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Abstract For nonlinear functions f of a random vector Y,E[f(Y )] and f(E[Y ]) usually differ. Conse-
quently the mathematical expectation of Y is not intrinsic: when we change coordinate systems, it is
not invariant.This article is about a fundamental and hitherto neglected property of random vectors of
the form Y = f(X(t)), where X(t) is the value at time t of a diffusion process X : namely that there
exists a measure of location, called the “intrinsic location parameter” (ILP), which coincides with math-
ematical expectation only in special cases, and which is invariant under change of coordinate systems.
The construction uses martingales with respect to the intrinsic geometry of diffusion processes, and the
heat flow of harmonic mappings. We compute formulas which could be useful to statisticians, engineers,
and others who use diffusion process models; these have immediate application, discussed in a separate
article, to the construction of an intrinsic nonlinear analog to the Kalman Filter. We present here a
numerical simulation of a nonlinear SDE, showing how well the ILP formula tracks the mean of the SDE
for a Euclidean geometry.
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1 Introduction

1.1 Other Approaches to Intrinsic Statistical Estimation

It is desirable that any statistical inference procedure should have the property of “parametrization
invariance,” meaning that the conclusion should be the same, regardless of the coordinate system in
which random variables or parameters are expressed (Barndorff–Nielsen [5]). The search for coördinate-
invariant procedures leads to differential-geometric formulations of statistical theory, as in the books of
Amari [1], Murray and Rice [29], and the article Lyons [27]. A particular question is whether an intrinsic
meaning can be given to the notion of an unbiased estimator T of a parameter θ with values in a manifold
M . An affirmative answer is given by Oller and Corcuera [30], who introduce the Levi–Civita connection
on M associated with the information metric, and then require that, for the associated exponential map,
Eθ[exp−1

θ (T )] = 0 ∈ TθM , where Eθ refers to the expectation when θ is the true parameter value. In the
terminology of Emery and Mokobodzki [21], θ is an exponential barycenter of T when the law of T is
the one determined by θ. Another approach is given by Hendriks [23], assuming that a loss function has
been prescribed. In both [23] and [30], the covariance of exp−1

θ (T ) is presented as an intrinsic notion of
covariance.

1.2 Fundamental Idea of the Present Paper

The random variables for which we seek an intrinsic mean are here of a special kind: they are obtained
by evaluating a multidimensional diffusion process at some time t > 0. Unlike [30], the connection we use
comes not from an information metric, but from the geometry induced by the diffusion covariance. The
underlying philosophy is to find the initial value of a martingale on this manifold whose value at time t
is the random variable under study, as in Emery and Mokobodzki [21]. This implicitly makes use of the
filtration from which the diffusion process was constructed. The calculations to be performed to evaluate
this intrinsic mean, or “intrinsic location parameter,” arise in the solution of an ordinary differential
equation, obtained from linearization of a certain system of PDE, known as the nonlinear heat equation.

The relationship between martingales and parabolic partial differential equations was pointed out in the
classic paper of Doob [14]: the solution u(t, x) to the one-dimensional heat equation, with a given function
ψ as the boundary condition u(0, .), is given by

u(T, x) = Ex[ψ(WT )], (1)

where {Wt} is Brownian motion with W0 ≡ x. This can also be expressed as the initial value V0 of the
martingale Vt ≡ u(T − t,Wt) which terminates at ψ(WT ) at time T .

In the case of nonlinear parabolic PDE, the martingale {Vt} must be replaced by the solution of an
inverse problem for stochastic differential equations, also called a backwards SDE, as in the work of
Pardoux and Peng: see [31], [13]. In the case of the system of elliptic PDE known as a harmonic mapping
between Riemannian manifolds, this problem becomes one of constructing a martingale on a manifold
with prescribed limit, which has been solved in works by Kendall [24], [25], Picard [32], [33], Arnaudon
[2], Darling [11], [12], and Thalmaier [37]. Thalmaier [38] studies the parabolic problem for the nonlinear
heat equation. The main point here is that the straightforward computation of an expectation as in (1)
is no longer available in the nonlinear case.

The aim of the present paper is to show how the ideas mentioned in the previous paragraph lead to a
method of determining the “mean” of a diffusion process, or of its image under a smooth function, in an
intrinsic way, and that furthermore it is possible to compute an approximation to such a mean without
excessive effort.
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1.3 Application to Nonlinear Filtering

The formulas developed in this paper have been used to develop a geometrically intrinsic version [8] of
the extended Kalman filter (EKF), a practical method for computing conditional means and variances
of a multidimensional “state” diffusion process, given a sequence of noisy observations in discrete time.
Mathematicians without practical computational experience sometimes assume that the problem of non-
linear filtering can be handled by the Zakai equation, which is a measure-valued SDE giving the precise
conditional distribution of the state, given the observations. This is true when the state has dimension
one, but, for example, guidance systems in real life typically involve non-compact state spaces of dimen-
sion 10 ≤ p ≤ 50; using a fixed-grid approximation with 10g entries, the conditional distribution will be
a (hopefully sparse) matrix with 10pg entries, which typically cannot even be stored, let alone updated
in real time, using on-board processors. It is for this reason that computational implementations of non-
linear filters almost always use a Kalman filter applied to a linearized system; however the popular EKF
has the unfortunate drawback of giving results dependent on the coordinate system, a weakness which
the Geometrically Intrinsic Nonlinear Recursive Filter (GINRF) of [8] seeks to correct.
An elegant way to bypass the computational difficulty of the Zakai equation is to approximate the
conditional distribution by the empirical measure of a particle system as in Crisan and Lyons [7], and
Del Moral [28]. As Del Moral points out, the quantity of interest is often a low-dimensional marginal
distribution, which can easily be computed from the empirical measure.
Some favorable numerical results with particle-system based filters (PSBF) are reported in [28]. The
PSBF’s can be applied in a wide range of contexts (for example when the nonlinearities in the state
dynamics are not differentiable) and have good theoretical justification. However it is fair to predict
that, in cases where signal-to-noise ratio is high enough and the state process never reaches zones of
extreme nonlinearity, the GINRF will be more accurate and require a smaller computational load than a
PSBF, because in the PSBF an updating process must be applied at each time step to all the thousands
or millions of particles in the system, whereas in the GINRF, only a single intrinsic location parameter
and covariance parameter need be updated. Moreover it is relatively easy for an mathematical engineer to
modify existing extended Kalman filter to code to convert it into a GINRF, whereas a large programming
effort may be needed to implement a PSBF. Over time, it is likely that PSBF’s will come to dominate
certain areas of application, while linearization methods such as the GINRF will continue to dominate
others.

1.4 Main Results

Suppose X is a Markov diffusion process on Rp, or more generally on a manifold N . The diffusion
variance of X induces a semi-definite metric 〈.|.〉 on the cotangent bundle, a version of the Levi–Civita
connection Γ, and a Laplace–Beltrami operator ∆. We may treat X as a diffusion on N with generator
ξ + 1

2∆, where ξ is a vector field.
For sufficiently small δ > 0, Xδ has an “intrinsic location parameter,” defined to be the non-random initial
value V0 of a Γ-martingale V terminating at Xδ. It is obtained by solving a system of forward-backwards
stochastic differential equations (FBSDE): a forward equation for X , and a backwards equation for V .
This FBSDE is the stochastic equivalent of the heat equation (with drift ξ) for harmonic mappings, a
well-known system of quasilinear PDE.
Let {φt : N → N, t ≥ 0} be the flow of the vector field ξ, and let xt ≡ φt(x0) ∈ N . Our main result is
that exp−1

xδ
V0 can be intrinsically approximated to first order in Txδ

N by

∇dφδ(x0)(Πδ) −
∫ δ

0

(φδ−t)∗(∇dφt(x0))dΠt

where Πt =
∫ t
0
(φ−s)∗〈.|.〉xsds ∈ Tx0N ⊗Tx0N . This is computed in local coördinates. More generally, we

find an intrinsic location parameter for ψ(Xδ), if ψ : N → M is a C2 map into a Riemannian manifold
M . We also treat the case where X0 is random.
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2 Geometry Induced by a Diffusion Process

2.1 Diffusion Process Model

Consider a Markov diffusion process {Xt, t ≥ 0} with values in a connected manifold N of dimension p,
represented in coördinates by

dX i
t = bi(Xt)dt+

p∑
j=1

σij(Xt)dW
j
t , (2)

where
∑
bi ∂
∂xi

is a vector field on N, σ(x) ≡ (σij(x)) ∈ L(Rp;TxN), and W is a Wiener process in Rp.
We assume for simplicity that the coefficients bi, σij are C2 with bounded first derivative.

2.2 The Diffusion Variance Semi-Definite Metric

Given a stochastic differential equation of the form (2) in each chart, it is well known that one may define
a C2 semi-definite metric 〈.|.〉 on the cotangent bundle, which we call the diffusion variance semi-definite
metric, by the formula

〈dxi|dxk〉x ≡ (σ · σ)ik(x) ≡
p∑
j=1

σij(x)σ
k
j (x). (3)

Note that 〈.|.〉 may be degenerate. This semi-definite metric is actually intrinsic: changing coördinates
for the diffusion will give a different matrix (σij), but the same semi-definite metric. We postulate:

A: The appropriate metric for the study of X is the diffusion variance semi-definite metric, not the
Euclidean metric.

The p× p matrix
(
(σ · σ)ij

)
defined above induces a linear transformation α(x) : Tx∗N → TxN , namely

α(x)(dxi) ≡
∑

(σ · σ)ij∂/∂xj.

Let us make a constant-rank assumption, i.e. that there exists a rank r vector bundle E → N , a sub-
bundle of the tangent bundle, such that Ex = range (σ(x)) ⊆ TxN for all x ∈ N . In Section 7 below, we
present a global geometric construction of what we call the canonical sub-Riemannian connection ∇◦ for
〈.|.〉, with respect to a generalized inverse g, i.e. a vector bundle isomorphism g : TN → T ∗N such that

α(x) ◦ g(x) ◦ α(x) = α(x). (4)

In local coördinates, g(x) is expressed by a Riemannian metric tensor (grs), such that if aij ≡ (σ · σ)ij ,
then ∑

r,s

αirgrsα
sj = αij . (5)

The Christoffel symbols {Γsij}, for the canonical sub-Riemannian connection are specified by (84) below.
The corresponding local connector Γ(x) ∈ L(TxRp ⊗ TxR

p;TxRp) can be written in the more compact
notation:

2g(Γ(x)(u ⊗ v)) · w = D〈g(v)|g(w)〉(u) +D〈g(w)|g(u)〉(v) −D〈g(u)|g(v)〉(w), (6)

where g(Γ(x)(u ⊗ v)) is a 1-form, acting on the tangent vector w.
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2.3 Intrinsic Description of the Process

The intrinsic version of (2) is to describe X as a diffusion process on the manifold N with generator

L ≡ ξ +
1
2
∆ (7)

where ∆ is the (possibly degenerate) Laplace–Beltrami operator associated with the diffusion variance,
and ξ is a vector field, whose expressions in the local coordinate system {x1, . . . , xp} are as follows:

∆ =
∑
i,j

(σ · σ)ij
{
Dij −

∑
k

ΓkijDk

}
, ξ =

∑
k

{
bk +

1
2

∑
i,j

(σ · σ)ijΓkij

}
Dk. (8)

Note that
∑

(σ · σ)ijΓkij has been specified by (3) and (6).

3 Γ-Martingales

Let Γ̄ be a connection on a manifold M . An H2 Γ-martingale is a kind of continuous semimartingale on
M which generalizes the notion of continuous L2 martingale on Rq: see Emery [20] and Darling [12]. We
summarize the main ideas, using global coördinates for simplicity.
Among continuous semimartingales in Rq, Itô’s formula shows that local martingales are characterized
by

f(Xt) − f(X0) − 1
2

∫ t

0

D2f(Xs)(dX ⊗ dX)s ∈M c
loc′ ∀f ∈ C2(Rq), (9)

where (dX ⊗ dX)ij is the differential of the joint quadratic variation process of X i and Xj, and M c
loc

refers to the space of real-valued, continuous local martingales (see Revuz and Yor [34]). For vector fields
ξ, ζ on Rq, and ω ∈ Ω1(Rq), the smooth one-forms, a connection Γ gives an intrinsic way of differentiating
ω along ξ to obtain

∇ξω ∈ Ω1(Rq).

∇ξω · ζ is also written ∇ω(ξ ⊗ ζ). When ω = df , this gives the Hessian

∇df(Dk ⊗Di) = Dkif −
∑
j

ΓjkiDjf

where the {Γijk} are the Christoffel symbols. The intrinsic, geometric restatement of (9) is to characterize
a Γ-martingale X by the requirement that

f(Xt) − f(X0) − 1
2

∫ t

0

∇df(Xs)(dX ⊗ dX)s ∈M c
loc′ ∀f ∈ C2(Rq). (10)

This is equivalent to saying that Mk ∈M c
loc for k = 1, . . . , p, where

dMk
t = dXk

t +
1
2

∑
i,j

Γkij(Xt)d〈X i, Xj〉t. (11)

If N has a metric g with metric tensor (gij), we say that X is an H2 Γ-martingale if (10) holds and also

E〈X,X〉∞ ≡ E

∫ ∞

0

∑
i,j

gij(Xt)d〈X i, Xj〉t <∞. (12)

The Γ-martingale Dirichlet problem, which has been studied by, among others, Emery [19], Kendall [24],
[25], Picard [32], [33], Arnaudon [2], Darling [11], [12], and Thalmaier [37], [38], is to construct a Γ-
martingale, adapted to a given filtration, and with a given terminal value; for the Euclidean connection
this is achieved simply by taking conditional expectation with respect to every σ-field in the filtration,
but for other connections this may be as difficult as solving a system of nonlinear partial differential
equations, as we shall now see.
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4 Taylor Approximation of a Gamma-Martingale Dirichlet
Problem

4.1 Condition for the Intrinsic Location Parameter

Consider a diffusion process {Xt, 0 ≤ t ≤ δ} on a p-dimensional manifold N with generator ξ+ 1
2∆ where

∆ is the Laplace–Beltrami operator associated with the diffusion variance, and ξ is a vector field, as in
(8). The coordinate-free construction of the diffusion X , given a Wiener process W on Rp, and associated
filtration {JWt }, uses the linear or orthonormal frame bundle: see Elworthy [18, page 252]. We suppose
X0 = x0 ∈ N .
Also suppose (M,h) is a Riemannian manifold, with Levi–Civita connection Γ̄, and ψ : N → M is a C2

map. The case of particular interest is when M = N,ψ = identity, and the metric on N is a “generalized
inverse” to σ · σ in the sense of (5). The general case of ψ : N →M is needed in the context of nonlinear
filtering: see Darling [10].
Following Emery and Mokobodzki [21], we postulate the following:

B: Any intrinsic location parameter for ψ(Xδ) should be the initial value V0 of an {JWt }-adapted H2 Γ̄-
martingale {Vt, 0 ≤ t ≤ δ} on M , with terminal value Vδ = ψ(Xδ).

This need not be unique, but we will specify a particular choice below. In the case where σ · σ(x) does
not depend on x, then the local connector Γ, given by (6), is zero, and V0 is simply E[ψ(Xδ)]. However
our assertion is that, when Γ is not the Euclidean connection, the right measure of location is V0, and
not E[ψ(Xδ)]. We begin by indicating why an exact determination of V0 is not computationally feasible
in general.

4.2 Relationship with Harmonic Mappings

For simplicity of exposition, let us assume that there are diffeomorphisms ϕ : N → Rp and ϕ̄ : M → Rq

which induce global coordinate systems {x1, . . . , xp} for N and {y1, . . . , yq} for M , respectively. By abuse
of notation, we will usually neglect the distinction between x ∈ N and ϕ(x) ∈ Rp, and write x for both.
Γ(x)((σ · σ)(x)) ∈ TxR

p is given by (3) and (6), and the local connector Γ̄(y) ∈ L(TyRq ⊗ TyR
q;TyRq)

comes from the Levi–Civita connection for (M,h).
In order to find {Vt}, we need to construct an auxiliary adapted process {Zt}, with values in L(Rp;TVtR

q),
such that the processes {Xt} and {(Vt, Zt)} satisfy the following system of forward-backwards SDE:

Xt = x0 +
∫ t

0

b(Xs)ds+
∫ t

0

σ(Xs)dWs, 0 ≤ t ≤ δ; (13)

Vt = ψ(Xδ) −
∫ δ

t

ZsdWs +
1
2

∫ δ

t

Γ̄(Vs)(Zs · Zs)ds, 0 ≤ t ≤ δ. (14)

We also require that

E

[∫ δ

0

∑
i,j

hij(Vs)(Zs · Zs)ijds
]
<∞. (15)

[Equation (14) and condition (15) together say that V is an H2 Γ̄-martingale, in the sense of (11) and
(12).] Such systems are treated by Pardoux and Peng [31], but existence and uniqueness of solutions to
(14) are outside the scope of their theory, because the coefficient Γ̄(v)(z · z) is not Lipschitz in z.
However consider the second fundamental form ∇dφ of a C2 mapping
φ : N →M . Recall that ∇dφ(x) ∈ L(TxN ⊗ TxN ;Tφ(x)M) may be expressed in local coördinates by:

∇dφ(x)(v ⊗ w) = D2φ(x)(v ⊗ w) −Dφ(x)Γ(x)(v ⊗ w) + Γ̄(y)(Dφ(x)v ⊗Dφ(x)w) (16)
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for (v, w) ∈ TxR
p × TxR

p, y ≡ φ(x). Let ξ be as in (8). Consider a system of quasilinear parabolic PDE
(a “heat equation with drift” for harmonic mappings — see Eells and Lemaire [15], [16]) consisting of a
suitably differentiable family of mappings {u(t, .) : N →M}, for t ∈ [0, δ], such that

∂u

∂t
= du · ξ +

1
2
∇du(σ · σ), 0 ≤ t ≤ δ, (17)

u(0, .) = ψ. (18)

For x ∈ N , the right side of (17) is du(t, .) · ξ(x)+ 1
2∇du(t, .)(σ ·σ(x)) ∈ Tu(t,x)M. Following the approach

of Pardoux and Peng [31], Itô’s formula shows that

Vt = u(δ − t,Xt) ∈M, (19)

Z(t) = du(δ − t,Xt) ◦ σ(Xt) ∈ L (Rp;TVtM) (20)

solves (14). In particular u(δ, x0) = V0. (A similar idea was used by Thalmaier [37].)

4.2.a Comments on the Local Solvability of (17) – (18)

Recall that the energy density of ψ : N →M is given by

e(ψ)(x) ≡ 1
2
||dψ ⊗ dψ(σ · σ)||2ψ(x) =

1
2

∑
β,γ

hβγ(ψ(x))dψβ(x) ⊗ dψγ(x)(σ · σ(x)). (21)

Note, incidentally, that this formula still makes sense when σ · σ is degenerate. In the case where σ · σ
is non-degenerate and smooth, ξ = 0, and

∫
e(ψ)d(volN ) < ∞, the inverse function theorem method of

Hamilton [22, page 122], suffices to show existence of a unique smooth solution to (17) – (18) when δ > 0
is sufficiently small. For a more detailed account of the properties of the solutions when dim (N) = 2,
see Struwe [36, pages 221–235]. Whereas Eells and Sampson [17] showed the existence of a unique global
solution when (M,h) has non-positive curvature, Chen and Ding [6] showed that in certain other cases
blow-up of solutions is inevitable. The case where σ · σ is degenerate appears not to have been studied
in the literature of variational calculus, and indeed is not within the scope of the classical PDE theory
of Ladyzenskaja, Solonnikov, and Ural’ceva [26]. A probabilistic construction of a solution, which may
or may not generalize to the case where σ · σ is degenerate, appears in Thalmaier [38]. Work by other
authors, using Hörmander conditions on the generator ξ + 1

2∆, is in progress. For now we shall merely
assume:

Hypothesis I Assume conditions on ξ, σ · σ, ψ, and h sufficient to ensure
existence and uniqueness of a solution {u(t, .) : N →M ,
0 ≤ t ≤ δ1}, for some δ1 > 0.

Definition 4.3. The Intrinsic Location Parameter
For 0 ≤ δ ≤ δ1, the intrinsic location parameter of ψ(Xδ) is defined to be u(δ, x0), where x0 = X0.

This depends upon the generator ξ + 1
2∆, given in (8), where ∆ may be degenerate; on the mapping

ψ : N → M ; and on the metric h for M . It is precisely the initial value of an {JWt }-adapted H2 Γ̄-
martingale on M , with terminal value Vδ = ψ(Xδ). However by using the solution of the PDE, we force
the intrinsic location parameter to be unique, and to have some regularity as a function of x0.

The difficulty with Definition 4.3 is that, in filtering applications, it is not feasible to compute solutions
to (17) and (18) in real time. Instead we compute an approximation, as we now describe.
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4.4 A Parametrized Family of Heat Flows

Consider a parametrized family {uγ , 0 ≤ γ ≤ 1} of equations of the type (17), namely

∂uγ

∂t
= duγ · ξ +

γ

2
∇duγ(σ · σ), 0 ≤ t ≤ δ, (22)

uγ(0, .) = ψ. (23)

Note that the case γ = 1 gives the system (17), while the case γ = 0 gives u0(t, x) = ψ(φt(x)), where
{φt, t ≥ 0} is the flow of the vector field ξ.

In a personal communication, Etienne Pardoux has indicated the possibility of a probabilistic construc-
tion, involving the system of FBSDE (47) and (56), of a unique family of solutions {uγ} for sufficiently
small γ ≥ 0, and for small time δ > 0, based on the results of Darling [11] and methods of Pardoux and
Peng [31]. For now, it will suffice to replace Hypothesis I by the following:

Hypothesis II Assume conditions on ξ, σ · σ, ψ, and h sufficient to ensure
existence of δ1 > 0 and γ1 > 0 such that there is a unique
C2 mapping (γ, t, x) → uγ(t, x) from [0, γ1] × [0, δ1] ×N
to M satisfying (22) and (23) for each γ ∈ [0, γ1].

4.4.a Notation

For any vector field ζ on N , and any differentiable map φ : N → P into
a manifold P , the “push-forward” φ∗ζ takes the value dφ · ζ(x) ∈ TyP at
y ≡ φ(x) ∈ P ; likewise φ∗(ζ ⊗ ζ′) ≡ φ∗ζ ⊗ φ∗ζ′. We must also assume for the following theorem
that we have chosen a generalized inverse g : T ∗N → TN to σ · σ, in the sense of (4), so that we may
construct a canonical sub-Riemannian connection ∇◦ for 〈.|.〉, with respect to g.

We now state the first result, which will later be subsumed by Theorem 4.7.

Theorem 4.5. (PDE Version)
Assume Hypothesis II, and that 0 ≤ δ ≤ δ1. Then, in the tangent space Tψ(xδ)M ,

∂

∂γ
uγ(δ, x0)

∣∣∣
γ=0

=
1
2

{
∇dψ(xδ)(φδ∗Πδ) + ψ∗[∇◦dφδ(x0)(Πδ)

−
∫ δ

0

(φδ−t)∗∇◦dφt(x0)dΠt]

} (24)

where {φt, t ≥ 0} is the flow of the vector field ξ, xt ≡ φt(x0), and

Πt ≡
t∫

0

(φ−s)∗〈.|.〉xsds ∈ Tx0N ⊗ Tx0N. (25)

In the special case where M = N,ψ = identity, and h = g, the right side of (24) simplifies to the part in
parentheses [. . . ].

Definition 4.5.a. The expression (24) is called the approximate intrinsic location parameter in the
tangent space Tψ(xδ)M , denoted Ix0 [ψ(Xδ)].

Remark 4.5.b. How the Formula is Useful
First we solve the ODE for the flow {φt, 0 ≤ t ≤ δ} of the vector field ξ, compute ∂uγ(δ, x0)/∂γ at γ = 0
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using (24) (or rather, using the local coordinate version (33)), then use the exponential map to project
the approximate location parameter on to N , giving

expψ(xδ)

{
∂

∂γ
uγ(δ, x0)

∣∣∣
γ=0

}
∈M. (26)

Computation of the exponential map likewise involves solving an ODE, namely the geodesic flow on M .
In brief, we have replaced the task of solving a system of PDE by the much lighter task of solving two
ODE’s and performing an integration.

4.6 The Stochastic Version

We now prepare an alternative version of the Theorem, in terms of FBSDE, in which we give a local
coordinate expression for the right side of (24). In this context it is natural to define a new parameter
ε, so that γ = ε2 in (22). Instead of X in (13), we consider a family of diffusion processes {Xε, ε ≥ 0}
on the time interval [0, δ], where Xε has generator ξ + ε2∆/2. Likewise V in (14) will be replaced by a
family {V ε, ε ≥ 0} of H2 Γ̄-martingales, with V εδ = ψ(Xε

δ ), and V
√
γ

0 = uγ(δ, x0). Note, incidentally, that
such parametrized families of Γ̄-martingales are also treated in work of Arnaudon and Thalmaier [4], [3].

4.6.a Generalization to the Case of Random Initial Value

Suppose that, instead of X0 = x0 ∈ N as in (13), we have X0 = expx0
(U0), where U0 is a zero-mean

random variable in Tx0N , independent of W, with covariance Σ0 ∈ Tx0N ⊗ Tx0N ; the last expression
means that, for any pair of cotangent vectors β, λ ∈ T ∗

x0
N ,

E[(β · U0)(λ · U0)] = (β ⊗ λ) · Σ0.

Now set up the family of diffusion processes {Xε, ε ≥ 0} with initial values

Xε
0 = expx0

(εU0). (27)

Each Γ̄-martingale {V εt , 0 ≤ t ≤ δ} is now adapted to the larger filtration {J̃Wt } ≡ {JWt ∨ σ(U0)}. In
particular,

exp−1
ψ(xδ) V

ε
0

is now a random variable in Tψ(xδ)M depending on U0.

Definition 4.6.b. In the case of a random initial value X0 as above, the approximate intrinsic location
parameter of ψ(Xδ) in the tangent space Tψ(xδ)M , denoted Ix0,Σ0 [ψ(Xδ)], is defined to be

∂

∂(ε2)
E

[
exp−1

ψ(xδ) V
ε
0

]∣∣∣
ε=0

. (28)

We will see in Section 6.3 below that this definition makes sense. This is the same as

∂

∂γ
E

[
exp−1

ψ(xδ) u
γ
(
δ,X

√
γ

0

)]∣∣∣
γ=0

,

and coincides with Ix0 [ψ(Xδ)], given by (24), in the case where Σ0 = 0.
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4.6.c Some Integral Formulas

Given the flow {φt, 0 ≤ t ≤ δ} of the vector field ξ, the derivative flow is given locally by

τ ts ≡ d(φt ◦ φ−1
s )(xs) ∈ L(TxsN ;TxtN), (29)

where xs = φs(x), for 0 ≤ s ≤ δ. In local coördinates, we compute τ ts as a p× p matrix, given by

τ ts = exp
{∫ t

s

Dξ(xu)du
}
.

Introduce the deterministic functions

χt ≡
∫ t

0

(φt−s)∗〈.|.〉xsds =
∫ t

0

τ ts(σ · σ)(xs)(τ ts)
T ds ∈ TxtN ⊗ TxtN, (30)

Ξt ≡ χt + τ t0Σ0(τ t0)
T ∈ TxtN ⊗ TxtN. (31)

Note, incidentally, that Ξt could be called the intrinsic variance parameter of Xt.

Theorem 4.7. (Local Coördinates, Random Initial Value Version)
Under the conditions of Theorem 4.5, with random initial value X0 as in Section 4.6.a, the approximate
intrinsic location parameter Ix0,Σ0 [ψ(Xδ)] exists and is equal to the right side of (24), after redefining

Πt ≡ Σ0 +
∫ t

0

(φ−s)∗〈.|.〉xsds ∈ Tx0N ⊗ Tx0N. (32)

In local coördinates, 2Ix0,Σ0 [ψ(xδ)] is given by

J

∫ δ

0

τδt [D2ξ(xt)(Ξt) − Γ(xt)(σ · σ(xt))]dt+D2ψ(xδ)(Ξδ)

− Jτδ0 Γ(x0)(Σ0) + Γ̄(yδ)(JΞδJT )
(33)

where yδ ≡ ψ(xδ), J ≡ Dψ(xδ), and Ξt is given by (31).

Remark 4.7.a.

• Theorem 4.7 subsumes Theorem 4.5, which corresponds to the case
Σ0 = 0.

• In the special case where M = N,ψ = identity, and h = g, formula (33) reduces to:

Ix0,Σ0 [Xδ] =
1
2

{∫ δ

0

τδt [D2ξ(xt)(Ξt) − Γ(xt)(σ · σ(xt))]dt

− τδ0 Γ(x0)(Σ0) + Γ(xδ)(Ξδ)

}
.

(34)

• In the filtering context [8], formulas (33) and (34) are of crucial importance.

5 Example of Computing an Intrinsic Location Parameter

The following example shows that Theorem 4.7 leads to feasible and accurate calculations.
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5.1 Target Tracking

In target tracking applications, it is convenient to model target acceleration as an Ornstein–Uhlenbeck
process, with the constraint that acceleration must be perpendicular to velocity. Thus (v, a) ∈ R3 × R3

must satisfy v · a = 0, and the trajectory must lie within a set on which ‖v‖2 is constant. Therefore
we may identify the state space N with TS2 ⊂ R6, since the v-component lies on a sphere, and the
a-component is perpendicular to v, and hence tangent to S2.

Within a Cartesian frame, X is a process in R6 with components V (velocity) and A (acceleration), and
the equations of motion take the nonlinear form:[

dV
dA

]
=

[
03×3 I3

−ρ(X)I3 − λP (V )

] [
V
A

]
dt+

[
0

γP (V )dW (t)

]
. (35)

Here the square matrix consists of four 3 × 3 matrices, λ and γ are constants, W is a three-dimensional
Wiener process, and if xT ≡ (vT , aT ),

ρ(x) ≡ ‖a‖2/‖v‖2, (36)

P (v) ≡ I − vvT

‖v‖2
∈ L(R3;R3). (37)

Note that P (v) is precisely the projection onto the orthogonal complement of v in R3, and ρ(x) has been
chosen so that d(V · A) = 0.

5.2 Geometry of the State Space

The diffusion variance metric (3) is degenerate here; noting that P 2 = P , we find

α ≡ σ · σ ≡
[
03×3 03×3

03×3 γ
2P (v)

]
. (38)

The rescaled Euclidean metric g = γ−2I6 on R6 is a generalized inverse to α in the sense of (4), since
P 2 = P . We break down a tangent vector ζ to R6 into two 3-dimensional components ζv and ζa. The
constancy of ‖v‖2 implies that

DP (v)ηv =
−1
‖v‖2

{
ηvv

T + vηTv
}
. (39)

Referring to formula (6) for the local connector Γ(x),

D〈g(ζ)|g(ς)〉(η) =
−1

γ2‖v‖2
ζTa

(
ηvv

T + vηTv
)
ςa′ (ζ, ς, η) ∈ TxN × TxN × TxN.

Taking first and second derivatives of the constraint v · a = 0, we find that

ζTa v + ζTv a = 0, ηTa ζv + ηTv ζa = 0. (40)

Using the last identity, we obtain from (6) the formula

Γ(x)(ζ ⊗ ς) =
S(ζ ⊗ ς)v

2‖v‖2
, S(ζ ⊗ ς) ≡

[
ζaς

T
a + ςaζ

T
a

−ζvςTa − ςvζ
T
a

]
. (41)

In order to compute (33), note that, in particular,

Γ(x)(σ · σ(x)) =
γ2

‖v‖2

[
P (v)

0

]
v =

[
0
0

]
. (42)
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5.3 Derivatives of the Dynamical System

It follows from (8), (35), and (42) that the formula for the intrinsic vector field ξ is:

ξ(x) =
[

a
−ρ(x)v − λP (v)a

]
. (43)

Differentiate under the assumptions ‖v‖2 is constant and v · a = 0, to obtain

Dξ(x)(ζ) =
[

0 I
λQ− ρ− λP − 2Q

] [
ζv
ζa

]
, Q ≡ vaT

‖v‖2
. (44)

Differentiating (44) and using the identities (40),

D2ξ(x)(η ⊗ ζ) =
−2
‖v‖2

[
0

ηTa ζav +
(
ζvη

T
a + ηvζ

T
a

)
a

]
. (45)

5.3.a Constraints in the Tangent Space of the State Manifold

Let us write a symmetric tensor χ ∈ TxN ⊗ TxN in 3 × 3 blocks as the matrix[
χvvχva
χavχaa

]
,

where χTav = χva. Replacing ηvζTa by χva, and ηTa ζa by Tr(χaa), etc., in (45), we find that

D2ξ(x)(χ) =
−2
‖v‖2

[
0

Tr(χaa)v + (χva + χav)a

]
. (46)

5.4 Ingredients of the Intrinsic Location Parameter Formula

Let ψ : N → R6 be the inclusion of the state space N ∼= TS2 into Euclidean R6. Thus in formula (33),
the local connector Γ̄(.) is zero on the target manifold, J is the identity, and D2ψ is zero. When Σ0

is taken to be zero, the formula for the approximate intrinsic location parameter mδ ≡ Ix0 [Xδ] for Xδ

becomes:

mt =
∫ t

0

τ tuHudu,Ht ≡ −1
‖v0‖2

[
0

Tr(χaa(t))vt + (χva(t) + χav(t))at

]

where vt and at are the velocity and acceleration components of xt ≡ φt(x), for 0 ≤ t ≤ δ, and τ tu and χt
are given by (29) and (30). A straightforward integration scheme for calculating (τ tu, χt,mt) at the same
time, using a discretization of [0, δ], is:

τ tu ≈ exp
{
t− u

2
[Dξ(xu) +Dξ(xt)]

}
,

χt ≈ t− u

2
(σ · σ)(xt) + τ tu

[
χu +

t− u

2
(σ · σ)(xu)

]
(τ tu)

T ,

mt ≈ τ tu

[
mu +

t− u

2
Hu

]
+
t− u

2
Ht.

Since the local connector is zero on the target manifold, geodesics are simply straight lines, and xδ+Ix0[Xδ]
is a suitable estimate of the mean position of Xδ.
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Figure 1: SIMULATIONS OF THE MEAN OF AN SDE, VERSUS ITS APPROXIMATE ILP

5.5 Simulation Results

We created 104 simulations of the process (35), with λ = 0.5 and γ = 5.2×103, on the time interval [0,1],
which was discretized into 25 subintervals for integration purposes. In each case V and A were initialized
randomly, with magnitudes of 200 m/s and 50 m/s2, respectively. The plot shows the x-component
of acceleration (the other two are similar): the “+” signs represent the mean of the process (35) over
104 simulations, with bands showing plus and minus one standard error, the solid line is the solution
{xt, 0 ≤ t ≤ 1} of the discretized ODE dxt/dt = ξ(xt), and the circles denote the approximate intrinsic
location parameter (ILP). The reader will note that the ILP tracks the mean of the process better than
the ODE does.

6 Proof of Theorem 4.7

The strategy of the proof will be to establish the formula (33) using Itô calculus, and then to show it is
equivalent to (24) using differential geometric methods. While this may seem roundabout, the important
formula for applications is really (33); converting it into (24) serves mainly as a check that formula (33)
is indeed intrinsic. It will make no difference if we work in global coördinates, and identify N with Rp

and M with Rq.

6.1 Step I: Differentiation of the State Process with Respect to a Parameter

We consider a family of diffusion processes {Xε, ε ≥ 0} on the time interval [0, δ], with initial values
Xε

0 = expx0
(εU0); here U0 is a zero-mean random variable in Tx0N , independent of W , with covariance

Σ0 ∈ Tx0N ⊗ Tx0N , and Xε has generator ξ + ε2∆/2.

Note that, in local coördinates, the SDE for Xε is not “dXε
s = b(Xε

s )ds + εσ(Xε
s )dWs”, because the

limiting case when ε = 0 would then be the ODE based on the vector field
∑
biDi, which is not the same

13



as ξ, which is given by (8). Instead the SDE is

Xε
t = expx0

(εU0) +
∫ t

0

ξ(Xε
s )ds− ε2

∫ t

0

ζ(Xε
s )ds+

∫ t

0

εσ(Xε
s )dWs (47)

where we use the notation
ζ(x) ≡ 1

2
Γ(x)(σ(x) · σ(x)). (48)

In the case ε = 0, the solution is deterministic, namely {xt, 0 ≤ t ≤ δ}. Note that, in local coördinates,

expx0
(εU0) = x0 + εU0 − ε2

2
Γ(x0)(U0 ⊗ U0) + o(ε2).

It is well known that, if the vector field ξ and the semi-definite metric 〈.|.〉 are sufficiently differentiable,
then the stochastic processes ∂Xε/∂ε and ∂2Xε/∂ε2 exist and satisfy the following SDEs:

∂Xε
t

∂ε
= U0 − εΓ(x)(U0 ⊗ U0) +

∫ t

0

Dξ(Xε
s )

(
∂Xε

s

∂ε

)
ds+

∫ t

0

σ(Xε
s )dWs (49)

−2ε
∫ t

0

ζ(Xε
s )ds+ ε

∫ t

0

Dσ(Xε
s )

(
∂Xε

s

∂ε

)
dWs +O(ε2);

∂2Xε
t

∂ε2
= −Γ(x)(U0 ⊗ U0) +

∫ t

0

D2ξ(Xε
s )

(
∂Xε

s

∂ε
⊗ ∂Xε

s

∂ε

)
ds

+
∫ t

0

Dξ(Xε
s )

(
∂2Xε

s

∂ε2

)
ds− 2

∫ t

0

ζ(Xε
s )ds

(50)

+2
∫ 2

0

Dσ(Xε
s )

(
∂Xε

s

∂ε

)
dWs +O(ε),

where O(ε) denotes terms of order ε. Define

Λt ≡ ∂Xε
t

∂ε

∣∣∣∣
ε=0

,Λ(2)
t ≡ ∂2Xε

t

∂ε2

∣∣∣∣
ε=0

. (51)

Now (49) and (50) give:
dΛt = AtΛtdt+ σ(xt)dWt,Λ0 = U0; (52)

dΛ(2)
t =

[
D2ξ(xt)(Λt ⊗ Λt) +AtΛ

(2)
t − 2ζ(xt)

]
dt+ 2Dσ(xt)(Λt)dWt, (53)

Λ(2)
0 = −Γ(x0)(U0 ⊗ U0),

where At ≡ Dξ(xt). Let {τ ts , 0 ≤ s, t ≤ δ} be the two-parameter semigroup of deterministic matrices
given by (29), so that

∂τst
∂t

= −τst At; τrs = τrt τ
t
s .

Then (52) becomes d(τ0
t Λt) = τ0

t σ(xt)dWt, which has a Gaussian solution

Λt = τ t0U0 + τ t0

∫ t

0

τ0
s σ(xs)dWs = τ t0U0 +

∫ t

0

τ tsσ(xs)dWs. (54)

Likewise (53) gives d
(
τ0
t Λ(2)

t

)
= τ0

t

[
D2ξ(xt)(Λt ⊗ Λt) − 2ζ(xt)

]
dt + 2τ0

t Dσ(xt)
(Λt)dWt, whose solution is

Λ(2)
t = −τ t0Γ(x0)(U0 ⊗ U0) +

∫ t

0

τ ts

{ [
D2ξ(xs)(Λs ⊗ Λs)

−2ζ(xs)] ds+ 2Dσ(xs)(Λs)dWs

}
.

(55)
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6.2 Step II: Differentiation of the Gamma-Martingale with Respect to a Pa-
rameter

Consider the pair of processes (V ε, Zε) obtained from (19) and (20), where u is replaced by uε. As in the
case where ε = 1, (V ε, Zε) gives an adapted solution to the backwards equation corresponding to (14),
namely.

V εt = ψ(Xε
δ ) −

∫ δ

t

ZεsdWs +
1
2

∫ δ

t

Γ̄(V εs )(Zεs · Zεs)ds.

However the version of (20) which applies here is Zεt = Duε(δ − t,Xt)εσ(Xε
t ), so we may replace Zεs by

εZεs , and the equation becomes

V εt = ψ(Xε
δ ) − ε

∫ δ

t

ZεsdWs +
ε2

2

∫ δ

t

Γ̄(V εs )(Zεs · Zεs)ds. (56)

By the regularity of uε, it follows that ∂V ε/∂ε, ∂Zε/∂ε, ∂2V ε/∂ε2, and ∂2Zε/∂ε2 exist, and satisfy the
following equations:

∂V εt
∂ε

= Dψ(Xε
δ )

(
∂Xε

δ

∂ε

)
−

∫ δ

t

ZεsdWs − ε

∫ δ

t

∂Zεs
∂ε

dWs

+ ε

∫ δ

t

Γ̄(V εs )(Zεs · Zεs)ds+O(ε2);

(57)

∂2V εt
∂ε2

= Dψ(Xε
δ )

(
∂2Xε

δ

∂ε2

)
+D2ψ(Xε

δ )
(
∂Xε

δ

∂ε
⊗ ∂Xε

δ

∂ε

)

− 2
∫ δ

t

∂Zεs
∂ε

dWs +
∫ δ

t

Γ̄(V εs )(Zεs · Zεs)ds+O(ε).
(58)

Note also that V 0
t = yδ ≡ ψ(xδ) for all t ∈ [0, δ]. Take J̃Wt ≡ JWt ∨ σ(U0).

By combining (54) and (57), we see that, if J ≡ Dψ(xδ),

Θt ≡ ∂V εt
∂ε

∣∣∣∣
ε=0

= E
[
JΛδ|J̃Wt

]
= Jτδ0U0 + J

∫ t

0

τδs σ(xs)dWs; (59)

Z0
s = Jτδs σ(xs). (60)

Define

Θ(2)
t ≡ ∂2V εt

∂ε2

∣∣∣∣
ε=0

(61)

= E

[
JΛ(2)

δ +D2ψ(xδ)(Λδ ⊗ Λδ) +
∫ δ

t

Γ̄(yδ)
(
Z0
s · Z0

s

)
ds

∣∣∣∣J̃Wt
]
. (62)

¿From (55) and (62) we obtain:

Θ(2)
0 = −Jτδ0Γ(x0)(U0 ⊗ U0) + JE

[{∫ δ

0

τδs
[
D2ξ(xs)(Λs ⊗ Λs) − 2ζ(xs)

]
ds

} ∣∣∣∣∣U0

]

+ E

[{
D2ψ(xδ)(Λδ ⊗ Λδ) +

∫ δ

0

Γ̄(yδ)(Z0
s · Z0

s )ds

} ∣∣∣∣∣U0

]
.

The expected value of a quadratic form ηTAη in an Np(µ,Σ) random vector η is easily computed to be
ΣAijΣij + µTAµ. In this case,

η = Λs ∼ Np(τs0U0, χs),
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where χt is given by (30), so we obtain

Θ(2)
0 = −Jτδ0 Γ(x0)(U0 ⊗ U0) + J

[ ∫ δ

0

τδs
[
D2ξ(xs)(χs)

+D2ξ(xs)(τs0U0 ⊗ τs0U0) − 2ζ(xs)
]
ds

]

+D2ψ(xδ)(χδ) +D2ψ(xδ)(τδ0U0 ⊗ τδ0U0) + Γ̄(yδ)(JχδJT ). (63)

6.3 Step III: A Taylor Expansion Using the Exponential Map

Let yδ ≡ ψ(xδ), and define β(ε) ≡ E[exp−1
yδ
V ε0 ]. Referring to (28), we are seeking ∂β/∂ε2

∣∣
ε=0

. It follows
immediately from the geodesic equation that

D(expy)
−1(y)(w) = w,D2(expy)

−1(y)(v ⊗ w) = Γ̄(y)(v ⊗ w). (64)

It follows from (59) that

V ε0 = yδ + εJτδ0U0 +
ε2

2
Θ(2)

0 + o(ε2).

A Taylor expansion based on (64) gives

exp−1
yδ
V ε0 = V ε0 − yδ +

1
2
Γ̄(yδ) ((V ε0 − yδ) ⊗ (V ε0 − yδ)) + o

(‖V ε0 − yδ‖2
)

= εJτδ0U0 +
ε2

2

{
Θ(2)

0 + Γ̄(yδ)
(
Jτδ0U0 ⊗ Jτδ0U0

)}
+ o(ε2).

Taking expectations, and recalling that U0 has mean zero and covariance
Σ0 ∈ Tx0N ⊗ Tx0N , we obtain

β(ε) =
ε2

2

{
E

[
Θ(2)

0

]
+ Γ̄(Yδ)

(
Jτδ0 Σ0

(
Jτδ0

)T)}
+ o

(
ε2

)
.

It follows that dβ
dε

∣∣∣
ε=0

= 0, and hence that

=
1
2
d2β

dε2

∣∣∣
ε=0

=
1
2

{
E

[
Θ(2)

0

]
+ Γ̄(yδ)

(
Jτδ0 Σ0

(
Jτδ0

)T)}

=
1
2

{
J

∫ δ

0

τδs
[
D2ξ(xs)(χs) − Γ(xs)(σ · σ(xs))

]
ds

+D2ψ(xδ)(χδ) + Γ̄(yδ)
(
JχδJ

T
)

+J
∫ δ

0

τδsD
2ξ(xs)(Σs)ds− Jτδ0 Γ(x0)(Σ0) +D2ψ(xδ)(Σδ) + Γ̄(yδ)

(
JΣδJT

)}

where Σs ≡ τs0 Σ0 (τs0 )T . If we write
Ξs ≡ χs + Σs, (65)

then the formula becomes

1
2

{
J

∫ δ

0

τδs
[
D2ξ(xs)(Ξs)

]
ds+D2ψ(xδ)(Ξδ) + Γ̄(yδ)

(
JΞδJT

)}

−1
2
J

{∫ δ

0

τδsΓ(xs)(σ · σ(xs))ds+ τδ0 Γ(x0)(Σ0)

}

This establishes the formula (33). �
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6.4 Step IV: Intrinsic Version of the Formula

It remains to prove that (24), with Πt as in (32), is the intrinsic version of (33). We abbreviate here by
writing ψ ◦ φt as ψt. By definition of the flow of ξ,

∂

∂t
ψt(x0) = dψ ◦ ξ(φt(x0)),

and so, differentiating with respect to x, and exchanging the order of differentiation,

∂

∂t
Dψt(x0) = D

(
∂

∂t
ψt(x0)

)
(66)

or, by analogy with (29), taking θts ≡ Dψt−s(xs) = Dψ(xt) ◦D(φt ◦ φ−1
s )(xs) = Dψ(xt)τ ts ,

∂τ ts
∂t

= Dξ(xt)τ ts . (67)

Since τδt τ t0 = τδ0 , we have θδt τ t0 = Dψ(xδ)τδt τ t0 = θδ0, which upon differentiation yields,(
∂θδt
∂t

)
τ t0 = −θδt

(
∂τ t0
∂t

)
= −θδtDξ(xt)τ t0 ,

which gives
∂τδt
∂t

= −τδtDξ(xt)τ t0;
∂θδt
∂t

= −θδtDξ(xt). (68)

A further differentiation of (66) when ψ is the identity yields

∂

∂t
D2φt(x0)(v ⊗ w) = D2ξ(xt)(τ t0v ⊗ τ t0w) +Dξ(xt)D2φt(x0)(v ⊗ w). (69)

Combining (68) and (69), we have

∂

∂t

(
θδtD

2φt(x0)
)

= −θδtDξ(xt)D2φt(x0) + θδt
{
D2ξ(xt)(τ t0(.) ⊗ τ t0(.))

+Dξ(xt)D2φt(x0)
}

∂

∂t

(
θδtD

2φt(x0)
)
(v ⊗ w) = θδtD

2ξ(xt)
(
τ t0v ⊗ τ t0w

)
. (70)

The formula (16) for 5◦dφt can be written as

5◦dφt(x0)(v ⊗ w) = D2φt(x0)(v ⊗ w) − τ t0Γ(x0)(v ⊗ w) + Γ(xt)(τ t0v ⊗ τ t0w). (71)

It is clear that
∂

∂t

(
θδt τ

t
0Γ(x0)

)
=

∂

∂t

(
θδ0Γ(x0)

)
= 0.

Hence from (70) and (71) it follows that

∂

∂t
{(ψδ−t)∗ 5◦ dφt(x0)} (v ⊗ w) =

∂

∂t

{
θδt [D

2φt(x0)(v ⊗ w) + Γ(xt)(τ t0v ⊗ τ t0w)]
}

= θδtD
2ξ(xt)(τ t0v ⊗ τ t0w) +

∂

∂t

{
θδtΓ(xt)(τ t0v ⊗ τ t0w)

}
. (72)

The last term in (72) can be written, using (67), as

∂

∂t

{
θδtΓ(xt)

}
(τ t0v ⊗ τ t0w) + θδtΓ(xt)

(
Dξ(xt)τ t0v ⊗ τ t0w + τ t0v ⊗Dξ(xt)τ t0w

)
, (73)
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for v ⊗ w ∈ Tx0N ⊗ Tx0N . We will replace v ⊗ w by

Πt ≡ τ0
t Ξt(τ0

t )T = Σ0 +
∫ t

0

τ0
s (σ · σ)(xs)(τ0

s )Tds ∈ Tx0N ⊗ Tx0N (74)

where Ξt ≡ χt + τ t0Σ0(τ t0)T . Observe that

τ t0Πt(τ t0)
T = Ξt ∈ TxtN ⊗ TxtN. (75)

Moreover from (75) and (67), it is easily checked that

dΞt
dt

= (σ · σ)(xt) +Dξ(xt)Ξt + Ξt{Dξ(xt)}T . (76)

It follows from (72) – (76) that

∂

∂t
{(ψδ−t)∗ 5◦ dφt(x0)(Πt)} − (ψδ−t)∗ 5◦ dφt(x0)

(
dΠt

dt

)

=
∂

∂t
{(ψδ−t)∗ 5◦ dφt(x0)}(Πt)

=
[
θδtD

2ξ(xt) +
∂

∂t
{θδtΓ(xt)}

]
(Ξt) + θδtΓ(xt)[Dξ(xt)Ξt + Ξt(Dξ(xt))T ]

=
[
θδtD

2ξ(xt) +
∂

∂t
{θδtΓ(xt)}

]
(Ξt) + θδtΓ(xt)

(
dΞt
dt

− (σ · σ)(xt)
)

= θδtD
2ξ(xt)(Ξt) − θδtΓ(xt)((σ · σ)(xt)) +

∂

∂t
{θδtΓ(xt)(Ξt)}.

Since ∇◦dφ0 = 0, it follows upon integration from 0 to δ that in Tψ(xδ)M ,

ψ∗∇◦dφδ(x0)(Πδ) −
∫ δ

0

(ψδ−t)∗(∇◦dφt(x0))dΠt =

Dψ(xδ)

{∫ δ

0

τδt [D2ξ(xt)(Ξt) − Γ(xt)((σ · σ)(xt))]dt+ Γ(xδ)(Ξδ) − τδ0 Γ(x0)(Ξ0)

}
. (77)

However the formula (16) for ∇dψ(xδ)(v ⊗ w) can be written as

D2ψ(xδ)(v ⊗ w) − JΓ(xδ)(v ⊗ w) + Γ̄(yδ)(Jv ⊗ Jw). (78)

where yδ ≡ ψ(xδ), and J ≡ Dψ(xδ). We take v ⊗ w = Ξδ ∈ Txδ
N ⊗ Txδ

N , and add (77) and (78):

J

∫ δ

0

τδt
[
D2ξ(xt)(Ξt) − Γ(xt)((σ · σ)(xt))

]
dt+D2ψ(xδ)(Ξδ)

− Jτδ0 Γ(x0)(Ξ0) + Γ̄(yδ)(JΞδJT )

= ∇dψ(xδ)((φδ)∗Πδ) + ψ∗

{
∇◦dφδ(x0)(Πδ) −

∫ δ

0

(φδ−t)∗(∇◦dφt(x0))dΠt

}
.

The equivalence of (24) and (33) is established, completing the proofs of Theorems 4.5 and 4.7.
�
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7 The Canonical Sub-Riemannian Connection

The purpose of this section is to present a global geometric construction of a torsion-free connection
∇◦ on the tangent bundle TN which preserves, in some sense, a C2 semi-definite metric 〈.|.〉 on the
cotangent bundle T ∗N induced by a section σ of Hom(Rp;TN) of constant rank. In other words, we
assume that there exists a rank r vector bundle E → N , a sub-bundle of the tangent bundle, such that
Ex = range(σ(x)) ⊆ TxN for all x ∈ N .

Given such a section σ, we obtain a vector bundle morphism α : T ∗N → TN by the formula

α(x) ≡ σ(x) ◦ ı ◦ σ(x)∗, x ∈ N, (79)

where ı : (Rp)∗ → Rp is the canonical isomorphism induced by the Euclidean inner product. The relation
between α and 〈.|.〉 is that, omitting x,

µ · α(λ) ≡ 〈µ|λ〉, ∀µ ∈ T ∗N. (80)

Lemma 7.1. Under the constant-rank assumption, any Riemannian metric on N induces an orthogonal
splitting of the cotangent bundle of the form

Tx
∗N = Ker (α(x)) ⊕ Fx, (81)

where F → N is a rank r sub-bundle of the cotangent bundle on which 〈.|.〉 is non-degenerate. There
exists a vector bundle isomorphism α◦ : T ∗N → TN such that Fx = Ker (α◦(x) − α(x)), and α◦(x)−1 is
a generalized inverse to α(x), in the sense that

α(x) ◦ a◦(x)−1 ◦ α(x) = α(x).

Proof. For any matrix A, range (A) = range(AAT ), and so range (α(x)) = range (σ(x)). It follows that

dim Ker (α(x)) = p− dimEx = p− r.

Given a Riemannian metric g on N (which always exists), let 〈.|.〉◦ be the dual metric on the cotangent
bundle. Define

Fx ≡ {θ ∈ Tx
∗N : 〈θ|λ〉x◦ = 0 ∀λ ∈ Ker (α(x))}.

We omit the proof that F → N is a vector bundle. Since dim Ker (α(x)) = p − r, it follows that
dimFx = r; since the rank of 〈.|.〉 is r, we see that 〈θ|θ〉 > 0 for all non-zero θ ∈ Fx. This shows that 〈.|.〉
is non-degenerate on the sub-bundle F → N .

Now (81) results from the orthogonal decomposition of Tx∗N with respect to 〈.|.〉◦. Hence an arbitrary
λ ∈ Tx

∗N can be decomposed as λ = λ0 ⊕ λ1, with λ0 ∈ Ker (α(x)) and λ1 ∈ Fx. The metric 〈.|.〉◦
induces a vector bundle isomorphism β : T ∗N → TN , namely

µ · β(λ) ≡ 〈µ|λ〉◦, ∀µ ∈ T ∗N.

Now define α◦ : T ∗N → TN by
α◦(λ) ≡ β(λ0) + α(λ1).

It is clearly linear, and a vector bundle morphism. Since β is injective,

{λ ∈ Tx
∗N : α◦(λ) = α(λ)} = {λ0 ⊕ λ1 ∈ Tx

∗N : β(λ0) = 0} = Fx,

which shows that Fx = Ker (α◦(x) − α(x)). To show α◦ is an isomorphism, it suffices to show that
α◦(λ) 6= 0 whenever λ 6= 0. When λ0 6= 0, non-degeneracy of 〈.|.〉◦ implies that

λ0 · α◦(λ) = 〈λ0|λ0〉◦ + 〈λ0|λ1〉 = 〈λ0|λ0〉◦ 6= 0.
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On the other hand when λ0 = 0, and λ1 6= 0, non-degeneracy of 〈.|.〉 on F → N implies that

λ1 · α◦(λ) = λ1 · α(λ1) = 〈λ1|λ1〉 6= 0.

Hence α◦ : T ∗N → TN is a vector bundle isomorphism as claimed. The generalized inverse property
follows from the fact that α(x) ◦ α◦(x)−1 ◦ α(x)(λ) = λ1.

�

Proposition 7.2. Suppose σ is a constant-rank section of Hom(Rp;TN), inducing a semi-definite metric
〈.|.〉 on T ∗N and a vector bundle morphism α : T ∗N → TN as in (79) and (80). Suppose furthermore
that α◦ : T ∗N → TN is a vector bundle isomorphism such that α(x) ◦ α◦(x)−1 ◦ α(x) = α(x), as in
Lemma 7.1. Then TN admits a canonical sub-Riemannian connection ∇◦ for 〈.|.〉, with respect to α◦,
which is torsion-free, and such that the dual connection ∇̂ preserves 〈.|.〉 in the following sense: for vector
fields V in the range of α, and for 1-forms θ, λ which lie in the sub-bundle F ≡ Ker (α◦ − α),

V 〈θ|λ〉 = 〈∇̂V θ|λ〉 + 〈θ|∇̂V λ〉. (82)

[Here ∇̂Zθ ·W = Z(θ ·W ) − θ · ∇◦
ZW .] For any 1-forms θ, µ, λ, and corresponding vector fields

Y ≡ α◦(θ), Z ≡ α◦(µ),W ≡ α◦(λ),

the formula for ∇◦ is:

µ · ∇◦
YW ≡ 1

2
{Y 〈λ|µ〉 +W 〈µ|θ〉 − Z〈θ|λ〉 + λ · [Z, Y ] + µ · [Y,W ] − θ · [W,Z]}. (83)

7.2.a Expression in Local Coördinates

Take local coördinates for N , so that α◦(x)−1 is represented by a matrix (glm), and α(x) by a matrix
(αjk), where by Lemma 7.2, ∑

k,r

αjkgkrα
rm = αjm.

Take Y ≡ ∂/∂xi,W ≡ ∂/∂xj, and Z ≡ ∂/∂xk in (83), so that µ =
∑
gksdx

s, etc.; (83) becomes

∑
s

Γsijgsk =
1
2

∑
r,s

{
∂

∂xi
(gjrαrsgsk) +

∂

∂xj
(girαrsgsk) − ∂

∂xk
(girαrsgsj)

}
. (84)

When 〈.|.〉 is non-degenerate, then
∑
gjrα

rs = δsj , and (84) reduces to the standard formula for the
Levi–Civita connection for g, namely

∑
s

Γsijgsk =
1
2

{
∂gjk
∂xi

+
∂gik
∂xj

− ∂gij
∂xk

}
.

Remark 7.2.b. A similar construction appears in formula (2.2) of Strichartz [35], where he cites un-
published work of N. C. Günther.

7.2.c Proof of Proposition 7.2

First we check that the formula (83) defines a connection. The R-bilinearity of (Y,W ) → ∇◦
YW is

immediate. To prove that ∇◦
Y fW = f∇◦

YW + (Y f)W for all f ∈ C∞(N), we replace W by fW and λ
by fλ on the right side of (83), and the required identity holds. Verification that (83) is torsion-free is
likewise a straightforward calculation.
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Next we shall verify (82). By (80), and the definition of duality, taking V ≡ α(θ),

µ · ∇◦
V α(λ) = V (µ · α(λ)) − ∇̂V µ · α(λ) = V 〈λ|µ〉 − 〈λ|∇̂V µ〉.

Switch µ and λ in the last expression to obtain:

λ · ∇◦
V α(µ) = V 〈λ|µ〉 − 〈µ|∇̂V λ〉.

Taking U ≡ α(µ) and S ≡ α(λ), we see that

V 〈λ|µ〉 − 〈λ|∇̂V µ〉 − 〈µ|∇̂V λ〉 = µ · ∇◦
V S + λ · ∇◦

V U − V 〈λ|µ〉. (85)

In terms of the splitting Tx∗N = Ker (α(x)) ⊕ Fx of Lemma 7.1, we may write θ ≡ θ0 + θ1, etc., and we
find that, if V ≡ α(θ), then V = α(θ1) = α◦(θ1), etc. It follows from (83) that

µ1 · ∇◦
V S ≡ 1

2
{V 〈λ1|µ1〉 + S〈µ1|θ1〉 − U〈θ1|λ1〉 + λ1 · [U, V ] + µ1 · [V, S] − θ1 · [S,U ]};

λ1 · ∇◦
V U ≡ 1

2
{V 〈λ1|µ1〉 + U〈λ1|θ1〉 − S〈θ1|µ1〉 + µ1 · [S, V ] + λ1 · [V, U ] − θ1 · [U, S]}.

To prove (82), we can assume λ0 = µ0 = 0, and now the right side of (85) becomes

µ1 · ∇◦
V S + λ1 · ∇◦

V U − V 〈λ1|µ1〉 = 0,

as desired. �

8 Future Directions

We would like to find out under what conditions on ξ, σ · σ, ψ, and h the system of PDE (17) – (18)
has a unique solution for small time, other than the well-known case where σ · σ is non-degenerate, and
ξ = 0; likewise for the parametrized family (22) – (23). It is likely that the conditions will involve the
energy of the composite maps {ψ ◦ φt, 0 ≤ t ≤ δ}. Both stochastic and geometric methods should be
considered. Another valuable project would be to derive bounds on the error of approximation involved in
the linearization used in Theorem 4.7. This is likely to involve the curvature under the diffusion variance
semi-definite metric — see Darling [9].
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Inst. H. Poincaré Probab. Statist., 32(4):431–454, 1996.

[13] R. W. R. Darling and Etienne Pardoux. Backwards SDE with random terminal time, and applications to
semilinear elliptic PDE. Ann. Probab., 25(3):1135–1159, 1997.

[14] J. L. Doob. A probability approach to the heat equation. Trans. Amer. Math. Soc., 80:216–280, 1955.

[15] J. Eells and L. Lemaire. A report on harmonic maps. Bull. London Math. Soc., 10(1):1–68, 1978.

[16] J. Eells and L. Lemaire. Another report on harmonic maps. Bull. London Math. Soc., 20(5):385–524, 1988.

[17] James Eells, Jr. and J. H. Sampson. Harmonic mappings of Riemannian manifolds. Amer. J. Math., 86:109–
160, 1964.

[18] K. D. Elworthy. Stochastic Differential Equations on Manifolds. Cambridge University Press, Cambridge,
1982.
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