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terms of the reproduction law.

Keywords: self-similar fragmentation, power laws

AMS subject classification (2000): 60G18, 60J25

Submitted to EJP on July 1, 2004. Final version accepted on July 13, 2004.

575

DOI: 10.1214/EJP.v9-215

1

http://dx.doi.org/10.1214/EJP.v9-215


1 Introduction

We study the following continuous-time model of particle fragmentation. Each particle in en-
semble is characterised by a positive quantity which we call mass. The generic particle of mass
x lives a random exponentially distributed time with parameter xα. During the life-time the
mass does not vary and at the end the particle splits into fragments of masses xξj , where {ξj}
is independent of the lifetime of the particle and follows a given probability distribution called
reproduction law. Each particle is autonomous, meaning that the splitting probability rate and
the descendant fragment masses depend only on the mass of the particle and not on the history
of this or other coexisting particles. We are interested in the case α > 0, when particles with
smaller mass tend to live longer. We refer to the proceedings [13] and the survey [1] for a number
of examples arising in physics and chemistry.

The idea of the model was suggested by Kolmogorov in [20], and the first results are due to
Filippov [18]. Brennan and Durrett [16, 17] rediscovered an instance of the model in the context
of binary interval splitting. In a recent series of papers Bertoin [5, 6, 7] introduced more involved
fragmentation processes in which a particle may produce infinitely many generations within an
arbitrary time period or may undergo a continuous mass erosion; see also [2, 4, 8, 24, 25, 29] for
related examples.

The research so far was mainly focussed on the conservative case Σ ξj = 1 when the total
mass is preserved by each splitting. It has been shown that the particles demonstrate quite
a regular long-run behaviour: the typical mass in the ensemble is of the order t−1/α and a
scaled empirical distribution of masses converges to a nonrandom limit. Filippov [18] proved the
convergence of empirical distributions in probability (see also [7]), while Brennan and Durrett
[17] showed convergence with probability one in the binary case. Baryshnikov and Gnedin
[3] studied a sequential interval packing problem which may be seen as a binary instance of
dissipative fragmentation with Σ ξj ≤ 1 and P(Σ ξj < 1) > 0, and proved convergence of the
mean measures associated with the empirical distributions.

Conservative or dissipative fragmentations can be treated both as continuous-time interval
splitting schemes, similar to discrete-time random recursive constructions (as in [23]), or as
state-discretised processes with values in Kingman’s partition structures [5, 6, 7, 8, 10]. These
approaches fail completely if the reproduction law allows the possibility of mass creation, when
the total mass of the offspring may exceed the mass of the parent particle. Such ‘improper
fragmentations’ are both physically plausible and useful in the situations where the generalised
mass models some nonadditive quantity like, e.g. surface energy by aerosols.

By allocating particle of mass x at − log x the fragmentation process can be seen as a branch-
ing random walk with location-dependent sojourn times. From this viewpoint, a constraint on
the sum of masses seems rather odd, which suggests that such a condition is not essential for
the asymptotics. In this paper we argue that this intuition is indeed correct, in the sense that
the convergence of properly scaled empirical distributions of masses holds under fairly general
assumptions on the reproduction law. Though we do require that the individual offspring masses
cannot exceed the parent mass, there is no constraint on the total offspring mass. A new feature
appearing in the general nonconservative case is that the limit of scaled empirical distributions
is not completely deterministic, rather involves a random factor which admits a characterisation
by a distributional fixed-point equation. This phenomenon reminds us, of course, of strong limit
theorems for branching random walks, see e.g. Biggins [15] and Uchiyama [30]; we shall discuss
the connection and the differences later on.

576



The rest of this work is organised as follows. Notation and basic assumptions are given in
Section 2, and Section 3 presents the homogeneous case α = 0 which has a simple connection with
branching random walks. Then we compute the first moment of power sums and then determine
its asymptotics using a contour integral. This yields the convergence of mean measures in Section
5. An alternative approach based on a limit theorem of Brennan and Durrett is presented in
Section 6. In Section 7, we consider a remarkable martingale, which plays the same role as
the so-called additive martingales in the homogeneous case. The main result of convergence of
scaled empirical measures is proved in Section 8. Then we provide some examples, and finally, in
Section 10, we sketch the extension of the preceding results to self-similar fragmentations with
possibly infinite reproduction measure.

2 Definitions and assumptions on the reproduction law

It will be assumed that α > 0 unless explicitly indicated.
The collection {ξj} of offspring masses of a unit particle is identified with a random sequence

of positive real numbers which is either finite or converges to 0. We shall also view {ξj} as a
random set, defined formally as a counting random measure Σ δξj on ]0, 1] . Basically we require
that

{ξj} ⊂ ]0, 1] , E#{ξj} > 1 , P(1 ∈ {ξj}) < 1 , {ξj} 6= ∅ . (1)

Many features of the fragmentation process can be expressed in terms of the structural

measure

σ(B) = E#({ξj} ∩B) , B ⊂ ]0, 1],

and its Mellin transform

φ(β) =

∫ 1

0
xβσ(dx) = E

∑

j

ξβj

which we call the characteristic function. In particular, the first three conditions in (1) amount
to the assumptions that σ is supported by ]0, 1], that σ [0, 1] > 1 and that σ{1} < 1.

Because |φ(β)| ≤ φ(<β), the natural domain of definition of φ is a complex halfplane to the
right of the convergence abscissa βa of the integral. If βa = −∞ the halfplane is the whole plane,
and otherwise the halfplane may be open or closed. The characteristic function is analytical in
the halfplane, strictly decreasing on the real axis, and in view of (1) satisfies φ(0) > 1 and
φ(β)→ σ{1} < 1 as <β →∞.

It is crucial for our results and will be assumed throughout that there exists the critical

exponent β∗ > 0 satisfying the equation

φ(β) = 1 . (2)

If the critical exponent exists then it is unique and there are no solutions to (2) in the halfplane
<β > β∗. And if some β 6= β∗ with <β = β∗ satisfies (2) then σ is arithmetic, meaning that
σ is a discrete measure supported by a geometric sequence. Note that in the conservative case
β∗ = 1 and in the dissipative case β∗ < 1.

Equation (2) has no real solutions (thus the critical exponent is not defined) only if φ(βa+) <
1. An example of this situation is the measure

σ(dx) = c1{x<1/2} x
−3/2 log−2 x dx
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with a suitable choice of c, and βa = 1/2.
Further assumptions about the reproduction law will be introduced in a due place. Specifi-

cally, the L2-convergence result in Section 8 requires that

E
(∑

j

ξβ
∗

j

)2
<∞ . (3)

Example. Consider a dissipative reproduction law induced by the uniform stick-breaking.
Let U0, U1, . . . be i.i.d. uniform, and let

ξj = (1− Uj)
j−1∏

k=0

Uk , j = 1, 2, . . .

meaning that the uniform portion of the mass 1 − U0 is lost, and the rest is fragmented by
the ‘random alms’ principle (as Halmos called stick-breaking). Equivalently, the offspring {ξj}
of a unit particle can be seen as the collection of masses of a random Poisson-Dirichlet distri-
bution with parameter 1, upon removing a mass selected by a size-biased pick. Building the
characteristic function

φ(β) =
∞∑

j=1

1

(1 + β)j+1
=

1

β(β + 1)

we see that the abscissa is at βa = 0 and the critical exponent is β∗ = (−1 +
√
5)/2.

It should be noted that there is no any substantial constraint on σ imposed by the requirement
that σ be a structural measure. Given σ on ]0, 1], satisfying σ [0, 1] > 1 and σ{1} < 1, a possible
reproduction law satisfying (1) with this structural measure can be constructed as follows.
Decompose σ = σ1+σ2 so that σ1 be probability measure and σ2 some other measure. Let ξ1 be
a random point with distribution σ1 and let ξ2, ξ3, . . . be the atoms of a Poisson point process on
the unit interval, with intensity measure σ2. Clearly the point process {ξj} will have intensity
σ.

Let X(t) = {Xj(t)} be the set of particles coexisting at time t ≥ 0. We assume that
the process starts with a sole particle of unit mass, that is X(0) = {1}. Denoting X (y) the
fragmentation process that starts with a particle of mass y > 0 we have the fundamental self-
similarity identity

X(y)(t)
d
= y X(tyα) . (4)

We shall find useful to consider the power-sum functionals

M(t, β) =
∑

j

Xβ
j (t)

and their means
m(t, β) = EM(t, β).

For shorthand we sometimes refer to the mass of a particle raised to the power β as the β-mass,
thusM(t, β) is the total β-mass of the population existing at time t. Two instances with obvious
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physical interpretations are the 0-mass equal to the number of particles, and the 1-mass equal
to the total mass of the ensemble.

Observe the obvious interchangeability between parameters α and β. In the variables ξ̃j = ξβj
the fragmentation process has the life-time parameter α/β and differs only by a particle-wise
transformation of masses. Thus, for β = β∗ the transformed fragmentation process has the
mean-value mass conservation property EΣ ξ̃j = 1. The change of variables with β < 0 yields
mathematically equivalent (though physically curious) process where the individual ‘fragments’
grow, but the decaying life-times slow down the total increase of mass.

3 The homogeneous case

In this section we briefly inquire into the homogeneous case α = 0 where each life-time is mean
one exponential, as in [5].

We argue that in the homogeneous case each M(t, β) is finite (meaning that the series
converges absolutely for <β > βa) and the mean total β-mass is given by the formula

m(t, β) = exp(−tψ(β)) (5)

where and henceforth
ψ(β) = 1− φ(β).

The formula is valid without any constraint on the fragmentation law {ξj}. For example, when
each particle always splits in two then M(t, 0) is a binary Yule process and m(t, 0) = et, as is
well known [28].

The formula is shown by partitioning all particles that ever existed in generations, starting
with the sole progenitor (generation 0). Clearly, the mean total β-mass of generation k is φk(β).
Let τ1, τ2, . . . be the epochs of a rate one Poisson process. The probability that a given particle
in generation k contributes to m(t, β) is P(τk ≤ t < τk+1), thus m(t, β) is the same as in the
‘generational’ model where particles of each generation 1, 2, . . . appear simultaneously at times
τ1, τ2, . . .. But in the generational model the index of generation existing at time t is a Poisson
variable with parameter t, thus the mean β-mass at time t is indeed

e−t
∞∑

k=0

tk

k!
φk(β) = exp(−tψ(β)) .

Under assumption (1), it follows that in the homogeneous case |m(t, β)| grows exponentially
for <β < β∗, and decays exponentially for <β > β∗. Moreover, for <β > β∗ the total β-mass
of all particles that ever existed has a finite mean value 1/ψ(β), and this also holds for arbitrary
α ≥ 0.

The process Z(t) = {Zj(t)} with Zj(t) = − logXj(t) is a continuous-time branching random

walk, as studied in [30, 15], and in this context the formula (5) is, of course, well known. It is
read from the work of Biggins [14, 15] that for every β > βa, the process

W (t, β) := exp(tψ(β))
∑

j

Xβ
j (t) , t ≥ 0
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is a martingale with càdlàg paths, which converges almost surely and in mean as t→∞ provided
that ψ(β) < βψ′(β), see [10] for details. Note that this holds in the special case when β = β∗ is
the critical exponent, for which there is the identity W (t, β∗) =M(t, β∗).

When furthermore the reproduction law is not arithmetic, the asymptotic behaviour of the
empirical distribution of masses can be described as follows: for every continuous function
f : R → R with compact support,

lim
t→∞

√
t e−t(βψ

′(β)−ψ(β))
∑

j

f(tψ′(β)− Zj(t)) =
W (∞, β)√
2π|ψ′′(β)|

∫ ∞

−∞
f(−z)eβzdz . (6)

where W (∞, β) is the terminal value of W (t, β).

4 Asymptotics of mean power sums

4.1 Power sums and their means

The above formula (5) for α = 0 implies that also in the case α > 0 each m(t, β) is finite for
t ≥ 0, simply because the mean life-times increase with α. The first-split decomposition with
application of (4) shows that M(t, β) satisfies the distributional identity

M(t, β)
d
= 1(t < τ) + 1(t ≥ τ)

∑

j

ξβj Mj(ξ
α
j (t− τ)) (7)

where τ is the exponential life-time of the progenitor, and the Mj ’s are independent replicas of
M(·, β), which are also independent of τ and {ξj}. Computing expectations we arrive at the
integral equation

m(t, β) = e−t +

∫ t

0
e−s

∫ 1

0
m((t− s)xα, β)xβ σ(dx) .

Differentiating we see that m(·, β) is a solution to the Cauchy problem for the integro-differential
equation

∂tm(t, β) = −m(t, β) +

∫ 1

0
m(xαt, β)xβ σ(dx) . (8)

which must be complemented by the initial value m(0, β) = 1 . Uniqueness of C∞ solutions for
equations of this type is shown in [19].

Equation (8) defines functions m for all <β > βa. For the higher derivatives we have

∂kt m(t, β) = ∂ktm(0, β) m(t, kβ + α),

thus m is increasing in t for β < β∗ and decreasing for β > β∗.
Solving (8) in power series is straightforward. Introducing

γ(n, β) =
n−1∏

k=0

ψ(β + αk) (9)

(by convention, γ(0, β) = 1), we compute

m(t, β) =

∞∑

n=0

(−t)n
n!

γ(n, β) (10)
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which is an entire function of t ∈ C. It is indeed the right solution because from the formula for
derivatives it is clear that m(·, β) should be C∞ for t ≥ 0. For α = 0 we have γ(n, β) = ψn(β)
and (10) becomes (5). See [19] for yet another interesting representation of m(t, β), in the form
of a generalised Dirichlet series.

4.2 A contour integral

When φ(β) is a rational function, splitting γ(· , β) in linear factors shows that the series (10)
represents a generalised hypergeometric function, in which case the |t| → ∞ asymptotic expan-
sions have been thoroughly studied by Mellin-Barnes’ contour integral technique, see [22]. This
method extends to the more general situation considered here (also see [3]).

Call β singular if ψ(β + αn) = 0 for some integer n ≥ 0. For singular β the series m(t, β) is
a polynomial, thus m(t, β) = γ(n, β)tn + O(tn−1) for t → ∞. Analogous asymptotics hold also
for nonsingular β, but it is more difficult to justify, because m is then an infinite series which
starts alternating from some term. A good heuristic amounts to substituting m ∼ cta into (8)
– the left-hand side is then of the order ta−1 while the right-hand side is o(ta) exactly when
ψ(β + aα) = 0, which suggests that a = (β∗ − β)/α is the right exponent. Although this kind
of reasoning can be made precise it gives no idea of the coefficient, see [19].

Assuming β nonsingular we extrapolate the function γ(· , β) from the integer values to arbi-
trary complex values z (such that φ(αz + β) is defined) by means of the formula

γ(z, β) =
∞∏

k=0

ψ(β + αk)

ψ(β + α(k + z))
. (11)

Convergence of the product follows as in [3], Section 5. Thus defined, γ satisfies the functional
equation

γ(z + 1, β) = ψ(β + αz)γ(z, β)

reminiscent of the well-known equation for Euler’s gamma function.
All singularities of the function γ(· , β) are the poles located at roots of (2). Let

Pβ = {z : ∃n ≥ 0, ψ(β + α(n+ z)) = 0}

be the set of singular points. Because (2) has no solutions to the right of β∗, the rightmost point
of Pβ is zβ := (β∗ − β)/α, where γ(· , β) has a simple pole provided β∗ > βa.

Still assuming β nonsingular we have Pβ ∩ {0, 1, . . .} = ∅. Since the poles of Γ(−z) are
nonnegative integers, the function Γ(−z)γ(z, β)tz (with t as parameter) also has these poles,
with residue (−1)ntnγ(n, β)/n! at z = n. Defining C to be a vertical line between <zβ and
nβ := min(0, d<zβe) we obtain by the residue theorem and an estimate of γ

∞∑

n=nβ

(−t)n
n!

γ(n, β) =
1

2πi

∫

C
Γ(−z)γ(z, β)zt dz . (12)

If β∗ > βa the function γ(· , β) is meromorphic in an open strip containing the line <z = zβ ,
and the residue at zβ is

Reszβγ(z, β) =
ψ(β)

αψ′(β∗)
γ

(
β∗ − β
α

, α+ β

)
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as it follows from the identity

γ(s, β) =
ψ(β)

ψ(β + αs)
γ(s, α+ β)

upon expanding the ratio. Replacing C by another integration contour C ′ located in the half-
plane <z < <zβ so that all poles of γ(· , β) in this half-plane lie to the left of C ′ we obtain the
principal-term asymptotics of m.

Theorem 1 Suppose β∗ > βa, the structural measure σ is nonarithmetic and conditions (1)
hold, then

m(t, β) ∼ Γ

(
β − β∗
α

)
ψ(β)

αψ′(β∗)
γ

(
β∗ − β
α

, α+ β

)
t(β

∗−β)/α , as t→∞. (13)

for <β > βa.

Using the identity γ(−z , αz + β) γ(z, β) = 1 we can re-write the γ-factor in (13) as

γ

(
β∗ − β
α

, α+ β

)
=

1

γ ((β − β∗)/α , α+ β∗)
.

The restriction of ψ to the real segment ]βa,∞[ is plainly a concave increasing function, so
the condition β∗ > βa entails 0 < ψ′(β∗) <∞. We also remark that in the arithmetic case other
poles on the line <z = β∗ would contribute to the coefficient. Further terms of the asymptotic
expansion can be obtained by pulling the integration contour through other poles left of β∗, as
long as φ admits a meromorphic continuation, which can go beyond the convergence abscissa.
If β∗ is the only point of Pβ in a closed strip β∗ − θ ≤ <z ≤ β∗ then the rest-term in (13) is
estimated as O(t(β

∗−β)/α−ε) with ε = min(1, θ/α).

5 Convergence of the mean measures

We encode the configuration of masses X(t) = {Xj(t)} into the random measure

∑

j

Xβ∗

j (t)δt1/αXj(t)
.

The associated mean measure σ∗t is defined by the formula

∫ ∞

0
f(x)σ∗t (dx) = E

∑

j

f(t1/αXj(t))X
β∗

j (t) (14)

which is required to hold for all compactly supported continuous functions f . It is easily seen
that σ∗t is a probability measure. Our next goal is to show that the measures σ∗t converge weakly
to a probability measure ρ on ]0,∞[ .

Because

t(β−β
∗)/αm(t, β) =

∫ ∞

0
xβ−β

∗

σ∗t (dx)
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the convergence of t(β−β
∗)/αm(t, β) implied by (13) amounts to the convergence of power mo-

ments ∫ ∞

0
xβ−β

∗

σ∗t (dx)→ Γ

(
β − β∗
α

)
ψ(β)

αψ′(β∗)

1

γ ((β − β∗)/α , α+ β∗)
.

Specialising β = β∗ + αk this simplifies to

∫ 1

0
xkα σ∗t (dx)→

(k − 1)!

αψ′(β∗)

k−1∏

j=1

1

ψ(β∗ + αj)

in application of (11). It is easy to check and is well known [12, 17] that for n = 0, 1, . . . the
related moment problem is determinate, whence the following result.

Theorem 2 Under assumptions of Theorem 1 the measures σ∗t converge weakly, as t → ∞,

to a probability measure ρ uniquely determined by its power moments

∫ ∞

0
xkαρ(dx) =

(k − 1)!

αψ′(β∗)

k−1∏

j=1

1

ψ(β∗ + αj)
, k = 1, 2, . . . (15)

Theorems 1 and 2 imply that

t(β−β
∗)/αm(t, β)→

∫ ∞

0
xβ−β

∗

ρ(dx) (16)

which extends the convergence of expectations in (14) to a wider class of functions f .

6 Self-similar stick-breaking process

A key tool in the conservative case treated in [16, 17, 5, 6, 7] has been the following observation
related, somewhat paradoxically, to the simplest dissipative case of a singleton ensemble with
reproduction law {η}, where η is a random variable assuming values in ]0, 1]. That is to say,
if at some time the particle has mass x then, independently of the history, the particle shrinks
with probability rate xα and the new mass after the shrink becomes xη where η follows σ̂, and
σ̂ is the probability law of η.

We recollect briefly a result from [17] (also see [7, 9]). Introduce

ψ̂(β) = 1−
∫ 1

0
xβ σ̂(dx)

and suppose ψ̂(0+) < ∞. Let Lt be the sole mass at time t, and m̂(t, β) = ELβt . Assuming σ̂
non-arithmetic, Brennan and Durrett [17] proved that for t→∞

t1/αLt
d→ Y 1/α and m̂(t, β)→ EY β/α

where Y is a random variable with moments

EY k =
(k − 1)!

αψ̂′(0+)

k−1∏

j=1

1

ψ̂(αj)
.
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The convergence of moments m̂(t, β) was shown for all real β strictly to the right of the con-
vergence abscissa of ψ̂ (which is nonpositive due to the normalisation σ̂ ]0, 1] = 1). They also
suggested the explicit representation

Y
d
=

∞∑

k=0

εk

k∏

j=0

ηαj (17)

where all ηj , εj are independent, εj is mean one exponential, ηj for j > 0 are replicas of η, and
η0 follows the law

P(η0 ∈ dx) =
σ̂[x, 1]dx

ψ̂′(0)x
x ∈ ]0, 1].

Each product in (17) corresponds to the mass of the particle after k splits, conditionally given
the initial mass is η0, thus formula (17) identifies Y with the well-known exponential functional
of a (stationary) compound Poisson process, see e.g. the survey [12].

In the conservative fragmentation case, the above ‘stick-breaking’ process describes the evo-
lution of a particle tagged by an atom of isotope that was injected at a random uniform location
into the progenitor unit mass. The mechanism which determines the line of descent of the
tagged particle amounts, at each consecutive split, to a random mass-biased pick from the child
particles. Thus, defining σ̂(dx) := xσ(dx) to be the distribution of a mass-biased pick from
{ξj}, we obtain the relation m̂(t, β − 1) = m(t, β) which was observed in [17], p. 112.

In the general nonconservative case choosing σ̂(dx) := xβ
∗
σ(dx), we still get m̂(t, β − β∗) =

m(t, β) and ψ̂(z) = ψ(z + β∗), though no interpretation of these relations akin to the tagged
fragment process is known. The measure ρ may be identified with the distribution of Y 1/α. A
consequence of this discussion and the result of Brennan and Durrett is the following corollary.

Corollary 3 The conclusion of Theorem 2 remains valid even if the assumption β∗ > βa is

replaced by the weaker ψ′(β∗+) <∞

The tiny improvement upon Theorem 2 appears in the case where the characteristic function
is defined in a closed half-plane and β∗ = βa, i.e. the critical exponent falls exactly on the
convergence abscissa. An example of such situation is the structural measure of the form σ(dx) =
c1{x<1/2}x

−3/2| log x|−3 dx with a suitable c. The method based on contour integration requires
in such cases the analytical continuation of φ in a domain to the left of βa.

Alternatively, along the lines in [16, 17, 9], the renewal theory can be applied also in the
nonconservative case, to prove first the convergence of measures σ∗t → ρ and then to justify the
asymptotics of mean power-sums using the uniform integrability.

7 A martingale

The total β∗-mass of coexisting particles deserves a special notation Mt := M(t, β∗), as this
quantity plays an important role. By definition of the critical exponent, each reproduction
preserves the mean β∗-mass, henceMt is a nonnegative martingale. We denoteM∞ = limt→∞Mt

its terminal value. Recall from Section 3 that in the homogeneous case α = 0, Mt can be viewed
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as the so-called additive martingale associated to some branching random walk in continuous
times. In the case α > 0, the same standard argument yields the following convergence result.

Proposition 4 Under assumptions (1) and (3), the martingale (Mt, t ≥ 0) is bounded in L2.
Its terminal value is strictly positive and satisfies the distributional identity

M∞
d
=
∑

ξβ
∗

j M (j) (18)

where M (j) are independent copies of M∞, also independent of {ξj}. The identity taken together

with conditions (1), (3) and EM∞ = 1 characterise M∞ uniquely.

Proof. Since Mt is a pure-jump martingale we need to check that the sum of its squared jumps
is integrable. Observe that when a mass x splits into masses {xξj} this induces a jump of Mt

of size xβ
∗
(
Σξβ

∗

j − 1
)
. On the other hand, such event occurs at rate xα. This entails that the

predictable compensator of the sum of squared jumps
∑

s≤t(Ms −Ms−)
2 is equal to

c

∫ t

0

∑

j

X2β
∗+α

j (s)ds ,

where

c = E


∑

j

ξβ
∗

j − 1



2

is finite (3). We thus get

E
∑

t≥0

(Ms −Ms−)
2 = cE

∫ ∞

0

∑

j

X2β
∗+α

j (t) dt = c/ψ(2β∗)

which is finite and positive because 2β∗ > β∗ and ψ is strictly increasing. The expectation
was computed by isolating a contribution of each particle. Indeed, a generic particle of mass x
contributes x2β

∗
, because this is the (2β∗ + α)-mass multiplied by the expected lifetime x−α,

whence the expectation equals the mean total 2β∗-mass of all ever existing particles, which is
1/ψ(2β∗), as we know from the homogeneous case in Section 3.

The fixed-point equation (18) follows readily as the limit form of (7). The uniqueness part
is a consequence of [27] (see remark on p. 200).

To show that M∞ > 0 assume that ξj ’s are in decreasing order. Then by (1) ξ1 > 0 and
P(ξ2 > 0) > 0. From the fixed-point equation we find, using M∞ ≥ 0, ξj ≥ 0 and independence,
that

P(M∞ = 0) ≤ P(ξβ
∗

1 M
(1) = ξβ

∗

2 M
(2) = 0) = P(M (1) = 0)P(ξβ

∗

2 M
(2) = 0)

where P(M (j) > 0) > 0 (since the mean is 1) and P(ξβ
∗

2 M
(2) = 0) = 1 − P(ξ2 > 0)P(M (2) >

0) < 1. This implies readily P(M∞ = 0) = 0. ¤

Note that in the conservative case Σξj = 1 we have β∗ = 1 and (18) is satisfied for M∞ a
constant. We also mention that if we replace the assumption (3) by the weaker

E
(∑

j

ξβ
∗

j

)p
<∞
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for some 1 < p ≤ 2, a similar argument based on the calculation of the expectation of the sum
of the p-th powers of jumps then shows that the martingale Mt is bounded in Lp, see e.g. Neveu
[26].

8 L2-convergence

Our principal result improves on the convergence of the mean measures σt → ρ and says that
the scaled empirical measures induced by X(t) converge in a L2-sense to the measure M∞ρ.

Theorem 5 Assume (1), (3), that β∗ > βa and that σ is nonarithmetic. Then for any bounded

continuous f

L2− lim
t→∞

∑

j

Xβ∗

j (t)f(t1/αXj(t)) =M∞

∫ ∞

0
f(x)ρ(dx).

Proof. We need to show that

E


∑

i,j

Xβ∗

i (t)f(t1/αXi(t))X
β∗

j (t)g(t1/αXj(t))


→ EM2

∞

(∫ ∞

0
f(x)ρ(dx)

)(∫ ∞

0
g(x)ρ(dx)

)

(19)
for positive f and g bounded from above by 1. Indeed, suppose (19) is shown. Denote

At =
∑

j

Xβ∗

j (t)f(t1/αXj(t)).

Take f = g to conclude from (19) that

lim
t→∞

EA2t = EM2
∞

(∫ ∞

0
f(x)ρ(dx)

)2
.

Similarly, setting g = 1

lim
t→∞

E(AtMt) = EM2
∞

∫ ∞

0
f(x)ρ(dx).

Recalling that EM 2
t → EM2

∞ and combining the above we get the desired

lim
t→∞

E
(
At −Mt

∫ ∞

0
f(x)ρ(dx)

)2
= 0 .

To prove (19) let us replace t by t + s and condition on the configuration of masses X(s).
At time t+ s two coexisting particles may stem from the same ancestor that lived at time s or
from two different ancestors; write i ∼s j in the first case, and write i 6∼s j in the second. The
sum in the left-hand side of (19) is split then in two

S1 + S2 = E


∑

i∼sj

· · · |X(s)


+ E


∑

i6∼sj

· · · |X(s)


 .
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Using the fundamental self-similarity relation (4) and the Markov nature of the fragmentation
process we estimate the first sum as

S1 ≤
∑

k

X2β
∗

k (s) E


∑

j

Xβ∗

j (t)



2

hence by (13) and Proposition 4

ES1 < const s−β
∗/α → 0 as s→∞

uniformly in t.
Dealing with S2 requires more effort. We use the parallel notation yj = Xj(s). Write i↘ k

if the mass Xi(t+s) stems from yk. By independence, the descendants of different particles with
masses yk and y` evolve independently, thus grouping the masses Xj(t+ s) by the ancestors at
time s yields

S2 =
∑

k 6=`


E

∑

i↘k

· · ·




E

∑

j↘`

· · ·




However, by self-similarity and convergence of the mean measures

E
∑

i↘k

yβ
∗

k Xβ∗

i (tyαk )f((t+ s)1/αykXi(ty
α
k ))→ yβ

∗

k

∫ ∞

0
f(x)ρ(dx)

E
∑

j↘`

yβ
∗

` Xβ∗

j (tyα` )g((t+ s)1/αy`Xj(ty
α
` ))→ yβ

∗

`

∫ ∞

0
g(x)ρ(dx)

as t→∞, therefore by dominated convergence

ES2 ∼
(∫ ∞

0
f(x)ρ(dx)

)(∫ ∞

0
g(x)ρ(dx)

)
E
∑

k 6=`

Xβ∗

k (s)Xβ∗

` (s)

as s→∞. It remains to note that

E
∑

k 6=`

Xβ∗

k (s)Xβ∗

` (s) ∼ E
∑

k , `

Xβ∗

k (s)Xβ∗

` (s) = EM2
s → EM2

∞

because
E
∑

k

X2β
∗

k (s) = m(t, 2β∗)→ 0 .

¤

Remarks. This result bears obvious similarities with (6) for the homogeneous case α = 0.
It is interesting to observe that in the homogeneous case, masses decay exponentially fast and
the limiting scaled empirical measure is always exponential (up-to a random factor), whereas
for α > 0 the decay of masses is polynomial and the limiting scaled empirical measure depends
crucially on the structural measure σ (more precisely, σ can be recovered from the limiting scaled
empirical measure for α > 0, but not for α = 0).
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The limit measure M∞ρ has no atom at 0. If we omit the assumption #{ξj} 6= ∅, the result
should be modified properly by allowing a positive probability of extinction.

Finally, it is known that in the binary conservative case the scaled empirical measures con-
verge with probability one [17]. It would be interesting to extend this result to the nonconser-
vative case.

In parallel to (16) there is the following extension of Theorem 5 to power functions.

Corollary 6 Under assumptions of Theorem 5

L2− lim
t→∞

t(β−β
∗)/α

∑

j

Xβ
j (t) =M∞

∫ ∞

0
xβ−β

∗

ρ(dx)

for <β > βa.

Proof. Along the same line, the proof is reduced to showing that

sup
t≥0

t(β
∗−β)/α y−β

∗

E
∑

j

(
X
(y)
j (t)

)β

is bounded uniformly in y ∈ ]0, 1[ . And the latter follows by noting that (4) and (16) imply

t(β−β
∗)/α E

∑

j

(
X
(y)
j (t)

)β
→ yβ

∗

∫ ∞

0
xβ−β

∗

ρ(dx) .

¤

9 Examples

9.1 Filippov’s example revisited

Extending an example in Filippov (see [18], section 8) consider the structural measure

σ(dx) = λxθ−1 dx , x ∈ ]0, 1]

with parameters λ > min(θ, 0) and arbitrary θ ∈ R. For λ < θ + 1 the fragmentation is mean-
value dissipative. We have

φ(β) =
λ

θ + β
, β∗ = λ− θ , ψ(β) =

β − β∗
β + θ

.

The characteristic function is thus meromorphic in C with a unique simple pole at βa = −θ.
Computing

γ(n, β) =
(A)n
(B)n

we see that this is the ratio of two Pochhammer factorials, with A = (β − β∗)/α and B =
(θ + β)/α, thus m(t, β) = 1F1(A;B;−t) is Kummer’s hypergeometric function. The anatytical
extension of γ is

γ(z, β) =
Γ(A+ z)Γ(B)

Γ(B + z)Γ(A)
.
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Computing the moments we obtain

∫ ∞

0
xαk ρ(dx) = (λ/α)k

which identifies ρ as

ρ(dx) =
α

Γ(λ/α)
xλ−1e−x

α
dx , x ≥ 0 .

Note that the shape parameter θ cancels and does not appear in ρ. It follows that σt := x−β
∗
σ∗t

(the intensity of Σ δt1/αXj(t)
) converges to the measure

x−β
∗

ρ(dx) =
α

Γ(λ/α)
xθ−1e−x

α
dx, x ≥ 0

in accord with the case λ = 2, θ = 1 considered in [17] in connection with the conservative
binary fragmentation with ξ1 uniform and ξ2 = 1− ξ1.

It follows that the mean number of particles satisfies

m(t, 0) ∼ Γ(θ/α)

Γ(λ/α)
t(λ−θ)/α , t→∞ .

which agrees with a special case in [18]. Of course, this formula makes sense only for θ > 0,
because our asymptotics for m(t, β) hold only for <β > βa, thus for θ ≤ 0 the value β = 0 is
not considered.

The case λ = 1, θ = 0, when σ(dx) = x−1dx corresponds to the conservative fragmentation
generated by the uniform stick-breaking, as in the example in Section 2 (but without removing
a piece). It is well known that the distribution of a size-biased pick from {ξj} is uniform, and
this implies that the intensity measure of Σδξj is indeed σ(dx) = x−1dx.

9.2 Hypergeometrics

The following is a further generalisation of Filippov’s example, and covers the class of dissipative
binary fragmentations treated in [3]. Consider a Dirichlet polynomial

g(x) =

p∑

j=1

λj x
θj−1 (20)

which is non-negative on ]0, 1] and has real parameters satisfying

p∑

j=1

λj
θj

> 1 .

Then σ(dx) = g(x)dx is a measure on ]0, 1] with rational characteristic function

φ(β) =

p∑

j=1

λj
θj + β
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and by the assumption the righmost root of φ(β) = 1 is positive, denote it also β1 = β∗ and
denote further roots β2, . . . , βp (the roots are certainly different from the poles of φ).

Observe that

ψ(β) =

p∏

j=1

β − βj
β + θj

,

thus assuming α = 1 (without loss of generality) we have

m(t, β) =
∞∑

n=0

(−t)n
n!

p∏

j=1

(β − βj)n
(β + θj)n

where we recognise a generalised hypergeometric function of the type pFp. By (1) we have
m(t, β) ∼ c(β)tβ−β

∗
for <β > βa. Noting that

ψ′(β∗) =
1

β∗ + θ1

p∏

j=2

β∗ − βj
β∗ + θj

and manipulating infinite products, the coefficient is evaluated in terms of the gamma function
as

c(β) =

p∏

j=2

Γ(β∗ − βj)
Γ(β − βj)

p∏

j=1

Γ(β + θj)

Γ(β∗ + θj)
.

This allows to recover the density by Mellin inversion as

dρ

dx
=

1

2πi

∏p
j=2 Γ(β

∗ − βj)∏p
j=1 Γ(β

∗ + θj)

∫
i∞

−i∞

∏p
j=1 Γ(z + β∗ + θj)∏p
j=2 Γ(z + β∗ − βj)

x−z−1 dz , x ≥ 0

which is an instance of Meijer’s G-function, see [22].
The limit measure is uniquely determined by the integer moments which can be written as

∫ ∞

0
xk ρ(dx) =

(k − 1)!

ψ′(β∗)

p∏

j=1

(β∗ + 1 + θj)k−1
(β∗ + 1− βj)k−1

,

where the derivative may be also computed as

ψ′(β∗) =

p∑

j=1

λj
(β∗ + θj)2

10 Fragmentations with infinite reproduction measure

We sketch how the preceding results can be extended to a class of self-similar conservative or
dissipative fragmentations with infinite reproduction measure. Such processes were introduced
in [6] where the reproduction law was called ‘dislocation measure’.

Let ν be a measure on the infinite simplex

∆ = {(sj) : sj ≥ 0, sj ↓ 0, Σsj ≤ 1}
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such that the integral

ψ(β) :=

∫

∆
(1− Σ sβj ) ν(ds) (21)

satisfies 1 < ψ(β) < ∞ for some β > 0. For α ≥ 0 we can define a fragmentation process
(X(t), t ≥ 0) with the property that a generic particle of mass x gives birth to a collection of
particles of sizes xsj with s = (sj) ∈ B at rate xαν(B), where sj runs over nonzero coordinates
of s and B ⊂ ∆ runs over Borel sets of finite ν-measure.

If ν is a probability measure it can be regarded as a reproduction law by defining (ξj) to
be a random element of ∆ with distribution ν. In this case the structural measure is identified
with the superposition of marginal distributions of ν, and the definition (21) agrees with our
definition of the characteristic function in Section 2. The case ν < ∞ is easily reduced to the
case ν(∆) = 1 by the obvious time-change.

In the case ν(∆) =∞ some features of the fragmentation process are different, in particular,
each particle produces infinitely many generations within arbitrarily small time period. As a
consequence, the life-time of a particle is not a well-defined quantity and we do not have equation
like (7). Still, we can define βa and β∗ exactly as in the case of finite measure, and consider
β-masses for <β > βa. Formula (10) remains valid and can be proved by an argument exploiting
approximation of ν by suitable finite measures, or by using the methods developed in [9, 11]
(same applies to (5) in the case α = 0). For α > 0 conclusions of Theorems 2 and 5 remain valid
if we assume that

ψ′(β∗+) <∞ and

∫

∆




∞∑

j=1

sβ
∗

j − 1



2

ν(ds) <∞ ,

and impose a non-arithmeticity condition on ν. The analog of Proposition 4 is shown by ar-
guments similar to those in Theorem 2 of [7], and the analog of distributional equation (18)
generalises in the form of the Laplace transform identity

L(θ) =
∫

∆

∞∏

j=1

L(θsj) ν(ds) (22)

for L(θ) := E exp(−θM∞). The question about the uniqueness of solution to (22) with infinite
measure seems to have not been considered before and remains open.
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nators. In: Séminaire de Probabilités XXXVII, Lecture Notes in Maths. 1832, pp. 333-359.
Springer, Berlin.

[26] J. Neveu (1987). Multiplicative martingales for spatial branching processes. In Seminar

on Stochastic Processes, Progr. Probab. Statist. 15 pp. 223–242. Birkhäuser, Boston.
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