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ON OCCUPATION TIME FUNCTIONALS FOR DIFFUSION
PROCESSES AND BIRTH-AND-DEATH PROCESSES

ON GRAPHS

By Matthias Weber

Technische Universität Dresden

Occupation time functionals for a diffusion process or a birth-and-
death process on the edges of a graph � depending only on the values of
the process on a part �′ ⊂ � of � are closely related to so-called eigenvalue
depending boundary conditions for the resolvent of the process. Under the
assumption that the connected components of � \ �′ are trees, we use the
special structure of these boundary conditions to give a procedure that
replaces each of the trees by only one edge and that associates this edge
with a speed measure such that the respective functional for the appearing
process on the simplified graph coincides with the original one.

1. Introduction. Diffusion processes on graphs have been considered
first by G. Lumer (see [23] and the references therein). Such processes appear
as models, for example, of electrical networks, vibrating elastic nets, nerve
impulse propagation or movement of nutrients in the root system of a plant
(see [6, 11]). Results on diffusion processes on graphs can also be found in [2,
9, 25, 28]. Investigations of the asymptotic behavior of randomly perturbed
dynamical systems lead to such processes as well [7, 8, 9, 10].

A diffusion process on a graph is determined by the following:

1. A (maybe generalized) second-order differential operator for each edge of
the graph governing the diffusion process inside the edge until it reaches
a vertex of the graph;

2. A gluing condition at each interior vertex of the graph (we will assume that
any interior vertex is accessible) and

3. A boundary condition at each regular exterior vertex.

The gluing and boundary conditions determine the domain of the infinitesi-
mal generator A of the process. The infinitesimal generator is locally given by
the differential operators. These characteristics describe the diffusion process
uniquely.

The processes are generalized diffusion processes which include diffusions,
gap diffusions as well as birth-and-death processes. The operators are given by
scale functions s and speed measuresm, and the state space of the correspond-
ing process consists, roughly speaking, of the points of the graph corresponding
to the points of the support of the respective speed measure.
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The spectral theory of generalized second-order derivatives was developed
in the early 1950s by M. G. Krein (as the spectral theory of vibrating strings)
in order to generalize the theory of the classical Stieltjes moment problem
and the Sturm–Liouville boundary problem [13, 14, 19, 20]. In these papers
a correspondence is established between the measure m, that is, the mass
distribution of the string, and the Titchmarsh–Weyl coefficient of the problem.
The Titchmarsh–Weyl coefficient has a representation,

Q�z� = a+
∫ ∞
0

1
λ− z

dσ�λ��(1.1)

where a ∈ �0�∞� and σ is the spectral function of the string.
Starting with W. Feller’s work [4, 5], an extensive literature was devel-

oped on one-dimensional Markov processes governed by differential operators
DmD

+
s , (see, e.g., [3, 12, 21, 22, 24]).

It became clear that there are also useful applications of Krein’s theory to
problems for one-dimensional Markov processes, and there has been a lot of
progress in this direction [16, 17, 18, 22]. For instance, the transition density
of the diffusion process governed by DmD

+
s can be written as

p�t� x� y� =
∫ ∞
0

e−tzφ�x� z�φ�y� z�dσ�z��(1.2)

with the solution φ of zfdm + d�d/ds�f = 0 satisfying the initial conditions
φ�0� z� = 1, �d/ds�φ�0−� z� = 0 [see (3.1)].

In this paper we make use of Krein’s theory to get results for diffusion
processes on graphs. Let Xt, t ≥ 0, be a diffusion process on a graph �, and
let

h�y� = Ey

∫ ∞
0

e−λtf�Xt� dt� y ∈ ��(1.3)

Here Ey denotes the expectation with respect to the initial point y ∈ �. Let
us consider functions f which are equal to zero outside a subgraph �′ ⊂ �.
If, for example, f is the indicator function of �′ then h�y� is the Laplace
transform of the probability that Xt ∈ �′ (depending on the initial point y).
Such questions are closely related to projections of the operator A to certain
subspaces of functions on �, and it is known that they correspond to problems
with eigenvalue depending boundary conditions ([15]). Actually, if Ik ⊂ �\�′ is
an edge that divides � into two subgraphs, one containing �′ and another that
we denote by �̃, then h satisfies a (boundary) condition in any point y0 ∈ Ik
that can be (formally) written as

Q̃�y0� −λ��D+
s h��y0� + h�y0� = 0�(1.4)

with a certain function Q̃ that is independent of f.
We will show that if �̃ forms a tree, Q̃�y0� ·� is a Titchmarsh–Weyl coef-

ficient. Moreover, Q̃ can be calculated explicitly from the Titchmarsh–Weyl
coefficients corresponding to the edges of �̃ and from the Titchmarsh–Weyl
coefficient corresponding to the part of the edge Ik between y0 and �̃.



546 M. WEBER

Now let Oj be the vertex that connects Ik and �̃, and let y0 = Oj.

If �̃ consists of only one edge, then Q̃ is the Titchmarsh–Weyl coefficient
corresponding to the diffusion on that edge (up to a constant factor depending
on the gluing condition at Oj).

If �̃ consists of more than one edge, then Q̃ is again a Titchmarsh–Weyl
coefficient, and thus, �̃ can be replaced by only one edge connected to Oj and

equipped with a diffusion according to Q̃ and a modified gluing condition at
Oj, without any change of the corresponding function h�y� for y ∈ �′� This
means, if we modify the graph � in this way and define h̃ by (1.3) with the
process Xt replaced by the process on the modified graph and f replaced by
the function f̃ on the modified graph, where f̃ is equal to f on �′ and equal
to zero outside �′, then

h�y� = h̃�y� for all y ∈ �′�

Thus, if the process is of interest only during the time it spends on a certain
part of the graph (for example, if one considers sojourn times), then the graph
can be replaced by a simpler one. This can be used to derive formulas for
sojourn-time distributions. If �′ consists of only one edge, then the results for
one-dimensional diffusions can be used.

If Xt is a birth-and-death process with a finite number of states, then the
speed measures corresponding to edges of treelike parts of � \ �′ are con-
centrated in a finite number of points. The corresponding Titchmarsh–Weyl
coefficients as well as the respective Q̃ are rational functions. Thus, Q̃ corre-
sponds to a birth-and-death process on the simplified part of the graph. All
parameters of this process, as mean waiting time in any state, and one-step
transition probabilities of the embedded Markov chain can be easily obtained
from a continued fraction representation of Q̃ (see [27]). In Section 6 we give
the respective results and present some explicitly calculated examples.

If Xt is a diffusion process, then the speed measures corresponding to the
edges of the graph can be approximated by measures concentrated in a finite
number of points. This is equivalent to an approximation of the diffusion pro-
cess by a birth-and-death process (see [16]). To these birth-and-death processes
the results of Section 6 can be applied to get an approximation of the diffusion
process on the simplified graph. This can be useful to simplify simulations as
well as to get approximate solutions of sojourn-time problems. In Section 7 we
present some explicitly calculated examples illustrating that.

In Sections 2, 3 and 4 we give the necessary definitions and the results from
the theory of strings. In Section 5 we present the procedure that replaces tree-
like components of � \ �′ by only one edge as described above.

2. Preliminaries. Let M+ denote the set of triples m = �m� l� l̄� where
m is a Borel measure on � such that

m��−∞�0�� = 0�
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0 ≤ l = sup supp m ≤ ∞�

m��0� x�� <∞ for all x < l�

l ≤ l̄ ≤ ∞� l̄ = l if m��0� l�� = ∞� m��l�� = 0 if l = l̄�

Here supp m denotes the support of the measure m.
By M+

r we denote the subset of all “regular” elements of M+, that is,

�m� l� l̄� ∈M+
r if and only if l <∞ and m��0� l�� <∞�

For 0 ≤ l̄ ≤ ∞ let Rl̄ = �−∞� l̄�, and let S�l̄� be the set of all continuous,
strictly increasing functions s on Rl̄ with s�0� = 0 (the scale functions). For
s ∈ S�l̄� the derivatives D+

s and D−
s are defined by

�D±
s f��x� = lim

ε→±0
f�x+ ε� − f�x�
s�x+ ε� − s�x� � x ∈ Rl̄� f ∈ C�−∞� l̄��

if the limit exists. If m = �m� l� l̄� ∈ M+ and s ∈ S�l̄� let s�l̄� = limx→l̄ s�x�,
s�l̄� ∈ �0�∞�. According to Feller’s classification (see [4, 24]) the (boundary)
point l may be regular, exit, entrance or natural. The point a0 = inf supp m
is assumed to be always regular.

Let m = �m� l� l̄� ∈ M+ and s ∈ S�l̄�. By Cm�s we denote the complete
subspace (with sup-norm) of the Banach space C�Rl̄� with the property that
the elements f ∈ Cm�s are linear in s on the components of �0� l̄� \ supp m
[i.e., f ∈ Cm�s has a representation f�x� = a + bs�x�� a� b ∈ �, on each such
component], and that f�x� → 0 as x → l̄ if l is not entrance or regular with
s�l̄� = ∞.

We use the conventions∞·0 = 0, and 1/∞ = 0. On Cm�s we define operators
Aπ0� π0 ∈ �0�∞�, as follows: a function f ∈ Cm�s belongs to the set ϑm�s if it
has a representation

f�x� = α+ βs�x� +
∫ x

0−
�s�x� − s�y��g�y�m�dy��(2.1)

with α�β ∈ �� x ∈ Rl̄, and a function g ∈ Cm�s. If relation (2.1) holds for
two functions f�g ∈ Cm�s then we write g = DmD

+
s f. We call the operator

DmD
+
s a generalized second-order derivative (see [3, 24]). A function f ∈ ϑm�s

belongs to the domain of the operator Aπ0 if +0�f� = 0, where the (boundary)
functional +0 is defined as follows:

+0�f� =
{
π0�D−

s f��0� − f�0�� if π0 <∞,
�D−

s f��0�� if π0 = ∞.(2.2)

Then with (2.1) Aπ0f = g. If l <∞ is regular then +l�f� = 0 with

+l�f� =
{
πl�D+

s f��l� + f�l�� if l̄ <∞,
�D+

s f��l�� if l̄ = ∞,
(2.3)

where πl = s�l̄� − s�l�. If l = l̄ we denote D+
s f�l� = D−

s f�l�.
It is well known that for π0 ∈ �0�∞� the operator Aπ0 is the infinitesimal

generator of a strongly continuous contraction semigroup associated with a
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Hunt process with right continuous trajectories (see [3, 24]). This process is a
generalized diffusion process with state space

�supp m ∩ �0� l�� ∪ �l� l is entrance or regular with l̄ > l��
The process has the speed measurem, the scale function s (and local boundary
conditions in regular boundaries). If m is discrete, the process is a birth-and-
death process, ifm is absolutely continuous with positive density on �0� l�, and
s is, for example, two times differentiable, the process is an ordinary diffusion
on �0� l�. For a detailed explanation of behavior at the boundary see [24]. If
the operator L is given in the form

L = 1
2
a

d2

dx2
+ b

d

dx
�

with appropriate functions a and b on �0� l� then L = DmD
+
s with suitable s

and m; see [24].

3. Preliminaries from the theory of strings. We give some results
from the theory of strings developed by M. G. Krein (see, e.g., [13, 14]).

In the notion of vibrating strings each triple �m� l� l̄� ∈ M+ [with scale
s�x� = x] corresponds to a string of length l with mass distribution m. If
m ∈ M+

r , then the right end of the string is fixed to l̄ if l̄ < ∞, or it is free
if l̄ = ∞. The left end of the string is always supposed to be free. If s is not
the identity, then the same holds up to rescaling. If the measure m is discrete
there exists also an interpretation in terms of connected masses an springs
(see [27]).

Let �m� l� l̄� ∈ M+ and s ∈ S�l̄�. If l = ∞ the notations �x� l� and m��l��
should be understood as �x�∞� and 0, respectively. For m ∈ M+, x ∈ �, and
z ∈ � let the functions φ and ψ be defined by (see [14])

φ�x� z� = 1− z
∫ x

0−
�s�x� − s�y��φ�y� z�m�dy��(3.1)

ψ�x� z� = s�x� − z
∫ x

0−
�s�x� − s�y��ψ�y� z�m�dy��(3.2)

These functions are the unique solutions of the equation

DmD
+
s u+ zu = 0�(3.3)

satisfying the initial conditions

φ�0� z� = �D−
s ψ��0� z� = 1� �D−

s φ��0� z� = ψ�0� z� = 0�

Define the Titchmarsh-Weyl coefficient corresponding to m ∈M+ by

Q�z� = lim
x→l̄

ψ�x� z�
φ�x� z� � z ∈ � \ �0�∞��(3.4)

The function Q admits a representation

Q�z� = a0 +
∫ ∞
0

1
λ− z

dσ�λ�(3.5)
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with some a0 ∈ �0�∞� and a nonnegative Borel measure σ on �0�∞� [the
spectral measure of problem (3.3)] such that

∫∞
0 �1 + λ�−1 dσ�λ� < ∞. Note

that a0 = ∞, that is, Q ≡ ∞, corresponds to m = �0�0�∞�.
If �m� l� l̄� ∈M+

r then the measure σ is discrete, and the representation (3.5)
becomes

Q�z� = a0 +
∞∑
i=1

σi

λi − z
�(3.6)

The square roots of the eigenvalues λi give the natural frequencies of the
string.

A function Q with representation (3.5) is called an S-function and is char-
acterized by the following properties:

Q�z� is holomorphic on � \ �0�∞��
Im�z�Im�Q�z�� ≥ 0 for every z ∈ � \ ��(3.7)

Q�z� ≥ 0 for every z ∈ �−∞�0� or Q ≡ ∞�

It is a basic result of M.G. Krein [14] that there is a bijective (up to the choice
of the scale s) correspondence between M+ and the class of S-functions. We
denote this correspondence by

m ←→s Q�

If s�x� = x�0 ≤ x ≤ l̄, we write m ←→x Q.
Let m = �m� l� l̄� ∈M+, s ∈ S�l̄� and m ←→s Q.
We introduce a further solution ϕ of equation (3.3),

ϕ�x� z� = φ�x� z� − 1
Q�z�ψ�x� z��(3.8)

x ∈ �� z ∈ � \ �0�∞�. This function has the following properties:

d�D+
s ϕ� + zϕ dm = 0�(3.9)

ϕ�0� z� = 1�(3.10)

�s�l̄� − s�l���D+
s ϕ��l� z� + ϕ�l� z� = 0 if m ∈M+

r and l̄ <∞�(3.11)

�D+
s ϕ��l� z� = 0 if m ∈M+

r and l̄ = ∞�(3.12)

�D+
s ϕ��0� z� = −zm��0�� −

1
Q�z� �(3.13)

�D−
s ϕ��0� z� = −

1
Q�z� �(3.14)

ϕ�·� z� ∈ ϑm�s�(3.15)

Let m = �m� l� l̄� ∈M+ and s ∈ S�l̄�. We define the measure ṁ ∈M+ by

ṁ =m−m��0��δ0�
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We denote by Ȧ0 and Ȧ∞ the infinitesimal generators corresponding to �ṁ� l� l̄�
and s. We note that Ȧ0 = A0. In terms of diffusion or birth-and-death pro-
cesses a superscript 0 or∞ implies that the process will be killed or reflected,
respectively, at the left end of its state space. The resolvents of these genera-
tors are

Ṙi
z = �z− Ȧi�−1� i = 0�∞� z ∈ � \ �−∞�0��(3.16)

As the resolvents have integral representations with continuous bounded
kernels (see, e.g., [17, 22]), these operators can be extended to the space Bm

of all bounded m-integrable functions. We note that

�R0
zf��0� = 0� �D+

s Ṙ
∞
z f��0� = 0� f ∈ Bm�(3.17)

For f ∈ Bm, f �= 0, we consider the function ϕ̇ ∈ ϑṁ� s

ϕ̇�·�−z� = Ṙ∞
z f−R0

zf

�Ṙ∞
z f��0�

� z ∈ � \ �−∞�0��(3.18)

This function satisfies the (homogeneous) equation

d�D+
s ϕ̇��·� z� + z ϕ̇�·� z� dṁ = 0�

and ϕ̇�0� z� = 1. These properties determine the function ϕ̇ uniquely, and it
follows according to (3.13),

− 1

�D+
s ϕ̇��0� z�

= Q̇�z��(3.19)

where Q̇←→s� �ṁ� l� l̄�. Using (3.17), (3.18) and (3.19) we get

Q�z� = Q̇�z�
Q̇�z��−m��0���z+ 1

= 1

−m��0�� z+ 1/Q̇�z�

=
(
−m��0�� z+ �D

+
s R

0
−zf��0�

�Ṙ∞−zf��0�

)−1
�

(3.20)

We will need the following lemma.

Lemma 3.1. Let mi = �mi� li� l̄i� ∈ M+, si ∈ S�l̄i�, mi ←→si
Qi, αi > 0,

i = 1� � � � � n, n ≥ 2 and Q defined by

1
Q�z� =

n∑
i=1

αi

Qi�z�
� z ∈ � \ �0�∞��(3.21)

Then Q is an S-function, and there exists m ∈M+ such that m ←→x Q.

For the proof, it is easy to check that Q defined by (3.21) satisfies
conditions (3.7).
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4. Generalized diffusion processes on graphs. Consider a (connected)
graph � with a finite number of edges Ii� i = 1� � � � � n, of finite or infinite
length and vertices Oi� i = 1� � � � � nv, O = �Oi� i = 1� � � � � nv�, n�nv ∈ N.
Let be given a set of intervals I∗i = �0� li�, i = 1� � � � � n, such that each Ii is
parameterized by its arc length with parameter set I∗i . In other words, there
exist maps Pi� I∗i → � such that

Pi��0� li�� = Ii� Pi�0� ∈ O and Pi�li� ∈ O if li <∞
and the length of the arc Pi�0� → Pi�x� is equal to x� x ∈ �0� li�� i = 1� � � � � n.

By Oe we denote the set of (finite) end points of the graph. We define I∞ =
�j�j ∈ �0� � � � � n�� lj = ∞� (the indices of edges of infinite length),

J0
i = �j�j ∈ �1� � � � � n��Pj�0� = Oi��

Jl
i = �j�j ∈ �1� � � � � n�� Pj�lj� = Oi�� i = 1� � � � � nv�

If j ∈ J0
i ∪Jl

i, we write Ij ∼ Oi. For i = 1� � � � � n let mi = �mi� li� l̄i� ∈M+ and
si ∈ S�l̄i�. We assume that Ij ∼ Oi ∈ O \Oe and j ∈ Jl

i imply that the point
lj, j ∈ �1� � � � � n�, is �mj� sj�-regular and lj < l̄j. Consequently, inner vertices
Oi of � correspond to regular points with lj < l̄j of the edges which meet at
Oi. Further we assume that Oi ∈ Oe implies Oi = Pj�lj� for a j ∈ �1� � � � � n�.

By Cm we denote the set

Cm = �f = �f1� f2� � � � � fn� such that fi ∈ Cmi� si
� D−

si
fi�0� = 0

and Pi�x� = Pj�y� implies fi�x� = fj�y�� x ∈ I∗i � y ∈ I∗j��
By C� we denote the subset of C���, consisting of those elements f� ∈ C���

that satisfy

fi�x� = f��Pi�x�� for all x ∈ I∗i � i = 1� � � � � n�(4.1)

for some f = �f1� � � � � fn� ∈ Cm. The relation (4.1) gives a one-to-one corre-
spondence P� between the functions f� ∈ C� and the elements f ∈ Cm. It
is easy to check that C�, associated with the sup-norm, is a Banach space.
Functions from C��� we will indicate by �. To each f� ∈ C� an f ∈ Cm is
associated through P� � f = �f1� � � � � fn� = P�f�.

For Oi ∈ O \Oe we define a gluing functional Gi � C� → �:

Gif� =
∑
j∈J0

i

αi� j�D+
sj
fj��0� −

∑
j∈Jl

i

αi� j�D−
sj
fj��lj�(4.2)

with αi�j ≥ 0,
∑

j αi� j > 0, �f1� � � � � fn� = P�f�. Define

σi =mj��lj�� if Oi ∈ Oe� Ij ∼ Oi�(4.3)

σi =
∑
j∈J0

i

αi� j mj��0�� +
∑
j∈Jl

i

αi� j mj��lj��� if Oi ∈ O \Oe�(4.4)

Note that σi is the (weighted by αi�j) sum of the point masses associated with
the vertex Oi by the construction of the graph.
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Now we define the linear operator A� C� → C� with domain

D�A� = �f� ∈ C�� there exists a g� ∈ C� such that for f = P�f��

g = P�g�� fi ∈ ϑmi� si
�Dmi

D+
si
fi = gi� i = 1� � � � � n�(4.5)

and Oi ∈ O \Oe implies Gi�f�� = σi g��Oi�� i = 1� � � � � nv��
ThenAf� = g�. As in [9] it follows by the Hille–Yosida theory (see [29]) thatA
is the infinitesimal generator of a strongly continuous contraction semigroup
Tt� t ≥ 0, on C�, corresponding to a generalized diffusion process �Xt�Px�
on �. Before the process leaves an edge Ii, it behaves according to the local
operator Dmi

D+
si
. If f� ∈ D�A�, �f1� � � � � fn� = P�f�, Oi ∈ Oe, j ∈ Jl

i and lj
regular, then [see (2.3)]

+lj
�fj� = 0�

If lj < l̄j, this can be written by (2.4) as

�D−
sj
fj��lj� + σj �Dmj

D+
sj
fj��lj� + κljf�lj� = 0�(4.6)

with κlj = �πlj
�−1.

5. The process on a subgraph. Let � be a (connected) graph with ver-
tices Ok, k = 1� � � � � nv, and edges Ii, i = 1� � � � � n, and let Xt be a generalized
diffusion process on � given by an mi = �mi� li� l̄i� ∈M+ and a scale function
si ∈ S�l̄i� to each edge Ii (of length li), and a positive number αk� i to each
pair of an interior vertex Ok and an edge Ii ∼ Ok. Let A be the infinitesimal
generator of this diffusion Xt and

Rλ = �λ−A�−1� λ > 0�

We mention that there exists an integral representation for Rλ with a con-
tinuous bounded kernel such that the operator can be extended to Bm���, the
space of functions f� on � for which there exists f = �f1� � � � � fn� with mi

integrable functions fi, and

fi�x� = f��Pi�x��� x ∈ I∗i � i = 1� � � � � n(5.1)

(see [28]). The relation (5.1) gives a correspondence between the functions on
� and the n-tuples �f1� � � � � fn� of functions on I∗i , i = 1� � � � � n, denoted again
by P�,

f = �f1� � � � � fn� = P�f��

Let �′ ⊂ � be a connected subgraph of �. We assume that there exists an
edge Ii ⊂ �′ such that Ii divides � in two connected subgraphs, one of them
is a tree �̃ ⊂ � \ �′.

To prepare the simplification of the graph � by replacing �̃ by only one
edge as indicated in the Introduction, we give now a procedure that defines
Titchmarsh–Weyl coefficients Qk� i′ for k such that Ok ∼ Ii, Ok ∈ �̃, and any
i′ such that Ok ∼ Ii′ , i′ �= i (see also Example 5.3 below).
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Definition 5.1. The function Qk� i′ is defined by the following procedure.
Step 1� For all j such that Pj�lj� ∈ �Oe ∩ �̃� \ �Ok� or lj = ∞, Ij ∈ �̃ and

k′ such that Ok′ = Pj�0� define
Qk′� j = Q̇j�(5.2)

Step 2� Check whether Qk� i′ is already defined. Otherwise go to Step 3.
Step 3� For any vertex Ok′′ such that Qk′′� j′ is already defined for all j′,

Ij′ ∼ Ok′′ with the exception of exactly one j with Ij ∼ Ok′′ , and Ok′ ∼ Ij,
and k′ �= k′′, we define Qk′� j by

Qk′� j�z� =
αk′′� jQ

k′′�j�z��D+
sj
ψk′
j ��lj� z� + ψk′

j �lj� z�
αk′′� jQ

k′′�j�z��D+
sjφ

k′
j ��lj� z� +φk′

j �lj� z�
� z ∈ � \ �0�∞��(5.3)

where

Qk′′�j�z� =
(
− zσk′′ +

∑
Ok′′ ∼Il� l�=j

αk′′� l

Q̇k′′� l�z�

)−1
�(5.4)

and ψk′
j , φ

k′
j are the solutions of (3.1) and (3.2), respectively, corresponding to

mj and sj if Pj�0� = Ok′ , and they are the respective solutions correspond-
ing to

m̄j = �m̄j� lj� l̄j�� dm̄j�x� = dmj�lj − x��
s̄j�x� = sj�lj� − sj�lj − x��

(5.5)

if Pj�lj� = Ok′ . (Thus, we have changed the direction of the edge Ij in the
last case. This is always possible because lj <∞ for these “inner” edges.)

Go to Step 2.

Remark 5.2. To calculate Qk� i′ , only the data of the tree �̃ are needed.
Obviously, in each loop of the defining procedure at least one new coefficient
Qk′� j will be defined. Thus, the procedure is finite.

Example 5.3. Figure 1 shows a tree, and we calculate Q1�1.

Fig. 1.
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Step 1. We define Q3� j = Q̇j, j = 4�5, Q2�3 = Q̇3.
Step 2. We are not ready yet.
Step 3. We define

Q2�2�z� =
α3�2Q

3�2�z��D+
s2
ψ2��l2� z� + ψ2�l2� z�

α3�2Q
3�2�z��D+

s2φ2��l2� z� +φ2�l2� z�
� z ∈ � \ �0�∞��

Q3�2�z� =
(
− zσ3 +

α3�4

Q̇3�4

+ α3�5

Q̇3�5

)−1
=
(
− zσ3 +

α3�4

Q̇4

+ α3�5

Q̇5

)−1
�

We go to Step 2 and find that we have to proceed. In a next “Step 3” we finally
define

Q1�1�z� =
α2�1Q

2�1�z��D+
s1
ψ1��l1� z� + ψ1�l1� z�

α2�1Q
2�1�z��D+

s1φ1��l1� z� +φ1�l1� z�
� z ∈ � \ �0�∞��

where

Q2�1�z� =
(
− zσ2 +

α2�2

Q̇2�2

+ α2�3

Q̇3

)−1
�

Lemma 5.4. Let the graph � be as in Figure 2, and let

m1 = �m1� l1� l̄1� ∈M+
r � P1�0� = O1� m2 ∈M+� P2�0� = O2� l2 ≤ ∞�

Further, let α1� α2 be the parameters in the gluing conditions at O2, and define
m =m1�2 and s = s1�2 as follows:

m1�2�dx� = χ�−∞� l1��x�m1�dx� +m2�dx− l1��(5.6)

Here χB, B ⊂ �, denotes the indicator function of the set B� and x ∈ �B − l1�
if and only if x+ l1 ∈ B. Further,

s1�2�x� =
{
s1�x�� x < l1,
s1�l1� + s2�x− l1�� x ≥ l1.

(5.7)

Then m ←→s Q with

Q�z� = �α1/α2�Q2�z��D+
s1
ψ1��l1� z� + ψ1�l1� z�

�α1/α2�Q2�z��D+
s1φ1��l1� z� +φ1�l1� z�

�(5.8)

where ψ1� φ1 are the functions according to �3�1�, �3�2� with m1 and s1.

If α1 = α2 = 1 the statement of the lemma can be found in [13, 14]. Using
this, the statement of the lemma is easy to check.

Fig. 2.
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Theorem 5.5. Let Ok be an interior vertex of the graph � and Ii ∼ Ok�
such that Ii divides � in two subgraphs, and the one containing Ok forms a
tree �̃. Let g� ∈ Cm��� be such that g��y� = 0 for y ∈ �̃. Then, for any z > 0,
the function fi = �P�Rzg��i satisfies the (eigenvalue-depending boundary)
condition

± αk� i Q
k� i�−z��D±

si
fi��P−1i �Ok�� = fi�P−1i �Ok���(5.9)

where the + - sign should be taken if Pi�0� = Ok, and the − - sign should be
taken if Pi�li� = Ok, and

Qk� i�z�=
(
− zσk +

∑
Ij∼Ok�j �=i

αk� j

Qk�j�z�

)−1
�

σk=
∑

Ij∼Ok

αk�jmj��P−1j �Ok����
(5.10)

Proof. (i) We show the statement of the theorem for a graph � as (par-
tially) shown in Figure 3, and i = k = 1.

Assume that O1 = P1�0� and let f = P�Rzg�, with

P�g� = �g1�0� � � � �0� gn1+1� � � � � gn��
As the functions fj, j = 2� � � � � n1, solve the homogeneous equations

Dmj
D+

sj
fj − zfj = 0�(5.11)

(and belong to ϑmj� sj
) it follows,

fj = Cjϕ̇j�·�−z�� Cj ∈ �� j = 2� � � � � n1�(5.12)

[Recall that by our assumptions O1 = Pj�0�, j = 2� � � � � n1.] As f� is continu-
ous on �, we get

Cj = f1�0�� j = 2� � � � � n1�(5.13)

The gluing condition at O1 gives with (5.11) and f ∈ D�A�,
n1∑
j=1

α1� j�D+
sj
fj��0� = σ1�Dm2

D+
s2
f2��0� = zσ1f2�0� = zσ1f1�0��(5.14)

By relations (5.12), (5.13) and (3.19) this implies

α1�1D
+
s1
f1�0� = zσ1f1�0� −

n1∑
j=2

α1� j�D+
sj
fj��0�

= zσ1f1�0� −
n1∑
j=2

α1� jf1�0��D+
sj
ϕ̇j��0�−z�(5.15)

= f1�0�
(
zσ1 +

n1∑
j=2

α1� j

Q̇j�−z�

)
= f1�0�

1
Q1�1�−z� �
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Fig. 3.

Fig. 4.

If O1 = P1�l1� the proof is analogous. Condition (5.14) becomes

−α1�1D
−
s1
f1�l1� +

n1∑
j=2

α1� jD
+
sj
fj�0� = zσ1f1�0�

in this case. This implies the result by the same arguments.

(ii) Now we consider a graph as (partially) shown in Figure 4, and again i =
k = 1. Let f = �f1� � � � � fn� = P�Rzg�, P�g� = �g1�0� � � � �0� gn2+1� � � � � gn�.

It follows from the first part of the proof applied to i = k = 2, that the
function f2 satisfies at P−1�O2� the condition (5.9) with the coefficient

Q2�2�z� = −zσ2 +
n1∑
j=3

α2� j

Q̇j�z�
�

By Lemma 3.1 the function Q2�2 is an S-function, and there exists m2�2 =
�m2�2� l2�2� l̄2�2� ∈ M+, m2�2 ←→x Q2�2. Obviously, f2 satisfies the same
boundary condition at P−1�O2� if we modify the graph � by replacing the
edges I3� � � � � In1

by only one edge I2�2 of length l2�2 as drawn in Figure 5,
and associate to I2�2 the scale x and m2�2 (and the coefficient 1 for the gluing
condition).

More exactly, denote the modified graph by �2�2 and let g�2�2 ∈ C��2�2� be
such that g�2�2�y� = g��y� for y ∈ Ij, j = 1�2� n1 + 1� � � � � n, and g�2�2 = 0 on
I2�2. Let R2�2

z be the resolvent operator corresponding to the diffusion process
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Fig. 5.

Fig. 6.

on �2�2. Then �R2�2
z g�2�2��y� = �Rzg���y� for y ∈ Ij, j = 1�2� n1 + 1� � � � � n,

z > 0.
The same remains true if we replace the edges I2 and I2�2 by only one edge

I1�2 of length l2+l2�2 as shown in Figure 6, equipped with a scale function and
an element of M+ built from s2, m2 and x, m2�2 if O2 = P2�l2� and built from
s̄2, m̄2 and x, m2�2 if O2 = P2�0� according to Lemma 5.4. Here s̄2 and m̄2
are defined as s̄j and m̄j in (5.5). Thus, if O2 = P2�0�� we have to change the
direction of the edge I2 as described in Definition 5.1. Then by Lemma 5.4, the
diffusion on the edge I1�2 corresponds to the Titchmarsh–Weyl coefficientQ1�2.

So, we replaced the edge I2 together with the part of the tree connected with
O1 via I2 by only one edge I1�2 and a generalized diffusion corresponding to
Q1�2 on that edge without any change of the resolvent at the edge I1 (and the
rest of the tree). The same can be done with the other edges Ij ∼ O1, j �= 1�2,
and the parts of the tree which are connected with O1 via Ij� Each of these
parts can be replaced by only one edge I1� j, and a generalized diffusion there
corresponding to Q1� j without any change of the resolvent at the edge I1 (and
the rest of the tree). This leads to the simplified tree �1 as shown in Figure 7.
To the tree �1 we can apply the result of the first part of the proof to get the
result of the theorem for the situation as in Figure 3.

(iii) Obviously it follows by induction that also larger parts of a tree can be
simplified successively by the same procedure. This procedure matches exactly
the procedure for defining Titchmarsh–Weyl coefficients in Definition 5.1. ✷
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Fig. 7.

Corollary 5.6. As Qk� i is a Titchmarsh–Weyl coefficient, the whole tree �̃
can be replaced by only one edge Ik� i associated with mk� i ←→x Q

k� i, natural
scale, and factor α = 1 in the gluing condition such that on the new graph a dif-
fusion process is defined that (if it is started in �′) cannot be distinguished from
the original one by observers that see the process only at times it spends in �′.

A more precise formulation of this corollary is the following.

Theorem 5.7. Under the conditions of Theorem 5�5 the following holds: let
f� ∈ Bm��� and h� ∈ C��� be such that

f��y� = 0 if y ∈ �̃�

h��y� = Ey

∫ ∞
0

e−λtf��Xt�dt�

Let �k� i be the graph that appears if we replace �̃ by only one edge Ik� i ∼
Ok� and let X̃t be the process on �k� i, defined on �′ = � \ �̃ by the same
scale functions, speed measures, gluing and boundary conditions that define
Xt there; on Ik� i it is defined by mk� i ←→x Qk� i, and the behavior at Ok is
given by a gluing condition with the factor αk� i = 1 for the edge Ik� i. Define
f̃�k� i ∈ Bm��k� i� and h̃�k� i ∈ C��k� i� by

f̃�k� i�y� =
{
f��y�� if y ∈ �′,
0� otherwise,

h̃�k� i�y� = Ey

∫ ∞
0

e−λtf̃�k� i�X̃t�dt�

Then, for all y ∈ �′,

h��y� = h̃�k� i�y��

The statement of this theorem follows immediately from the following con-
sequence of Theorem 5.5.

Theorem 5.8. Let �′ be a subgraph of a graph � satisfying the conditions
from Theorem 5�5. Let f = �f1� � � � � fn� such that fi is mi-integrable, i =
1� � � � � n, and

fi ≡ 0 if Ii �⊂ �′�
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Let f� = P−1� f. Then for λ > 0 the functions

hi�x�= �P��Rλf���i �x�

=EPi�x�
∫ ∞
0

e−λtf��Xt�dt� i = 1� � � � � n� x ∈ I∗i �
(5.16)

are on �′, that is, for x ∈ I∗i with Ii ⊂ �′, uniquely determined by the following
conditions:

λhi�x� λ� − �Dmi
D+

si
hi��x� λ� = fi�x�� Ii ⊂ �′� x ∈ I∗i �(5.17)

hi�P−1i �Ok�� λ� = hj�P−1j �Ok�� λ�� Ok ∈ �′� Ok �∈ O′
e�

Ii ∼ Ok� Ij ∼ Ok�
(5.18)

∑
j∈J0

k

αk� j�D+
sj
hj��P−1j �Ok�� λ� −

∑
j∈Jl

k

αk�j�D−
sj
hj��P−1j �Ok�� λ�

= σk�λhi�P−1i �Ok�� λ� − 1�� Ok ∈ �′�Ok �∈ O′
e�

(5.19)

hi�·� λ� ∈ ϑmi� si
� Ii ⊂ �′ and Pi�li� ∈ Oe or i ∈ I∞�(5.20)

±αk� iQ
k� i�−λ��D±

si
hi��P−1i �Ok�� λ�

= hi�P−1i �Ok�� λ�� Ok ∈ O′
e� Ii ∼ Ok�

(5.21)

with the choice of the sign in �5�21� according to Theorem 5�5.

Recall that the resolvent operators can be extended to functions f� on �
with mi-measurable �P�f��i� Then the statement follows from Theorem 5.5.

Corollary 5.9. Let the conditions be as in Theorem 5�8. Then for any �′′ ⊂
�′ the Laplace transform hi�x� λ�, Ii ⊂ �′, x ∈ suppmi, λ > 0� of the probability
Py�Xt ∈ �′′�, y = Pi�x�, is the unique solution of the system �5�17�–�5�21� with
fi�x� = 1 if Ii ⊂ �′�Pi�x� ∈ �′′ and fi�x� = 0 otherwise.

Proof. The statement follows from Theorem 5.8 with

hi�x� λ�Py�Xt ∈ �′′�dt� y = Pi�x��

as Py�Xt ∈ �′′� = Ey χ�′′ �Xt�. ✷
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6. The case of birth-and-death processes. If the process inside the
edges of the graph is a birth-and-death process with a finite number of states,
then the corresponding Titchmarsh–Weyl coefficients are rational functions,
and the calculations introduced in the foregoing section are very simple and
can be done explicitly. We give the formulas relating the Titchmarsh–Weyl
coefficient to the distributions of a birth-and-death process and present some
examples.

We start with a birth-and-death process with a finite number of states on
the real half-line with reflection at the first point a0 of the state space. In
this case m = �m� l� l̄� ∈M+

r , m is a discrete measure concentrated in a finite
number of points, and the Titchmarsh-Weyl coefficient has a representation
as a continued fraction (see, e.g., [1, 26]):

Q�z�=a0 +
n∑
1

σi

zi − z

=a0 + �1/−b1z� + �1/a1� + �1/−b2z� + · · · + �1/−bnz� + �1/an��
(6.1)

where the bi are the point masses of m, and the ai are the distances between
them. More exactly, let a0 ≥ 0� ai > 0� bi > 0� i = 1� � � � � n, an ∈ �0�∞�.
Define the measure m as follows:

m =
n∑

i=1
biδa0+a1+···+ai−1 �(6.2)

Here δx denotes the Dirac measure at x. With l = ∑n−1
i=0 ai� l̄ = l + an, we

have �m� l� l̄� = m ←→x Q, with Q given by (6.1). The corresponding birth-
and-death process has the state space

suppm =
{
xi� xi =

i−1∑
j=0

aj� i = 1� � � � � n

}
�

1/bi is the parameter of the exponentially distributed waiting time of the
process at xi, and the probability pi�j of one-step transition from xi to xj of
the embedded Markov chain is given by

p1�2 = 1�(6.3)

pi� i+1 =
ai−1

ai−1 + ai

� i = 2� � � � � n− 1�(6.4)

pi�i−1 =
ai

ai−1 + ai

� i = 2� � � � � n�(6.5)

Here pn�n−1 = 1, if an = ∞� If an < ∞, the process is not conservative. Note
that we can also consider the birth-and-death process on (equidistant) natural
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numbers. In this case we would have to deal with an appropriate scale function
s that is, in general, different from s�x� = x.

First, let � be as in Figure 3 and mi ↔ Qi, α1� i = 1, i = 2� � � � � n1,

Qi�z�=ai
0+�1/−bi1z�+�1/ai

1�+�1/−bi2z�+···+�1/−biñi
z�+�1/ai

ñi
��(6.6)

ai
0 > 0. If we consider occupation time problems on � \⋃n1

i=2 Ii, then the edges
I2� � � � � In1

can be replaced by an edge Ĩ equipped with

m̃ ↔ Q̃�z� =
(

n1∑
i=2
�Qi�z��−1

)−1
�

Example 6.1. Let � be as in Figure 3, and let n1 = 4, ñ2 = 2, ñ3 = 5,
ñ4 = 11, aj

i = b
j
i = 1, aj

0 = 1, aj
ñj
= ∞, j = 2� � � � �4, i = 1� � � � � ñj − 1.

That is, �̃ consists of three edges, linked at O1 of the length 2, 5, 11, respec-
tively, and on each edge we have a symmetric birth-and-death process on the
2, 5 or 11 points, respectively, with reflection at the end and mean waiting
time equal to 1 in any point. One gets by the results of the foregoing section
(see Corollary 5.6) and continued fraction of the respective Q1�1 that �̃ can be
replaced by only one edge with a birth-and-death process with 18 points on
it according to Table 1. The values ãi and b̃i give the Titchmarsh–Weyl coef-
ficient Q1�1 according to (6.1), and the transition probabilities are calculated
according to (6.4), (6.5). Note that b̃i is the mean waiting time of the process in
the point x̃i� A simple Maple-routine for transformation of a rational function
to a continued fraction can be found in [27]. The transition probabilities p1�0
describe the transitions from x̃1 to O1.

As the Titchmarsh–Weyl coefficient has a finite continued fraction represen-
tation, the “linking” of birth-and-death processes as described in Lemma 5.4
obviously is very simple.

Lemma 6.2. Let the conditions be as in Lemma 5�4, and assume addition-
ally that Q1 has a representation �6�6�. Then

Q�z� = a1
0+�1/−b11z� + �1/a1

1� + �1/−b12z�

+ · · · + �1/−b1nz� + �1/�α1/α2� Q2�z���
(6.7)

Remark 6.3. We stress that Q2 in Lemma 6.2 may be a general
Titchmarsh–Weyl coefficient.

Using Lemma 6.2 we are able to consider more difficult trees.

Example 6.4. The next example is related to Example 5.3 (compare
Figure 1). Let �̃ be as in Figure 8 and consider a process whose state space is
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Table 1
Results of Example 6.1

i 0 1 2 3 4 5 6 7 8 9 10

b̃i 3 3 3
2

3
2 2 9

8
625
536

101761
169242

31205
66939

12005
22101

ãi
1
3

1
3

1
2

2
3

2
3

2
3

64
75

8978
7975

531723
252010

8427
3871

57963
42140

pi�i+1 1
2

2
5

3
7

1
2

1
2

25
57

10208
23675

1418524
4077139

8684809
17645519

2415740
3942099

pi�i−1 1
2

3
5

4
7

1
2

1
2

32
57

13467
23675

2658615
4077139

8960710
17645519

1526359
3942099

i 11 12 13 14 15 16 17 18

b̃i
14792
12371

12482
25365

28322
71535

123008
533877

67081
214827

2809
7878

25
442

1
17

ãi
23763
13588

27075
9401

189003
59024

502681
128464

91809
27454

2704
265

289
10 ∞

pi�i+1 1526359
3467004

942599
249489

4476400
9453479

6993111
15538688

26642093
49410725

459045
1859717

5408
20725

pi�i−1 1940645
3467004

1552300
2494899

4977079
9453479

8545577
15538688

22768632
49410725

1400672
1859717

15317
20725 1

marked by the dots in Figure 8 with transition probabilities equal to 1/2 for
the transition to one of the two next neighbors inside the edge, 1 for the tran-
sition from O4� O5 or O6 to the next neighbor and 1/3 for the transition from
O2 or O3 to one of the three next neighbors. Then, using the procedure from
Example 5.3, �̃ can be replaced in the sense of Corollary 5.6 by one edge
equipped with a birth-and-death process as described in Table 2 (compare
Example 6.1 for an explanation of the values in this table). The function
m2�1��0� x�� is drawn in Figure 9 (m2�1 is the speed measure on the new edge).
Actually, Figure 9 does not contain all points of the support ofm2�1, the missing
points are m2�1��87�� = b̃13 ≈ 0�0081 and m2�1��1047�� = b̃14 ≈ 0�0062. Note
that we always have reflection at the end of the new edge, that is, l̄ 2�1 = ∞
in the example under consideration. Figure 10 contains the respective result
for the same problem with five times as much (equidistant) points in any edge
of the graph in Figure 8.

Fig. 8.
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Table 2
Results of Example 6.4

i 0 1 2 3 4 5 6 7 8

b̃i 2 2 2 2
3

50
51

1682
1683

28561
23661

20601
129777

ãi
1
2

1
2

1
2 1 9

10
289
290

9801
9802

57121
75881

294849
304871

pi� i+1 1
2

1
2

1
3

10
19

261
550

48841
97846

4400649
7713667

38785159
88614640

pi� i−1 1
2

1
2

2
3

9
19

289
550

49005
97846

3313018
7713667

49829481
88614640

i 9 10 11 12 13 14

b̃i
461041
476211

1234321
1165533

114921
223715

32041
846885

729
89999

1
161

ãi
769129
754369

196249
125543

255025
20227

312481
4833

25921
27 ∞

pi�i+1 327577239
672916160

86911577
220164648

35128571
318461346

6885675
42196028

312481
4952340

pi�i−1 345338921
672916160

133253071
220164648

283332775
318461346

35310353
42196028

4639859
4952340 1

7. Approximation of diffusion processes by birth-and-death
processes. As described in the introduction, a diffusion process on a graph
can be approximated by birth-and-death processes via discrete approximations
of the speed measure. Example 6.4 can be understood in this way as giving
two levels of approximation for a Wiener process on �̃ with reflection at the
exterior vertices. Figures 9 and 10 then give approximations of the respective
speed measure m1�1.

Example 7.1. Let � be as in Figure 3 with n1 = 3, and consider a diffusion
process on � that is the Wiener process inside the edges, and that has all
coefficients in the gluing conditions equal to 1. More exactly, assume that

m2 = �m2�4�∞�� m3 = �m3�6�∞��
where m2 and m3 denote the Lebesgue measure on �0�4� and �0�6�, respec-
tively. Figures 11, 12 and 13 contain approximations of the speed measure
m1�1 (i.e., the function m1�1 ([0� x])) on the edge I1�1 that replaces �̃. These

Fig. 9.
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Fig. 10.

Fig. 11.

Fig. 12.

Fig. 13.
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Fig. 14.

approximations are obtained as in the foregoing section using approximations
of the speed measures m2 and m3 by

ñ2 = 4� ñ3 = 6 Figure 11,
ñ2 = 40� ñ3 = 60 Figure 12,
ñ2 = 100� ñ3 = 150 Figure 13

equidistant point masses of the same size.

Example 7.2. Let � be as in Figure 14. The vertices are marked by the dots
in Figure 14. Assume that any edge has length 15. Consider a diffusion process
on � that is the Wiener process inside the edges, and that has all coefficients
in the gluing conditions equal to 1. Figure 15 contains an approximation of
the speed measure m1�1 on the edge I1�1 that replaces everything drawn in
Figure 14 (with exception of I1). This approximation is obtained using an
approximation of the speed measure to any edge, that is, of the Lebesgue
measure on �0�15�, by 15 equidistant point masses of size 1.

Acknowledgment. The author thanks Martin Standfuss from the
Dresden University of Technology for computing Example 7.2 and for checking
the other examples.
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