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Abstract: Let X1, . . . , Xn be independent, integer valued random variables, with pth mo-

ments, p > 2, and let W denote their sum. We prove bounds analogous to the classical

non-uniform estimates of the error in the central limit theorem, but now, for approximation

of L(W ) by a translated Poisson distribution. The advantage is that the error bounds, which

are often of order no worse than in the classical case, measure the accuracy in terms of total

variation distance. In order to have good approximation in this sense, it is necessary for

L(W ) to be sufficiently smooth; this requirement is incorporated into the bounds by way of

a parameter α, which measures the average overlap between L(Xi) and L(Xi+1), 1 ≤ i ≤ n.
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1 Introduction

Let X1, . . . , Xn be independent, integer valued random variables. For each 1 ≤ i ≤ n, we

centre Xi by requiring that 0 ≤ IEXi = µi < 1, and we assume that IE|Xi|p < ∞, where

p ∈ (2,∞) is the same for all i; we write VarXi = σ2
i . The Berry–Esseen theorem then

bounds the error in the approximation to W :=
∑n

i=1 Xi by a normal distribution with the

same mean and variance as W :

sup
x∈IR
|IP[W − µ ≤ xσ]− Φ(x)| ≤ CΓ3∧p, (1.1)

where µ :=
∑n

i=1 µi = IEW , σ2 :=
∑n

i=1 σ
2
i = VarW , Γs := σ−s

∑n
i=1 IE{|Xi−µi|s} for any

0 < s ≤ p, and Φ denotes the standard normal distribution function. However, for integer

valued random variables, approximation by a distribution which, like the normal, has a

smooth probability density is not necessarily the most natural choice. It was shown using

Stein’s method in Barbour and Xia (1999) and in Čekanavičius and Vaitkus (2001) that there

are probability distributions on the integers, the simplest of which is the translated Poisson

distribution, which allow an approximation whose error, with respect to the stronger, total

variation distance, is of essentially the same order (Barbour and Xia 1999, Corollary 4.5)

as in (1.1); in such results, an extra condition is required to exclude the possibility that

W is nearly concentrated on a lattice of span greater than 1 and this is also reflected in

the bounds obtained. Analogous asymptotic expansions, with error again measured in total

variation norm, were established in Barbour and Čekanavičius (2002), Theorem 5.1.

In this paper, we also consider approximation in total variation, but in a non–uniform

sense. For sets A ⊂ [µ + xσ,∞) ∩ Z, x > 0, we show in Theorem 2.1 that, under mild

conditions, the error in approximating the probability IP[W ∈ A] by the corresponding

probability for a suitably chosen translated Poisson distribution is of order O({Γ3∧p +

Γp}(1 + xp)−1), becoming smaller as x increases. This result is a natural analogue of the

non–uniform bounds for the error in the usual normal approximation (Bikelis (1966), Petrov

(1975, Theorem 13, p.125) , Chen and Shao (2001)), but now once again with respect to total

variation distance. The translated Poisson distribution is chosen to have the same mean

as W , and also to have variance close to that of W ; because only translations by integer

amounts are appropriate, an exact match of both moments cannot usually be achieved.

We prove our result using Stein’s method. We are able to make use of much of the

standard theory associated with Poisson approximation by way of the Stein–Chen approach,

but there are a number of significant differences. First, we show that the solutions to the

Stein equation for sets A as above take very small values for arguments k ¿ µ + xσ, as

do their first and second differences. For values of k comparable to µ + xσ, there are no

better bounds than the standard bounds used in the Stein–Chen approach, and in order to

get results of the required accuracy, it is necessary instead to use some smoothness of the

distribution of W , expressed in the form of a bound on dTV (L(W ),L(W + 1)). Here, the

procedure is much more delicate than for uniform bounds, since it must be shown that this

smoothness is preserved well enough into the tails of the distribution of W . We do so using

an argument based on the Mineka coupling, in Lemma 3.5.

There is another approach to total variation approximation for sums of integer valued

random variables, that of Chen and Suan (2003). Their argument, although based on Stein’s
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method, is entirely different. They take Stein’s method for normal approximation as their

starting point, and give bounds on approximation with a discretized normal distribution.

It seems likely that their approach will yield results comparable to ours in the setting of

this paper; in the context of sums of dependent random variables, the existence of the two

different methods may prove to be very useful.

2 Notation and results

We begin by specifying the translated Poisson distribution to be used in our approximation.

To do this, we first define 0 ≤ δ < 1 by

δ := (µ− σ2)− bµ− σ2c.

We then set γ := bµ− σ2c = µ− σ2 − δ, and note that W − γ is an integer valued random

variable whose mean and variance are almost equal: indeed, IE(W − γ)−Var (W − γ) = δ.

This makesW−γ a good candidate for Poisson approximation; our choice is to approximate

it by the Poisson distribution Po (λ) with mean λ := σ2+δ, having the same mean asW−γ,
and variance larger by the amount δ.

We also need some way to ensure that the distribution of W has sufficient smooth-

ness; clearly, if the distribution of W is concentrated on the odd integers, total variation

approximation by a translated Poisson distribution has no hope of success, even though

approximation with respect to Kolmogorov distance may be good. We therefore define

di := dTV (L(Xi),L(Xi + 1)), (2.1)

and set

α := n−1
n∑

i=1

(1− di). (2.2)

The quantity 1 − di measures the overlap of the distribution of Xi and its translate by 1,

and the average value α of this overlap appears as an ingredient in the bounds; the larger

the value of α, the smoother the distribution of W . In order to get errors of approximation

of the same order as the classical results for normal approximation, the quantity α should

not become small with n. Note that, by combining successive summands, it can typically

be arranged that di < 1 for all i, though the value of n is then correspondingly reduced.

For neatness, we assume that λ ≥ n, which can again be achieved by grouping summands

if need be.

Now consider the Stein equation for Poisson approximation with Po (λ). For each A ⊂
Z+, there exists a unique function gA : Z+ → R such that

λgA(w + 1)− wgA(w) = 1A(w)− Po (λ)(A), w ≥ 0 (2.3)

with gA(0) = 0, which satisfies ‖∆gA‖ ≤ min{1, λ−1}, and which, for w ≥ 1, is given by

gA(w) = − IE{[1A(Z)− Po (λ)(A)]I[Z ≥ w]}
λIP[Z = w − 1]

(2.4)

=
IE{[1A(Z)− Po (λ)(A)]I[Z ≤ w − 1]}

λIP[Z = w − 1]
, (2.5)
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where Z ∼ Po (λ), Po (λ)(A) = P (Z ∈ A) and Po (λ){m} = P (Z = m); see Barbour, Holst

and Janson (1992, Chapter 1, (1.18)). We extend the definition of gA to the whole of Z by

setting gA(w) = 0 for w < 0; hence

λgA(w + 1)− wgA(w) = {1A(w)− Po (λ)(A)}I[w ≥ 0], w ∈ Z.

We also define hA by

hA(w) =

{
gA(w − γ) w ≥ γ,

0 w < γ,
(2.6)

so that

λhA(w + 1)− (w − γ)hA(w) = [1A(w − γ)− Po (λ)(A)]I[w ≥ γ], w ∈ Z,

noting that ‖∆hA‖ ≤ min{1, λ−1}. For A ⊂ Z+, it then follows that

IP[W − γ ∈ A]− Po (λ)(A)

= IE{1A(W − γ)− Po (λ)(A)}
= IE{[1A(W − γ)− Po (λ)(A)]I[W ≥ γ]} − Po (λ)(A)IP[W < γ]

= IE{[λhA(W + 1)− (W − γ)hA(W )]} − Po (λ)(A)IP[W < γ].

Recalling the definitions of λ and γ, we now have

IE[λhA(W + 1)− (W − γ)hA(W )]

= IE[σ2∆hA(W )− (W − µ)hA(W )] + δIE∆hA(W )

=
n∑

i=1

[
σ2
i IE∆hA(W )− IE{(Xi − µi)(hA(W )− hA(Wi))}

]
+ δIE∆hA(W ), (2.7)

where Wi := W −Xi is independent of Xi. We write Newton’s expansion in the following

form: for l ∈ Z,

f(w + l) = f(w) +
∑

j∈Z

K(j, l)∆f(w + j) (2.8)

= f(w) + l∆f(w) +
∑

j∈Z

(l − 1− j)K(j, l)∆2f(w + j), (2.9)

where

K(j, l) := I[0 ≤ j ≤ l − 1]− I[l ≤ j ≤ −1]. (2.10)

By taking f = ∆hA, w = Wi and l = Xi in (2.8), and by the independence of Wi and Xi,

we have

σ2
i IE∆hA(W ) = σ2

i IE∆hA(Wi) + σ2
i

∑

j∈Z

IEK(j,Xi) IE∆
2hA(Wi + j),
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and similarly, with f = hA in (2.9) and (2.8),

(Xi − µi){hA(W )− hA(Wi)}
= (Xi − µi)Xi∆hA(Wi) +

∑

j∈Z

(Xi − µi)(Xi − 1− j)K(j,Xi)∆
2hA(Wi + j) (2.11)

= (Xi − µi)Xi∆hA(Wi) + (Xi − µi)



∑

j∈Z

K(j,Xi)∆hA(Wi + j)−Xi∆hA(Wi)


 ,

so that, in particular,

IE{(Xi − µi)[hA(W )− hA(Wi)]}
= IE{(Xi − µi)Xi} IE∆hA(Wi) +

∑

j∈Z

IE[(Xi − µi)(Xi − 1− j)K(j,Xi)] IE∆
2hA(Wi + j)

= σ2
i IE∆hA(Wi) +

∑

j∈Z

IE[(Xi − µi)(Xi − 1− j)K(j,Xi)] IE∆
2hA(Wi + j).

After putting all the pieces together, we thus have

IP[W − γ ∈ A]− Po (λ)(A)

=
n∑

i=1

∑

j∈Z

IE{[σ2
i − (Xi − µi)(Xi − 1− j)]K(j,Xi)} IE∆2hA(Wi + j) (2.12)

+δIE∆hA(W )− Po (λ)(A)IP[W < γ].

This, and a similar expression based on (2.11), are used to prove the following theorem.

Theorem 2.1 With the assumptions and definitions preceding (2.2), and supposing also

that Γp ≤ 1 and that
√
nα exp{−1

2nα(1− log 2)} ≤ (1 + 2n)−p, we have

sup
A⊂[λ+x

√
λ,∞)

|IP[W − γ ∈ A]− Po (λ)(A)| ≤ C2.1(p)
Γ3∧p + Γp

(1 + xp)

{√
λ

nα

}
,

for some universal constant C2.1(p), uniformly in x ≥ 8 and λ ≥ n.

Remark. In proving Theorem 2.1 we have not attempted to take advantage of a situation

where the random variables Xi take mostly the value 0 and only occasionally other values,

as was done, for instance in Barbour and Xia (1999).

3 Bounding the differences

Our main tool for proving Theorem 2.1 is expression (2.12). In order to exploit it, we first

need to bound the differences IE∆hA(W ) and IE∆2hA(Wi + j), 1 ≤ i ≤ n. We devote this

section to doing so. We shall from now on consider only subsets A ⊂ [λ + x
√
λ,∞) with

x ≥ 8, setting

λ(x) :=
⌊
λ+ 1

2x
√
λ
⌋
; (3.1)
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when bounding IE∆2hA(Wi + j), we restrict attention to the range −1 ≤ j ≤
√
λ+ 1.

We proceed by way of a series of lemmas, starting with the simple observation that, if

r ≥ m := λ+ ξ
√
λ, ξ ≥ 1, then

Po (λ)(r)

Po (λ)(m)
≤ (1 + ξ/

√
λ)−(r−m). (3.2)

Throughout the section, the constant C may change from one use to another.

Lemma 3.1 We have

Po (λ)(A) ≤
√
λ q0(x, λ)Po (λ){λ(x)},

where

q0(x, λ) := x−1(2 + x/
√
λ)

(
1− x

2
√
λ+ x

)x
√
λ/2

≤
{
3x−1e−x

2/6, 0 < x ≤
√
λ;

3λ−1/2e−x
√
λ/6, x >

√
λ.

Note that there exist constants Cp, p ∈ (2,∞), such that

(1 + x2)q0(x, λ) ≤ Cp/(1 + xp), (3.3)

uniformly in x ≥ 0 and λ ≥ 1.

Proof. With ν(x) := dλ+ x
√
λe, we have

Po (λ)(A) ≤ Po (λ)([ν(x),∞)) =
∞∑

r=ν(x)

Po (λ){r}

≤ Po (λ){λ(x)}
∑

r≥ν(x)

[1 + x/(2
√
λ)]−(r−λ(x))

≤ x−1(2
√
λ+ x)Po (λ){λ(x)}

(
1 +

x

2
√
λ

)−x√λ/2

,

which is the statement of the lemma. 2

Lemma 3.2 Let G(j) := Po (λ)([0, j])/Po (λ){j}. Then, for any r ≥ 1,

∆rG(j) =
IE{I[Z ≤ j](j + 1− Z) · · · (j + r − Z)}

λrPo (λ){j} > 0,

where ∆rG is the rth forward difference of G and Z ∼ Po (λ).
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Proof. For r = 1, we calculate

∆G(j) =
Po (λ)([0, j + 1])

Po (λ){j + 1} −
Po (λ)([0, j])

Po (λ){j}

=
(j + 1)Po (λ)([0, j + 1])− λPo (λ)([0, j])

λPo (λ){j}

=
IE{I[Z ≤ j + 1](j + 1− Z)}

λPo (λ){j}

=
IE{I[Z ≤ j](j + 1− Z)}

λPo (λ){j} ,

where we use the Stein identity λIEf(Z + 1) = IEZf(Z) in the third equality. Induction

combined with analogous manipulations finishes the proof. 2

Lemma 3.3 If −1 ≤ w − γ ≤ λ(x), then

|hA(w)| ≤
1√
λ
q0(x, λ); (3.4)

|∆hA(w)| ≤
1

λ
(1 + x)q0(x, λ); (3.5)

|∆2hA(w)| ≤
1

λ3/2
(1 + x2)q0(x, λ), (3.6)

uniformly in λ ≥ 1 and x ≥ 4.

Proof. Recalling (2.6) and (2.5), and writing k = w − γ for w − γ ≤ λ(x), we have

hA(w) = −Po (λ)(A)G(k − 1)/λ, and hence, for r ≥ 0,

|∆rhA(w)| =
Po (λ)(A)

λ
∆rG(k) =

Po (λ)(A)

λ

[
∆rG(k + 1)−∆r+1G(k)

]

≤ Po (λ)(A)

λ
∆rG(k + 1),

from Lemma 3.2. To deduce (3.4)–(3.6), we thus only need to bound ∆rG(λ(x)) for r = 0, 1

and 2.

For r = 0, we apply Lemma 3.1 to get

Po (λ)(A)

λ
G(λ(x)) ≤ q0(x, λ)Po (λ)([0, λ(x)])√

λ
≤ 1√

λ
q0(x, λ).

For r = 1, from Lemma 3.2, we have

Po (λ)(A)

λ
∆G(λ(x))

≤ q0(x, λ)IE{I[Z ≤ λ(x)](λ(x) + 1− Z)}
λ3/2

= λ−3/2q0(x, λ) {IE(λ(x) + 1− Z) + IE {(Z − λ(x)− 1)I[Z > λ(x)]}}

=
1

λ
q1(x, λ),
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where

q1(x, λ) =
xq0(x, λ)

2

{
1 + 2

1 + IE{(Z − λ(x)− 1)I[Z > λ(x)]}
x
√
λ

}
.

Since, for m ≥ λ,

IE{(Z −m)I[Z ≥ m]} = λPo (λ)([m− 1,∞))−mPo (λ)([m,∞))

≤ λPo (λ){m− 1} ≤
√
λ/2e,

where we use a result of Barbour and Jensen (1989, p.78) in the last inequality, it follows

that

q1(x, λ) ≤ 1
2q0(x, λ){x+ 3} ≤ (1 + x)q0(x, λ)

in x ≥ 1. Finally, for r = 2, again from Lemma 3.2, we have

Po (λ)(A)

λ
∆2G(λ(x)) ≤ q0(x, λ)IE{I[Z ≤ λ(x)](λ(x) + 1− Z)(λ(x) + 2− Z)}

λ5/2

≤ λ−5/2q0(x, λ)IE{(λ(x) + 1− Z)(λ(x) + 2− Z)}

=
1

λ3/2
q2(x, λ),

where we have used (λ(x) + 1− Z)(λ(x) + 2− Z) > 0 with probability 1, and thus

q2(x, λ) ≤ q0(x, λ)[λ+ (2 + x
√
λ)(4 + x

√
λ)/4]/λ ≤ (1 + x2)q0(x, λ).

2

Lemma 3.4 If Γp ≤ 1, there is a constant C1 <∞ such that

max

{
|IE∆hA(W )|, max

1≤l≤n
sup

j≤
√
λ+1

|IE∆hA(Wl + j)|
}
≤ C1

λ(1 + xp)
,

uniformly for all A ⊂ [λ+ x
√
λ,∞) and x ≥ 8.

Proof. Since ∆hA(w) = 0 for w− γ < 0 and since ‖∆hA‖ ≤ λ−1, it follows from (3.5) that

|IE∆hA(W )| ≤ IE|∆hA(W )I[0 ≤W − γ ≤ λ(x)]|+ IE|∆hA(W )I[W − γ > λ(x)]|
≤ λ−1(1 + x)q0(x, λ) + λ−1IP[W − γ > λ(x)]

≤ λ−1(1 + x)q0(x, λ) + λ−1IP[W − µ ≥ 1
2x
√
λ]

≤ 1

λ
(1 + x)q0(x, λ) +

2pIE|W − µ|p
xpλ1+p/2

,

the last term coming from Chebyshev’s inequality. Applying Rosenthal’s inequality to

the final term, recalling (3.3) and remembering that Γp ≤ 1, completes the bound for

|IE∆hA(W )|.
For the remaining elements, note that, in x ≥ 8 and λ ≥ 1, it follows that

√
λ + 1 ≤

1
4x
√
λ. The previous argument can thus be used, with Wl+ j replacing W throughout, and

hence IP[Wl − IEWl ≥ 1
4x
√
λ] replacing IP[W − µ ≥ 1

2x
√
λ] leading to the bound

|IE∆hA(Wl + j)| ≤ λ−1(1 + x)q0(x, λ) + 4px−pλ−(1+p/2)cpσ
p(1 + Γp),

uniformly in 1 ≤ l ≤ n and in j ≤
√
λ + 1; cp is a constant implied by the Rosenthal

inequality. The lemma follows. 2
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Lemma 3.5 If Γp ≤ 1 and

√
nαe−

1
2
nα(1−log 2) ≤ (1 + 2n)−p,

then there is a constant C2 <∞ such that

|IE∆2hA(Wl + j)| ≤ C2

λ
√
nα(1 + xp)

,

uniformly for all A ⊂ [λ+ x
√
λ,∞), 8 ≤ x ≤ 2n, j ≤ 1 +

√
λ and 1 ≤ l ≤ n.

Proof. Observing that ∆hA(w) = 0 for w−γ < −1 and that j ≤
√
λ+1 ≤ 1

4x
√
λ, we have

|IE∆2hA(W + j)| ≤ IE|∆2hA(W + j)I[−1 ≤W + j − γ ≤ λ(x)]|+ |R|
≤ λ−3/2(1 + x2)q0(x, λ) + |R|, (3.7)

where

R := IE{[∆hA(W + j + 1)−∆hA(W + j)]I[W + j − γ > λ(x)]}
= IE{∆hA(W + j + 1)I[W + j + 1 > 1 + γ + λ(x)]

−∆hA(W + j)I[W + j > γ + λ(x)]}
= IE

{
∆hA(W + j + 1)I[W + j + 1 > 1 + γ + λ(x)] (3.8)

−∆hA(W + j)I[W + j > 1 + γ + λ(x)]
}

−∆hA(1 + γ + λ(x))IP[W + j = 1 + γ + λ(x)].

In order to estimate the first term in (3.8), we use the Mineka coupling (Lindvall 1992,

Section II.14). We construct two partial sum processes S = S(j) and S′ = S′(j) having

S0 = j, S
′

0 = j + 1 and, for 1 ≤ k ≤ n, Sk = j +
∑k

i=1 Yi and S
′

k = j + 1 +
∑k

i=1 Y
′

i , where

the pairs {(Yi, Y ′i ), 1 ≤ i ≤ n} form an independent sequence, and L(Yi) = L(Y
′

i ) = L(Xi);

thus

L(W + j + 1) = L(S ′

n) and L(W + j) = L(Sn).

Letting

T = min{k : Sk = S
′

k}
be the first time that S and S ′ meet, it is then immediate that

L(Sn(j) |T ≤ n) = L(S ′n(j) |T ≤ n),

implying that

IE
{
∆hA(W + j + 1)I[W + j + 1 > 1 + γ + λ(x)]−∆hA(W + j)I[W + j > 1 + γ + λ(x)]

}

= IE
{(

∆hA(S
′
n
(j))I[S′n

(j) > 1 + γ + λ(x)]

−∆hA(Sn(j))I[Sn
(j) > 1 + γ + λ(x)]

)
I[T > n]

}
, (3.9)

of essential importance when bounding (3.8).

26



The random variables Yi and Y ′i are coupled as follows. Setting

θis :=
1
2 min{IP[Xi = s], IP[Xi = s+ 1]},

we want to arrange each pair (Yi, Y
′
i ) in such a way that, for each s ∈ Z,

IP[(Yi, Y
′
i ) = (s, s+ 1)] = IP[(Yi, Y

′
i ) = (s+ 1, s)] = θis;

IP[(Yi, Y
′
i ) = (s, s)] = IP[Xi = s]− (θi,s−1 + θi,s).

We do this by first defining independent indicator random variables Ii with

IP[Ii = 1] = 1− IP[Ii = 0] = 1− di,

where di is as in (2.1): note also that

di := 1− 2
∑

s∈Z
θis.

We then define three mutually independent sequences of independent random variables Zi,

Z̃i and εi, 1 ≤ i ≤ n, independent also of the Ii, with

IP[Zi = s+ 1
2 ] = 2θis/(1− di);

IP[Z̃i = s] = {IP[Xi = s]− (θi,s−1 + θi,s)}/di,
for each s ∈ Z (take IP[Zi = 0] = 1 if di = 1), and with each εi taking the values ±1 with

probability one half. If Ii = 1, we set

(Yi, Y
′
i ) = (Zi − 1

2εi, Zi +
1
2εi),

and if Ii = 0, we set

(Yi, Y
′
i ) = (Z̃i, Z̃i).

With this construction, the event {T > n} is realized by the event

E :=

{
min

1≤i≤n

i∑

l=1

Ilεl ≥ 0

}
.

We write J := {1 ≤ i ≤ n : Ii = 1}, and note that, conditional on J , the event E is

independent of {(Zi, Z̃i), 1 ≤ i ≤ n}.
We now use these considerations to bound (3.9). Recalling that ‖∆hA‖ ≤ λ−1 and

noting that
√
λ+ 1 ≤ 1

4x
√
λ in x ≥ 8 and λ ≥ 1, it follows for any j ≤

√
λ+ 1 that, again

writing S′n for S
′(j)
n ,

∣∣IE
{
∆hA(S

′
n) I[S

′
n > 1 + γ + λ(x)] I[T > n] | J

}∣∣

≤ λ−1IE



I[E] I



∑

i∈J
(Zi +

1
2εi) +

∑

j /∈J
Z̃i > 1 + γ + λ+ 1

4x
√
λ



∣∣∣∣ J





≤ λ−1IE



I[E] I



∑

i∈J
(Zi +

1
2 ε̃i) +

∑

j /∈J
Z̃i > 1 + γ + λ+ 1

8x
√
λ



∣∣∣∣ J





+ λ−1IE

{
I[E] I

[
1
2

∑

i∈J
(εi − ε̃i) >

1
8x
√
λ

] ∣∣∣∣ J
}
, (3.10)
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where the (ε̃i, 1 ≤ i ≤ n) have the same distribution as the εi’s, but are independent

of everything else. They are introduced so that conditional expectation in the first term

of (3.10) factorizes. As a result, we find that
∣∣∣∣IE
{
∆hA(S

′
n) I[S

′
n > 1 + γ + λ(x)] I[T > n]

∣∣∣∣J
}∣∣∣∣

≤ λ−1IP[E | J ]
{
IP

[
n∑

i=1

Xi > 1 + γ + λ+ 1
8x
√
λ

∣∣∣∣ J
]

+IP

[
∑

i∈J
ε̃i >

1
8x
√
λ

∣∣∣∣ J
]
+ IP

[
∑

i∈J
εi >

1
8x
√
λ

∣∣∣∣E, J
]}

. (3.11)

We now want to take expectations over J in (3.11), in order to bound
∣∣IE
{
∆hA(S

′
n) I[S

′
n > 1 + γ + λ(x)] I[T > n]

}∣∣ .

Before doing so, it is convenient to collect a few useful facts. The first is that
∣∣IE
{
∆hA(S

′
n) I[S

′
n > 1 + γ + λ(x)] I[T > n] I[|J | < nα/2]

}∣∣

≤ λ−1IP

[
n∑

i=1

Ii < nα/2

]
≤ λ−1 exp{−1

2nα(1− log 2)}, (3.12)

the last inequality following from a simple Chernoff–type bound. Then, using the reflection

principle, we note that

IP[E | |J | = s] ≤ Bi (s, 1
2){s/2, (s+ 1)/2} ≤ C/

√
nα, s ≥ nα/2. (3.13)

Hence it follows from (3.11) that
∣∣IE
{
∆hA(S

′
n) I[S

′
n > 1 + γ + λ(x)] I[T > n]

}∣∣

≤ λ−1 exp{−1
2nα(1− log 2)}+ Cλ−1(nα)−1/2 IP

[
W > IEW + 1

8x
√
λ
]

+ λ−1(nα)−1/2

(
IP

[
∑

i∈J
ε̃i >

1
8x
√
λ

]

+IE

{
IP

[
∑

i∈J
εi >

1
8x
√
λ

∣∣∣∣E, J
]
I[|J | ≥ nα/2]

})
. (3.14)

The inequality

IP[W − IEW > 1
8x
√
λ] ≤ C

1 + Γp

1 + xp
(3.15)

is an easy consequence of Chebyshev’s and Rosenthal’s inequalities. Then, from the reflec-

tion principle, we find that, on {|J | = s},

IP

[
∑

i∈J
εi ≥ r

∣∣∣∣E, J
]

=
Bi (s, 1/2){1

2(s+ r), 1
2(s+ r + 1)}

Bi (s, 1/2){s/2, (s+ 1)/2}

≤ C exp{−r2/(s+ 1/2)}, (3.16)
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and since |J | =∑n
i=1 Ii, it follows that

IE

{
IP

[
∑

i∈J
εi >

1
8x
√
λ

∣∣∣∣E, J
]}

≤ C{exp{−x2λ/(128nα)}+ IP[|J | ≥ 2nα]} (3.17)

≤ C{exp{−x2λ/(128nα)}+ exp{−nα(2 log 2− 1)}},

again from Chernoff bounds. The same bound can also be used for IP
[∑

i∈J ε̃i >
1
8x
√
λ
]
.

Putting these bounds into (3.14), it follows that, for Γp ≤ 1,

∣∣IE
{
∆hA(S

′
n) I[S

′
n > 1 + γ + λ(x)] I[T > n]

}∣∣

≤ C

λ

{
1√

nα(1 + xp)
+ e−

1
2
nα(1−log 2)

}
. (3.18)

We actually require a bound for each Wl, 1 ≤ l ≤ n, but not for W itself. However,

the argument above applies essentially unchanged, if all sums are taken with the index l

omitted; (3.15) is still true as a bound for IP[Wl − IEWl >
1
8x
√
λ], and the only alteration

to the bounds arises in (3.12), where

IP




n∑

i=1
i6=l

Ii < nα/2


 ≤ IP

[
n∑

i=1

Ii < 1 + nα/2

]
≤ 2e exp{−1

2nα(1− log 2)}

replaces the corresponding estimate, which lacked the factor 2e.

In this argument, the first step was to replace ∆hA(·) by the upper bound λ−1 for its

norm, and it was in fact λ−1IE{I[S′n > 1+γ+λ(x)] I[T > n]} that was then treated. Hence

the same bound (3.18) can also be used for

|IE {∆hA(Sn) I[Sn > 1 + γ + λ(x)] I[T > n]}| ,

because, on T > n, Sn < S′n. To complete the estimate of |R| in (3.8), it therefore remains

only to bound the term

|∆hA(1 + γ + λ(x))|IP[W + j = 1 + γ + λ(x)].

However, it follows from Lemma 3.3 that |∆hA(1+γ+λ(x))| ≤ λ−1(1+x)q0(x, λ). For the

second factor, we use the representation of W + j as Sn
(j). This shows that, conditional on

the Ii’s, Zi’s and Z̃i’s, the largest point probability taken by Sn
(j) cannot exceed the largest

point probability of the distribution of
∑

i∈J εi, which is itself at most C(nα)−1/2 whenever

|J | ≥ nα/2, from the properties of the binomial distribution. Hence, once again using the

bound IP[|J | ≤ nα/2] ≤ exp{− 1
2nα(1− log 2)} (with an extra factor of 2e if W is replaced

by Wl) to deal with the possibility of small values of |J |, it follows that

|∆hA(1 + γ + λ(x))|IP[W + j = 1 + γ + λ(x)] ≤ C
(1 + x)q0(x, λ)

λ
√
nα

,
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of no larger order than the bound in (3.18). Collecting the various terms, it thus follows

that

|IE∆2hA(W + j)| = O

(
1

λ

{
1√

nα(1 + xp)
+ e−

1
2
nα(1−log 2)

})
, (3.19)

uniformly in j ≤
√
λ + 1, and the same is true for |IE∆2hA(Wl + j)|, for each 1 ≤ l ≤ n.

Finally, if 8 ≤ x ≤ 2n, it follows by assumption that

√
nαe−

1
2
nα(1−log 2) ≤ (1 + 2n)−p ≤ (1 + xp)−1,

completing the proof of the lemma. 2

4 Proof of Theorem 2.1

The proof is based on (2.12). All its constituents have been bounded in the previous section,

if only values of j ≤
√
λ+1 are allowed in the sum. This is all that is necessary if we suppose

that Xi ≤
√
λ + 1 a.s. for all 1 ≤ i ≤ n, so we begin by assuming this to be true. In that

case, we have

|δIE∆hA(W )| ≤ C1λ
−1(1 + xp)−1,

from Lemma 3.4. Then, easily,

Po (λ)(A)IP[W < γ] = Po (λ)(A)IP[W − µ < −λ] ≤ λ−1q0(x, λ),

from Chebyshev’s inequality and Lemma 3.1. For the remainder, if p ≥ 3, we have the

uniform bound for |IE∆2hA(Wi + j)| given by Lemma 3.5 whenever 8 ≤ x ≤ 2n, since

Xi ≤
√
λ+ 1 a.s. for all i, and in (2.12) this multiplies at most

n∑

i=1

∑

j∈Z
IE
{
σ2
i |K(j,Xi)|+ |Xi − µi|(Xi − 1− j)K(j,Xi)

}

≤
n∑

i=1

IE
{
σ2
i |Xi|+ |Xi − µi| 12Xi(Xi − 1)

}

≤
n∑

i=1

IE
{
σ2
i (|Xi − µi|+ |µi|) + |Xi − µi| 12 |Xi − µi|{|Xi − µi|+ 1}

}
(4.1)

= O
(
λ3/2Γ3

)
,

since 0 ≤ µi < 1 for all i and
√
λΓ3 ≥

√
λ/n ≥ 1, this last because λ ≥ n. Note also

that, because Xi ≤
√
λ + 1 for all i, P [W > n(

√
λ + 1)] = 0, so we are only interested in

x satisfying λ+ x
√
λ ≤ n(

√
λ+ 1), and such values of x indeed satisfy x ≤ 2n. Combining

these results, we find under the conditions of Theorem 2.1 that, for p ≥ 3,

|IP[W − γ ∈ A]− Po (λ)(A)| = O

(
Γ3

(1 + xp)

√
λ

nα

)
,
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as required, provided that Xi ≤
√
λ+ 1 for all i. We note that (4.1) is a wasteful bound if

the Xi take only the values 0 or 1.

For 2 < p < 3, we bound

|δIE∆hA(W )|+ Po (λ)(A)IP[W < γ] = O(λ−1(1 + xp))

as before, and then use the more detailed expression in (2.11), combined with Lemmas 3.4

and 3.5. We write

|IE{σ2
i∆hA(W )− (Xi − µi)(hA(W )− hA(Wi))}| = |IE(η1i − η2i)|,

where

η1i = σ2
i

∑

j∈Z

K(j,Xi)∆
2hA(Wi + j)

and

η2i =
∑

j∈Z

(Xi − µi)(Xi − 1− j)K(j,Xi)∆
2hA(Wi + j) (4.2)

=
∑

j∈Z

(Xi − µi){K(j,Xi)∆hA(Wi + j)−Xi∆hA(W )}. (4.3)

As before, from Lemma 3.5, we have

IE|η1i| ≤
C2σ

2
i (IE|Xi − µi|+ |µi|)
λ
√
nα(1 + xp)

(4.4)

and

|IE(η2i |Xi)| ≤
C2

λ
√
nα(1 + xp)

1
2(Xi − µi)

2{|Xi − µi|+ 1},

this latter derived from (4.2); but then, taking (4.3), we can use Lemma 3.4 to give

|IE(η2i |Xi)| ≤ |Xi| |Xi − µi|
2C1

λ(1 + xp)
.

Hence it follows that

|IEη2i| ≤ IE|IE(η2i |Xi)|

≤ 1

λ(1 + xp)
IE

{
|Xi − µi|(|Xi − µi|+ 1)

(
C2|Xi − µi|

2
√
nα

∧ 2C1

)}
. (4.5)

Since (
C2|Xi − µi|
4C1
√
nα

∧ 1

)
≤
(
C2|Xi − µi|
4C1
√
nα

)(p−2)

and since, by Hölder’s inequality,

σ2
i IE|Xi − µi| ≤ σ

(3−p)/2
i IE{|Xi − µi|p} ≤ λ(3−p)/2IE{|Xi − µi|p},
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we deduce from (4.4) and (4.5) that

|IP[W − γ ∈ A]− Po (λ)(A)|

≤
(√

λΓp + 3/2
) C2√

nα(1 + xp)
+

2C1Γp

1 + xp

(
C2

√
λ

4C1
√
nα

)(p−2)

+O

(
1

λ(1 + xp)

)
, (4.6)

proving the required estimate when 2 < p < 3, again provided that Xi ≤
√
λ + 1 for all i,

since λ ≥ n and
√
λΓp ≥ λ1/2n−(p−2)/2 ≥ 1.

To remove the restriction on the distributions of the Xi, we argue as in Chen and

Shao (2003). We begin by defining

X∗
i := µi + (Xi − µi)I[Xi − µi ≤

√
λ]

and W ∗ =
∑n

i=1 X
∗
i , so that W ∗ satisfies the previous assumptions. We now note that, for

any A ⊂ [z,∞),

0 ≤ IP[W ∈ A]− IP[W ∗ ∈ A] ≤ IP[{W ≥ z} ∩ {max
1≤i≤n

Xi − µi >
√
λ}]

≤
n∑

i=1

IP[{W ≥ z} ∩ {Xi − µi >
√
λ}].

Taking z = IEW + y, it follows that

IP[{W ≥ IEW + y} ∩ {Xi − µi >
√
λ}]

≤ IP[{Wi ≥ IEWi + y/2} ∩ {
√
λ < Xi − µi ≤ y/2}] + IP[Xi − µi > y/2].

By Chebyshev’s and Rosenthal’s inequalities and by the independence of Wi and Xi, we

have

IP[{Wi ≥ IEWi + y/2} ∩ {
√
λ < Xi − µi ≤ y/2}]

≤ 2py−pIE|Wi − IEWi|p × λ−p/2IE|Xi − µi|p

≤ Cy−pλp/2(1 + Γp) × λ−p/2IE|Xi − µi|p

and

IP[Xi − µi > y/2] ≤ 2py−pIE|Xi − µi|p.
Summing over i and replacing y by x

√
λ, it follows that, for any A ⊂ [IEW + x

√
λ,∞),

|IP[W ∈ A]− IP[W ∗ ∈ A]| ≤ CΓp(1 + xp)−1,

uniformly in x, so that probabilities of sets A ⊂ [IEW + x
√
λ,∞), calculated using W ∗ in

place of W , are equal up to the required order.

This is not, however, the full story, since the mean and variance of W ∗ are not exactly

the same as those of the original W ; we need also to show that probabilities calculated

with the translated Poisson distribution appropriate to W ∗ are equivalent to those for

the translated Poisson distribution appropriate to W . The parameters for the translated
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Poisson distributions are calculated from the respective first and second moments. Their

differences can be bounded as follows. For the first moments,

0 ≤ µ− µ∗ =
n∑

i=1

IE{(Xi − µi)I[Xi − µi >
√
λ]}

≤ λ−(p−1)/2
n∑

i=1

IE|Xi − µi|p = λ1/2Γp; (4.7)

and then, writing X ′
i = Xi − µi,

VarW −VarW ∗ =
n∑

i=1

(VarXi −VarX∗
i )

=
n∑

i=1

{
IE{(X ′

i)
2I[X ′

i >
√
λ]}+ (IE{X ′

iI[X
′
i >
√
λ]})2

}
≥ 0,

so that

|VarW −VarW ∗| ≤ 2

n∑

i=1

λ1−p/2IE|Xi − µi|p = 2λΓp. (4.8)

For the random variable W and for any A ⊂ [µ+ x
√
λ, ∞), our current approximation

shows that

|IP[W ∈ A]− Po (λ∗){λ∗ − µ∗ +A}| = O

(
Γ3∧p + Γp

(1 + xp)

√
λ

nα

)
,

where µ∗ := IEW ∗ and λ∗ := VarW ∗ + δ∗, with

δ∗ := (µ∗ −VarW ∗)− bµ∗ −VarW ∗c;

this is because µ∗ ≤ µ and λ∗ ≤ λ + 1, and hence also A ⊂ [IEW ∗ + x′
√
λ∗, ∞) with x′ =

x
√
λ/(λ+ 1) ≥ x/

√
2. We thus need to compare Po (λ∗){λ∗−µ∗+A} with Po (λ){λ−µ+A}.

However, for each k ∈ A,
Po (λ∗){λ∗ − µ∗ + k}
Po (λ){λ− µ+ k} =

Po (λ∗){λ∗ − µ∗ + k}
Po (λ){λ− µ∗ + k}

Po (λ){λ− µ∗ + k}
Po (λ){λ− µ+ k} ,

and it follows from Lemmas A1 and A2 that thus∣∣∣∣log
(
Po (λ∗){λ∗ − µ∗ + k}
Po (λ){λ− µ+ k}

)∣∣∣∣

= O{λ−1|λ− λ∗|(1 + λ−1|k − µ∗|2) + λ−1/2|µ− µ∗|(1 + λ−1/2|k − µ∗|)}
= O{Γp(1 + λ−1(k − µ)2)},

from (4.7) and (4.8). Hence it follows, for x ≤
√
λ, that

bµ+λc∑

k=µ+dx
√
λe

|Po (λ∗){λ∗ − µ∗ + k} − Po (λ){λ− µ+ k}| = O
(
Γpx

2 exp{−x2/4}
)

= O(Γp(1 + xp)−1);
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and the sum over all larger k is exponentially small in λ, which, for such x, is also of small

enough order. For x ≥
√
λ, both Po (λ∗){λ∗ − µ∗ +A} and Po (λ){λ− µ+A} are of order

O(exp{−cx
√
λ}) = O(Γp(1 + xp)−1). Hence, whatever the value of x ≥ 8, we can replace

Po (λ∗){λ∗ − µ∗ + A} with Po (λ){λ − µ + A} with an error of at most O(Γp(1 + xp)−1).

Thus the theorem remains true without the restriction that Xi ≤
√
λ+ 1 a.s. for all i. 2

For sets A ⊂ (−∞, λ − x
√
λ] in the lower range, we can simply replace W by −W ,

centre anew, and use the theorem as it stands. However, there is a difference between the

distributions obtained by translating a Poisson and translating the negative of a Poisson. To

show that this difference is also of small enough order, so that the same translated Poisson

distribution is good for both ranges at once, Lemma A3 can be used in an argument similar

to that above.

5 Appendix

We collect some useful estimates concerning the Poisson distribution.

Lemma A1. For 1 ≤ |s| ≤ εn and j ≥ 0, we have

∣∣∣∣log
Po (n+ s){n+ j + s}

Po (n){n+ j}

∣∣∣∣ = O
(
ε(1 + j2/n)

)
,

uniformly in 0 ≤ ε ≤ 1/4.

Proof. Direct calculation using Stirling’s formula shows that

∣∣∣∣log
Po (n+ s){n+ j + s}

Po (n){n+ j}

∣∣∣∣

≤ | − s log(1 + j/n)− 1
2 log(1 + s/(n+ j))

+ (n+ j + s) log{(n+ s)(n+ j)/(n[n+ j + s])}|+ 1

9n
.

We now use simple bounds for the Taylor remainders in the logarithmic series (with |s|/n ≤
ε ≤ 1/4) to give

∣∣∣∣log
Po (n+ s){n+ j + s}

Po (n){n+ j}

∣∣∣∣

≤
{ |s|j2

2n2
+

2|s|
3(n+ j)

+
8j2s2

9n2(n+ j + s)

}
+

1

9n

≤ ε

{
2

3
+

1

9
+
j2

n

(
1

2
+

8

27

)}
,

completing the proof. 2

Lemma A2. For 1 ≤ |m| ≤ ε
√
n and j ≥ 0, we have

∣∣∣∣log
Po (n){n+ j +m}

Po (n){n+ j}

∣∣∣∣ = O
(
ε(1 + j/

√
n)
)
,
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uniformly in 0 ≤ ε ≤ 1/4.

Proof. Once again, direct calculation using Stirling’s formula yields

∣∣∣∣log
Po (n){n+ j +m}

Po (n){n+ j}

∣∣∣∣

= | −m log(1 + j/n) +m− (n+ j +m+ 1
2) log(1 +m/(n+ j))|+ 1

9n
,

and expansion of the logarithms then gives

∣∣∣∣log
Po (n){n+ j +m}

Po (n){n+ j}

∣∣∣∣

≤ 4|m|j
3n

+
8m2

9(n+ j)
+

4m(m+ 1
2)

3(n+ j)
+

1

9n

≤ 2ε(1 + j/
√
n),

as required. 2

Lemma A3. We have
∣∣∣∣log

Po (n){n+ j}
Po (n){n− j}

∣∣∣∣ = O
(
n−1|j|(1 + j2/n)

)
,

uniformly in 1 ≤ |j| ≤ n/4.

Proof. The argument is much as before, giving

∣∣∣∣log
Po (n){n+ j}
Po (n){n− j}

∣∣∣∣

= |(n− j + 1
2) log(1− j/n)− (n+ j + 1

2) log(1 + j/n) + 2j|+ 1

9n

≤ |j|
n

+
|j|3
n2

+
64|j|3
27n2

+
1

9n
,

as required. 2
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