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1 Introduction

The notion of non-linear Backward Stochastic Differential Equations (BSDE in short) was introduced

by Pardoux & Peng ([11], 1990). Their aim was to give a probabilistic interpretation of a solution

of second order quasi-linear partial differential equations. Since then, these equations have gradu-

ally become an important mathematical tool which is encountered in many fields such as financial

mathematics, stochastic optimal control, partial differential equations, ...

In ([6], 1997), El-Karoui et al. introduced the notion of a reflected BSDE, which is actually a backward

equation but one of the components of the solution is forced to stay above a given barrier, which is

an adapted continuous process.

Recently in ([1], 1995), Barles et al. considered standard BSDEs when the noise is driven by a

Brownian motion and an independent Poisson random measure. They have shown the existence and

uniqueness of the solution, in addition, the link with integral-partial differential equations is studied.

In this paper our aim is to study the one-dimensional reflected BSDE (RBSDE in short) when the

noise is driven by a Brownian motion and an independent Poisson random measure. This is the natural

generalization of the work of El-Karoui et al.. The component (Yt)t≤1 of the solution which is forced

to stay above a given barrier is, in our frame, no longer continuous but just right continuous and left

limited (rcll in short) (see equation (1) below). It has jumps which arise naturally since the noise

contains a Poisson random measure part.

The problem we consider here can be studied in a more general setting, namely, multivalued backward

stochastic differential equations (see [10], for the continuous case). But for the sake of simplicity, we

limit ourselves to the reflected framework. Finally, two other interesting papers on BSDEs with jumps

but without reflection can be mentioned, namely those of R.Situ [12], and S. Tang & X. Li [13]. This

latter is motivated by control problems.

In this work we mainly show the existence and uniqueness of the solution for the reflected BSDE with

jumps (i.e. whose noise includes a Poisson random measure part) for a given,

- terminal value ξ which is square integrable random variable

- coefficient f(t, ω, y, z, v) which is a function, uniformly Lipschitz with respect to (y, z, v)

- barrier (St)t≤1, which is the moving obstacle and which is a rcll process whose jumps are inaccessible.

In the proof of our result, we use two methods, the penalization and the Snell envelope theory.

However in order to prove the result in the general case, both methods use a contraction (fixed point

argument) since we do not have an efficient comparison theorem for solutions of standard BSDEs

whose noise contains a Poisson measure part (see e.g. [1] for a counterexample). On the other hand,

the fact that the jumping times of the moving barrier S are inaccessible is of crucial role. Finally

we highlight the connection of our reflected BSDEs with integral-differential mixed stochastic optimal

control. Nevertheless our results can be applied in mathematical finance, especially for the evaluation

of American contingent claims when the dynamic of the prices contains a Poisson point process part.

This paper is divided into three sections.

In Section 1, we begin to show the uniqueness of the solution of the reflected BSDE when it exits.

Then using the penalization method we show the existence of a solution when the function f does not
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depend on (y, z, v). Therefore we construct a contraction which has a fixed point which is the solution

of our reflected BSDE with jumps. Finally we study the regularity of the non-decreasing process K

which is absolutely continuous in the case when the barrier is regular.

In Section 2, using the Snell envelope theory, once again, we prove the existence of the solution if the

function f does not depend on (y, z, v). Furthermore, as in Section 1, we obtain the solution in the

general setting.

Section 3 is devoted to the link of our reflected BSDEs with integral-differential mixed stochastic

optimal control. We show that the value function of the problem is solution of an appropriate reflected

BSDE with jumps. In addition an optimal control exits and its expression is given. Our result

generalizes that of J.P.Lepeltier & B.Marchal ([9]) on the same subject.

2 Reflected BSDEs with respect to Brownian motion and an inde-

pendent Poisson point process.

Let (Ω,F , (Ft)t≤1)) be a stochastic basis such that F0 contains all P -null sets of F , Ft+ =
⋂

ε>0Ft+ε =

Ft, ∀t < 1, and suppose that the filtration is generated by the two following mutually independent

processes :

- a d-dimensional Brownian motion (Bt)t≤1,

- a Poisson random measure µ on IR+ × U , where U := IRl \ {0} is equipped with its Borel fields U ,
with compensator ν(dt, de) = dtλ(de), such that {µ̃([0, t]×A) = (µ− ν)([0, t]×A)}t≤1 is a martingale

for every A ∈ U satisfying λ(A) <∞. λ is assumed to be a σ-finite measure on (U,U) satisfying
∫

U
(1 ∧ |e|2)λ(de) <∞.

On the other hand, let:

- S2 be the set of Ft-adapted right continuous with left limit (rcll in short) processes (Yt)t≤1 with

values in IR and IE[supt≤1 |Yt|2] <∞.

- H2,k be the set of Ft-progressively measurable processes with values in IRk such that

IE[

∫ 1

0
|Zs|2ds] <∞.

- L2 be the set of mappings V : Ω× [0, 1]× U → IR which are P ⊗ U-measurable and

IE[

∫ 1

0
ds

∫

U
(Vs(e))

2λ(de)] <∞ ; P is the predictable tribe on Ω× [0, 1]

- for a given rcll process (wt)t≤1, wt− = lims↗t ws, t ≤ 1 (w0− = w0) ; w− := (wt−)t≤1 ¤

We are now given three objects:

-a terminal value ξ ∈ L2(Ω, F1, P )

-a map f : Ω× [0, 1]× IR1+d × L2(U,U , λ; IR) −→ IR which with (t, ω, y, z, v) associates f(t, ω, y, z, v)

and which is P ⊗ B(IR1+d)⊗ B(L2(U,U , λ; IR))-measurable. In addition we assume :

(i) the process (f(t, 0, 0, 0))t≤1 belongs to L2(Ω× [0, 1], dP ⊗ dt)
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(ii) f is uniformly Lipschitz with respect to (y, z, v), i.e., there exists a constant k ≥ 0 such that for

any y, y′, z, z′ ∈ IR and v, v′ ∈ L2(U,U , λ; IR),

P − a.s., |f(ω, t, y, z, v)− f(ω, t, y′, z′, v′)| ≤ k(|y − y′|+ |z − z′|+ ‖v − v′‖).

- an ”obstacle” process {St, 0 ≤ t ≤ 1}, which is an Ft−progressively measurable rcll, real valued

process satisfying

IE[ sup
0≤t≤1

(

S+t
)2

] < +∞ ;S+t := max{St, 0}.

Moreover we assume that its jumping times are inaccessible stopping times (see e.g. [3], p.58 for

the definition). This assumption on S is satisfied if, for example, ∀t ≤ T , St = S̃t + P̃t where S̃ is

continuous and, for any t ≤ T , P̃t = µ(t, ω,A) where A is a Borel set such that λ(A) <∞.

Let us now introduce our reflected BSDE with jumps (in short, RDBSDE; ”D” for discontinuous)

associated with (f, ξ, S). A solution is a quadruple (Y,Z,K, V ) := (Yt, Zt,Kt, Vt)t≤1 of processes with

values in IR1+d × IR+ × L2(U,U , λ; IR) and which satisfies :






















(i) Y ∈ S2, Z ∈ H2,d and V ∈ L2; K ∈ S2 (K0 = 0), is continuous and non-decreasing

(ii) Yt = ξ +

∫ 1

t
f(s, Ys, Zs, Vs)ds + K1 −Kt −

∫ 1

t
ZsdBs −

∫ 1

t

∫

U
Vs(e)µ̃(ds, de) , t ≤ 1

(iii) ∀t ≤ 1, Yt ≥ St and

∫ 1

0
(Yt − St)dKt = 0.

(1)

In our definition, the jumps of Y are those of its Poisson part since K is continuous ¤

To begin with, we are going to show the uniqueness of the solution of the RDBSDE (1) under the

above assumptions on f , ξ and S.

2.1 Uniqueness.

1.1.a. Proposition: Under the above assumptions on f , ξ and (St)t≤1, the DRBSDE (1) associated

with (f, ξ, S) has at most one solution.

Proof : Assume (Y,Z,K, V ) and (Y ′, Z ′,K ′, V ′) are two solutions of (1). First let us underline that

(

Yt − Y ′t
) (

dKt − dK ′
t

)

≤ 0.

On the other hand, using Itô’s formula with the discontinuous semi-martingale Y − Y ′ and set

∆t =
∣

∣Yt − Y ′t
∣

∣

2
+

∫ 1

t
|Zs − Z ′s|2ds +

∫ 1

t

∫

U

(

Vs (e)− V ′s (e)
)2

λ(de)ds

yields,

∆t = 2

∫ 1

t
(Ys − Y ′s )(f(s, Ys, Zs, Vs)− f(s, Y ′s , Z

′
s, V

′
s ))ds

−2

∫ 1

t
(Ys − Y ′s )(Zs − Z ′s)dBs + 2

∫ 1

t
(Ys − Y ′s )(dKs − dK ′

s)

−
∫ 1

t

∫

U
[(Ys− − Y ′s− + Vs(e)− V ′s (e))

2−(Ys− − Y ′s−)
2]µ̃(ds, de).
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Now since −
∫ .

0

∫

U

[

(

Ys− − Y ′s− + Vs (e)− V ′s (e)
)2−

(

Ys− − Y ′s−
)2
]

µ̃ (ds, de) and
∫ .

0

(

Ys − Y ′s
) (

Zs − Z ′s
)

dBs are (Ft, P )-martingales, then taking the expectation in both sides yields,

for any t ≤ 1,

IE[∆t] ≤ 2

∫ 1

t
IE[

(

Ys − Y ′s
) (

f(s, Ys, Zs, Vs)− f(s, Y ′s , Z
′
s, V

′
s )
)

]ds.

If we choose α ≥ 4k and β ≥ 4k, and denote

Φt = IE

[

∣

∣Yt − Y ′t
∣

∣

2
+

1

2

∫ 1

t
|Zs − Z ′s|2ds +

1

2

∫ 1

t

∫

U

(

Vs (e)− V ′s (e)
)2

λ (de) ds

]

we obtain,

Φt ≤ 2k(1 + α + β)IE[

∫ 1

t

(

Ys − Y ′s
)2

ds].

Henceforth from Gronwall’s lemma and the right continuity of (Yt − Y ′t )t≤1, we get Y = Y ′.

Consequently (Y,Z, V,K) = (Y ′, Z ′, V ′,K ′) whence the uniqueness of the solution of (1) ¤

We are going now to show that equation (1) has a solution in using two methods. Roughly speaking,

the first one is based on the penalization and the second on the well known Snell envelope theory of

processes. However, in order to obtain the result in the general frame, both methods use a contraction.

The penalization, as it has been used e.g. in [6], is not workable since we do not have an efficient

comparison theorem for solutions of BSDEs whose noise is driven by a Lévy process (see [1] for a

counter-example). That is the reason for which, in a first time, we suppose that the map f(t, ω, y, z, v)

does not depend on (y, z, v).

2.2 The penalization method.

First let us assume the map f does not depend on (y, z, v), i.e., P-a.s., f(t, ω, y, z, v) ≡ g(t, ω), for

any t, y, z and v. In the following result, we establish the existence of the solution of the RDBSDE

associated with (g, ξ, S).

1.2.a. Theorem : The RDBSDE associated with (g, ξ, S) has a unique solution (Yt, Zt,Kt, Vt)t≤1.

Proof : For each n ∈ IN ∗, let (Y n
t , Zn

t , V
n
t )t≤1 be the Ft-progressively measurable process with

values in IR1+d×L2(U,U , λ; IR), unique solution of the BSDE associated with (g(t, ω)+n(y−St)
−, ξ)

((y − St)
− := max{0, St − y}). It exists according to Barles et al.’s result [1]. So,

IE[sup
t≤1

|Y n
t |2 +

∫ 1

0
|Zn

t |2 dt +
∫ 1

0

∫

U
|V n

s (e)|2 λ (de) ds] < +∞ (2)

and

Y n
t = ξ +

∫ 1

t
g(s)ds−

∫ 1

t
Zn
s dBs +

∫ 1

t
n (Y n

s − Ss)
− ds−

∫ 1

t

∫

U
V n
s (e) µ̃ (ds, de) , ∀t ≤ 1.
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From now on the proof will be divided into six steps.

Step 1: For any n ≥ 0, Y n ≤ Y n+1.

Indeed, using the generalized Itô’s formula with the convex function x 7−→ (x+)2 and Y n − Y n+1

implies that the following process (An
t )t≤1, where

An
t := (Y n

t − Y n+1
t )+

2 − (Y n
0 − Y n+1

0 )+
2 − 2

∫

]0,t]
(Y n

s− − Y n+1
s− )+d(Y n

s − Y n+1
s )

−
∑

0<s≤t

{(Y n
s − Y n+1

s )+
2 − (Y n

s− − Y n+1
s− )+

2 − 2(Y n
s− − Y n+1

s− )+∆s(Y
n − Y n+1)},

is continuous non-decreasing ([4], pp.349). Here ∆s(Y
n − Y n+1) = (Y n

s − Y n+1
s ) − (Y n

s− − Y n+1
s− ),

∀s ≤ 1. Henceforth for any t ≤ 1 we have,

(Y n
t − Y n+1

t )+
2
+

∑

t<s≤1

{(Y n
s − Y n+1

s )+
2 − (Y n

s− − Y n+1
s− )+

2

−2(Y n
s− − Y n+1

s− )+∆s(Y
n − Y n+1)} ≤ 2

∫

]t,1]
(Y n

s− − Y n+1
s− )+{d(Kn

s −Kn+1
s )

−(Zn
s − Zn+1

s )dBs −
∫

U
(V n

s (e)− V n+1
s (e))µ̃(ds, de)}.

where for any n ≥ 0 and t ≤ 1, Kn
t := n

∫ t

0
(Y n

s − Ss)
−ds. But

∑

t<s≤1

{(Y n
s − Y n+1

s )+
2 − (Y n

s− − Y n+1
s− )+

2 − 2(Y n
s− − Y n+1

s− )+∆s(Y
n − Y n+1)} ≥ 0

since (y+)2 − (x+)2 − 2x+(y − x) ≥ 0, ∀x, y ∈ IR. Then

(Y n
t − Y n+1

t )+
2 ≤ 2

∫

]t,1]
(Y n

s− − Y n+1
s− )+{d(Kn

s −Kn+1
s )− (Zn

s − Zn+1
s )dBs

−
∫

U
(V n

s (e)− V n+1
s (e))µ̃(ds, de)}.

(3)

Through estimates (2) we deduce that

∫ .

0
(Y n

s− − Y n+1
s− )+{(Zn

s − Zn+1
s )dBs +

∫

U
(V n

s (e)− V n+1
s (e))µ̃(ds, de)} is an (Ft, P )-martingale. Now taking expectation in both sides of (3)

yields

IE[(Y n
t − Y n+1

t )+
2
] ≤ 2IE[

∫

]t,1]
(Y n

s− − Y n+1
s− )+d(Kn

s −Kn+1
s )]

≤ 2IE[

∫

]t,1]
(Y n

s − Y n+1
s )+[n(Y n

s − Ss)
− − n(Y n+1

s − Ss)
−]ds

≤ 2nIE[

∫

]t,1]
(Y n

s − Y n+1
s )+

2
ds]

since the function y 7−→ n(y − St)
− is Lipschitz. Finally Gronwall’s inequality implies, for any t ≤ 1,

Y n
t ≤ Y n+1

t , P-a.s. and then Y n ≤ Y n+1 since Y n and Y n+1 are right continuous processes.

Step 2: There exists a constant C ≥ 0 such that

∀n ≥ 0 and t ≤ 1, IE[|Y n
t |2 +

∫ 1

0
|Zn

s |2ds +

∫ 1

0
ds

∫

U
(V n

s (e))2λ(de) + (Kn
1 )
2] ≤ C. (4)
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Indeed by Itô’s rule we obtain,

Y n
t
2 +

∫ 1

t
|Zn

s |2ds +

∫

]t,1]
ds

∫

U
(V n

s (e))2λ(de) +
∑

t<s≤1

(∆sY
n)2 = ξ2 + 2

∫

]t,1]
Y n
s g(s)ds

+2

∫

]t,1]
nY n

s (Y n
s − Ss)

−ds− 2

∫

]t,1]
Y n
s−Z

n
s dBs − 2

∫

]t,1]
Y n
s−

∫

U
V n
s (e)µ̃(ds, de), t ≤ 1.

Taking the expectation in both sides yields,

IE[|Y n
t |2 +

∫ 1

t
|Zn

s |2ds +

∫

]t,1]
ds

∫

U
(V n

s (e))2λ(de)]

≤ IE[ξ2] + 2IE[

∫

]t,1]
Y n
s g(s)ds] + 2IE[

∫

]t,1]
nY n

s (Y n
s − Ss)

−ds]

≤ IE[ξ2] + IE[

∫

]t,1]
(Y n

s )2ds] + IE[

∫

]t,1]
(g(s))2ds] + ε−1IE[ sup

t≤s≤1
(S+s )2] + εIE[(Kn

1 −Kn
t )
2];

ε is a universal non-negative real constant. But for any t ≤ 1 we have,

IE[(Kn
1 −Kn

t )
2] ≤ C{IE[ξ2 + |Y n

t |2 + (

∫ 1

t
|g(s)|ds)2 + (

∫ 1

t
Zn
s dBs)

2

+(

∫

]t,1]

∫

U
V n
s (e)µ̃(ds, de))2]}

≤ CIE[ξ2 + |Y n
t |2 + (

∫ 1

t
|g(s)|ds)2 +

∫ 1

t
|Zn

s |2ds)

+

∫

]t,1]
ds

∫

U
|V n

s (e)|2λ(de)]

where C is a constant. Now plugging this inequality in the previous one yields,

IE[|Y n
t |2 +

∫ 1

t
|Zn

s |2ds +

∫

]t,1]
ds

∫

U
(V n

s (e))2λ(de)] ≤

(1 + εC)IE[ξ2] + εCIE[|Y n
t |2] + IE[

∫

]t,1]
(Y n

s )2ds] + (1 + εC)IE[

∫

]t,1]
(g(s))2ds]

+ε−1IE[supt≤s≤1(S
+
s )2] + εCIE[

∫ 1

t
|Zn

s |2ds) +
∫

]t,1]
ds

∫

U
(V n

s (e))2λ(de)], t ≤ 1.

Choosing εC = 1/2 yields

IE[|Y n
t |2 +

∫ 1

t
|Zn

s |2ds +

∫

]t,1]
ds

∫

U
(V n

s (e))2λ(de)] ≤ C̄(1 + IE[

∫ 1

t
(Y n

s )2ds]), t ≤ 1,

where C̄ is an appropriate real constant. Now Gronwall’s inequality leads to the desired result for

IE[|Y n
t |2] and then also for IE[

∫ 1

0
|Zn

s |2ds], IE[

∫ 1

0
ds

∫

U
(V n

s (e))2λ(de)] and IE[(Kn
1 )
2].

Step 3: There exists a constant C ≥ 0 such that for any n ≥ 0 we have IE[sup0≤t≤1 |Y n
t |2] ≤ C. In

addition there exists an Ft-adapted process (Yt)t≤1 such that IE[

∫ 1

0
|Y n

s − Ys|2ds]→ 0 as n→∞.

Indeed for n ≥ 0, using once again Itô’s formula we obtain,

Y n
t
2 +

∫ 1

t
|Zn

s |2ds +

∫

]t,1]
ds

∫

U
(V n

s (e))2λ(de) +
∑

t<s≤1

(∆sY
n)2 = ξ2 + 2

∫

]t,1]
Y n
s g(s)ds

+2

∫

]t,1]
nY n

s (Y n
s − Ss)

−ds− 2

∫

]t,1]
Y n
s−Z

n
s dBs − 2

∫

]t,1]
Y n
s−

∫

U
V n
s (e)µ̃(ds, de), t ≤ 1.

(5)
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But |
∫ 1

t
Y n
s g(s)ds| ≤

∫ 1

t
{c1|Y n

s |2 + c−11 |g(s)|2}ds,
∫ 1

t
Y n
s dKn

s ≤ c2 sup
t≤s≤1

|S+s |2 + c−12 (Kn
1 −Kn

t )
2. On

the other hand using the Burkholder-Davis-Gundy inequality ([4],p.304) we get,

IE[ sup
t≤s≤1

|
∫

]s,1]
Y n
r−Z

n
r dBr|] ≤ c3IE[ sup

t≤s≤1
|Y n

s |2] + c−13 IE[

∫ 1

t
|Zn

r |2dr]

and

IE[supt≤s≤1 |
∫

]s,1]

∫

U
Y n
r−V

n
r (e)µ̃(dr, de)|]≤ CIE[{

∫

]t,1]
dr

∫

U
|Y n

r−V
n
r (e)|2λ(de)}1/2]

≤ c4IE[supt≤s≤1 |Y n
s |2] + 1

c4
IE[

∫ 1

t
ds

∫

U
(V n

s (e))2λ(de)].

Here c1, c2, c3 and c4 are universal non-negative real constants. Now combining these inequalities

with (5) yields,

IE[ supt≤s≤1 |Y n
s |2 +

∫ 1

t
|Zn

s |2ds +

∫

]t,1]
ds

∫

U
(V n

s (e))2λ(de)]

≤ IE[ξ2] + 2IE[

∫

]t,1]
{c1|Y n

s |2 + c−11 |g(s)|2}ds + 2c2IE[ sup
t≤s≤1

|S+s |2]

+2c−12 IE[(Kn
1 −Kn

t )
2] + 2c3IE[supt≤s≤1 |Y n

r |2] + 2c−13 IE[

∫ 1

t
|Zn

r |2dr]

+2c4IE[supt≤s≤1 |Y n
s |2] + 2c−14 IE[

∫ 1

t
ds

∫

U
(V n

s (e))2λ(de)], ∀t ≤ 1.

Finally choosing 2(c3 + c4) < 1 we obtain IE[supt≤1 |Y n
s |2] ≤ C.

Now let Yt = lim infn→∞ Y n
t , t ≤ 1. Since the sequence (Y n)n≥0 is non-decreasing then, using Fatou’s

lemma, IE[Y 1t ] ≤ IE[Yt] ≤ lim infn→∞ IE[Y n
t ] ≤ C. It follows that for any t ≤ 1, Yt < ∞ and then

P-a.s., Y n
t → Yt as n→∞. In addition the Lebesgue’s dominated convergence theorem implies that

IE[

∫ 1

0
|Y n

s − Ys|2ds]→ 0 as n→∞.

Step 4: limn→∞ IE[supt≤1 |(Y n
t −St)

−|2] = 0. This property is the key point in the proof of our result.

Let
(

Ȳ n
t , Z̄n

t , V̄
n
t

)

t≤1
be the solution of the following BSDE :

Ȳ n
t = ξ +

∫ 1

t
{g(s)− n(Ȳ n

s − Ss)}ds−
∫ 1

t
Z̄n
s dBs −

∫ 1

t

∫

U
V̄ n
s (e) µ̃ (ds, de)

By comparison we have P-a.s., ∀t ≤ 1, Y n
t ≥ Ȳ n

t , for any n ≥ 0 (the proof is similar to the one we

have done to prove Y n ≤ Y n+1 in Step 1). Now let τ be an Ft-stopping time such that τ ≤ 1. Then,

Ȳ n
τ = E[ξ exp−n (1− τ) +

∫ 1

τ
(g(s) + nSs) exp−n (s− τ) ds |Fτ ].

Since S is a right continuous then

ξ exp−n (1− τ) + n

∫ 1

τ
Ss exp−n (s− τ) ds→ ξ1[τ=1] + Sτ1[τ<1] as n→∞

8



P−a.s. and in L2(Ω, P ). Henceforth we have also the convergence of the conditional expectation in

L2(Ω, P ). In addition

∣

∣

∣

∣

∫ 1

τ
g(s)exp{−n (s− τ)}ds

∣

∣

∣

∣

≤ 1√
n

(
∫ 1

τ
g2(s)ds

)

1
2

then
∫ 1

τ
g(s)exp− n (s− τ) ds −→ 0 in L2(Ω, P ) as n→∞.

Consequently

Ȳ n
τ −→ ξ1[τ=1] + Sτ1[τ<1] in L2(Ω, P ) as n→∞.

Therefore Yτ ≥ Sτ P − a.s. From that and the section theorem ([4], p.220), we deduce that Yt ≥
St, ∀t ≤ 1, P − a.s. and then (Y n

t − St )
− ↘ 0, ∀t ≤ 1, P-a.s.

Now since Y n ↗ Y then, if we denote by pX the predictable projection of any process X, pY n ↗ pY

and pY ≥ pS. But for any n the jumping times of the process (

∫ t

0

∫

U
V̄ n
s (e) µ̃ (ds, de))0≤t≤1 are

inaccessible since µ is a Poisson random measure. It follows that the jumping times of Y n are also

inaccessible. Then for any predictable stopping time δ we have Y n
δ = Y n

δ−, henceforth the predictable

projection of Y n is Y n
− , i.e., pY n = Y n

− . In the same way we have pS = S− since we have supposed

the jumping times of S inaccessible.

So we have proved that pY n ↗ pY ≥ pS, i.e., Y n
− ↗ pY ≥ S−, hence Y n

− − S− ↗ pY − S− ≥ 0. It

follows that
(

Y n
t− − St−

)− ↘ 0 , ∀t ≤ 1 P-a.s. as n → ∞. Consequently, from a weak version of the

Dini’s theorem ([4], p.202), we deduce that supt≤1 (Y
n
t − St)

− ↘ 0 P-a.s. as n → ∞. Therefore the

dominated convergence theorem implies

E[sup
t≤1

|(Y n
t − St)

−|2] −→ 0 a.s. as n→∞

since for any n ≥ 0, Y 1t − S+t ≤ Y n
t − St and then (Y n

t − St)
− ≤

∣

∣Y 1t
∣

∣+ S+t .

Step 5: limn→∞ IE[supt≤1 |Y n
t − Yt|2] = 0 and there exist Ft-adapted processes Z = (Zt)t≤1, K =

(Kt)t≤1 (K non-decreasing and K0 = 0) and V = (Vt)t≤1 such that

IE[

∫ 1

0
|Zn

s − Zs|2ds + sup
t≤1

|Kn
t −Kt|2 +

∫ 1

0
ds

∫

U
|V n

s (e)− V p
s (e)|2λ(de)]→∞ as n→∞.

Indeed using Itô’s formula we have for any p ≥ n ≥ 0 and t ≤ 1,

(Y n
t − Y p

t )2 +

∫ 1

t
|Zn

s − Zp
s |2ds +

∫ 1

t
ds

∫

U
|V n

s (e)− V p
s (e)|2λ(de) +

∑

t<s≤1

∆s(Y
n − Y p)2

= 2

∫ 1

t
(Y n

s − Y p
s )(dKn

s − dKp
s )− 2

∫ 1

t
(Y n

s− − Y p
s−)(Z

n
s − Zp

s )dBs

−2

∫ 1

t

∫

U
ds(Y n

s− − Y p
s−)(V

n
s (e)− V p

s (e))µ̃(ds, de).

(6)

So since p ≥ n, then

∫ 1

t
(Y n

s −Y p
s )(dKn

s −dKp
s ) ≤ −

∫ 1

t
(Y n

s −Ss)dK
p
s ≤ sup

t≤1
(Y n

s −Ss)
−Kp

1 . Therefore

taking expectation in (6) and using the results of Step 2 and Step 4, yields

IE[

∫ 1

t
|Zn

s − Zp
s |2ds +

∫ 1

0
ds

∫

U
|V n

s (e)− V p
s (e)|2λ(de)] ≤ 2IE[sup

t≤1
(Y n

s − Ss)
−Kp

1 ]→ 0 as n→∞.
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It follows that (Zn)n≥0 and (V n)n≥0 are Cauchy sequences in complete spaces then there exist processes

Z and V , respectively Ft-progressively measurable and P ⊗ U-measurable such that the sequences

(Zn)n≥0 and (V n)n≥0 converge respectively toward Z and V in L2(dP ⊗ dt) and L2(dP ⊗ dtλ(de))

respectively.

Now going back to (6), taking first the supremum then the expectation and using the Burkholder-

Davis-Gundy inequality ([4], p.304) yields,

IE[ supt≤s≤1(Y
n
s − Y p

s )2 +

∫ 1

t
|Zn

s − Zp
s |2ds +

∫ 1

0
ds

∫

U
|V n

s (e)− V p
s (e)|2λ(de)]

≤ 2IE[supt≤s≤1(Y
n
s − Ss)

−.Kp
1 ] + 2αIE[supt≤s≤1 |Y n

s − Y p
s |2]+

α−1IE[

∫ 1

t
|Zn

s − Zp
s |2ds] + α−1IE[

∫ 1

t

∫

U
ds|V n

s (e)− V p
s (e)|2λ(de)], t ≤ 1,

where α is a universal real non-negative constant. Henceforth choosing α < 1/2 implies that

IE[sup0≤s≤1(Y
n
s − Y p

s )2]→ 0 as p, n→∞ and then IE[sup0≤s≤1(Y
n
s − Ys)

2]→ 0 as n→∞, moreover

Y = (Yt)t≤1 is an Ft-adapted rcll process.

Finally since for any n ≥ 0 and t ≤ 1,

Kn
t = Y n

0 − Y n
t −

∫ 1

0
g(s)ds +

∫ t

0
Zn
s dBs +

∫ t

0

∫

U
V n
s (e)µ̃(ds, de),

then we have also, IE[sup0≤s≤1 |Kn
s − Kp

s |2] → 0 as n, p → ∞. Hence there exists an Ft-adapted

non-decreasing and continuous process (Kt)t≤1 (K0 = 0) such that IE[sup0≤s≤1 |Kn
s − Ks|2] → 0 as

n→∞.

Step 6: The limiting process (Y,Z,K, V ) = (Yt, Zt,Kt, Vt)t≤1 is the solution of the reflected DBSDE

associated with (g, ξ, S).

Obviously the process (Y,Z,K, V ) satisfies

Yt = ξ +

∫ 1

t
g(s)ds + K1 −Kt −

∫ 1

t
ZsdBs −

∫ 1

t
ds

∫

U
Vs(e)µ̃(ds, de), ∀t ≤ 1.

On the other hand since limn→∞ IE[supt≤1((Y
n
t −St)

−)2] = 0 then P-a.s., ∀t ≤ 1, Yt ≥ St. Finally let

us prove

∫ 1

0
(Ys − Ss)dKs = 0.

First there exists a subsequence of (Kn)n≥0 which we still denote (Kn)n≥0 such that P−a.s.

limn→∞ supt≤1 |Kn
t − Kt| = 0. Now let ω be fixed. Since the function Y (ω) − S(ω) : t ∈ [0, 1] 7−→

Yt(ω)− St(ω) is rcll then there exists a sequence of step functions (fm(ω))m≥0 which converges uni-

formly on [0, 1] to Y (ω)− S(ω). Now

∫ 1

0
(Ys − Ss)dKs =

∫ 1

0
(Ys − Ss)d(Ks −Kn

s ) +

∫ 1

0
(Ys − Ss)dK

n
s . (7)

On the other hand the result stated in Step 5 implies, for any ε > 0, there exists n0(ω) such that for

any n ≥ n0(ω), ∀t ≤ 1, Yt(ω) − St(ω) ≤ Y n
t (ω) − St(ω) + ε and Kn

1 (ω) ≤ K1(ω) + ε. Therefore for

n ≥ n0(ω) we have
∫ 1

0
(Ys − Ss)dK

n
s ≤ εK1(ω) + ε2 (8)
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since
∫ 1

0
(Y n

s − Ss) dK
n
s = −n

∫ 1

0

(

(Y n
s − Ss)

−)2 ds ≤ 0.

Now there exists m0(ω) ≥ 0 such that for m ≥ m0(ω) we have ∀t ≤ 1, |Yt(ω) − St(ω) − fm
t (ω)| < ε.

It follows that
∫ 1

0
(Ys − Ss)d(Ks −Kn

s ) =

∫ 1

0
(Ys − Ss − fm

s (ω))d(Ks −Kn
s ) +

∫ 1

0
fm
s (ω)d(Ks −Kn

s )

≤
∫ 1

0
fm
s (ω)d(Ks −Kn

s ) + ε(K1(ω) + Kn
1 (ω)).

But the right-hand side converge to 2εK1(ω), as n → ∞, since fm(ω) is a step function and then
∫ 1

0
fm
s (ω)d(Ks −Kn

s )→ 0. Therefore we have

lim sup
n→∞

∫ 1

0
(Ys − Ss)d(Ks −Kn

s ) ≤ 2εK1(ω). (9)

Finally from (7), (8) and (9) we deduce that
∫ 1

0
(Ys − Ss)dKs ≤ 3εK1(ω) + ε2.

As ε is whatever and Y ≥ S then
∫ 1

0
(Ys − Ss)dKs = 0.

The other properties are satisfied by construction of the quadruple of processes (Y, Z,K, V ) and the

proof is complete ¤.

We are now ready to give the main result of this section.

1.2.b. Theorem: The reflected BSDE with jumps (1) associated with (f, ξ, S) has a unique solution

(Y,Z,K, V ).

Proof : It remains to show the existence which will be obtained via a fixed point of the contraction

of the function Φ defined as follows:

Let D := S2 ×H2,d × L2 endowed with the norm,

‖(Y,Z, V )‖α = {IE[

∫ 1

0
eαs(|Ys|2 + |Zs|2 +

∫

U
|Vs(e)|2λ(de))ds]}1/2; α > 0.

Let Φ be the map from D into itself which with (Y,Z, V ) associates Φ(Y,Z, V ) = (Ỹ , Z̃, Ṽ ) where

(Ỹ , Z̃, K̃, Ṽ ) is the solution of the reflected DBSDE associated with (f(t, Yt, Zt, Vt), ξ, S). Let

(Y ′, Z ′, V ′) be another triple of D and Φ(Y ′, Z ′, V ′) = (Ỹ ′, Z̃ ′, Ṽ ′), then using Itô’s formula we obtain,

for any t ≤ 1,

eαt(Ỹt − Ỹ ′t )
2 + α

∫ 1

t
eαs(Ỹs − Ỹ ′s )

2ds +

∫ 1

t
eαs|Z̃s − Z̃ ′s|2ds+

∫ 1

t
eαsds

∫

U
(Ṽs(e)− Ṽ ′s (e))

2λ(de) +
∑

t<s≤1

eαs(∆sỸ −∆sỸ
′)2 = (M1 −Mt)+

2

∫ 1

t
eαs(Ỹs − Ỹ ′s )(dK̃s − dK̃ ′

s) + 2

∫ 1

t
eαs(Ỹs − Ỹ ′s )(f(s, Ys, Zs, Vs)− f(s, Y ′s , Z

′
s, V

′
s ))ds

11



where (Mt)t≤1 is a martingale. But

∫ 1

t
eαs(Ỹs − Ỹ ′s )(dK̃s − dK̃ ′

s) ≤ 0 then

αIE[

∫ 1

t
eαs(Ỹs − Ỹ ′s )

2ds] + IE[

∫ 1

t
eαs|Z̃s − Z̃ ′s|2ds] + IE[

∫ 1

t
eαsds

∫

U
(Ṽs(e)− Ṽ ′s (e))

2λ(de)]

≤ 2IE[

∫ 1

t
eαs(Ỹs − Ỹ ′s )(f(s, Ys, Zs, Vs)− f(s, Y ′s , Z

′
s, V

′
s ))ds]

≤ kεIE[

∫ 1

t
eαs(Ỹs − Ỹ ′s )

2ds] +
k

ε
IE[

∫ 1

t
eαs{|Ys − Y ′s |2 + |Zs − Z ′s|2+

∫

U
|Vs(e)− V ′s (e)|2λ(de)}ds].

It implies that

(α− kε)IE[

∫ 1

t
eαs(Ỹs − Ỹ ′s )

2ds] + IE[

∫ 1

t
eαs(Z̃s − Z̃ ′s)

2ds]+

IE[

∫ 1

t
eαsds

∫

U
(Ṽs(e)− Ṽ ′s (e))

2λ(de)] ≤

k
ε IE[

∫ 1

t
eαs{|Ys − Y ′s |2 + |Zs − Z ′s|2 +

∫

U
|Vs(e)− V ′s (e)|2λ(de)}ds].

Now let α great enough and ε such that k < ε < α−1
k , then Φ is a contraction on D, henceforth there

exists a triple (Y,Z, V ) such that Φ(Y,Z, V ) = (Y,Z, V ) which, with K, is the unique solution of the

reflected DBSDE associated with (f, ξ, S) ¤

2.3 Regularity of the process K.

We now focus on the regularity of the process K. We are going to show that the process K = (Kt)t≤1
is absolutely continuous if the barrier S = (St)t≤1 is regular. Precisely we have :

1.3.a. Proposition: Assume the barrier S = (St)t≤1 satisfies:

P − a.s. St = H2,1 − lim
m→∞

Sm
t

where for any m ≥ 0, (Sm
t )t≤1 is a semimartingale which satisfies

Sm
t = Sm

0 +

∫ t

0
lms dBs +

∫ t

0

∫

U
wm

s (e)µ̃(ds, de) +

∫ t

0
ams ds, t ≤ 1,

with

IE[

∫ 1

0
{(lms )2 ds +

∫

U
(wm

s (e))2 λ (de)}ds] < +∞ , ∀m ∈ IN,

and

sup
m≥0

IE[

∫ 1

0
|(ams )−|2ds] <∞.

In addition (Sm
1 )m≥0 converges to S1 in L2(Ω, dP ). Then the process K of the solution of the reflected

DBSDE associated with (f, ξ, S) is absolutely continuous with respect to the Lebesgue measure dt.
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Proof : Let (Y,Z,K, V ) be the solution of the reflected DBSDE associated with (f, ξ, S) and for n ≥ 0,

let (Y n, Zn, V n) be the solution of the following standard BSDE :

Y n
t = ξ +

∫ 1

t
{f(s, Ys, Zs, Vs) + n(Y n

s − Ss)
−}ds−

∫ 1

t
Zn
s dBs −

∫ 1

t

∫

U
V n
s (e)µ̃(ds, de), t ≤ 1.

Since the solution of the reflected DBSDE associated with (f, ξ, S) is unique then, as it has been shown

in Thm.1.2.a, the sequence ((Y n, Zn,

∫ .

0
n(Y n

s − Ss)
−ds), V n))n≥0 converges toward (Y,Z,K, V ) in

S2 ×H2,d × S2 × L2.
Now using the generalized Itô’s formula with the convex function x 7−→ x−

2
and the process Y n−Sm

implies that An,m
t , defined below, is non-decreasing in t ;

An,m
t = (Y n

t − Sm
t )−

2 − (Y n
0 − Sm

0 )−
2
+

∫

]0,t]
(Y n

s− − Sm
s−)

−d(Y n
s − Sm

s )

−∑

0<s≤t{(Y n
s − Sm

s )−
2 − (Y n

s− − Sm
s−)

−2 + 2(Y n
s− − Sm

s−)
−∆s(Y

n − Sm)}.

Then for any t ≤ 1 we have An,m
1 −An,m

t ≥ 0 which yields,

(Y n
t − Sm

t )−
2

+
∑

t<s≤1{(Y n
s − Sm

s )−
2 − (Y n

s− − Sm
s−)

2 + 2(Y n
s− − Sm

s−)
−∆s(Y

n − Sm)}
≤ (ξ − Sm

1 )−
2
+ 2

∫

]t,1]
(Y n

s− − Sm
s−)

−d(Y n
s − Sm

s )

≤ (ξ − Sm
1 )−

2
+ 2

∫

]t,1]
(Y n

s− − Sm
s−)

−{−f(s, Ys, Vs)− n(Y n
s − Ss)

− − ams }ds

+2

∫ 1

t
(Y n

s− − Sm
s−)

−{(Zn
s − lms )dBs +

∫

U
(V n

s (e) + wm
s (e))µ̃(ds, de)}.

Now since (y−)2 − (x−)2 + 2x−(y − x) ≥ 0, ∀x, y ∈ IR then

∑

t<s≤1

{(Y n
s − Sm

s )−
2 − (Y n

s− − Sm
s−)

−2 + 2(Y n
s− − Sm

s−)
−∆s(Y

n − Sm)} ≥ 0.

Taking the expectation in both sides above yields, for any t ≤ 1,

IE[(Y n
t − Sm

t )−
2
] ≤ IE[(ξ − Sm

1 )−
2
]− 2IE[

∫ 1

t
(Y n

s − Sm
s )−{f(s, Ys, Zs, Vs) + n(Y n

s − Ss)
− + ams }ds].

Then

IE[(Y n
t − Sm

t )−
2
] ≤ IE[(ξ − Sm

1 )−
2
]− 2nIE[

∫ 1

t
(Y n

s − Sm
s )−(Y n

s − Ss)
−ds]

+ 1
ε2
IE[

∫ 1

0
(Y n

s − Sm
s )−

2
]ds + ε2C.

It follows that

2nIE[

∫ 1

0
(Y n

s − Sm
s )−(Y n

s − Ss)
−ds] ≤ IE[(ξ − Sm

1 )−
2
] +

1

ε2
IE[

∫ 1

0
(Y n

s − Sm
s )−

2
ds] + ε2C.

Now since the sequence of processes (Sm)m≥0 converges to S in H2,1 and S1 = L2− limm→∞ Sm
1 then

taking the limit in the previous inequality as m→∞ yields,

2nIE[

∫ 1

0
(Y n

s − Ss)
−2ds] ≤ 1

ε2
IE[

∫ 1

0
(Y n

s − Ss)
−2]ds + ε2C,
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and choosing ε = n−
1
2 implies

IE[

∫ 1

0
(Y n

s − Ss)
−2ds] ≤ C

n2
. (10)

But the inequality (10) can be written as

sup
n∈IN∗

IE[‖Kn‖H1(0,1;IRd)] <∞

where Kn
t = n

∫ t

0
(Y n

s − Ss)
−ds, t ≤ 1, and H1(0, 1; IRd) is the usual Sobolev space consisting of all

absolutely continuous functions with derivative in L2(0, 1). Hence the sequence (Kn)n is bounded in

the Hilbert space L2(Ω;H1(0, 1; IRd)) and then there exists a subsequence of (Kn)n which converges

weakly. The limiting process, which is actually K, belongs to L2(Ω;H1(0, 1; IRd)) and then P-a.s.,

K.(ω) ∈ H1(0, 1; IRd) i.e. K is absolutely continuous with respect to Lebesgue measure dt ¤

2.4 The Snell envelope method.

The aim of this part is to give another proof of the existence and uniqueness result using the so called

Snell envelope of processes (see El Karoui et al. [6] for the continuous case). However as it is pointed

out in the beginning of Section 1.2, first we assume the function f does not depend on (y, z, v), i.e.

f(t, y, z, v) = g(t), then we have the following result.

1.4.a. Proposition: There exists a process (Yt, Zt, Vt,Kt)t≤1 solution of the reflected DBSDE asso-

ciated with (g, ξ, S).

Proof : Let η := (ηt)t≤1 be the process defined as follows:

ηt = ξ1{t=1} + St1{t<1} +

∫ t

0
g(s)ds,

then η is rcll and its jumping times τ before 1 are the same as the ones of S and then they are

inaccessible since those of this latter process are so. Moreover

sup
0≤t≤1

|ηt| ∈ L2 (Ω) . (11)

The Snell envelope of η is the smallest rcll supermartingale which dominates the process η, it is given

by :

St (η) = ess sup
ν∈Tt

IE [ην |Ft]

where Tt is the set of stopping time ν such that t ≤ ν ≤ 1 a.s. Now due to (11), we have

IE[supt≤1 |St|2] <∞ and then (St(η))t≤1 is of class [D], i.e. the set of random variables {Sτ (η), τ ∈ T0}
is uniformly integrable. Henceforth it has the following Doob-Meyer decomposition

St (η) = IE

[

ξ +

∫ 1

0
g(s)ds + K(1)|Ft

]

−K(t)

where (K(t))t≤1 is an (Ft)t≤1-adapted rcll non-decreasing process such that K(0) = 0. Furthermore

we have IE[K(1)2] <∞ since IE[supt≤1 |St|2] <∞ (see e.g. [4], p.221). It follows that

14



IE[supt≤1 |IE[ξ + K(1)|Ft]|2] < ∞ and then, through the representation theorem of martingales with

respect to (Ft)t≤1 (see [8]), there exist two processes Z = (Zt)t≤1 and V = (Vt)t≤1 which belong

respectively to H2,d and L2 such that,

Mt := IE[ξ +

∫ 1

0
g(s)ds + K(1)|Ft] = IE[ξ + K(1)] +

∫ t

0
ZsdBs +

∫ t

0

∫

U
Vs(e)µ̃(ds, de), ∀t ≤ 1.

Now let us show that the process K is continuous.

First let us underline that the jumping times of K are included in the set
{

S− (η) = η
}

where η
t
=

lim sups↗t ηs = ηt− since the process η is rcll (see e.g. [EK], pp.131).

Now let τ be a predictable stopping time, then

IE[Sτ−(η)1{∆K(τ)>0}] = IE[ητ−1{∆K(τ)>0}]

≤ IE[ητ1{∆K(τ)>0}] ≤ IE[Sτ (η)1{∆K(τ)>0}].
(12)

The second inequality is obtained through the fact that the process η has inaccessible jumping times,

and may have a positive jump at t = 1. On the other hand,

IE[Sτ−(η)1{∆K(τ)=0}] = IE[(Mτ− + K(τ))1{∆K(τ)=0}]

= IE[(Mτ + K(τ))1{∆K(τ)=0}] = IE[Sτ (η)1{∆K(τ)=0}].
(13)

The second equality stems from the fact that τ is predictable, then Mτ− = Mτ since the jumping times

of (Mt)t≤1 are those of its Poisson part and those latter are inaccessible. Now combining (12) and (13)

yields IE[Sτ−(η)] ≤ IE[Sτ (η)] and then, since S(η) is a supermartingale, IE[Sτ−(η)] = IE[Sτ (η)] for any
predictable stopping time τ . Henceforth the supermartingale (St(η))t≤1 is regular, i.e. pS(η) = S−(η),
and then the process K is continuous (see [3], p.119).

Now let us set

Yt = ess sup
v∈Tt

IE

[

ξ1{v=1} + Sv1{v<1} +

∫ v

t
g(s)ds |Ft

]

,

then Yt +

∫ t

0
g(s)ds = St(η) = Mt −K(t), t ≤ 1, henceforth we have

Yt +

∫ t

0
g(s)ds = IE[ξ + K(1)] +

∫ t

0
ZsdBs +

∫ t

0

∫

U
Vs(e)µ̃(ds, de)−K(t), ∀t ≤ 1,

and then for any t ≤ 1 we have,

Yt = ξ +

∫ 1

t
g(s)ds−

∫ 1

t
ZsdWs −

∫ 1

t

∫

U
Vs(e)µ̃(ds, de) + K(1)−K(t).

Now since Yt +

∫ t

0
g(s)ds = St(η) then Yt ≥ St for any t ≤ 1.

Finally it remains to show that

∫ 1

0
(Yt−St)dK(t) = 0. The Snell envelope process (St(η))t≤1 is regular

i.e. S−(η) = pS(η). Now let t ≤ 1 and δt := inf{s ≥ t,K(s) > K(t)} ∧ 1. As S(η) is regular then δt
is the largest optimal stopping time after t (see e.g. [EK], p.140). It implies that Sδt

(η) = ηδt
([EK],
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p.111) . Henceforth for any s ∈ [t, δt] we have (Ss(η) − ηs)dK(s) = 0 and then (Ys − Ss)dK(s) = 0

which implies

∫ 1

0
(Yt − St)dK(t) = 0.

The process (Y,Z,K, V ) is then solution of the reflected BSDE associated with (g, ξ, S) ¤

Now we argue as in Thm.1.2.b. to obtain the existence and uniqueness of the solution of the reflected

discontinuous BSDE associated with coefficients f which depend on (y, z, v) and which are uniformly

Lipschitz with respect to those variables. Therefore we have,

1.4.b. Theorem: There exists a unique solution (Y,Z,K, V ) = (Yt, Zt,Kt, Vt)t≤1 for the reflected

backward stochastic differential equation (1) with jumps associated with (f, ξ, S) ¤

2.5 Application of Reflected DBSDEs in mixed stochastic control.

Now we are going to highlight the link between mixed stochastic optimal control, when the noise is of

gaussian and Poisson types, and RDBSDEs.

Let us consider D1 and D2 two compact metric spaces whose Borel σ-algebras are respectively B(D1)

and B(D2), and f , g two functions defined as :

(i) f maps [0, 1] × Ω ×D1 into IRd, bounded and P ⊗ B(D1)/B(IRd)-measurable. Moreover for any

(t, ω) ∈ [0, 1]× Ω, the function f(t, ω, .) : d1 ∈ D1 7−→ f(t, ω, d1) is continuous.

(ii) g maps [0, 1]×Ω×D2×U into IR, is P×B(D2×U)/B(IR)-measurable and there exist two constants

α1 and α2 such that |g(t, ω, d2, e)| ≤ α1|e|1[|e|≤1] + α21[|e|>1] for any (t, ω, d2, e) ∈ [0, 1]×Ω×D2 ×U .

Moreover for any (t, ω, e) the function g(t, ω, e, .) : d2 ∈ D2 7−→ g(t, ω, d2, e) is continuous.

Now let D1 (resp. D2) be the set of P-measurable processes with values in D1 (resp. D2). The set

D := D1 × D2 is called of admissible controls. For any δ = (δ1, δ2) ∈ D we associate a process Lδ

defined as follows:

Lδ
t = exp[

∫ t

0
f(s, δ1(s))dBs −

1

2

∫ t

0
|f(s, δ1(s))|2ds +

∫ t

0

∫

U
g(s, δ2(s), e)µ̃(de, ds)

−
∫ t

0

∫

U
{eg(s,δ2(s),e) − 1− g(s, δ2(s), e)}λ(de)ds], t ≤ 1.

The above assumptions on f and g imply that Lδ is an (Ft, P )-martingale and the measure P δ on

(Ω,F) defined by dP δ = Lδ.dP is a probability (see e.g. [9]). Moreover under P δ, µ̃δ(dt, de) :=

µ̃(dt, de)− (eg(t,δ2(t),e)− 1)dtλ(de) is an Ft−martingale measure and (W δ
t = Wt−

∫ t

0
f(s, δ1(s))ds)t≤1

is an Ft−Brownian motion.

Now let us consider δ = (δ1, δ2) ∈ D, τ an Ft-stopping time such that τ ≤ 1, P-a.s. and J(δ, τ) a

functional whose expression is given by:

J(δ, τ) = Eδ[

∫ τ

0
ds{c(s, δ1(s)) +

∫

U
h(s, δ2(s), e)e

g(s,δ2(s),e)λ(de)}+ Sτ1[τ<1] + ξ1[τ=1]]
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where c and h are two bounded measurable functions defined respectively on [0, 1] × Ω × D1 and

[0, 1] × Ω × D2 × U . Furthermore we suppose that c is continuous with respect to d1, h continuous

with respect to d2 and satisfies ∀e ∈ U, |h(t, ω, d2, e)| ≤ a(1 ∧ |e|2) for some a > 0.

The problem on which we are interested in is to look for (δ∗, τ∗) which maximizes J(δ, τ) i.e. J(δ∗, τ∗) ≥
J(δ, τ) for any other δ and τ .

We can think of J(δ, τ) as the profit that makes an agent who intervenes on a system whose evolution

is described by a stochastic process, say (Xt)t≤1. An intervention strategy for the agent is a pair

(δ, τ), δ is his control action and τ is the time he chooses to stop controlling. A strategy (δ∗, τ∗) which

maximizes J(δ, τ), if it exists, is called optimal for the agent.

In the expression of J(δ, τ), the term which is absolutely continuous with respect to dt is the instan-

taneous reward and the other is the reward at stopping for the agent.

This problem is called of mixed control type because it combines optimal control and stopping.

Assume the state evolution (Xt)t≤1 of the non-controlled system is described by a stochastic differential

equation of the following type:

Xt = x + Wt +
∑

s≤t

∆Xs1[|∆Xs|>1] +

∫ t

0

∫

|e|≤1
eµ̃(ds, de), t ≤ 1.

The control action of the agent consists in choosing a probability P δ under which the system will

evolve. So under P δ the state evolution of the controlled system is described by :

Xt = x + W δ
t +

∫ t

0
f(s, δ1(s))ds +

∑

s≤t

∆Xs1[|∆Xs|>1] +

∫ t

0

∫

|e|≤1
eµ̃δ(ds, de)

+

∫ t

0

∫

|e|≤1
e(eg(s,δ2(s),e) − 1)λ(de)ds, t ≤ 1

It means that the agent control action generates a drift for the dynamic of the system and a reward

which is equal to J(δ, τ), therefore he looks for optimal strategies ¤

We now go back to our general mixed control problem. Let H1 and H2 be the hamiltonian functions

associated with this control problem, defined on [0, 1]×Ω×IRd×D1 and [0, 1]×Ω×L2(U,U , λ; IR)×D2
respectively, as follows:

H1(t, ω, p, d1) = pf(t, ω, d1) + c(t, ω, d1)

and

H2(t, ω, v, d2) =

∫

U
v(e)(eg(t,ω,d2,e) − 1)λ(de) +

∫

U
h(t, ω, d2, e)e

g(t,ω,d2,e)λ(de).

According to Benes’selection theorem [2], through the above assumptions on f and g, there exist

two measurable functions d∗1(t, ω, p) and d∗2(t, ω, v) with values respectively in D1 and D2 such that

H1(t, ω, p, d∗1) = supd1∈D1
H1(t, ω, p, d1) and H2(t, ω, v, d∗2) = supd2∈D2

H2(t, ω, v, d2). Moreover the
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function from [0, 1] × Ω × Rd × L2IR(U,U , λ) which with (t, ω, p, v) associates H1(t, ω, p, d∗1(t, ω, p)) +

H2(t, ω, v, d∗2(t, ω, v)) is Lipschitz in (p, v) uniformly on (t, ω). Indeed,

|H1(t, ω, p, d∗1(t, ω, p))−H1(t, ω, p′, d∗1(t, ω, p′))|
= | supd1∈D1

H1(t, ω, p, d1)− supd1∈D1
H1(t, ω, p′, d1)|

≤ supd1∈D1
|H1(t, ω, p, d1)−H1(t, ω, p′, d1)| = supd1∈D1

|f(t, ω, d1)||p− p′| ≤ C|p− p′|,

since f is a bounded function. On the other hand

|H2(t, ω, v, d∗2(t, ω, v))−H2(t, ω, v′, d∗2(t, ω, v′))| ≤ supd2∈D2
|
∫

U
(v(e)− v′(e))(eg(t,ω,d2,e) − 1)λ(de)|

≤ ‖v − v′‖ supd2∈D2
{
∫

U
|eg(t,ω,d2,e) − 1|2λ(de)} 1

2 ≤ C‖v − v′‖,

since |eg(t,d2,e) − 1|2 ≤ C(1 ∧ |e|2), for any (t, d2, e) ¤

Now we are ready to give the main result of this part. Let (W ∗, Z∗,K∗, V ∗) be the solution of the

reflected DBSDE associated with [H1(t, z, d
∗
1(t, z)) + H2(t, v, d

∗
2(t, v)), ξ, S] namely,























W ∗, K∗ ∈ S2, Z∗ ∈ H2,d, V ∗ ∈ L2;K∗ is moreover continuous non-decreasing and K∗
0 = 0

W ∗
t = ξ +

∫ 1

t
{H1(s, Z∗s , d∗1(s, Z∗s )) + H2(s, V

∗
s , d∗2(s, V

∗
s ))}ds + K∗

1 −K∗
t −

∫ 1

t
Z∗sdWs

−
∫ 1

t
ds

∫

U
V ∗s (e)µ̃(ds, de); W ∗

t ≥ St, ∀t ≤ 1;

∫ 1

0
(W ∗

s − S∗s )dK
∗
s = 0.

On the other hand for any t ≤ 1, let τ ∗t = inf{s ≥ t,W ∗
s = Ss} ∧ 1 and δ∗ = (d1(t, Z

∗
t ), d2(t, V

∗
t ))t≤1.

Then we have :

1.5.a. Theorem: The process (W ∗
t )t≤1 is the value function of the mixed optimal control problem,

i.e., for any t ≤ 1,

W ∗
t = esssupδ∈Desssupτ≥tIE

δ[

∫ τ

t
ds{c(s, d1(s)) +

∫

U
h(s, d2(s), e)e

g(s,d2(s),e)λ(de)}
+Sτ1[τ<1] + ξ1[τ=1]|Ft]; τ is a stopping time.

Moreover the strategy (δ∗, τ∗0 ) is optimal and W ∗
0 = J(δ∗, τ∗).

Proof : Through the Burkholder-Davis-Gundy inequality ([4], p.304), the processes

(

∫ t

0

∫

U
V ∗s (e)µ̃δ∗(ds, de))t≤1 and (

∫ t

0
Z∗sdW

δ∗

s )t≤1 are P δ∗-martingales. In addition we have

W ∗
τ∗
t
= W ∗

τ∗
t
1[τ∗

t
<1] + W ∗

1 1[τ∗t =1] = Sτ∗
t
1[τ∗

t
<1] + ξ1[τ∗

t
=1].

It follows that, since W ∗
t is Ft-measurable and K∗

t = K∗
τ∗
t

,

W ∗
t = IEδ∗ [Sτ∗

t
1[τ∗

t
<1] + ξ1[τ∗

t
=1]+

∫ τ∗
t

t
c(s, d∗1(s, Z

∗
s ))ds +

∫ τ∗
t

t
ds

∫

U
h(s, d∗2(s, V

∗
s (e)), e)eg(s,d

∗
2(s,V

∗
s (e),e))λ(de)|Ft].
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Now let δ = (d1, d2) be another control and τ a stopping time such that τ ≥ t, P-a.s.. Once again

since W ∗
t is Ft-measurable, we have,

W ∗
t = IEδ[

∫ τ

t
{H1(s, Z∗s , d∗1(s, Z∗s )) + H2(s, V

∗
s , d∗2(s, V

∗
s ))}ds + K∗

τ −K∗
t −

∫ τ

0
Z∗sdBs

−
∫ τ

t

∫

U
V ∗s (e)µ̃(ds, de) + W ∗

τ |Ft]

But

H1(s, Z
∗
s , d

∗
1(s, Z

∗
s )) ≥ Z∗s f(s, d1(s)) + c(s, d1(s)) and H2(s, V

∗
s , d∗2(s, V

∗
s )) ≥ H2(s, V

∗
s , d2(s)),

then

W ∗
t ≥ IEδ[

∫ τ

t
{Z∗s f(s, d1(s)) + c(s, d1(s)) + H2(s, V

∗
s , d2(s))}ds + K∗

τ −K∗
t

−
∫ τ

t
Z∗sdBs −

∫ τ

t

∫

U
V ∗s (e)µ̃(ds, de) + W ∗

τ |Ft]

which implies, since K∗
τ −K∗

t ≥ 0 and W ∗
τ ≥ Sτ1[τ<1] + ξ1[τ=1],

W ∗
t ≥ IEδ[

∫ τ

t
ds{c(s, d1(s)) +

∫

U
h(s, d2(s), e)e

g(s,d2(s),e)λ(de)}+ Sτ1[τ<1] + ξ1[τ=1]|Ft]

The last inequality is due to the fact that

∫ .

0
Z∗sdB

δ
s and

∫ .

0

∫

U
V ∗s (e)µ̃δ(ds, de) are (Ft, P

δ)-

martingales. Henceforth we have, for any t ≤ 1,

W ∗
t = esssupδ∈Desssupτ≥tIE

δ[

∫ τ

t
ds{c(s, d1(s)) +

∫

U
h(s, d2(s), e)e

g(s,d2(s),e)λ(de)}
+Sτ1[τ<1] + ξ1[τ=1]]|Ft]; τ is a stopping time.

Now taking t = 0 we have W ∗
0 = J(δ∗, τ∗0 ) and W ∗

0 ≥ J(δ, τ) for any δ ∈ D and τ a stopping time,

since F0 is the trivial tribe. It follows that J(δ∗, τ∗0 ) ≥ J(δ, τ) for any δ, τ , i.e., (δ∗, τ∗0 ) is an optimal

strategy for the agent. ¤

This problem has been considered yet by N. El-Karoui [5] in a general case and J.P.Lepeltier &

B.Marchal [9] in a particular case. Using martingale methods, which are a heavy tool, all of them

show the existence of an optimal strategy. We show here that this problem can be solved in a simple

way.
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