1 −H�σ 	 γ�/ log�1/p�� v2 �= 1 −H�ν 	 γ�/ log�1/p�
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and

H�ρ 	 γ� �= ∑
α∈�

γα log�γα/ρα� ≥ 0�

The second set contributes at most

 �g 2kmψ exp
−k�1 − ε�v1 log�1/p�(3.36)

to (3.33). The sum of the three contributions (3.34)–(3.36) is then added over
the �m− k+ 1��n− k+ 1� possible pairs �i� j�, and the improved bounds for
 g and  �g are applied. This yields alternative error estimates in place
of (3.20):

dK�� �W��CP�λ����≤ 1
�1 − p�2 + λ−1

�′
1 + �2

+CK�p�
mnψ1/2�3� p ≤ 1/3�

dTV�� �W��CP�λ����≤ 1 − p

1 − 5p

�′

1 + �2 + 2
mnψ1/2�3�

p < 1/5�

(3.37)

where

�′
1 �=2k
m exp
−k�1 − ε�v1 log�1/p�

+n exp
−k�1 − ε�v2 log�1/p� + 3�m+ n�pk + 2kγk+�
�2 �=

∑
α∈�
γα �=0

{
ε−1�1 + ε� exp
−kγαε2/2�2 + ε�

+ 2ε−1 exp
−kγαε2/2�2 − ε�}
(3.38)

�2 is as in (3.21) and CK�p� �= 23/2
e��1 − p�2 + λ−1�−1/2.
In the circumstances illustrated in (3.23), provided that li < vi, i = 1�2, a

suitable choice for ε is given by

ε = 1 − max

{√
l1
v1
�

√
l2
v2

}
�(3.39)

This has the effect of replacing the exponents δ1 and δ2 in (3.29) by ε/�1− ε�,
and adding the element involving �3; this alternative bound can then be used
whenever kε ≥ 2. In asymptotic terms, it is now enough that l∗i < vi, i = 1�2,
which is a less restrictive condition than (3.30), to allow the choice of

ε∗ = 1 − max

{√
l∗1
v1
�

√
l∗2
v2

}
(3.40)

for ε, in which case the overall error estimate is O�p−cn−δ� = O�ƐWn−δ� for
some δ > 0; this once again converges to zero, as long as ƐW only grows with n
at most as fast as a small power of n.
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3.6. Markov chains. Counting both success runs and occurrences of a word
can be rephrased as particular cases of the more general problem of counting
the number of visits W to a “rare” set S1 in n steps of a recurrent Markov
chain X. For success runs, as in Section 3.1, the state space � can be taken
to be 
0�1� � � � � k, by setting Xi = j if ξi = ξi−1 = · · · = ξi−j+1 and ξi−j = 0,
1 ≤ j ≤ k−1 and Xi = k otherwise; then, apart from edge effects, the number
of success runs of length k becomes the number of visits of X to S1 = 
k.
For copies of a single word A = a1a2 · · ·ak of length k in the Markov model of
Section 3.4, set Xi = j if

max�0� 
l� ξi−l+1� � � � � ξi = a1a2 · · ·al� = j ∈ 
1�2� � � � � k�
and set Xi = �ξi�0� otherwise; the number of copies of A is then the number
of visits to S1 = 
k. When visits to S1 generally occur singly, a Poisson
approximation to � �W� is appropriate [BHJ (1992), Section 8.5], but it is
more often the case that there is a tendency for visits to occur in clumps, and
then compound Poisson approximation gives much sharper results.

This problem has been studied in some generality by Erhardsson (1999),
exploiting the regenerative structure of a recurrent Markov chain to derive
very pleasing approximation theorems. The Markov chain X is assumed to be
stationary and Harris recurrent on � , having a unique stationary distribu-
tion ν, and W = ∑n

i=1 1
Xi∈S1 counts the number of visits to S1 ∈ � : define
ψ �= ν�S1�. The approximating compound Poisson distribution CP�λ��� is
defined in terms of regeneration cycles; λ is the expected number of cycles
in 1�2� � � � � n which contain at least one visit to S1, and � is the conditional
distribution of the number of visits to S1 in a cycle, given that at least one
occurs. In particular, if S1 is an atom—for example, a single state—then � is
geometric, and CP�λ��� is a Pólya–Aeppli distribution. A formal definition of
λ and � is given in Erhardsson [(1999), Definition 3.2].

The simplest theorem is obtained when regeneration is defined in terms of
visits to an atom S0 such that �S0� > 0 and S0 ∩ S1 = �. In the example
of success runs, the choice S0 = 
0 is appropriate; for the occurrence of
a word, any singleton of the form 
�a�0� could be used, or one could take
S0 = ∪a∈A′ 
�a�0�, for any collection A′ ⊂ � such that π�a� ·� is the same for
all a ∈ A′. Let τS0

and τS1
denote the first times that X hits S0 and S1, τ

R
S0

the first time that the reversed chain hits S0. Then Erhardsson uses CPA 1A
combined with a coupling argument to prove that

dTV�� �W��CP�λ����
≤ 2HTV

1 �λ���nψ2 
Ɛν	S1
�τS0

+ τRS0
� + ν−1�S0�Ɛν�τS0

�
+2�ν�τS1

< τS0
��

(3.41)

Good bounds for HTV
1 �λ��� are currently only known under either of

conditions (2.18) and (2.20). In the examples of word counts and success runs,
when condition (2.20) holds, the results obtained for total variation approxima-
tion are nonetheless of the best asymptotic order generally known. Erhardsson
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(1999) shows that (2.18) holds whenever

ν ess sup
x∈S1

�x�τS1
< τS0

� ≤ 
3 − 2ν ess inf
x∈S1

�x�τS1
< τS0

�−1�

and that then

λ�µ1 − 2µ2� ≥ nψ
1 − 4�ν	S1
�τS1

< τS0
��

enabling HTV
1 �λ��� to be effectively bounded using (2.19) in these circum-

stances. More particularly, if S1 is an atom, as is the case in the examples of
success runs and occurrences of a word, then µj = �1 − p�pj−1 for j ≥ 1,
where p = �S1

�τS1
< τS0

�, and thus condition (2.18) holds for p ≤ 1/2
with µ1 − 2µ2 = �1 − p��1 − 2p�, and the approximating distribution is then
a Pólya–Aeppli distribution. However, the regenerative structure of such a
Markov chain also lends itself well to proving good bounds for the quantity
��W ≤ φλm1� in CPA 2A, so that it is to be expected that the better asymptotic
order normally given by CPA 2A could be achieved here, too, when condition
(2.18) fails to hold.
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