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LONG STRANGE SEGMENTS OF A STOCHASTIC PROCESS1

By Peter Mansfield, Svetlozar T. Rachev and Gennady Samorodnitsky

University of Tasmania, University of Karlsruhe and Cornell University

We study long strange intervals in a linear stationary stochastic pro-
cess with regularly varying tails. It turns out that the length of the longest
strange interval grows, as a function of the sample size, at different rates
in different parts of the parameter space. We argue that this phenomenon
may be viewed in a fruitful way as a phase transition between short- and
long-range dependence. We prove a limit theorem that may form a basis
for statistical detection of long-range dependence.

1. Introduction. Imagine that a stationary time series X1�X2� � � � rep-
resents input in a stochastic system, for example, the amount of work arriving
to a service station in a unit of time, or the total of claims arriving to an insur-
ance company in a unit of time. Theoretically speaking, a stochastic system
is designed well if its “capacity” exceeds the average “load” generated by the
input to the system. In a queuing system context, this usually means that the
amount of work the servers are capable of processing in a unit of time exceeds
the average amount of work arriving in a unit of time. In an insurance con-
text, this means that the premium income the company receives per unit of
time exceeds the average total amount of claims arriving per unit of time. Of
course, it is well understood that even well-designed stochastic systems are
affected by the intrinsic randomness in their input. Random fluctuations can
cause a queue buildup in a service station and could imply disaster for an
insurance company.
It is somewhat paradoxical that what really affects a stochastic system is

not so much the “pure chaos” often associated with randomness, but rather
certain kinds of “order” found in it. Even if the input X1�X2� � � � is a nonde-
generate iid sequence with a finite mean, chance will create periods of time
when the observed (sample) mean is significantly different from the theoret-
ical mean. Such periods will become longer when the time series X1�X2� � � �
has (positive) dependence, or memory; the longer the memory, the longer the
length of such intervals. In the insurance company context, long periods of
time when the claims arrive at a rate significantly higher than expected may
well lead to ruin. Similarly, long periods of time when observed traffic intensity

Received December 1999; revised October 2000.
1This research was done with support of SEW-EURODRIVE-Foundation (SEW-Group) that

funded a visit of G. Samorodnitsky to University of Karlsruhe in summer of 1999. Samorodnitsky’s
research was also partially supported by NSF Grants DMS-97-04982 and DMI-97-13549 as well
as by NSA Grant MDA904-98-1-0041 at Cornell University.

AMS 2000 subject classifications. Primary 60G10, 60F15; secondary 60G70.
Key words and phrases. Long-range dependence, stationary process, large deviations, heavy

tails, infinite moving average, maxima, regular variation, extreme value distribution, applications
in finance, insurance, telecommunications.

878



LONG STRANGE SEGMENTS 879

is significantly higher than expected may cause extreme delays at a service
station. If a queuing system is highly loaded to begin with, it will be hit even
harder. This is the case, for example, with manufacturing systems in certain
capital-intensive industries, such as the semiconductor industry, where the
system has to run very close to capacity to produce the needed profit margin.
Today, it is not easy to find an area of applications of stochastic models

where one does not believe in presence of dependence in the data relevant to
that area. Indeed, many data sets are believed to exhibit presence of a spe-
cial kind of dependence, the so-called long-range dependence, or long memory.
Long-range dependence has been found in financial data; see, for example,
Ding, Granger and Engle (1993), Bollerslev and Mikkelsen (1996) or Breidt,
Crato and de Lima (1996), in communication networks; see, for example, Will-
inger et al. (1995), Beran et al. (1995) or Crovella and Bestavros (1996), and
many other areas. Additional references can be found in Beran (1994). Long-
range dependence is supposed to be the kind of dependence that not only
dissipates slowly with time, but is qualitatively different from ordinary, short-
range dependence.
Making the above statement precise has proved to be difficult. Early on,

long-range dependence has become associated with particular kinds of scaling
of a stochastic process, the simplest among which is self-similarity. This origi-
nated with the pioneering work of Mandelbrot and his co-workers
[Mandelbrot and Van Ness (1968), Mandelbrot and Wallis (1968, 1969a, b, c)],
which explained the Hurst phenomenon, for example, the empirical findings of
Hurst (1951), who studied the water level of the Nile River. For this purpose,
Mandelbrot and his co-workers used fractional Gaussian noise, which is incre-
ment process of the fractional Brownian motion, that is, the self-similar Gaus-
sian process with stationary increments. Fractional Brownian motion is char-
acterized by a single parameter (apart from its scale) H ∈ �0�1�, sometimes
called the Hurst parameter; the covariance function of fractional Gaussian
noise is not summable when the Hurst parameterH is greater than 0.5, which
is precisely the range required to explain the Hurst phenomenon. Looking at
the rate of decay of correlations is an attractive way of thinking of length of
dependence in a stationary Gaussian sequence. Since then, nonsummability
of correlations has become a common way of defining long-range dependence,
even when the stochastic process is not believed to be Gaussian [see, e.g.,
Taqqu and Teverovsky (1998)], with possible adjustments consisting of requir-
ing actual regular variation of correlations as in Beran (1994), or allowing any
hyperbolic-type of decay of correlations as in Taqqu (1987).
It is difficult, however, to justify such concentration on the rate of decay of

correlations. First, this does not allow one to talk about long-range dependence
in a stochastic process with infinite variance; infinite-variance models have
acquired prominence in the last 10 years. Furthermore, even if the variance
is finite, the information carried by correlations is fairly limited if the actual
process is far from being a Gaussian one. In fact, some researchers argue
that there are simpler ways to explain the observed slowly decaying empirical
correlations than by introducing sophisticated models viewed as having long
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memory. Certain kinds of nonstationary models will have a similar property.
See, for example, Mikosch and Starica (1999) [but this line of thought can be
traced back to Bhattacharya, Gupta and Waymire (1983)].
A possible alternative approach to the phenomenon of long-range depen-

dence is to look at implications of the latter. That is, one looks at a particular
important functional of a stochastic process. One looks then for a kind of a
“phase transition” in the behavior of this functional. This approach has both
advantages and drawbacks. Its main drawback is in not offering a unique
definition of long-range dependence, for doing so ties the analysis to a given
functional, or a family of functionals. Its advantage is in concentrating on an
object of a priori importance. This makes the discussion of whether or not
nonstationary models can have a similar property somewhat redundant, for
it is the property itself that is of a greater interest than the model per se.
In the present paper we concentrate on one such functional of interest. Let

X1�X2� � � � be a stochastic process. For a Borel set A ⊂ �, we define, for every
n = 1�2� � � �,

Rn�A� = sup
{
j− i� 0 ≤ i < j ≤ n� Xi+1 + · · · +Xj

j− i ∈ A
}

(1.1)

(defined to be equal to zero if the supremum is taken over the empty set). If
X1�X2� � � � is a stationary ergodic process with a finite mean µ = EX1, then
of particular interest are sets of the type

A = �θ�∞� with a θ > µ

and

A = �−∞� θ� with a θ < µ�

Indeed,Rn��θ�∞�� andRn��−∞� θ�� are the greatest lengths of time intervals
when the system runs under effective load that is different from the nominal
load. We have already mentioned that such time intervals can be of a crucial
importance in manufacturing and insurance applications, but these function-
als are also important in finance, comparative analysis of DNA sequences and
analysis of computer search algorithms. In this paper we will concentrate on
the sets of the type (θ�∞), and we use the notation

Rn�θ� �= Rn��θ�∞���
It is clear that one can analyze the sets of the type �−∞� θ� by changing the
sign of the whole stochastic process.
A word on the terminology. The intervals whose length the functionalRn�A�

measures are sometimes called long rare intervals; see, for example, Dembo
and Zeitouni (1993). We prefer to call them long strange intervals, reflecting
the fact that, even though from a certain point of view, we are talking about
a typical length, in such time intervals the system seems to overcome the law
of large numbers when the mean µ lies outside of the closure of the set A.
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Here is the specific model we will consider. Let

Xn = µ+
∞∑

j=−∞
ϕn−jZj� n = 1�2� � � � �(1.2)

where � � � �Z−1�Z0�Z1� � � � is a sequence of zero mean iid random variables
and µ is a constant. That is, X1�X2� � � � is a two-sided linear process (or a
two-sided infinite moving average).
In this paper we assume that Z = Z0 satisfies the following regular varia-

tion and tail balance conditions:

P��Z� > λ� = L�λ�λ−α�

lim
λ→∞

P�Z > λ�
P��Z� > λ� = p� lim

λ→∞
P�Z < −λ�
P��Z� > λ� = q�

(1.3)

as λ→∞, for some α > 1 and 0 < p = 1− q ≤ 1. Here L is a slowly varying
function at infinity. The coefficients �ϕj�, not all of which are equal to zero,
have to satisfy certain assumptions to make sure that the infinite sum in (1.2)
is well defined. Sufficient conditions for convergence are

∞∑
j=−∞

ϕ2j <∞� for α > 2,

∞∑
j=−∞

�ϕj�α−ε <∞ for some ε > 0 for α ≤ 2.
(1.4)

Moreover, under the conditions (1.4), X1�X2� � � � is an ergodic stationary pro-
cess whose marginal distribution satisfies

P�X > λ� ∼
∞∑

j=−∞
�ϕj�α�pI�ϕj>0� + qI�ϕj<0��P��Z� > λ�

∼
∞∑

j=−∞
�ϕj�α�pI�ϕj>0� + qI�ϕj<0��L�λ�λ−α�

(1.5)

as λ→∞. Here and in what follows, X stands for a generic random variable
with the same distribution as X1. See Mikosch and Samorodnitsky (2000),
Lemma A3.7. See also Brockwell and Davis (1991) for an extensive treatment
of linear processes and Resnick (1987) for a discussion of regular variation in
the context of linear processes.
A strictly stronger assumption than (1.4) is that of absolute summability of

the coefficients in (1.2):
∞∑

j=−∞
�ϕj� <∞�(1.6)

We will see that there are important differences in the ways the functional
Rn�θ� with θ > µ behaves when the assumption (1.6) holds, and when this
assumption does not hold but the weaker assumption (1.4) holds. In this sense
we have a phase transition.
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Several remarks are in order.

Remark 1.1. (i) Linear processes are, arguably, the single most common
class of stochastic models used in science. Traditionally, they have been used
because of their flexibility to account for almost any possible behavior of covari-
ance functions. On uses moments to fit a linear model to data. See Brockwell
and Davis (1991). This argument does not explain why one should use linear
models when the variance is infinite [this is the case, for example, when α < 2
in (1.3)], or if one is not interested in covariances. See also Resnick (1997)
for the case against blind usage of linear processes. We use linear processes
because we are interested in the tails, not covariances, and the joint tails of
a linear process provide a very good approximation to any multivariate reg-
ular varying distribution. See the discussion in Mikosch and Samorodnitsky
(2000).

(ii) It is interesting that, in the case when EZ2 < ∞, the condition (1.6)
is also the one that assures absolute summability of the covariances of the
process X1�X2� � � � �

Clearly, for any stochastic process and any fixed number θ, the sequence of
random variablesR1�θ��R2�θ�� � � � is nondecreasing. How fast does it increase?
This question, apart from its obvious importance in applications, is of theo-
retical interest in its own right. If X1�X2� � � � is an iid sequence of random
variables with finite exponential moments, then Rn�θ� grows logarithmically
fast; see Dembo and Zeitouni (1993), Section 3.2. It turns out that with regu-
larly varying tails, as in our setup, Rn�θ� itself grows as a regularly varying
function. This is not, by itself, surprising. It is, perhaps, more surprising to
see the effect of the dependence in the process on the rate of growth of Rn�θ�.
We begin the next section by providing some intuition that may help the

reader see why our results are stated the way they are, and where they come
from. We also state our main result and give some possible applications of it.
Section 3 contains the proof of the main result; it uses additional technical
results that are provided in Section 4. Finally, in Section 5, we try to give the
reader some idea of what may happen when one uses the lenses provided by
our results to look at real data; our data comes from financial applications.

2. Intuition and the main results. The idea underlying our results is
really very simple. It follows directly from the definition of Rn�θ� that, for any
1 ≤m ≤ n,

Rn�θ� ≥m if and only if Xi+1 + · · · +Xi+k > kθ for some k =m�
m+ 1� � � � � n and some i = 0� � � � � n− k�

(2.1)

Now, by definition (1.2) of the linear process,

Xi+1 + · · · +Xi+k = kµ+
∞∑

j=−∞

(
i+k−j∑

d=i+1−j
ϕd

)
Zj�(2.2)
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To develop some intuition, we will use the logic of large deviations (even
though this is not really a large-deviation situation, as we will discuss in
a moment). Let θ > µ, so that, for a fixed i, the event

�Xi+1 + · · · +Xi+k > kθ�
is an unlikely event if k is large. The logic of large deviations is that unlikely
events happen in the most likely way, and in the case of power-like tails, the
most likely way is often that of the least number of causes. See, for example,
Resnick and Samorodnitsky (1999) or Mikosch and Samorodnitsky (2000) for
a discussion. This logic tells us that, for large sample sizes n and large m
in (2.1), the event �Rn�θ� ≥ m� is basically a consequence of a single large
positive or negative value of a noise variable. How large this value has to be
is determined by the coefficients (2.2). Then, intuitively,

P�Rn�θ�≥m� ∼ P
((

i+k−j∑
d=i+1−j

ϕd

)
Zj>k�θ−µ��

for some j= ����−1�0�1����
some k=m�m+1�����nand some i=0�����n−k

)
�

(2.3)

Now, what does (2.3) mean exactly? We are, obviously, thinking of the sample
size n going to infinity, and the number m should increase to infinity as well
(as a function of n). If the number m = m�n� increases too fast, and the
probability in the left-hand side of (2.3) goes to zero, then we are talking
about an overall rare event, and then the equivalence of the left- and right-
hand sides of (2.3) is, perhaps, not surprising. We are, however, interested in
m = m�n� increasing at “just the right rate,” so that the probability in the
left-hand side of (2.3) should not go to zero, and the event it describes is not a
rare event. Why should one expect that the equivalence in (2.3) is still valid?
To answer that question, let us look at the simplest possible case, that of an
iid sequence X1�X2� � � � .
The iid case corresponds to the choice of ϕ0 = 1 and ϕj = 0 for j �= 0 in

(1.2). Assume temporarily for notational simplicity that L�λ� → L ∈ �0�∞� as
λ→∞ in (1.3), Clearly, we may (and will) assume that µ = 0 (and θ > 0). We
will see later that the appropriate choice ofm in that case ism =m�n� = n1/α
in the sense that n−1/αRn�θ� converges weakly to a nonzero limit. Now, it is
typical for the maximum of n iid random variables with a Pareto-like tail to be
of the order of n1/α and, in fact, there is likely to be more than one observation
that large. However, for exactly the same reason, observations that large are
likely to be separated in time by more than n1/α observations and, hence, one
does not expect that more than one of such large observations will contribute
to the largest strange interval. This is the intuitive reason for the equivalence
in (2.3).
Let us start by noting that the probability in the right-hand side of (2.3) can

be understood through fairly straightforward computations. Still assuming
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that µ = 0 and θ > 0, we can rewrite it in the form

P

(
for some j = � � � �−1�0�1� � � � � either

Zj sup
m≤k≤n

1
k

sup
i=0�����n−k

(
i+k−j∑

d=i+1−j
ϕd

)
+
> θ

or Zj sup
m≤k≤n

1
k

sup
i=0�����n−k

(
i+k−j∑

d=i+1−j
ϕd

)
−
< −θ

)
�

(2.4)

Here, a+ = max�a�0� and a− = �−a�+ for any real number a.
If one believes that (2.4) gives the main term in the probability P�Rn�θ� ≥

m� (at least, for appropriate choice of m), then it is a reasonably straightfor-
ward computation (which we will actually perform later) to figure out
from (2.4) the behavior of the probability P�Rn�θ� ≥ m� as n → ∞ for a
given sequence m = m�n� and, alternatively, to figure out the right choice of
m =m�n� so that P�Rn�θ� ≥m� converges to a limit in (0, 1). At this point it
is useful to start introducing the appropriate notation.
Let F denote the distribution function of the random variable �Z� and, for

n ≥ 1, define

an =
(

1
1−F

)←
�n��(2.5)

Here, for a nondecreasing function U, we use the notation U← to denote the
left continuous inverse of U:

U←�y� = inf�s� U�s� ≥ y��
It follows immediately from (1.3) that the sequence (an) is regularly varying
at infinity with exponent 1/α. Here we are following the notation in Resnick
(1987), which should also be consulted for facts about regular varying tails
and their quantile functions.
It turns out that under the condition (1.6) (the short-memory case in our

approach), the appropriate choice for the sequence m = m�n� is m�n� = an,
n ≥ 1, in the sense that a−1n Rn�θ� converges weakly to a nondegenerate limit.
In this sense, in the short-memory case, the lengthRn�θ� of the longest strange
interval grows as an (i.e., as a regularly varying function of the sample size n
with exponent 1/α). This is the same rate as that achieved in the iid case (but
the actual weak limit of a−1n Rn�θ� does, in general, depend on the coefficients
in (1.2) even in the short-memory case).
In contrast to that, the rate of growth of Rn�θ� is, in general, higher than

that of an in (2.5) if the condition (1.6) fails. In fact, we will show in a future
paper that if the coefficients (ϕn) in (1.2) have themselves a certain regu-
lar variation property, then the right choice for the sequence m = m�n� is,
actually, that of a regularly varying function with exponent strictly greater
than 1/α, This suggests that one way to see if the data should be viewed as
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coming from a long-range dependent model is to plot logRn�θ� versus log n.
Long-range dependence corresponds to the case when the plot is close to being
linear with a slope H greater than 1/α, while a slope of 1/α signifies short
memory (or, rather, absence of indication for long-range dependence). This
approach is, hence, akin to the R/S statistic of Hurst (1951); note, however,
that the approach using the rate of growth of the longest strange interval has
the advantage of relating to an a priori important quantity. It is also interest-
ing that, unlike the Hurst exponent in the R/S statistic, our slope H is not
bounded by 1/2 from below.
Even though the above way of trying to detect long-range dependence looks

attractive, it is difficult to convert it into a statistical test; the same problem
also plagues the R/S statistic. An additional difficulty involved is that the tail
index α in (1.5) is not usually known and, hence, has itself, to be estimated
from the sample. This should not be called an easy task; see, for example,
Embrechts, Klüppelberg and Mikosch (1997) for some of the pitfalls. Therefore,
it is desirable to have a statistic that does not rely on the tail index.
LetMn = max�X1� � � � �Xn� be the largest of the first n observations, n ≥ 1.

It is well known that under fairly general conditions,Mn grows as an in (2.5);
see, for example, Resnick (1987) [under conditions more stringent than (1.6)];
in the case of α-stable noise � � � �Z−1�Z0�Z1� � � � in (1.2), Leadbetter, Lindgren
and Rootzen (1983) show the same thing without the assumption (1.6). One of
the by-products of our results is that Mn grows as an under the assumption
(1.6). One of the grows as an even under long-range dependence. We would
like to exploit this fact.
Specifically, the statistic we would like to concentrate on is

Wn�θ� =
Rn�θ�
Mn

�(2.6)

It is the self-normalized nature of the statistic Wn�θ� that makes it attrac-
tive. It turns out that under the assumption (1.6), that is, in the short-range
dependence case, the ratioWn�θ� has a weak limit; we have, basically already
alluded to it. This will not be the case when the assumption (1.6) fails (the
long-range dependence case); in this case, Rn�θ� grows at a faster rate than
Mn, which is the subject of a subsequent paper.
The natural approach to proving weak convergence of Wn�θ� is via weak

convergence of the sequence of random vectors in �2:

Vn�θ� = a−1n
(
Rn�θ��Mn

)
� n ≥ 1�(2.7)

and the continuous mapping theorem. Hence the formulation of our main
result that we present now.

Theorem 2.1. Let µ = 0 and θ > 0. Assume (1.6). For any x > 0 and y > 0,

P�a−1n Rn�θ� ≤ x� a−1n Mn ≤ y�
→ exp�−pmax�M+�ϕ�αθ−αx−α� m+�ϕ�αy−α�
−qmax�M−�ϕ�αθ−αx−α� m−�ϕ�αy−α���

(2.8)
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where p and q are the tail weights in (1.3),

M+�ϕ� = max
{

sup
−∞<k<∞

(
k∑

j=−∞
ϕj

)
+
� sup
−∞<k<∞

( ∞∑
j=k

ϕj

)
+

}
�

M−�ϕ� = max
{

sup
−∞<k<∞

(
k∑

j=−∞
ϕj

)
−
� sup
−∞<k<∞

( ∞∑
j=k

ϕj

)
−

}
�

m+�ϕ� = sup
−∞<k<∞

�ϕk�+

and

m−�ϕ� = sup
−∞<k<∞

�ϕk�−�

Remark 2.2. It is clear that for a general mean µ and any θ > µ, the
statement of Theorem 2.1 remains valid if one replaces θ by θ − µ in the
right-hand side of (2.8).

Remark 2.3. Observe that if the coefficients ϕj are all nonnegative, then

M+�ϕ� =
∞∑

j=−∞
ϕj� M−�ϕ� = 0�

and similarly with nonpositive coefficients.

Remark 2.4. A well-known form of representing the distribution function
of a random vector, say, �X�Y�, with a general bivariate extreme value distri-
bution (with the so-called (α marginals) is

P�X ≤ x�Y ≤ y� = exp
{
−
∫
B+2
max

(
sα1
xα
�
sα2
yα

)
m�ds1� ds2�

}
�(2.9)

where m is a finite measure on B+2 = ��s1� s2�� s1 ≥ 0� s2 ≥ 0� s21 + s22 = 1� (the
so-called spectral measure). See, for example, Resnick (1987). In other words,
Theorem 2.1 says that the vectorVn�θ� in (2.7) converges weakly, as n→∞, to
a bivariate extreme value distribution (2.9) with a two-point spectral measure
m that puts the weight

p

((
M+�ϕ�

θ

)2
+ �m+�ϕ��2

)α/2
(2.10)

at the point(
M+�ϕ�/θ

��M+�ϕ�/θ�2 + �m+�ϕ��2�1/2
�

m+�ϕ�
��M+�ϕ�/θ�2 + �m+�ϕ��2�1/2

)
(2.11)

and the weight

q

((
M−�ϕ�

θ

)2
+ (m−�ϕ�)2)α/2(2.12)
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at the point(
M−�ϕ�/θ

��M−�ϕ�/θ�2 + �m−�ϕ��2�1/2
�

m−�ϕ�
��M−�ϕ�/θ�2 + �m−�ϕ��2�1/2

)
�(2.13)

For example, if q = 0 or if the coefficients ϕj are all nonnegative, then
the spectral measure m of the limiting distribution of Vn�θ� is a point mass
given by (2.10) and (2.11). As a matter of fact, an inspection of the proof of
Theorem 2.1 shows that, in the case of nonnegative coefficients, one does not
need the full strength of the part of the assumption (1.3) that applies to the
left tail of the distribution of the noise, and a much weaker assumption will
suffice; for example, the left tail being bounded from above by a regularly
varying function with any exponent greater than 1.

Remark 2.5. Clearly, the story described in Theorem 2.1 breaks down at
the boundary α = 1. Indeed, once the boundary is crossed, that is, if α < 1,
then the mean µ is not defined. More importantly, the asymptotic behavior
of the statistic Wn�θ� will be very different in this case. Specifically, for any
real θ, Rn�θ� will grow like n (it is very likely that the sample mean of all n
observations exceeds θ), while the largest observationMn will still grow as a
regular varying function with exponent 1/α > 1. Hence,Wn�θ� will go to zero
in this case. In fact, once the tail exponent α gets close to 1, one is likely to
see in practice unusually low values of the statistic Wn�θ�, that are caused
not by short memory but, rather, by the proximity of the boundary α = 1.
The form of the limiting distribution described in Theorem 2.1 allows one

to compute easily the limiting distribution of the statistic Wn�θ� in (2.6). Let
us introduce first some notation. Denote

a+�θ� =
M+�ϕ�/θ
m+�ϕ�

� a−�θ� =
M−�ϕ�/θ
m−�ϕ�

�(2.14)

provided the denominators are not zero.

Corollary 2.6. Assume (1.6) and

pm+�ϕ� + qm−�ϕ� > 0�(2.15)

Then, as n→∞,

Wn�θ� ⇒W∞�θ��(2.16)

The limiting law of W∞�θ� is described as follows.

(i) Let 0 < p < 1� m+�ϕ� > 0 and m−�ϕ� > 0. If

a+�θ� > a−�θ�(2.17)
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in (2.14), then the limiting distribution in (2.16) is concentrated on the interval
�a−�θ�� a+�θ�� and

P�W∞�θ� = a−�θ�� =
1

1+ �p/q��M+�ϕ�/M−�ϕ��α
�

P�W∞�θ� = a+�θ�� =
1

1+ �q/p��m−�ϕ�/m+�ϕ��α
�

and on the interval �a−�θ�� a+�θ�� the law of W∞�θ� is absolutely continuous
with the density

fW∞�θ��w� =
�q/p��m−�ϕ�/�M+�ϕ�θ−1��ααwα−1

�1+ �q/p��m−�ϕ�/�M+�ϕ�θ−1��αwα�2 �

If, on the other hand,

a+�θ� < a−�θ��(2.18)

then the limiting distribution in (2.16) is concentrated on the interval �a+�θ�,
a−�θ�� and

P�W∞�θ� = a+�θ�� =
1

1+ �q/p��M−�ϕ�/M+�ϕ��α
�

P�W∞�θ� = a−�θ�� =
1

1+ �p/q��m+�ϕ�/m−�ϕ��α
�

and on the interval �a+�θ�� a−�θ�� the law of W∞�θ� is absolutely continuous
with the density

fW∞�θ��w� =
�p/q��M−�ϕ�θ−1/m+�ϕ��ααwα−1(
1+ �p/q��M−�ϕ�θ−1/m+�ϕ��αwα

)2 �
Finally, if

a+�θ� = a−�θ��(2.19)

then the limiting distribution in (2.16) is concentrated at the point a+�θ�.
(ii) Let p = 1 or m−�ϕ� = 0. Then the limiting distribution in (2.16) is

concentrated at the point a+�θ�.
(iii) Let m+�ϕ� = 0, 0 < p < 1, and m−�ϕ� > 0. Then the limiting distribu-

tion in (2.16) is concentrated at the point a−�θ�.

It is interesting to note that, while the distribution of W∞�θ� depends, in
general, on the tail index α, the support of that distribution does not depend
on α. Given, once again, the difficulty of measuring reliably the tail index
from the sample, this is a welcome fact that may prove handy in constructing
a statistical test for detecting long-range dependence.
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Example 2.7. Suppose that the underlying model has, actually, geometri-
cally decaying coefficients:

ϕj = ρ�j�� j = � � � �−1�0�1� � � � � −1 < ρ < 1� ρ �= 0�
It is elementary to check that, in this case,

M+�ϕ� =
1

1− ρ� m+�ϕ� = 1�

M−�ϕ� =
−ρ
1− ρ� m−�ϕ� = −ρ�

if −1 < ρ < 0 and

M+�ϕ� =
1+ ρ
1− ρ� m+�ϕ� = 1�

M−�ϕ� =m−�ϕ� = 0�
if 0 < ρ < 1. An immediate application of Corollary 2.6 tells us that

W∞�1� =

1/�1− ρ�� if− 1 < ρ < 0�

�1+ ρ�/�1− ρ�� if0 < ρ < 1�

 �= h�ρ�(2.20)

almost surely.
Here is a possible, though provocative, way of looking at the significance of

an observed value of the statisticWn�θ�. It is often suggested that long-range
dependence–like phenomena observed in data can be explained by using a
short-range dependent, for example, autoregressive, linear model, but with
the autoregressive polynomial having a root very close to the unit circle. In
our example here, this idea amounts to taking ρ close to ±1.
Imagine that “nature” selects, unknowingly to us, ρ uniformly between −1

and 1, and we get to observe a set of observations drawn from the resulting
model. If, for large n�Wn�θ� should be about equal to its limit,W∞�θ� = h�ρ�/θ
[with h�ρ� given in (2.20)], then an unusually large value ofWn�θ� has to result
from an extreme value of ρ. Recalling that ρ is chosen uniformly in �−1�1�,
we obtain the significance of an observed value w > 1/�2θ�:

φ�w�θ� =
{
1/�2wθ�� if 1/�2θ� < w ≤ 1/θ,
1/�wθ+ 1�� if w > 1/θ.(2.21)

Of course, this procedure is not a substitute for a standard statistical test,
and we will present such a test in a future publication. However, the above pro-
cedure does provide an indication of how difficult it is to describe the observed
long strange intervals by short-range dependent models.
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Both Theorem 2.6 and Corollary 2.6 are proved in the next section. We take
here the opportunity to point out that the idea underlying Theorem 2.1 is the
same one as that described in the discussion around (2.3) in a simpler case of
a one-dimensional convergence. Indeed, if one believes that the event whose
probability we compute in the right-hand side of (2.3) describes how one can
expect the event �Rn�θ� ≥m� to occur, then it is also believable that

P�a−1n Rn�θ� ≤ x� a−1n Mn ≤ y�

∼ P
(
for all j = � � � �−1�0�1� � � � �

(
i+k−j∑

d=i+1−j
ϕd

)
Zj ≤ kθ

for all xan ≤ k ≤ n and all i = 0� � � � � n− k�
and for all j = � � � �−1�0�1� � � � �Zjϕi−j ≤ yan

for all i = 1� � � � � n
)

�= PM�θ� x� y�n��

(2.22)

However, a fairly straightforward computation presented in Lemma 4.2 shows
that the latter probability converges, as n→∞, to the right-hand side of (2.8).
Therefore, what remains is to argue thatPM�θ� x� y�n� represents, indeed, the
most likely way the event whose probability we are computing in the left-hand
side of (2.8) happens. All that the proof in the next section does is to make
that intuitive argument rigorous.

3. Proofs of the main results. We start with the proof of Theorem 2.1,
and it takes most of this section. The section concludes with the proof of
Corollary 2.6.

Proof. We begin by introducing a notation that will simplify some of the
expressions below. For a j = � � � �−1�0�1� � � �, let

k+�j� = argsup
xan≤k≤n

1
k

sup
i=0�����n−k

( i+k−j∑
d=i+1−j

ϕd

)
+
�

k−�j� = argsup
xan≤k≤n

1
k

sup
i=0�����n−k

( i+k−j∑
d=i+1−j

ϕd

)
−
�

i+�j� = argsup
i=0�����n−k+�j�

(i+k+�j�−j∑
d=i+1−j

ϕd

)
+
�

i−�j� = argsup
i=0�����n−k−�j�

(i+k−�j�−j∑
d=i+1−j

ϕd

)
−
�

(3.1)

with the ties broken in, say, lexicographical order.
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We fix for a moment ε > 0, and bound the probability in the left-hand side
of (2.8) from above as follows (note that the first term in the right-hand side
represents the main term):

P�a−1n Rn�θ�≤x�a−1n Mn≤y�

≤P
(
for all j= ����−1�0�1�����

(
i+k−j∑

d=i+1−j
ϕd

)
Zj≤kθ�1+ε��

for all xan≤k≤n and all i=0�����n−k�
and for all j= ����−1�0�1����� Zjϕi−j≤yan�1+ε�

for all i=1�����n
)

+P
(
a−1n Rn�θ�≤x� and for some j= ����−1�0�1�����

(
i+k−j∑

d=i+1−j
ϕd

)
Zj

>kθ�1+ε� for some xan≤k≤n and some i=0�����n−k
)

+P�a−1n Mn≤y� and for some j= ����−1�0�1�����
Zjϕi−j>yan�1+ε� for some i=1�����n�

�=P�A1�+P�A2�+P�A3��

(3.2)

We immediately identify P�A1� as PM�θ�1 + ε�� x� y�1 + ε�� n� in (2.22) and,
hence, by Lemma 4.2,

lim
n→∞P�A1� = exp

{
−�1+ ε�−α

(
pmax�M+�ϕ�αθ−αx−α�m+�ϕ�αy−α�

− qmax�M−�ϕ�αθ−αx−α�m−�ϕ�αy−α�
)}
�

(3.3)

To estimate P�A2� in (3.2), let

T �= inf
{
j = � � � �−1�0�1� � � � �

( i+k−j∑
d=i+1−j

ϕd

)
Zj > kθ�1+ ε�

for some xan ≤ k ≤ n and some i = 0� � � � � n− k
}

= inf
{
j = � � � �−1�0�1� � � � �

(
i+�j�+k+�j�−j∑
d=i+�j�+1−j

ϕd

)
+
Zj > k+�j�θ�1+ ε�

or

(
i−�j�+k−�j�−j∑
d=i−�j�+1−j

ϕd

)
−
Zj < −k−�j�θ�1+ ε�

}
�
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and note that, by Corollary 4.3, T can take the value∞ but not −∞. We claim
that

lim
n→∞ supj0

P�A2�T = j0� = 0�(3.4)

which will obviously imply that

lim
n→∞P�A2� = 0�(3.5)

Observe that, for any j0 = � � � �−1�0�1� � � � �

P�A2�T = j0� = P

(
a−1n Rn�θ� ≤ x�

(
i+�j0�+k+�j0�−j0∑
d=i+�j0�+1−j0

ϕd

)
+
Zj0

> k+�j0�θ�1+ ε�
∣∣∣∣T = j0

)

+P
(
a−1n Rn�θ� ≤ x�

(
i−�j0�+k−�j0�−j0∑
d=i−�j0�+1−j0

ϕd

)
−
Zj0

< −k−�j0�θ�1+ ε�
∣∣∣∣T = j0

)
�= P1� j0�A2� +P2� j0�A2��

We will prove that

lim
n→∞ supj0

P1� j0�A2� = 0�(3.6)

Since the corresponding statement for P2� j0�A2� can be proved similarly, this
will be enough to establish (3.4).
Let i0 = i+�j0� and k0 = k+�j0�. Then

P1� j0�A2� ≤ P

( ∞∑
j=−∞

Zj

i0+k0−j∑
d=i0+1−j

ϕd ≤ k0θ�

(
i0+k0−j0∑
d=i0+1−j0

ϕd

)
+
Zj0

> k0θ�1+ ε�
∣∣∣∣T = j0

)

≤ P

( ∞∑
j=j0+1

Zj

i0+k0−j∑
d=i0+1−j

ϕd ≤ −εk0θ/2
)

(3.7)

+P
(

j0−1∑
j=−∞

Zj

i0+k0−j∑
d=i0+1−j

ϕd ≤ −εk0θ/2
∣∣∣∣T = j0

)
�= P11� j0�A2� +P12� j0�A2��
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For a K ≥ 1, we denote by
ϕ̃j = ϕj1��j� ≤K�� j = � � � �−1�0�1� � � � �(3.8)

the coefficients truncated at ±K, and write

P11� j0�A2� ≤ P

( ∞∑
j=j0+1

�Zj�
i0+k0−j∑
d=i0+1−j

�ϕd − ϕ̃d� > εk0θ/4

)

+P
( ∞∑
j=j0+1

Zj

i0+k0−j∑
d=i0+1−j

ϕ̃d ≤ −εk0θ/4
)

(3.9)

�= P111� j0�A2� +P112�j0�A2��
Clearly,

P111� j0�A2� ≤
(
εk0θ/4

)−1
E

( ∞∑
j=j0+1

�Zj�
(

i0+k0−j∑
d=i0+1−j

�ϕd − ϕ̃d�
))

≤ k0E�Z1�
( ∞∑
j=K+1

�ϕj� +
−K∑

j=−∞
�ϕj�

)(
εk0θ/4

)−1
�

and so

lim
K→∞

lim sup
n→∞

sup
j0

P111� j0�A2� = 0�(3.10)

Furthermore,

P112� j0�A2� = P
(
i0−j0+k0−1∑

d=−∞
ϕ̃d

(
d∑

j=d−k0+1
Zj

)
≤ −εk0θ/4

)

= P
(
min�K� i0−j0+k0−1�∑

d=−K
ϕd

(
d∑

j=d−k0+1
Zj

)
≤ −εk0θ/4

)

≤ 2KP
(
1
k0

k0∑
j=1

Zj ≤ −
εθ

8Kmax��ϕj��

)
�

and by the law of large numbers, we immediately have that

lim
n→∞ supj0

P112� j0�A2� = 0(3.11)

for every K ≥ 1. It follows from (3.9)–(3.11) that

lim
n→∞ supj0

P11� j0�A2� = 0�(3.12)

We treat the second term in the right-hand side of (3.7) similarly. Write

P12� j0�A2� = P
(

j0−1∑
j=−∞

Z̃j

i0+k0−j∑
d=i0+1−j

ϕd ≤ −εk0θ/2
)
�(3.13)
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where Z̃j� � � � �−1�0�1� � � � are independent, and each Z̃j has the law of Zj

conditioned on belonging to the interval

Sj =

− k−�j�θ�1+ ε�(∑i−�j�+k−�j�−j
d=i−�j�+1−j ϕd

)
−

�
k+�j�θ�1+ ε�(∑i+�j�+k+�j�−j
d=i+�j�+1−j ϕd

)
+

 �
and note that

Sj ⊃
[
−anxθ�1+ ε�∑∞

d=−∞ �ϕd�
�
anxθ�1+ ε�∑∞

d=−∞ �ϕd�
]
�= S�

which is a set that does not depend on j and increases, as n → ∞, to the
whole real line. With the truncated coefficients �ϕ̃j� as in (3.8), we have

P12� j0�A2� ≤ P

(
j0−1∑
j=−∞

�Z̃j�
i0+k0−j∑
d=i0+1−j

�ϕd − ϕ̃d� > εk0θ/4

)

+P
(

j0−1∑
j=−∞

Z̃j

i0+k0−j∑
d=i0+1−j

ϕ̃d ≤ −εk0θ/4
)

�= P121� j0�A2� +P122� j0�A2��

(3.14)

Since E�Z̃j� ≤ E�Z1� for all j, we conclude as above that

P121� j0�A2� ≤ k0E�Z1�
( ∞∑
j=K+1

�ϕj� +
−K∑

j=−∞
�ϕj�

)
�εk0θ/4�−1�

implying that

lim
K→∞

lim sup
n→∞

sup
j0

P121� j0�A2� = 0�(3.15)

Furthermore,

P122� j0�A2� = P
(

K∑
d=max�−K� i0−j0+2�

ϕd

(
d∑

j=d−k0+1
Z̃−j+i0+1

)
≤ −εk0θ/4

)

≤
K∑

d=−K
P

(
1
k0

d∑
j=d−k0+1

Z̃−j+i0+1 ≤ −
εθ

8Kmax��ϕj��

)
�

Note that (enlarging, if necessary, our probability space) we can construct a
copy of the original noise sequence �Z∗j� such that, for every j,

E�Z∗j − Z̃j� ≤ E
(�Z1�

)
max

(
�P�Zj > 0� −P�Z̃j > 0���

�P�Zj < 0� −P�Z̃j < 0��
)

+ ∣∣E��Z1�� −E��Z1��Z1 ∈ S�
∣∣ ≤ ρn
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for some ρn → 0 as n → ∞ that does not depend on j. Therefore, for every
d = −K� � � � �K,

P

(
1
k0

d∑
j=d−k0+1

Z̃−j+i0+1≤−
εθ

8Kmax��ϕj��

)

≤P
(
1
k0

k0∑
j=1

Zj≤−
εθ

16Kmax��ϕj��

)

+P
(
1
k0

d∑
j=d−k0+1

�Z̃−j+i0+1−Z∗−j+i0+1�>
εθ

16Kmax��ϕj��

)
�

The first probability in the right-hand side above goes to zero by the law of
large numbers, whereas the second probability is bounded from above by(

εθ

16Kmax��ϕj��

)−1
1
k0

d∑
j=d−k0+1

E�Z̃−j+i0+1 −Z∗−j+i0+1�

≤ ρn
(

εθ

16Kmax��ϕj��

)−1
�

Therefore,

lim
n→∞ supj0

P122� j0�A2� = 0(3.16)

for every K ≥ 1. It follows from (3.14)–(3.16) that

lim
n→∞ supj0

P12� j0�A2� = 0�(3.17)

and so (3.6) follows by (3.12) and (3.17) and, hence, (3.5) has been established
as well.
The proof of

lim
n→∞P�A3� = 0(3.18)

is similar to the proof of (3.5), but is quite a bit simpler, hence omitted.
It follows from (3.2), (3.3), (3.5) and (3.18) that

lim sup
n→∞

P
(
a−1n Rn�θ� ≤ x� a−1n Mn ≤ y

)
≤ exp

{
−�1+ ε�−α

(
pmax

(
M+�ϕ�αθ−αx−α�m+�ϕ�αy−α

)
− qmax

(
M−�ϕ�αθ−αx−α�m−�ϕ�αy−α

))}
�
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and, since ε can be taken as small as we wish, we conclude that

lim sup
n→∞

P
(
a−1n Rn�θ� ≤ x� a−1n Mn ≤ y

)
≤ exp

{
−
(
pmax

(
M+�ϕ�αθ−αx−α�m+�ϕ�αy−α

)
−qmax(M−�ϕ�αθ−αx−α�m−�ϕ�αy−α))}�

(3.19)

We now proceed to establish a matching lower bound. Fix ε ∈ �0�1��N >
max�1� x� and δ > 0 and write

P
(
a−1n Rn�θ� ≤ x� a−1n Mn ≤ y

)
≥ P

({
a−1n Rn�θ� ≤ x� a−1n Mn ≤ y

}⋂
B1
⋂
B2

)
�

(3.20)

where

B1 =
{
for all j = � � � �−1�0�1� � � � �

(
i+k−j∑

d=i+1−j
ϕd

)
Zj ≤ kθ�1− ε�

for all xan ≤ k ≤ n and all i = 0� � � � � n− k�
and for all j = � � � �−1�0�1� � � � � Zjϕi−j ≤ yan�1− ε�

for all i = 1� � � � � n
}

and

B2 =
{
for each xan ≤ k < Nan and each i = 0� � � � � n− k�(

i+k−j∑
d=i+1−j

ϕd

)
Zj > δan for at most one j = � � � �−1�0�1� � � � �

and for each i = 1� � � � � n� Zjϕi−j > δan

for at most one j = � � � �−1�0�1� � � �
}
�

Therefore,

P�a−1n Rn�θ� ≤ x� a−1n Mn ≤ y�

≥ P�B1� −P�Bc
2� −P

({
a−1n Rn�θ� > x

}⋂
B1
⋂
B2

)
(3.21)

−P
({
a−1n Mn > y

}⋂
B1
⋂
B2

)
�
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We identify P�B1� as PM�θ�1 − ε�� x� y�1 − ε�� n� in (2.22), and so another
appeal to Lemma 4.2 gives us

lim
n→∞P�B1� = exp

{
−�1− ε�−α

(
pmax

(
M+�ϕ�αθ−αx−α�m+�ϕ�αy−α

)
− qmax

(
M−�ϕ�αθ−αx−α�m−�ϕ�αy−α

))}
�

(3.22)

Furthermore, an application of Lemma 4.4 shows that

lim
n→∞P

(
Bc
2

) = 0�(3.23)

Next, write

P

({
a−1n Rn�θ� > x

}⋂
B1
⋂
B2

)
≤ P�a−1n Rn�θ� ≥N� +P

({
x < a−1n Rn�θ� < N

}⋂
B1
⋂
B2

)
�

(3.24)

It follows from Lemma 4.8 that

lim
N→∞

lim sup
n→∞

P�a−1n Rn�θ� ≥N� = 0(3.25)

and, further,

P

({
x < a−1n Rn�θ� < N

}⋂
B1
⋂
B2

)

≤
�Nan�∑

k=�xan�+1

n−k∑
i=0

P

({ ∞∑
j=−∞

(
i+k−j∑

d=i+1−j
ϕd

)
Zj > kθ

}⋂
B1
⋂
B2

)

≤ n
�Nan�∑

k=�xan�+1
pk�

(3.26)

where

pk = P
( ∞∑
j=−∞

(
i+k∑

d=j+1
ϕd

)
Zj > kθ�

(
j+k∑

d=j+1
ϕd

)
Zj ≤ kθ�1− ε�

for all j = � � � �−1�0�1� � � � �

and for at most one j�

(
j+k∑

d=j+1
ϕd

)
Zj > kδ/x

)
�
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We proceed similarly to the argument in the proof of (3.5). Let

T �= inf
{
j = � � � �−1�0�1� � � � �

(
j+k∑

d=j+1
ϕd

)
Zj > kδ/x

}
�

and note that, by Corollary 4.3, T can take the value ∞ but not −∞. We
conclude that

pk ≤ P
( ∞∑
j=−∞

(
i+k∑

d=j+1
ϕd

)
Zj > kθ�

(
j+k∑

d=j+1
ϕd

)
Zj ≤ kδ/x

for all j = � � � �−1�0�1� � � � �
)

+
∞∑

i=−∞
P�T = i�P

(∑
j �=i

(
i+k∑

d=j+1
ϕd

)
Zj > kθε�

(
j+k∑

d=j+1
ϕd

)
Zj ≤ kδ/x

for all j �= i
∣∣∣∣∣
(

j+k∑
d=j+1

ϕd

)
Zj ≤ kδ/x for all j < i

)
�

(3.27)

Note that, by Lemma 4.6, the first probability in the right-hand side of (3.27)
is bounded from above by a constant times k−�2+α� as long as δ is chosen small
enough comparatively to θx. Furthermore, it follows from (4.2) and (4.3) that,
for every i, the second factor under the sum in the right-hand side of (3.27) is

P
(∑

j �=i
(∑i+k

d=j+1 ϕd
)
Zj > kθε�

(∑j+k
d=j+1 ϕd

)
Zj ≤ kδ/x for all j �= i

)
P
((∑j+k

d=j+1 ϕd
)
Zj ≤ kδ/x for all j < i

)
≤ CP

(∑
j �=i

(
i+k∑

d=j+1
ϕd

)
Zj > kθε�

(
j+k∑

d=j+1
ϕd

)
Zj ≤ kδ/x for all j �= i

)

for some positive constant C that may depend on δ� x and N but not on i or
k in its range. Denoting by r > 0 the smaller of P�Z1 ≥ 0� and P�Z1 ≤ 0�
and using the reflection principle, we see that, for all k large enough (indeed,
n large enough assures that k is large enough, independently of i), the latter
expression is further bounded from above by

C�2/r�P
( ∞∑
j=−∞

(
i+k∑

d=j+1
ϕd

)
Zj > kθε�

(
j+k∑

d=j+1
ϕd

)
Zj ≤ kδ/x

for all j = � � � �−1�0�1� � � �
)
�
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and by Lemma 4.6 the latter expression is bounded from above by a constant
times k−�2+α� as long as δ is chosen small enough compared to θεx. We conclude
that

pk ≤ Ck−�2+α� for all xan < k ≤Nan�

for some constant C > 0, and we conclude by (3.26) that, for every N >
max�1� x�, ε ∈ �0�1� and δ > 0 small enough (again compared to θεx), we
have

lim
n→∞P

(
�x < a−1n Rn�θ� < N�⋂B1

⋂
B2

)
= 0�(3.28)

It remains to treat the last term in the right-hand side of (3.21). We have

P
(
�a−1n Mn > y�⋂B1

⋂
B2

)
≤

n∑
i=1

P

( ∞∑
j=−∞

ϕi−jZj > yan�ϕi−jZj ≤ �1− ε�yan for all j

and ϕi−jZj ≤ δan for all j except, perhaps, one j
)

�=
n∑
i=1

qi�

(3.29)

Proceeding as above, we define

T �= inf�j = � � � �−1�0�1� � � � � ϕi−jZj > δan��

note that, once again, T can take the value ∞ but not −∞, and write

qi ≤ P
( ∞∑
j=−∞

ϕi−jZj > yan and ϕi−jZj ≤ δan for all j
)

+
∞∑

i=−∞
P�T = i�P

(∑
j �=i

ϕi−jZj > εyan and ϕi−jZj ≤ δan for all j �= i
)
�

Repeating the argument used to prove (3.28) and appealing to Lemma 4.7, we
see that qi ≤ Cn−2 for some C > 0 that does not depend on i = 1� � � � � n as
long as δ is small enough in comparison with εy. Therefore, it follows from
(3.29) that, for all such δ and ε,

lim
n→∞P

(
�a−1n Mn > y�⋂B1

⋂
B2

)
= 0�(3.30)
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We conclude by (3.20), (3.22), (3.23), (3.25), (3.28) and (3.30) that

lim inf
n→∞ P

(
a−1n Rn�θ� ≤ x� a−1n Mn ≤ y

)
≥ exp

{
−�1− ε�−α

(
pmax�M+�ϕ�αθ−αx−α� m+�ϕ�αy−α�

− qmax�M−�ϕ�αθ−αx−α� m−�ϕ�αy−α�
)}
�

and, since ε can be taken arbitrarily close to zero, this establishes the required
lower bound matching (3.19). Hence, the proof of the theorem is now
complete. ✷

The section concludes with the proof of Corollary 2.6.

Proof. Since we are assuming that not all the coefficients �ϕj� are equal
to zero, the limiting distribution in Theorem 2.1 is a bivariate extreme value
distribution (2.9) whose coordinates are strictly positive with probability 1,
and whose spectral measure is a two-point measure given by (2.10)–(2.13).
Therefore, by the continuous mapping theorem, Wn�θ� converges weakly to
the ratio of the coordinates of the limiting bivariate extreme value distribu-
tion from Theorem 2.1. The form of the distribution of the latter ratio of the
coordinates follows from Lemma 4.9. ✷

4. Lemmas. We start with a simple lemma dealing with certain tail
probabilities.

Lemma 4.1. LetZ be a random variable. Let b+�j�n�� j = � � � �−1�0�1� � � � �
n = 1�2� � � � � and b−�j�n�� j = � � � �−1�0�1� � � � � n = 1�2� � � � � be two arrays of
nonnegative numbers such that

lim
n→∞ infj

b+�j�n� = ∞� lim
n→∞ infj

b−�j�n� = ∞�

lim
n→∞

∞∑
j=−∞

P�Z > b+�j�n�� = B+

and

lim
n→∞

∞∑
j=−∞

P�Z < −b−�j�n�� = B−�

Then

lim
n→∞

∞∏
j=−∞

P�−b−�j�n� ≤ Z ≤ b+�j�n�� = exp�−�B+ +B−���
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Proof. Since
∞∏

j=−∞
P�−b−�j�n� ≤ Z ≤ b+�j�n��

=
∞∏

j=−∞
�1−P�Z > b+�j�n�� −P�Z < −b−�j�n����

the claim of the lemma follows from the fact that log�1− x� ∼ x as x→ 0. ✷

Our next lemma describes the behavior of the probability PM�x�y�n� of
the main event responsible for long strange intervals and high maxima given
in the right-hand side of (2.22).

Lemma 4.2. Assume (1.6). Then for every x > 0 and y > 0,

lim
n→∞ PM�θ� x� y�n� = exp�−p max�M+�ϕ�αθ−αx−α� m+�ϕ�αy−α�

−qmax�M−�ϕ�αθ−αx−α� m−�ϕ�αy−α���

Proof. We start by rewriting PM�θ� x� y�n� in a form similar to (2.4):

PM�θ� x� y�n� =
∞∏

j=−∞
P

(
−min

(
θ

(
sup

xan≤k≤n

1
k

sup
i=0�����n−k

( i+k−j∑
d=i+1−j

ϕd

)
−

)−1
�

yan

(
sup

i=1�����n
�ϕi−j�−

)−1)
≤ Z1

≤ min
(
θ

(
sup

xan≤k≤n

1
k

sup
i=0�����n−k

( i+k−j∑
d=i+1−j

ϕd

)
+

)−1
�(4.1)

yan

(
sup

i=1�����n
�ϕi−j�+

)−1))

:=
∞∏

j=−∞
P�−b−�j�n� ≤ Z1 ≤ b+�j�n���

It follows immediately from Lemma 4.1 and (1.6) that the claim of the lemma
will follow once we check that

lim
n→∞

∞∑
j=−∞

P�Z1 > b+�j�n�� = pmax�M+�ϕ�αθ−αx−α� m+�ϕ�αy−α�(4.2)

and

lim
n→∞

∞∑
j=−∞

P�Z1 < −b−�j�n�� = qmax�M−�ϕ�αθ−αx−α� m−�ϕ�αy−α��(4.3)
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Since the two statements are, obviously, of the same nature, we will only
check (4.2).
Recalling the definition (2.5) of an, it follows from Potter’s bounds [see, e.g.,

Resnick (1987), Proposition 0.8] and (1.6) that (4.2) will follows once we show
that, for all β in some neighborhood �α− ε� α+ ε�, we have

lim
n→∞

1
n

∞∑
j=−∞

(
b+�j�n�
an

)−β
= max�M+�ϕ�βθ−βx−β� m+�ϕ�βy−β��(4.4)

which is what we now proceed to do. Obviously, we may assume that β > 1.
The first step is the following statement:

lim
M→∞

lim sup
n→∞

1
n

−M∑
j=−∞

(
b+�j�n�
an

)−β
= 0�(4.5)

To this end, it is enough to prove two things:

lim
M→∞

lim sup
n→∞

1
n

−M∑
j=−∞

(
an

(
sup

xan≤k≤n

1
k

sup
i=0�����n−k

( i+k−j∑
d=i+1−j

ϕd

)
+

))β
= 0(4.6)

and

lim
M→∞

lim sup
n→∞

1
n

−M∑
j=−∞

(
sup

i=1�����n
�ϕi−j�+

)β
= 0�(4.7)

For everyM and any n ≥ 1,
1
n

−M∑
j=−∞

(
an

(
sup

xan≤k≤n

1
k

sup
i=0�����n−k

( i+k−j∑
d=i+1−j

ϕd

)
+

))β

≤ x−β 1
n

−M∑
j=−∞

( n−j∑
d=1−j

�ϕd�
)β

≤ x−β
( ∞∑
j=M+1

�ϕj�
)β−1 1

n

−M∑
j=−∞

n−j∑
d=1−j

�ϕd�

≤ x−β
( ∞∑
d=M+1

�ϕd�
)β
�

and so (4.6) follows, and (4.7) is similar, but easier. Therefore, we have estab-
lished (4.5).
The next step is the statement

lim
M→∞

lim sup
n→∞

1
n

∞∑
j=M+n

(
b+�j�n�
an

)−β
= 0�(4.8)

whose proof is entirely similar to that of (4.5) and, hence, we do not repeat
the argument.
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Next we check that, for allM1,M2,

lim sup
n→∞

1
n

M2+n∑
j=M1

(
b+�j�n�
an

)−β
≤ max (M+�ϕ�βθ−βx−β� m+�ϕ�βy−β)�(4.9)

Observe that

lim sup
k→∞

sup
−∞<i<∞

( i+k∑
d=i+1

ϕd

)
+
≤M+�ϕ��(4.10)

Indeed,

lim
k→∞

inf
−∞<i<∞

max�i+ k�−�i+ 1�� = ∞

and, for every δ > 0, there is anM�δ� such that

sup
i1<i2� i2>M�δ�

( i+k∑
d=i+1

ϕd

)
+
≤ δ+ sup

−∞<k<∞

( ∞∑
j=k

ϕj

)
+

and

sup
i1<i2� i2<−M�δ�

( i+k∑
d=i+1

ϕd

)
+
≤ δ+ sup

−∞<k<∞

( k∑
j=−∞

ϕj

)
+
�

Therefore,

lim sup
k→∞

sup
−∞<i<∞

( i+k∑
d=i+1

ϕd

)
+
≤ δ+M+�ϕ��

and, since δ > 0 is arbitrary, (4.10) follows. As a matter of fact, it is easy to
check that the complete limit in the left-hand side of (4.10) exists and is equal
to its right-hand side, but we will not use this fact. We immediately conclude
from (4.10) that, given a δ > 0 for all n large enough,

1
n

M2+n∑
j=M1

(
b+�j�n�
an

)−β

≤ M2 −M1 + 1+ n
n

max
(�δ+M+�ϕ��βθ−βx−β� m+�ϕ�βy−β)�

and (4.9) follows by letting first n→ 0 and then δ→∞. It is now clear from
(4.5), (4.8) and (4.9) that

lim sup
n→∞

1
n

∞∑
j=−∞

(
b+�j�n�
an

)−β
≤ max(M+�ϕ�βθ−βx−β� m+�ϕ�βy−β)�(4.11)

We now get a matching lower bound. It is, obviously, enough to prove that

lim inf
n→∞

1
n

∞∑
j=−∞

(
b+�j�n�
an

)−β
≥M+�ϕ�βθ−βx−β(4.12)
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and

lim inf
n→∞

1
n

∞∑
j=−∞

(
b+�j�n�
an

)−β
≥m+�ϕ�βy−β�(4.13)

Let us start with (4.12). We need to prove that, for every −∞ < k <∞,

lim inf
n→∞

1
n

∞∑
j=−∞

(
b+�j�n�
an

)−β
≥
( k∑
j=−∞

ϕj

)β
+
θ−βx−β(4.14)

and

lim inf
n→∞

1
n

∞∑
j=−∞

(
b+�j�n�
an

)−β
≥
( ∞∑
j=k

ϕj

)β
+
θ−βx−β�(4.15)

For (4.14), if �∑k
j=−∞ ϕj�+ = 0, then there is nothing to prove, so we will

assume that �∑k
j=−∞ ϕj�+ > 0.

Given an ε > 0 small enough, choose a J�ε� such that, for all i ≥ J�ε�,
k∑

j=−i
ϕj ≥ �1− ε�

( k∑
j=−∞

ϕj

)
+
�

We have

1
n

∞∑
j=−∞

(
b+�j�n�
an

)−β
≥ �1− o�1��θ−βx−β

× 1
n

∞∑
j=−∞

(
sup

i=0�����n−�xan�

(i+�xan�−j∑
d=i+1−j

ϕd

)
+

)β
≥ �1− o�1��θ−βx−β

× 1
n

−k+n∑
j=−k+�xan�

(
sup

i=0�����n−�xan�

(i+�xan�−j∑
d=i+1−j

ϕd

)
+

)β
≥ �1− o�1��θ−βx−β

× 1
n

−k+n∑
j=−k+�xan�

( k∑
d=k+1−�xan�

ϕd

)β
+ �

(4.16)

Here, as usual, �a� is the smallest integer greater than or equal to a. Now, for
all n so large that

k+ 1− �xan� ≤ −J�ε��
the latter expression is at least

�1− o�1��θ−βx−βn− �xan� + 1
n

�1− ε�
( k∑
j=−∞

ϕj

)β
+
�
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and letting first n→∞ and then ε→ 0, we obtain (4.14).
For (4.15), the argument is similar. If �∑∞j=k ϕj�+ = 0, then there is nothing

to prove, so we will assume that �∑∞j=k ϕj�+ > 0. Given and ε > 0 small
enough, choose a J�ε� such that, for all i ≥ J�ε�,

i∑
j=k

ϕj ≥ �1− ε�
( ∞∑
j=k

ϕj

)
+
�

We have, continuing after the first line in (4.16),

1
n

∞∑
j=−∞

(
b+�j�n�
an

)−β
≥ �1− o�1��θ−βx−β

× 1
n

−k+1+n−�xan�∑
j=−k+1

(
sup

i=0�����n−�xan�

(i+�xan�−j∑
d=i+1−j

ϕd

)
+

)β
≥ �1− o�1��θ−βx−β

× 1
n

−k+1+n−�xan�∑
j=−k+1

(k−1+�xan�∑
d=k

ϕd

)β
+
�

Once again, for all n so large that

k− 1+ �xan� ≥ J�ε��
the latter expression is at least

�1− o�1��θ−βx−βn− �xan� + 1
n

�1− ε�
( ∞∑
j=k

ϕj

)
+
�

and (4.15) follows by letting first n→∞ and then ε→ 0.
This proves (4.12). Since the proof of (4.13) is similar, but easier, we

omit it. ✷

The following is an immediate conclusion of the preceding lemma.

Corollary 4.3. Assume (1.6). Then, for every x > 0 and y > 0,

P

((
i+�j�+k+�j�−j∑
d=i+�j�+1−j

ϕd

)
+
Zj > k+�j�θ

or

(
i−�j�+k−�j�−j∑
d=i−�j�+1−j

ϕd

)
−
Zj < −k−�j�θ

for infinitely many j = � � � �−1�0�1� � � �
)
= 0�

(4.17)

at least for all n large enough, where k+�j�, k−�j�, i+�j� and i−�j� are defined
in (3.1).
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Proof. By the Kolmogorov 0–1 law, the probability in the right-hand side
of (4.17) is equal to 0 or 1. However, by Lemma 4.2, this probability is strictly
less than 1, at least for large n. Hence the conclusion. ✷

The next lemma makes precise in the present general framework the intu-
ition about separation of large values of the noise discussed following (2.3).

Lemma 4.4. Assume (1.6). For all M ≥ 1 and δ > 0,

lim
n→∞ P

(
for some k = 1� � � � � �Man� and some i = 0� � � � � n− k�
( i+k−j∑
d=i+1−j

ϕd

)
Zj > δan for at least two different(4.18)

j = � � � �−1�0�1� � � �
)
= 0

and

lim
n→∞ P

(
for some i = 1� � � � � n� Zjϕi−j > δan

for at least two different j = � � � �−1�0�1� � � �
)
= 0�

(4.19)

Proof. As usual, the proofs of (4.18) and (4.19) are similar, and the proof
of the latter is quite a bit easier than that of the former. Nonetheless, for
a demonstration, we will give an argument for both. We will start with an
easier statement. Observe that the probability in the left-hand side of (4.19)
is bounded from above by

n∑
i=1

∞∑
j1=−∞

∞∑
j2=−∞

P

(
�Z1� >

δan
�ϕi−j1 �

)
P

(
�Z1� >

δan
�ϕi−j2 �

)
�

Choose an ε ∈ �0� α − 1� and use Potter’s bounds once again to conclude that
the latter quantity is further bounded from above by

C�ε� 1
n2

n∑
i=1

∞∑
j1=−∞

∞∑
j2=−∞

�ϕi−j1 �α−ε�ϕi−j2 �α−ε =
C�ε�
n

( ∞∑
j=−∞

�ϕj�α−ε
)2
→ 0

as n→∞. Here C�ε� is a finite positive constant. This proves (4.19).
For (4.18), we first truncate the range of the coefficients �ϕj�, and for a

K ≥ 1, define �ϕ̃j� as in (3.9). The probability in the left-hand side of (4.18) is
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bounded from above by

P

(
for some k=1������Man� and some i=0�����n−k�( i+k−j∑

d=i+1−j
ϕ̃d

)
Zj>δan/2 for at least

two different j= ����−1�0�1����
)

+P
(
for some k=1������Man�� some i=0�����n−k

and some j= ����−1�0�1�����
( i+k−j∑
d=i+1−j

�ϕd−ϕ̃d�
)
Zj>δan/2

)
�

(4.20)

The first probability in (4.20) is bounded from above by

∞∑
j1=−∞

∞∑
j1=−∞

P

(( i+k−j1∑
d=i+1−j1

ϕ̃d

)
Z1 > δan/2�

( i+k−j2∑
d=i+1−j2

ϕ̃d

)
Z2 > δan/2 for some(4.21)

k = 1� � � � � �Man� and some i = 0� � � � � n− k
)
�

Now, in order for the probability under the sum in (4.21) to be different from
zero, one must have i+ 1− j1 ≤ K for some i = 0� � � � � n− 1, which requires
j1 ≥ −K. Similarly, one must have i + �Man� − j1 ≥ −K for some i = 0� � � �,
n− 1, which requires j1 ≤ n+Man +K. The same argument shows that we
must have −K ≤ j2 ≤ n+Man+K. Moreover, since for some i = 0� � � � � n−1,
we must have both i + 1 − j1 ≤ K and i + �Man� − j2 ≥ −K, it follows that
j1 − j2 ≤ 2K+Man and, since the roles of j1 and j2 are interchangeable, we
have �j1 − j2� ≤ 2K+Man.
The above discussion shows that the expression in (4.21) is bounded from

above by

n+�Man�+K∑
j1=−K

n+�Man�+K∑
j2=−K

1��j1−j2�≤2K+Man�
(
P

(( ∞∑
j=−∞

�ϕj�
)
�Z1�>δan/2

))2

≤ C

n2

n+�Man�+K∑
j1=−K

n+�Man�+K∑
j2=−K

1��j1−j2�≤2K+Man�

≤ C

n2
�n+2K+Man��2K+Man�→0�
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as n→∞ because an = o�n�. Here C is a finite positive constant that changes
from place to place. Therefore, to complete the proof of the lemma, we only
need to show that the upper limit of the second probability in (4.20) can be
made arbitrarily small by choosing K large enough. However, choosing an
ε ∈ �0� α−1� and using Potter’s bounds, the latter probability can be bounded
from above by

∞∑
j=−∞

P

(
sup

k=1������Man�
sup

i=0�����n−k

i+k−j∑
d=i+1−j

�ϕd − ϕ̃d��Z1� > δan/2
)

≤ C�ε�
n

∞∑
j=−∞

(
sup

k=1������Man�
sup

i=0�����n−k

i+k−j∑
d=i+1−j

�ϕd − ϕ̃d�
)α−ε

�

(4.22)

Now, for every j, we have

sup
k=1������Man�

sup
i=0�����n−k

i+k−j∑
d=i+1−j

�ϕd − ϕ̃d� ≤
∞∑

d=−∞
�ϕd − ϕ̃d� =

∑
�d�>K

�ϕd��

and the same argument as above shows that the terms in the sum in the
right-hand side of (4.22) are equal to zero for j not in the interval �1−K�n+
�Man� +K�. Therefore, the expression in the right-hand side of (4.22) can be
bounded from above by

C�ε�n+ �Man� + 2K
n

∑
�d�>K

�ϕd� → C�ε� ∑
�d�>K

�ϕd�

as n→∞, and the latter expression can be made arbitrarily small by choosing
K large enough. This completes the proof of the lemma. ✷

Our next lemma provides bounds on the Laplace transform of certain ran-
dom variables. The result is probably already known, but we were unable to
find an appropriate reference.

Lemma 4.5. Let X be a zero mean random variable such that, for some
B ∈ �, C > 0 and α > 1, X ≥ B a.s. and, for every x > 0,

P�X > x� ≤ CX−α�
Then there is D > 0 that depends only on B�C and α such that, for all 0 <
γ ≤ 1,

Ee−γX ≤ eDγα if 1 < α < 2�(4.23)

Ee−γX ≤ eDγ2 if α > 2(4.24)

and

Ee−γX ≤ eDγ2 log�e+1/γ� if α = 2�(4.25)
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Proof. The proof is standard. Let F denote the law of X. We have

Ee−γX = 1+
∫ ∞
B
�e−γx − 1+ γx�F�dx�

= 1+
∫ 1/γ
B
� � +

∫ ∞
1/γ
� �� 1+ I1�γ� + I2�γ��

Now,

�e−x − 1+ x� ≤ cx2 for all x ≥ B�

where c is positive constant that depends only on B (and in the sequel such a
constant will be allowed to change). Therefore, for all 0 < γ ≤ 1,

�I1�γ�� ≤ cγ2
(
1+

∫ 1/γ
0

xP�X > x�dx
)
�

Let, say, 1 < α < 2. We immediately conclude that, for all γ ≤ 1,
�I1�γ�� ≤ cγα�

where this time c is a positive constant that may depend on B�C and α. Since,
for all x > 0, �e−x − 1� ≤ x, we conclude that, for all γ ≤ 1,

�I2�γ�� ≤ 2γ
∫ ∞
1/γ

xF�dx� ≤ cγα

if 1 < α < 2. Therefore,

Ee−γX ≤ 1+Dγα ≤ eDγα

for all γ ≤ 1.
The case α ≥ 2 is similar. ✷

The next lemma shows that it is very unlikely to have a long strange inter-
val without a significant contribution from a single noise variable. Note that
its conclusion does not require the full strength of the assumption (1.6).

Lemma 4.6. Assume that the coefficients �ϕj� satisfy the assumption

∞∑
j=−∞

�ϕj�α
′
<∞(4.26)

for some α′ < min�2� α�. Then, for very θ > 0 and ε > 0,

lim
k→∞

kp sup
−∞<i<∞

P

(
Xi+1 + · · · +Xi+k ≥ kθ�( i+k−j∑

d=i+1−j
ϕd

)
Zj ≤ εkθ for all j = � � � �−1�0�1 � � �

)
= 0�

(4.27)
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for every

p <
1
2ε

(
min�2� α�

α′
− 1

)
�(4.28)

Proof. Denote

bi� k =
i+k∑

d=i+1
ϕd

and observe that, for every i,

P

(
Xi+1 + · · · +Xi+k ≥ kθ� bi−j� kZj ≤ εkθ for all j = � � � �−1�0�1� � � �

)
= P

( ∞∑
j=−∞

bi−j� kZj ≥ kθ� bi−j� kZj ≤ εkθ for all j = � � � �−1�0�1� � � �
)

≤ P
( ∑
j∈J+

bi−j� kZj ≥ kθ/2� bi−j� kZj ≤ εkθ for all j ∈ J+
)

+P
( ∑
j∈J−

bi−j� kZj ≥ kθ/2� bi−j� kZj ≤ εkθ for all j ∈ J−
)

�= P+�i� k� +P−�i� k��
where J+ is the collection of j for which bi−j� k > 0, and J− is the collection
of j for which bi−j� k < 0. We will prove that

lim
k→∞

kp sup
−∞<i<∞

P+�i� k� = 0(4.29)

for every p as in (4.28). Since the corresponding statement for P−�i� k� can
be proved in a similar manner, the result of the lemma will then follow.
Fix for a moment δ ∈ �0�1� and write

P+�i� k� ≤ P

( ∑
j∈J+
�−bi−j� k�Zj�−1�bi−j� kZj ≤ εkθ�

+ bi−j� kE��Zj�−1�bi−j� kZj ≤ εkθ�� ≥ kδθ/2
)

+P
( ∑
j∈J+

(
bi−j� k�Zj�+1�bi−j� kZj ≤ εkθ�

− bi−j� kE��Zj�+1�bi−j� kZj ≤ εkθ��
)
≥ k�1− δ�θ/2

)
�= P1�+�i� k� +P2�+�i� k��

(4.30)
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Now, for any γ > 0, by Markov’s inequality,

P1�+�i� k� = P
( ∑
j∈J+

(−bi−j� k�Zj�− + bi−j� kE
(�Zj�−

)) ≥ kδθ/2)

≤ exp
{
−γkδθ

2

} ∏
j∈J+

E exp
(
γbi−j� k�E�Z1�− − �Z1�−�

)
�

(4.31)

Observe that, for every i and k,

�bi� k� ≤ k1−1/α
′
( i+k∑
d=i+1

�ϕd�α
′
)1/α′

≤ k1−1/α′
( ∞∑
d=−∞

�ϕd�α
′
)1/α′

�

(4.32)

Suppose, for example, that α ≤ 2. Take β ∈ �α′� α�, and select γ = k−h with
β/�β− 1�
α′/�α′ − 1� < h < 1�

Note that then h > 1−1/α′, and so we may apply Lemma 4.5 to conclude that,
for all k large enough, all j ∈ J+, and all i,

E exp
(
γbi−j� k�E�Z1�− − �Z1�−�

) ≤ exp�Cγβ�bi−j� k�β�
for some absolute constant C > 0, that may, in the sequel, change. We conclude
by (4.31) that

P1�+�i� k� ≤ exp
{
−γkδθ

2
+Cγβ ∑

j∈J+
�bi−j� k�β

}
�

Now, by (4.32),

∑
j∈J+
�bi−j� k�β ≤ kβ�1−1/α

′�
∞∑

j=−∞

( i+k−j∑
d=i+1−j

�ϕd�α
′
)β/α′

≤ Ckβ�1−1/α′�
∞∑

j=−∞

( i+k−j∑
d=i+1−j

�ϕd�α
′
)

(4.33)

= Ck1+β�1−1/α′��
and so

P1�+�i� k� ≤ exp
{
−k1−h δθ

2
+Ck1+β�1−1/α′�−βh

}
�

However, by the choice of h,

1− h > 1+ β�1− 1/α′� − βh�
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and so for all k large enough, all i,

P1�+�i� k� ≤ exp
{
−k1−h δθ

3

}
�

That is,

lim
k→∞

kp sup
−∞<i<∞

P1�+�i� k� = 0(4.34)

for every p as in (4.28).
In the case α > 2, (4.34) follows from Lemma 4.5 in the same way.
We now consider P2�+�i� k� in (4.30). Denote

Wj = bi−j� k�Zj�+1�bi−j� kZj ≤ εkθ�

−bi−j� k E
(
�Zj�+1�bi−j� kZj ≤ εkθ�

)
� j ∈ J+�

and observe that �Wj� are independent zero mean random variables such that
�Wj� ≤ εkθ for all j. We may, therefore, apply an inequality by Petrov [see
Petrov (1995), 2.6.1 on page 77, or Mikosch and Samorodnitsky (2000), Lemma
A3.6] to conclude that

P2�+�i� k� = P
( ∑
j∈J+

Wj ≥ k�1− δ�θ/2
)

≤ exp
{
−1− δ
2ε

arcsinh

(
k2�1− δ�εθ2

4Var
(∑

j∈J+Wj

))}�(4.35)

Suppose that 1 < α < 2. We have, for a β ∈ �α′� α�,
VarWj ≤ b2i−j� kE

(�Z1�2+1�bi−j� kZ1 ≤ εkθ�
) ≤ Ck2−β�bi−j� k�β

for some C > 0 that depends only on β� ε and θ but not on i� j or k, and that
is allowed to change from time to time. Hence

Var
( ∑
j∈J+

Wj

)
= ∑

j∈J+
VarWj

≤ Ck2−β ∑
j∈J+
�bi−j� k�β

≤ Ck2−βk1+β�1−1/α′�

= Ck3−β/α′

by (4.33). Therefore,

P2�+�i� k� ≤ exp
{
−1− δ
2ε

arcsinh
(
Ckβ/α

′)}

≤ C exp
{
−�β/α′ − 1��1− δ��2ε�−1 log k

}
= Ck−�β/α′−1��1−δ��2ε�−1�
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and since β can be taken arbitrarily close to α and δ can be taken arbitrarily
close to zero, we conclude that

lim
k→∞

kp sup
−∞<i<∞

P2�+�i� k� = 0(4.36)

for every p as in (4.28). The case α ≥ 2 is similar.
Now (4.29) follows from (4.34) and (4.36). ✷

An identical argument establishes a similar statement for the maximum of
the process. We do not repeat the proof.

Lemma 4.7. Assume that the coefficients �ϕj� satisfy �4�26�. Then, for every
y > 0 and ε > 0,

lim
k→∞

kpP

(
max
i=1�����n

Xi>yan and Zjϕi−j≤εyan for all i=1�����n

and all j= ����−1�0�1����
)
=0

(4.37)

for every

p <
min�2� α�

2ε
�(4.38)

Our next result shows that the length of the longest strange interval cannot
grow at the rate higher than an in (2.5).

Lemma 4.8. Assume �1�6�. Then
lim
M→∞

lim sup
n→∞

P�Rn�θ� >Man� = 0�(4.39)

Proof. Fix for a moment ε > 0 and observe that, for allM ≥ 1,

P�Rn�θ� >Man� ≤ P
(

sup
−∞<j<∞

sup
Man<k≤n

1
k

sup
i=0�����n−k

( i+k−j∑
d=i+1−j

ϕd

)
Zj > ε

)

+P
(
Rn�θ� >Man and

( i+k−j∑
d=i+1−j

ϕd

)
Zj ≤ εk for all(4.40)

j = � � � �−1�0�1� � � � � for allMan < k ≤ n

and i = 0� � � � � n− k
)
�

It follows immediately from Lemma 4.2 that

lim
M→∞

lim
n→∞P

(
sup

−∞<j<∞
sup

Man<k≤n

1
k

sup
i=0�����n−k

( i+k−j∑
d=i+1−j

ϕd

)
Zj > ε

)
= 0�
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and so it only remains to consider the second term in the right-hand side of
(4.40). Notice that the latter term is bounded from above by

n∑
k=�an�

n−k∑
i=0

P

(
Xi+1 + · · · +Xi+k ≥ kθ�

( i+k−j∑
d=i+1−j

ϕd

)
Zj ≤ εk

for all j = � � � �−1�0�1� � � �
)
�

and, applying Lemma 4.6, we see that the above quantity can be further
bounded from above by

n
n∑

k=�an�
k−C/ε�

where C is a finite positive constant. Therefore, if ε is small enough, then the
second term in the right-hand side of (4.40) goes to zero as well, and we are
done. ✷

Our final lemma deals with the distribution of the ratio of the coordinates
of a random vector with a particular bivariate extreme value distribution.

Lemma 4.9. Let �X�Y� be a random vector with a bivariate extreme value
distribution �2�9�, for which the spectral measure m is a two-point measure

m = wβδh�1� +w�1− β�δh�2��(4.41)

where w > 0, 0 < β ≤ 1, and h�1� = �h11� h12� and h�2� = �h21� h22� belong to
B+2 and have strictly positive coordinates. Let W =X/Y.

(i) Let 0 < β < 1. If

h11
h12
≥ h21
h22

�(4.42)

then the distribution of W is concentrated on the interval �h21/h22� h11/h12�,
and

P

(
W = h21

h22

)
= 1
1+ �β/�1− β���h11/h21�α

�

P

(
W = h11

h12

)
= 1
1+ ��1− β�/β��h22/h12�α

�

(4.43)

while on the interval �h21/h22� h11/h12� the law of W is absolutely continuous
with the density

fW�w� =
��1− β�/β��h22/h11�ααwα−1(
1+ ��1− β�/β��h22/h11�αwα

)2 �(4.44)
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If, on the other hand,

h11
h12

<
h21
h22

�(4.45)

then the distribution of W is concentrated on the interval �h11/h12� h21/h22�,
and

P

(
W = h11

h12

)
= 1
1+ ��1− β�/β��h21/h11�α

�

P

(
W = h21

h22

)
= 1
1+ �β/�1− β���h12/h22�α

�
(4.46)

while on the interval �h11/h12� h21/h22� the law of W is absolutely continuous
with the density

fW�w� =
�β/�1− β���h12/h21�ααwα−1(
1+ �β/�1− β���h12/h21�αwα

)2 �(4.47)

(ii) Let β = 1. Then W = h11/h12 with probability 1.

Proof. Let E1 and E2 be two independent standard exponential random
variables. It is straightforward to check by a direct computation that the vector
�X�Y� has the same distribution as the vector

max
(
β1/αE

−1/α
1 h�1�� �1− β�1/αE−1/α2 h�2�

)
�

where the maximum is taken component by component. The immediate con-
clusion is that the law of W = X/Y is concentrated between the smaller
and the bigger of h11/h12 and h21/h22 and, if β = 1, then W = h11/h12 with
probability 1.
Suppose now that 0 < β < 1. We have

P

(
W = h11

h12

)
= P

(
β1/αE

−1/α
1 h11 > �1− β�1/αE−1/α2 h21�

β1/αE
−1/α
1 h12 > �1− β�1/αE−1/α2 h22

)

= P
(
E2

E1
>
1− β
β

max
(
h21
h11

�
h22
h12

)α)

=
(
1+ 1− β

β
max

(
h21
h11

�
h22
h12

)α)−1
�
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while

P

(
W = h21

h22

)
= P

(
E1

E2
>

β

1− β max
(
h11
h21

�
h12
h22

)α)

=
(
1+ β

1− β max
(
h11
h21

�
h12
h22

)α)−1
�

In particular, under (4.42) we obtain (4.43), and under the assumption (4.45)
we obtain (4.46).
Under the assumption (4.42) for any h21/h22 < a < b < h11/h12, we have

P�a < W ≤ b� = P
(
a <

(
β

1− β
)1/α h11

h22

(
E2

E1

)1/α
≤ b

)
�

from which we can read off the density of W in the interior of the interval
�h21/h22� h11/h12� as (4.44). Similarly, under the assumption (4.45) we obtain
(4.47). This completes the proof. ✷

5. Several data sets. In this section we look at two financial data sets.
Our analysis is, however, applicable to data of a different origin, in particular
to data sets coming from communication networks applications.
The financial data sets we are using were provided by Olsen and Associates

at the first HFDF conference, March 1995 in Zürich. The data contains foreign
exchange returns for the period of October 1, 1992 through September 29,
1993. The first data set contains 51414 10-minute returns on US dollar against
German mark, while the second data set contains 52376 returns on Japanese
yen against German mark. Both return series are given in the θ-time designed
by the researchers at Olsen and Associates to deseasonalize the data; see
Dacorogna et al. (1993).
The returns on US dollar against German mark are presented in Figure 5.1.

Note that the Hill estimator of the tail index α [see, e.g., Resnick and Stărică
(1995)] is between 2�5 and 3�0. We have chosen to plot the statistic θWn�θ�
for Wn�θ� defined in (2.6) against θ, because by Theorem 2.1 the limiting
distribution of this statistic is independent of θ. Selecting the right range of θ is
an important and difficult issue; it is somewhat similar to the issue of selecting
the number of upper-order statistics while computing the Hill estimator [see,
e.g., Drees, De Haan and Resnick (2000)]. The usual technique in the case
of the Hill estimator is to look for the range of the number of upper-order
statistics where the value of the estimator stabilizes. We do likewise with the
estimator θWn�θ�, and this is how the range of θ is selected. It is interesting
to try to judge the significance of the obtained results. Using the procedure in
Example 2.7, we see that, at the significance level of .05, we should conclude
that long-range dependence may be present once the value of our statistic is
at least 19. Based on that approach, the absolute returns clearly demonstrate
presence of long-range dependence.
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Fig. 5.1. Ten-minute returns on US dollar versus German mark. The top plot is the time series
plot of the returns. The two plots in the second row are the Hill plots (of 1/α) for the returns (the
left plot) and absolute returns (the right plot) as a function of the number of upper-order statistics.
The two plots in the third row are the values of the statistic θWn�θ� over a range of θ for the
returns (the left plot) and absolute returns (the right plot).
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Fig. 5.2. The values of logRn�θ�/ log n for θ = 0�5 computed as a function of the sample size n
for 10-minute returns on US dollar versus German mark.

Fig. 5.3. The values of the statistic θWn�θ� over a range of θ for the randomized absolute
10-minute returns on US dollar versus German mark.

The plot in the left column of the third row in Figure 5.1 does not pro-
vide a clear indication that long strange intervals for the raw returns on
US dollar versus German mark grow faster than expected under short-range
dependence. For illustration purposes, we include in Figure 5.2 the plot of
logRn�θ�/ log n computed as a function of the sample size n for θ = 0�5. That
is, we compute the statistic Rn�θ� based on the first n observations in the data
set. Observe that the range of values on this plot is quite a bit higher than the
range of values of 1/α on the Hill plot in the left column of the second row in
Figure 5.1. According to the discussion before the statement of Theorem 2.1,
this can be taken as informal evidence for presence of long-range dependence.
To check how much the significance of the observed values of the statistic

θWn�θ� owes, in practice, to dependence as opposed to, say, the tails, we took
a random permutation of the absolute 10-minute returns on US dollar versus
German mark and computed the statistic θWn�θ� over a range of θ for the
randomized absolute returns. The result is presented in Figure 5.3. Observe
how low the values of the statistic are in comparison to the plot in the third
row, right column, of Figure 5.1.
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Fig. 5.4. Ten-minute returns on Japanese yen versus German mark. The top plot is the time series
plot of the returns. The two plots in the second row are the Hill plots (of 1/α) for the returns (the
left plot) and absolute returns (the right plot) as a function of the number of upper-order statistics.
The two plots in the third row are the values of the statistic θWn�θ� over a range of θ for the
returns (the left plot) and absolute returns (the right plot).
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We get a similar conclusion from the analysis of the returns on Japanese
yen against German mark as presented in Figure 5.4. The Hill estimator of
the tail index α is now between 3�5 and 4�0, and the absolute returns clearly
demonstrate presence of long-range dependence.
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Willinger, W., Taqqu, M., Leland, M. andWilson, D. (1995). Self-similarity through high vari-
ability: statistical analysis of ethernet LAN traffic at the source level. Computer Comm.
Rev. 25 100–113.

School of Accounting and Finance
University of Tasmania
GPO Box 252-86
Hobart, Tasmania 7001
Australia
and
Theory Center
628 Rhodes Hall
Cornell University
Ithaca, New York 14853
E-mail: peter.mansfield@utas.edu.au,

peterm@tc.cornell.edu

Institute of Statistics and
Mathematical Economics

Kollegium am Schloss
University of Karlsruhe
Postfach 6980
D-76128
Karlsruhe
Germany
E-mail: zari.rachev@wiwi.uni-karlsruhe.de

School of Operations Research and
Industrial Engineering and

Department of Statistical Science
Cornell University
Ithaca, New York 14853
E-mail: gennady@orie.cornell.edu


