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1 Introduction

We will call −42 ≡ −∂4
x a biharmonic operator. It plays an important role in the theory of

elasticity and fluid dynamics. For instance the parabolic differential equation

∂t u(t, x) = −∂4
x u(t, x), t > 0, x ∈ R

1 , (1.1)

is closely related to the Kuramoto-Sivashinsky equation and the Cahne-Hilliard equation (see
[17, Chapter III §4]). It is easy to see that the fundamental solution p(t, x) to (1.1) is given by

p(t, x) =
1
2π

∫ ∞

−∞
dξ exp{−iξx − ξ4t}, t > 0, x ∈ R

1 . (1.2)

This p(t, x) takes negative values (see Hochberg [8]), so no stochastic process corresponds to
(1.1) in the usual sense.

Several attempts have been made to relate the biharmonic operator to random processes. Krylov
[9] considered a stochastic pseudo process whose “transition probability density” was p(t, x) as
in (1.2), despite its taking negative values. We will call this pseudo process a biharmonic pseudo
process or BPP for short (it is occasionally called the Krylov motion).

Following Krylov’s idea, Hochberg [8] started a systematic study of BPP . His article included
a definition of a stochastic integral with respect to BPP . Nishioka [14] calculated the joint
distribution of the first hitting time and place for BPP hitting the boundary of a half-line. This
was extended by Nakajima and Sato [10] to the space-time case. Some new developments in
this direction can be found in a paper by Beghin, Hochberg and Orsingher [1].

Other attempts included a paper by Funaki [7] who introduced the concept of iterated Brownian
motion. After his pioneering work, Burdzy [2] began to study path properties of iterated Brow-
nian motion; a large number of related papers followed. Burdzy and Ma̧drecki [3, 4] modified
Funaki’s model in a different way; they defined a stochastic integral with respect to the their
process.

This paper is devoted to the process BPP on a half-line. We will study various boundary
conditions for the probabilistic model and relate them to their analytic counterparts. We will
motivate our results by first reviewing the classical case of the standard Brownian motion on
(0,∞).

Consider the following initial-boundary value problem for the heat equation:

∂tu(t, x) = (1/2) ∂2
xu(t, x), t > 0, x > 0; u(0, x) = f(x), x > 0;

∂ `
xu(t, 0) = 0, t > 0,

(1.3)

where ` may take values 0, 1 or 2. Solutions to this initial-boundary value problem may be rep-
resented using Brownian motion on (0,∞) which is killed, reflected, or stopped at the boundary
point 0, depending on the value of `. The relationship can be summarized as follows:

Table 1.1.
` Brownian boundary condition
0 killing
1 reflection
2 stopping
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We note that there is no analytic difference between Brownian transition probabilities on the
open interval (0,∞) in the cases when the Brownian particle is killed or stopped at the boundary
but we make the distinction in Table 1.1 to emphasize the analogy with some results on BPP .

In this article, we will establish a relationship analogous to Table 1.1, between BPP and several
initial-boundary value problems for (1.1).
We start with a few heuristic ideas. A big difference between a Brownian motion and BPP ,
proved in [13], is that the Brownian motion is a model for the motion of a single particle but when
the BPP leaves the interval (0,∞), it appears to consist of two types of particles. We will call
these particles a monopole and a dipole. The names are justified by a result on the conservation
of charges given in the last section of this article. The particles behave independently at the
boundary. Therefore we need two different boundary conditions in order to solve the initial-
boundary value problem for (1.1). In a sense, each boundary condition controls the behavior
of a monopole or a dipole, although the exact relationship, summarized in Table 1.2 below, is
more complicated than that.
We proceed with a more formal presentation of the main results although the fully rigorous
statements are postponed until later in the paper. Consider the following initial-boundary value
problems for (1.1),

∂t v(t, x) = −∂4
x v(t, x), t > 0, x > 0; v(0, x) = f(x), x > 0;

∂ `
x v(t, 0) = 0 and ∂ m

x v(t, 0) = 0, t > 0,
(1.4)

where f is a given bounded smooth function on [0,∞) and ` and m can take the values ` =
0, . . . , 4 and m = 0, . . . , 5. The following two tables summarize our main results.

Table 1.2.
m = 0 m = 1 m = 2 m = 3 m = 4 m = 5

` = 0 −− 00 0r H × 0s
` = 1 −− −− r0 H s0 ×
` = 2 −− −− −− H sr H
` = 3 −− −− −− −− H H
` = 4 −− −− −− −− −− ss

For some values of ` and m, the initial boundary value problem has a probabilistic representation
using BPP with killing, reflection or stopping for the monopole and dipole. The correspondence
between the various values of ` and m and boundary conditions for BPP is coded in Tables 1.2
and 1.3 in the self-evident manner.

Table 1.3.
killing for dipole reflection for dipole stopping for dipole

killing 00 0r 0s
for monopole (see §4) (see §6) (see §8.1)

reflection r0 −− −−
for monopole (see §5.1) (see §5.3) (see §8.2)

stopping s0 sr ss
for monopole (see §7.2) (see §7.3) (see §7.1)
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In Table 1.2, the symbol “×” means that (1.4) is not well-posed with such analytic boundary
conditions (see Example 7.9). The symbol “H” means such analytic boundary conditions are not
related to BPP with killing, reflection or stopping at the boundary. However, these analytic
conditions can be related to BPP . This requires a new idea of a “higher order reflecting
boundary” which will be discussed in a forthcoming article. The diagonal entries in Table 1.2
and those below the diagonal are irrelevant for obvious reasons and so they are marked with
“−−”. The same symbol in Table 1.3 means that we have not found a relationship between this
set of analytic conditions and BPP .

In §2, we review results from [13, 14] on the joint distribution of the first hitting time and place
for BPP and the concepts of a monopole and dipole. In §3 through §8, we construct and study
BPP ’s with various boundary conditions.

The construction of the BPP in the case when we have killing or stopping of the monopole at
the boundary is similar in a sense to the Brownian motion case. Only slight modifications are
needed when the same boundary conditions are prescribed to the dipole.

When we set the reflecting boundary for a monopole or dipole, we cannot apply a direct analogy
with the reflecting Brownian motion (see §5.2). We will construct a BPP with the reflection as
the limit of a suitable sequence of approximations.

In §9, we verify the law of the conservation of charges, and conclude that the total amount of
charges is conservative if and only if there is no killing for a monopole.

We will use some basic results on solutions of 4-th order PDE’s, Laplace and Fourier-Laplace
transforms through the paper. These can be found in [5, 6, 16] for instance.

Acknowlegement The author would like to thank the referee made many important and
precise suggestions for improvements of the paper.

2 Preliminaries

We start with a review of several function spaces used in the article.

Let X denote either the one dimensional Euclidean space R1 or the half-line [0,∞). Bb(X) will
stand for the space of all bounded measurable functions defined on X. C(X) will be the space of
all continuous functions on X while Cb(X) will be the space of all bounded functions in C(X).
C1(X) will denote the space of all continuously differentiable functions on X and C1

b(X) will
be the space of all bounded functions in C1(X).

D[0,∞) will denote the space of all right continuous functions defined on [0,∞) which have left
hand limits.

S will be the space of all Schwartz class functions defined on R
1 .

Dirac’s delta function will be denoted by δ(x) and δa(db) will be the delta measure with the unit
mass at a point {a}, so we may use the convention δa(db) = δ(a − b) db.

For a fixed positive t, the function p(t, x) of (1.2) is an even function of x and it belongs to S.
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For positive t and s, the following formulae hold∫ ∞

−∞
dx p(t, x) = 1, p(t, x) = t−1/4 p

(
1,

x

t1/4

)
,

and
∫ ∞

−∞
dy p(t, y − x) p(s, y) = p(t + s, x).

(2.1)

Note that p(t, x) can take negative values. Hochberg [8] proved that

p(1, |x|) = a|x|−1/3 exp{−b|x|4/3} cos c|x|4/3 + a lower order term

for large |x|, where a, b, and c are positive constants. It follows that∫ ∞

−∞
|p(t, x)| dx =

∫ ∞

−∞
|p(1, x)| dx = a constant > 1 for any t > 0. (2.2)

Using this p(t, x), Krylov [9] defined a finitely additive signed measure P̃x on cylinder sets in
R

[0,∞) . A cylinder set in R
[0,∞) , say Γ, is a set such that

Γ = {ω ∈ R
[0,∞) : ω(t1) ∈ B1, · · · , ω(tn) ∈ Bn} (2.3)

where 0 ≤ t1 < · · · < tn and Bk’s are Borel sets in R
1 . We put

P̃x[Γ] ≡
∫

B1

dy1 · · ·
∫

Bn

dyn p(t1, y1 − x)×

× p(t2 − t1, y1 − y2) · · · p(tn − tn−1, yn − yn−1).
(2.4)

If we fix 0 ≤ t1 < · · · < tn, then this P̃x is a σ–additive finite measure on R
n , but it is not a

σ–additive measure on the smallest σ–field which includes all cylinder sets in R
[0,∞) .

We say that a function f defined on R
[0,∞) is tame, if

f(ω) = g(ω(t1), · · · , ω(tn)), ω ∈ R
[0,∞) , (2.5)

for a Borel function g on R
n and 0 ≤ t1 < · · · < tn. For each tame function f , we define its

expectation in the usual way—if f is as in (2.5), then we set

Ẽx[f(ω)] =
∫

f(ω) P̃x[dω(t1) × · · · × dω(tn)], (2.6)

if the right hand side exists.

We extend the expectation to other functions as follows. Let n and N be natural numbers. For
each ω ∈ R

[0,∞) , we set

ωN
n (t) ≡


ω(k/2n) if k/2n ≤ t < (k + 1)/2n and t < N

ω(N) if t ≥ N.

Definition 2.1. We say that a function F defined on R
[0,∞) is admissible if F satisfies the

following conditions,
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(i) for each n and N , F (ωN
n ) is tame,

(ii) for each ω ∈ R
[0,∞) , limn→∞ limN→∞ F (ωN

n ) = F (ω),

(iii) there exists limn→∞ limN→∞
∑N

k=1 |Ẽx[F (ωk
n)] − Ẽx[F (ωk−1

n )]|. �

We define the expectation of an admissible function F (ω) by

Ex[F (ω)] ≡ lim
n→∞ lim

N→∞
Ẽx[F (ωN

n )].

The expectation is unique if it exists, due to (iii) of Definition 2.1 (see [14]). Let A be a subset
in R

[0,∞) . When the characteristic function IA(ω) is admissible, we let

Px[A] ≡ Ex[IA(ω)]. (2.7)

For a positive number α, Hα[0,∞) will denote the space of all functions defined on [0,∞) which
satisfy Hölder’s condition of order α. According to Krylov [9],

Px–total variation of Hα[0,∞) c = 0 if α < 1
4 .

This implies that the total mass of |Px| is concentrated on C[0,∞). However for a technical
reason related to Definition 2.1 (we need to deal with ωN

n ), we will take a larger space D[0,∞)
as the path space of the pseudo process corresponding to Px. From now on, we will identify Px

and Ex with their restrictions to D[0,∞).

Definition 2.2. A biharmonic pseudo process, or BPP in short, is the family of finitely additive
signed measures {Px : x ∈ R

1}, defined in (2.4) and (2.7). The domain of Px is a finitely additive
field in D[0,∞) which includes all cylinder sets.

3 The first hitting time distribution, monopole and dipole

We will review results from [13, 14] in this section..

3.1 The distribution of the first hitting time and place

Given ω ∈ D[0,∞), the random time

τ0(ω) ≡ inf{t > 0 : ω(t) < 0},
is called the first hitting time of the interval (−∞, 0). It can be proved that the function

exp{−λτ0(ω) + iβω(τ0)} (3.1)

is admissible, and we can calculate its expectation. For each λ > 0 and β ∈ R
1 ,

Ex[exp{−λτ0(ω) + iβω(τ0)}]
=

1√
2

[
θ1 exp{λ1/4θ2x} + θ1 exp{λ1/4θ2x}

]
+

iβ√
2λ1/4

[−i exp{λ1/4θ2x} + i exp{λ1/4θ2x}
]
,

(3.2)
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where θ1 ≡ exp{πi/4} and θ2 ≡ exp{3πi/4}.
In the classical probability setting, one can derive the joint distribution of the first hitting time
and place

Px[τ0(ω) ∈ dt, ω(τ0) ∈ da] (3.3)

from (3.2), using Bochner’s theorem. However the theorem cannot be applied to BPP , since
(3.2) is not positive definite in β, and so we have to extend the notion of the “joint distribution”
itself.

Given functions φ and ϕ in S, it can be proved that the function

exp{−λτ0(ω)}φ(τ0(ω))ϕ(ω(τ0))

is admissible and its expectation defines a continuous bilinear functional on S×S. This fact is di-
rectly implied by Schwartz’s result on Fourier-Laplace transforms of his temperate distributions.
The following lemma is a slight modification of his result.

Lemma 3.1 ([15]). Let c be a positive number and U(λ, β) be a complex-valued function of
a real variable β and a complex variable λ with <λ > c. Assume that for each real β, U is a
holomorphic function in λ with <λ > c and it satisfies

|U(λ, β)| ≤ C
(
1 + |λ| + |β|)k for <λ > c and β ∈ R

1 , (3.4)

where C and k are non-negative constants. Then U is the Fourier-Laplace transform of a
Schwartz temperate distribution whose support lies in [0,∞) × R

1 .

We will always take the principal value for λ1/4. If <λ > c for any positive number c, then
−π/8 < arg λ1/4 < π/8. This implies that (3.2) satisfies (3.4). Hence there exists a Schwartz
temperate distribution q(t, a;x) such that

Ex[exp{−λτ0(ω)}φ(τ0(ω))ϕ(ω(τ0))]

=
∫ ∞

0
dt

∫
da exp{−λt} q(t, a;x) φ(t) ϕ(a), λ > c > 0,

(3.5)

holds for all φ and ϕ in S.

In the classical probability theory, distributions of real-valued random variables may be thought
of as non-negative continuous linear functionals on the function space Cb(R1). We define dis-
tributions of functions of BPP to be continuous linear functionals on a function space which
includes S.

Definition 3.2. We call Schwartz’s temperate distribution q(t, a;x) in (3.5) the density of the
distribution (3.3), and let

Px[τ0(ω) ∈ dt, ω(τ0) ∈ da] ≡ q(t, a;x) dt da,

which is a continuous bilinear functional on S × S for each x ≥ 0.

Proposition 3.3 ([14]). Let x ≥ 0. Then in the distribution sense,

Px[τ0(ω) ∈ dt, ω(τ0) ∈ da] =
[
K(t, x) δ(a) − J(t, x) δ′(a)

]
dt da (3.6)
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where δ′(a) is the first derivative of Dirac’s delta function δ(a),

K(t, x) ≡ 2
π

∫ ∞

0
dy exp{−y4t} y3

(
sin yx − cos yx + exp{−yx}),

J(t, x) ≡ 2
π

∫ ∞

0
dy exp{−y4t} y2

(
sin yx − cos yx + exp{−yx}). (3.7)

Moreover, the support of the distribution in (3.6) is [0,∞) × {0}.
Remark 3.4 ([14]). (i) For each t > 0, K(t, x) and J(t, x) are C∞

b [0,∞) functions in x. For
each x > 0, they are also C∞

b [0,∞) functions in t.
(ii) For some positive constant C independent of t and x, we have

|K(t, x)| ≤ C x2

t3/2

(
t1/4

x

)n

for n = 0, · · · , 6;

|J(t, x)| ≤ C x2

t5/4

(
t1/4

x

)n

for n = 0, · · · , 5.

(iii) For x > 0, ∫ ∞

0
K(t, x) dt = 1 and

∫ ∞

0
J(t, x) dt = x.

(iv) Let f be a bounded continuous function on [0,∞). For t > 0,

lim
x→0

∫ t

0
ds K(s, x) f(s) = f(0) and lim

x→0

∫ t

0
ds J(s, x) f(s) = 0.

The explicit formula (3.6) makes it possible to extend (3.3) to a continuous bilinear functional
on a larger space than S × S.

Corollary 3.5 ([14]). The distribution (3.3) can be extended to a continuous bilinear functional
on Bb[0,∞) ×C1(R1 ).

The strong Markov property holds for BPP at time τ0(ω).

Proposition 3.6 (Strong Markov Property [14]). Let y < 0 < x. The following holds in
the sense of continuous linear functionals on Bb[0,∞),

Px[ω(t) ∈ dy] =
∫ t

s=0

∫ ∞

a=−∞
Px[τ0(ω) ∈ ds, ω(τ0) ∈ da] Pa[ω(t − s) ∈ dy]. (3.8)

3.2 Monopole and dipole

In physics a particle is called a dipole when it carries two charges of equal magnitude but opposite
signs. A small magnet is a typical example of a dipole. Heuristically, one may represent a dipole
by

− 1
2ε

δ(a + ε) +
1
2ε

δ(a − ε). (3.9)
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As ε → 0, (3.9) converges to −δ′(a) in the distribution sense. Therefore we will call −δ′(a) a
dipole. For the Brownian motion B(t), it is well known that

Px[τ0 ∈ dt,B(τ0) ∈ da] =
x√
2πt3

exp{−x2/2t} δ(a) dt da; x > 0.

Comparing this with (3.6), we see that in a sense, BPP behaves as a mixture of two particles
of different types when it hits an interval.
Informally speaking, a particle of the first type is represented by δ(a) and carries a charge of a
single sign just as a Brownian particle does. The second particle is represented by −δ′(a) and
corresponds to a dipole. The following informal definition will enable us to present our results
using intuitive notation.

Definition 3.7. We will call a particle represented by δ(a) a monopole and a particle represented
by −δ′(a) a dipole. We define distributions of the first hitting time and place for the monopole
and dipole as follows.

Px[τ0(ω) ∈ dt, ω(τ0) is a monopole and in da] ≡ K(t, x) δ(a) dt da,

Px[τ0(ω) ∈ dt, ω(τ0) is a dipole and in da] ≡ J(t, x) (−δ′(a)) dt da,

where the first distribution is a continuous linear functional on Bb[0,∞)×C(R1 ) and the latter
is a functional on Bb[0,∞) × C1(R1).

Corollary 3.8. In the sense of continuous linear functionals on Bb[0,∞) × C1(R1 ),

Pb[τ0(ω) ∈ dt, ω(τ0) ∈ da]
= Px[τ0(ω) ∈ dt, ω(τ0) is a monopole and in da]
+ Px[τ0(ω) ∈ dt, ω(τ0) is a dipole and in da].

(3.10)

3.3 The initial particle

When BPP starts with an initial distribution µ(dy), its distribution at time t is given by∫
µ(dy) Py[ω(t) ∈ db]. (3.11)

Recall from Definition 3.7 that δ(y) stands for the monopole and the dipole is represented by
−δ′(y). Therefore when a monopole starts from a point x, the distribution of the process at
time t is ∫

dy δ(y − x) Py[ω(t) ∈ db] = p(t, b − x) db = Px[ω(t) ∈ db].

On the other hand, when a dipole starts from a point x, the distribution at time t is∫
dy (−δ′(y − x)) Py[ω(t) ∈ db] = ∂xp(t, x − b) db.

We have a similar formula for the joint distribution of the first hitting time and place. When a
monopole starts from a point x, the distribution is∫

dy δ(y − x)
{
Py[τ0(ω) ∈ dt, ω(τ0) is a monopole and in da]

+ Py[τ0(ω) ∈ dt, ω(τ0) is a dipole and in da ]
}

= same as the right hand side of (3.10).

(3.12)
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On the other hand when a dipole starts from x, then the distribution is∫
dy (−δ′(y − x))

{
Py[τ0(ω) ∈ dt, ω(τ0) is a monopole and in da ]

+ Py[τ0(ω) ∈ dt, ω(τ0) is a dipole and in da ]
}

=
{∂K

∂x
(t, x) δ(a) − ∂J

∂x
(t, x) δ′(a)

}
dt da.

(3.13)

Remark 3.9. Informally speaking, (3.13) shows that a dipole generates both a monopole and
a dipole at the hitting time of (−∞, 0), just like a monopole does.

3.4 Some Laplace transforms

For future reference, we list some Laplace and Fourier-Laplace transforms of K(t, x), J(t, x) and
p(t, x). Let λ > 0 and x ≥ 0. From Proposition 3.3, we have

K̂(λ, x) ≡
∫ ∞

0
dt exp{−λt} K(t, x)

=
√

2 exp{−λ1/4x/
√

2} cos

(
λ1/4x√

2
− π

4

)
,

(3.14)

Ĵ(λ, x) ≡
∫ ∞

0
dt exp{−λt} J(t, x)

=
√

2
λ1/4

exp{−λ1/4x/
√

2} sin
λ1/4x√

2
,

(3.15)

Ĝ(λ, x, β) ≡
∫ ∞

0
dt

∫ ∞

−∞
dy exp{−λt + iβy}Px[ω(t) ∈ dy]

=
exp{iβx}
λ + β4

.

(3.16)

In addition, we define a new function

Ĝ00(λ, x, β) ≡
∫ ∞

0
dt

∫
b∈R

exp{−λt + iβb}Px[ω(t) ∈ db]−

−
∫ ∞

0
dt

∫
b∈R

exp{−λt + iβb}×

×
∫ t

s=0

∫
a∈R

{
Px[τ0(ω) ∈ ds, ω(τ0) is a monopole and in da]

+ Px[τ0(ω) ∈ ds, ω(τ0) is a dipole and in da]
}

Pa[ω(t − s) ∈ db]

= Ĝ(λ, x, β) − 1
λ + β4

(
K̂(λ, x) + iβĴ(λ, x)

)
.

(3.17)

It is elementary to check that

K̂(λ, 0) = 1, ∂xK̂(λ, 0) = 0, ∂2
xK̂(λ, 0) = −

√
λ,

∂3
xK̂(λ, 0) =

√
2λ3/4, ∂4

xK̂(λ, 0) = −λ, ∂5
xK̂(λ, 0) = 0;

(3.18)

10



Ĵ(λ, 0) = 0, ∂xĴ(λ, 0) = 1, ∂2
xĴ(λ, 0) = −

√
2λ1/4,

∂3
xĴ(λ, 0) =

√
λ, ∂4

xĴ(λ, 0) = 0, ∂5
xĴ(λ, 0) = −λ;

(3.19)

Ĝ00(λ, 0, β) = 0, ∂xĜ00(λ, 0, β) = 0,

∂2
xĜ00(λ, 0, β) =

−β2 +
√

λ + i
√

2λ1/4β

λ + β4

∂3
xĜ00(λ, 0, β) =

−√
2λ3/4 − iβ3 − i

√
λβ

λ + β4
,

∂4
xĜ00(λ, 0, β) = 1, ∂5

xĜ00(λ, 0, β) = iβ.

(3.20)

4 Killing boundaries for both particles

Definition 4.1. Let

P00
x [ω(t) ∈ db] = Px[ω(t) ∈ db]−

−
∫ t

s=0

∫
a∈R

{
Px[τ0(ω) ∈ ds, ω(τ0) is a monopole and in da]

+ Px[τ0(ω) ∈ ds, ω(τ0) is a dipole and in da]
}

Pa[ω(t − s) ∈ db].

(4.1)

We will refer to {P00
x [ω(t) ∈ db] : x ≥ 0} as a BPP with killing boundaries for both particles.

Remark 4.2. Here is an intuitive description of BPP with killing boundaries for both particles.

1. A monopole starts from a point x ≥ 0, and moves according to the transition probability
density p(t, x) until it hits the interval (−∞, 0).

2. After BPP hits (−∞, 0), both the monopole and dipole are killed.

Theorem 4.3. (i) For x ≥ 0, b ≥ 0, and t > 0, we define a function

p00(t, x, b) ≡ p(t, b − x) −
∫ t

0
ds
{
K(s, x) p(t − s, b) + J(s, x) ∂bp(t − s, b)

}
. (4.2)

Then, we have ∫ ∞

0
dt

∫ ∞

−∞
db exp{−λt + iβb) p00(t, x, b) = Ĝ00(λ, x, β).

(ii) The following linear functionals are identical and continuous on Bb[0,∞),

P00
x [ω(t) ∈ db] = p00(t, x, b) db. (4.3)

Proof. We easily obtain (4.2) and (4.3) when we recall the definitions of the terms on the right
hand side of (4.1) from Section 3.2. It is straightforward to check that (3.20) is the Fourier-
Laplace transform of (4.2) in the usual sense. Part (ii) follows from the fact that p(t, x) ∈ S
and from the estimates stated in Remark 3.4. �
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Remark 4.4. The following assertion easily follow from (4.2).

(i) If f is a bounded continuous function on [0,∞), then

lim
t→0

∫ ∞

0
P00

x [ω(t) ∈ db] f(b) = f(x).

(ii) If x = 0, P00
x [ω(t) ∈ A] = 0 for any Borel set A ∈ (0,∞).

As expected, the distribution P00
x [ω(t) ∈ db] solves (1.4) with the Dirichlet boundary condition.

Theorem 4.5 ([14]). Let f be a bounded smooth function on the interval [0,∞) such that
f(0) = 0 = f ′(0). We put

v(t, x) ≡
∫ ∞

0
P00

x [ω(t) ∈ db] f(b). (4.4)

Then in the classical sense, this v satisfies (1.4) with ` = 0 and m = 1.

Corollary 4.6. P00
x [ω(t) ∈ db] satisfies the Chapman-Kolmogorov equations, that is∫ ∞

0
db p00(t, x, b) p00(s, b, y) = p00(t + s, x, y). (4.5)

Proof. Fix s > 0 and y ≥ 0. Theorem 4.5 asserts that

v(t, x) ≡
∫ ∞

0
db p00(t, x, b) p00(s, b, y)

is a solution of (1.4) where
f(x) ≡ p00(s, x, y),

` = 0 and m = 1. The function ṽ(t, x) ≡ p00(t + s, x, y) is also a solution of (1.4). It is well
known that the solution is unique so it follows that v = ṽ. The corollary is proved. �

Remark 4.7. Due to Corollary 4.6, we may consider P00
x [ω(t) ∈ db] of (4.3) as a finitely

additive signed measure on cylinder sets in D[0,∞) in the same way as in (2.4).

5 Reflecting boundary for the monopole

5.1 Reflection for the monopole and killing of the dipole

The construction of the process BPP with the boundary conditions specified above will use an
approximating sequence. We will prove existence of a family {εPr0

x [ω(t) ∈ db] : x ≥ 0} satisfying

εPr0
x [ω(t) ∈ db] = P0

x[ω(t) ∈ db]+

+
∫ t

0

∫ ∞

−∞
Px[τ0(ω) ∈ ds, ω(τ0) is a monopole and in da] εPr0

ε+a[ω(t − s) ∈ db].
(5.1)

Remark 5.1. Heuristically, {εPr0
x [ω(t) ∈ db] : x ≥ 0} represents the following process. Fix

ε > 0.
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1. A monopole starts from a point x ≥ 0, and moves according to the transition probability
density p(t, x) until it hits the interval (−∞, 0).

2. If ω(τ0) is a monopole when BPP hits (−∞, 0), then it restarts from the point ε + ω(τ0).

3. If ω(τ0) is a dipole when BPP hits (−∞, 0), then it is killed.

Assume for the moment that εPr0
x [ω(t) ∈ db] is a Schwartz temperate distribution and denote

its Fourier-Laplace transform by

εU r0(λ, x, β) ≡
∫ ∞

0
dt

∫
εPr0

x [ω(t) ∈ db] exp{−λt + iβb}].

Apply the Fourier-Laplace transform to the both sides of (5.1) to obtain

εU r0(λ, x, β) = Ĝ00(λ, x, β) + K̂(λ, x) εU r0(λ, ε, β), x > 0. (5.2)

Lemma 5.2. (i) When ε > 0, the following is a solution of (5.2):

εU r0(λ, x, β) = Ĝ00(λ, x, β) + K̂(λ, x)
Ĝ00(λ, ε, β)
1 − K̂(λ, ε)

. (5.3)

(ii) For small ε > 0, this εU r0 satisfies (3.4) for any c > 0, and it is the Fourier-Laplace
transform of a Schwartz temperate distribution εPr0

x [ω(t) ∈ db].

Proof. (i) Put x = ε in (5.2) to see that

εU r0(λ, ε, β) = Ĝ00(λ, ε, β) + K̂(λ, ε) εU r0(λ, ε, β).

This linear equation is easily solved with respect to εU r0. This and (5.2) yield (5.3).

(ii) Let <λ > c > 0. We take the principal value for λ1/4 and recall that −π/8 < arg λ1/4 < π/8.
After applying this fact to (3.14) through (3.17), we see that (3.4) holds for K̂, Ĵ , and Ĝ00, and
also for the fraction on the right hand side of (5.3) when ε > 0 is small. Now Lemma 3.1 implies
our assertion. �

Lemma 5.3. In the distribution sense, εPr0
x [ω(t) ∈ db] converges to a limit as ε → 0.

Definition 5.4. This above limit will be denoted by {Pr0
x [ω(t) ∈ db] : x ≥ 0} and called the

distribution of BPP with the reflecting boundary for the monopole and the killing boundary for
the dipole.

Proof of Lemma 5.3. Recalling (3.18) through (3.20), we let ε → 0 in (5.3), and obtain

U r0(λ, x, β) ≡ lim
ε→0

εU r0(λ, x, β)

= Ĝ00(λ, x, β) − K̂(λ, x)
∂2

xĜ00(λ, 0, β)
∂2

xK̂(λ, 0)
.

(5.4)

Now U r0 clearly satisfies (3.4), and so it is the Fourier-Laplace transform of a Schwartz temperate
distribution, that is Pr0

x [ω(t) ∈ db]. �
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Assuming that <λ > 0, we calculate the usual inverse Fourier-Laplace transform of
∂2

xĜ00(λ, 0, β)/∂2
xK̂(λ, 0). Let b ≥ 0. By the residue theorem, we have

Ir0(λ, b) ≡ 1
2π

lim
L→∞

∫ L

−L
dβ exp{−iβb}

(
−∂2

xĜ00(λ, 0, β)
∂2

xK̂(λ, 0)

)
=

i√
2λ3/4

(
exp{λ1/4 θ2 b} − exp{λ1/4 θ2 b}

)
,

(5.5)

where θ2 ≡ exp{i3π/4} and θ2 is its complex conjugate. Applying the usual inverse Laplace
transform to this Ir0, we obtain

Qr0(t, b) ≡ 1
2πi

lim
M→∞

∫ 1+iM

1−iM
dλ exp{λt} Ir0(λ, b)

=
2
π

∫ ∞

0
dy e−y4t

(
cos yb + sin yb − exp{−yb}

)
,

(5.6)

which is a smooth bounded function in b ≥ 0 if t > 0.

Theorem 5.5. For x ≥ 0, b ≥ 0, and t > 0, we define a function

pr0(t, x, b) ≡ p00(t, x, b) +
∫ t

0
ds K(s, x) Qr0(t − s, b), (5.7)

where p00 is the function in (4.2) and Qr0 is defined in (5.6). Then we have

Pr0
x [ω(t) ∈ db] = pr0(t, x, b) db, (5.8)

both linear functionals in (5.8) are continuous on Bb[0,∞) and∫ ∞

0
Pr0

x [ω(t) ∈ db] = 1.

Proof. The first part of the theorem follows from (5.4), (5.6), and Lemma 5.3. From (5.4) with
(3.18) through (3.20), we deduce that U r0(λ, x, 0) = 1/λ, and this justifies the last assertion.
�

The distribution Pr0
x is related to the PDE in (1.4) with the Neumann boundary conditions.

Theorem 5.6. (i) Let f be a bounded smooth function on the interval [0,∞) such that f ′(0) =
0 = f ′′(0). We put

v(t, x) ≡
∫ ∞

0
Pr0

x [ω(t) ∈ db] f(b). (5.9)

Then in the classical sense, this v satisfies (1.4) with ` = 1 and m = 2.
(ii) Pr0

x [ω(t) ∈ db] satisfies Chapman-Kolmogorov equations (4.5), and Remark 4.7 holds with
Pr0

x [ω(t) ∈ db] instead of P00
x [ω(t) ∈ db].

Proof. Recall (3.18) through (3.20). From (5.4), we have

∂4
xU r0(λ, x, β) + λU r0(λ, x, β) = exp{iβ x} for ∀x > 0, (5.10)

and
∂xU r0(λ, 0, β) = 0 and ∂2

xU r0(λ, 0, β) = 0.

Since the Fourier-Laplace transform is unique for our pr0, these prove the first part of the
theorem. The second part is immediate from the same argument as in the proof of Corollary
4.6. �
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5.2 An analogy to the classical reflecting Brownian motion

For the Brownian motion B(t), it is well known that the following two process X1 and X2 have
the same distributions. They are referred to as reflecting Brownian motions. Let τ0 be the first
hitting time of the point x = 0.

X1(t) ≡ |B(t)|,

X2(t) ≡
{

B(t) if t < τ0,
B(t) − infτ0≤s≤t B(s) if t ≥ τ0.

It is not difficult to check that similarly defined transformations of BPP do not have identical
distributions. Keeping this fact in mind, we define a new BPP as follows.

Definition 5.7. Let {Pm
x [ω(t) ∈ db] : x ≥ 0} be defined by

Pm
x [ω(t) ∈ db] = P00

x [ω(t) ∈ db]+

+
∫ t

0

∫ ∞

−∞
Px[τ0(ω) ∈ ds, ω(τ0) is a monopole and in da]×

× Pa[ω(t − s) − inf
u≤t−s

ω(t) ∈ db].

(5.11)

Remark 5.8. We present an intuitive view of the last definition.

1. A monopole starts from a point x ≥ 0, and moves according to the transition probability
density p(t, x) until it hits the interval (−∞, 0).

2. If ω(τ0) is a dipole when BPP hits (−∞, 0), then it is killed.

3. If ω(τ0) is a monopole when BPP hits (−∞, 0), then it restarts from the point x = 0, and
moves according to the distribution of [ω(t + τ0) − infτ0≤s≤t+τ0 ω(s)].

In [14], the following was proved. For b ≥ 0,

P0[ω(t) − inf
0≤s≤t

ω(s) ∈ db] = Qr0(t, b) db,

where Qr0 is given in (5.6). We record this partial analogy with the classical reflected Brownian
motion in the next theorem.

Theorem 5.9. The distributions Pr0
x [ω(t) ∈ db] in Theorem 5.5 and Pm

x [ω(t) ∈ db] in (5.11)
are identical.

Proof. The result follows easily from (5.11) and Theorem 5.5. �

5.3 Reflecting boundaries for both particles

The construction of BPP with these boundary conditions requires an approximation procedure
similar to that in the previous section. We will prove that there exists a family {εPrr

x [ω(t) ∈
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db] : x ≥ 0} satisfying the following equation.

εPrr
x [ω(t) ∈ db] = P00

x [ω(t) ∈ db]+

+
∫ t

s=0

∫ ∞

a=−∞

{
Px[τ0(ω) ∈ ds, ω(τ0) is a monopole and in da]

+ Px[τ0(ω) ∈ ds, ω(τ0) is a dipole and in da ]
}

εPrr
ε+a[ω(t − s) ∈ db].

(5.12)

Remark 5.10. Heuristically, we are dealing with the following process. Let ε be a fixed positive
number.

1. A monopole starts from a point x ≥ 0, and moves according to the transition probability
density p(t, x) until it hits the interval (−∞, 0).

2. After BPP hits (−∞, 0), it restarts from the point ε+ ω(τ0) irrespective of whether ω(τ0)
is a monopole or a dipole.

Assuming for the moment existence of εPrr
x [ω(t) ∈ db], we denote by εU rr its Fourier-Laplace

transform. Recall (3.13) and note that (5.12) is transformed into the following equation. For
x > 0,

εU rr(λ, x, β) = Ĝ00(λ, x, β)+

+ K̂(λ, x) εU rr(λ, ε, β) + Ĵ(λ, x) ∂x
εU rr(λ, ε, β).

(5.13)

Lemma 5.11. (i) For ε > 0, the following is a solution of (5.13):

εU rr(λ, x, β) = Ĝ00(λ, x, β)

+ K̂(λ, x)
(1 − ∂xĴ(ε, λ)) Ĝ00(λ, ε, β) + Ĵ(λ, ε) ∂xĜ00(λ, ε, β)
(1 − K̂(λ, ε))(1 − ∂xĴ(λ, ε)) − ∂xK̂(ε, λ) Ĵ(λ, ε)

+ Ĵ(λ, x)
∂xK̂(λ, ε) Ĝ00(λ, ε, β) − (1 − K̂(λ, ε)) ∂xĜ00(λ, ε, β)

(1 − K̂(λ, ε))(1 − ∂xĴ(λ, ε)) − ∂xK̂(λ, ε) Ĵ(λ, ε)
.

(5.14)

(ii) For small ε > 0, this εU rr satisfies (3.4) for any c > 0, and it is the Fourier-Laplace
transform of a Schwartz temperate distribution εPrr

x [ω(t) ∈ db].

Proof. (i) Substitute ε for x in (5.13). Then differentiate both sides of (5.13) with respect to
x and then again substitute ε for x. As a result, we obtain the following equations,

εU rr(λ, ε, β) = Ĝ00(λ, ε, β) + K̂(λ, ε) εU rr(λ, ε, β)
+Ĵ(λ, ε) ∂x

εU rr(λ, ε, β),

∂x
εU rr(λ, ε, β) = ∂xĜ00(λ, ε, β) + ∂xK̂(λ, ε) εU rr(λ, ε, β)

+∂xĴ(λ, ε) ∂x
εU rr(λ, ε, β).

We can solve the equations for εU rr(λ, ε, β) and ∂x
εU rr(λ, ε, β) and substitute the results into

(5.13). Then (5.14) easily follows. Part (ii) can be proved the same way as part (ii) of Lemma
5.2. �
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Theorem 5.12. In the sense of convergence of distributions, εPrr
x [ω(t) ∈ db] converges to

Pr0
x [ω(t) ∈ db] defined in Theorem 5.5, as ε → 0.

Proof. If we let ε → 0 in (5.14) then we obtain

lim
ε→0

εU rr(λ, x, β) = Ĝ0(λ, x, β) − K̂(λ, x)
∂2

xĜ0(λ, 0, β)
∂2

xK̂(λ, 0)
.

The right hand side equals to U r0 in the proof of Lemma 5.4, so it is the Fourier-Laplace
transform of Pr0

x [ω(t) ∈ db]. �

6 Killing of monopole and reflection for dipole

Once again, we start with an approximating sequence. We will find a solution {εP0r
x [ω(t) ∈ db] :

x ≥ 0, } to the equation

εP0r
x [ω(t) ∈ db] = P00

x [ω(t) ∈ db]+

+
∫ t

0

∫ ∞

−∞
Px[τ0(ω) ∈ ds, ω(τ0) is a dipole and in da] εP0r

ε+a[ω(t − s) ∈ db].
(6.1)

Remark 6.1. Intuitively speaking, we have the following model. Consider fixed ε > 0.

1. A monopole starts from a point x ≥ 0, and moves according to the transition probability
density p(t, x) until it hits the interval (−∞, 0).

2. If ω(τ0) is a monopole when BPP hits (−∞, 0), then it is killed.

3. If ω(τ0) is a dipole when BPP hits (−∞, 0), then it restarts from the point ε + ω(τ0).

Suppose {εP0r
x [ω(t) ∈ db] : x ≥ 0, } solving (6.1) exists. We denote the Fourier-Laplace transform

of εP0r
x [ω(t) ∈ db] by εU0r(λ, x, β). Then we apply the Fourier-Laplace transform to (6.1). Using

(3.13), we obtain for x > 0,

εU0r(λ, x, β) = Ĝ00(λ, x, β) + Ĵ(λ, x) ∂x
εU r0(λ, ε, β). (6.2)

The following lemma can be proved the same way as Lemma 5.11 so we omit its proof.

Lemma 6.2. (i) For ε > 0, the following is a solution of (6.2):

εU0r(λ, x, β) = Ĝ00(λ, x, β) + Ĵ(λ, x)
∂xĜ0(λ, ε, β)
1 − ∂xĴ(λ, ε)

. (6.3)

(ii) For small ε > 0, this εU0r satisfies (3.4) with any c > 0, and it is the Fourier-Laplace
transform of a Schwartz temperate distribution εPor

x [ω(t) ∈ db].

Lemma 6.3. In the sense of convergence of distributions, εP0r
x [ω(t) ∈ db] converges to a limit

as ε → 0.
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Definition 6.4. We denote this limit by {P0r
x [ω(t) ∈ db] : x ≥ 0}, and call it the distribution

of BPP with the killing boundary for the monopole and the reflecting boundary for the dipole.

Proof of Lemma 6.3. We let ε tend to 0 in (6.3). Then (3.19) and (3.20) imply that

U0r(λ, x, β) ≡ lim
ε→∞

εU0r(λ, x, β)

= Ĝ00(λ, x, β) − Ĵ(λ, x)
∂2

xĜ00(λ, 0, β)
∂2

xĴ(λ, 0)
.

(6.4)

When we take the principal value of λ1/4, U0r satisfies (3.4), and Lemma 3.1 implies our assertion.
�

If <λ > 0, ∂2
xĜ00(λ, 0, β)/∂2

x Ĵ(λ, 0) admits the usual inverse Fourier–Laplace transform. We
present the calculations. Let b ≥ 0. The residue theorem implies that

I0r(λ, b) ≡ 1
2π

lim
L→∞

∫ L

−L
dβ exp{−iβb}

(
−∂2

xĜ00λ, 0, β)
∂2

xĴ(λ, 0)

)
=

i

2
√

λ

(
exp{λ1/4 b θ2} − exp{λ1/4 b θ2}

)
.

(6.5)

For t > 0, we obtain that

Q0r(t, b) ≡ − 1
2πi

lim
M→∞

∫ 1+iM

1−iM
dλ exp{λt} I0r(λ, b)

=
2
π

∫ ∞

0
dy exp{−y4t} y sin(yb).

(6.6)

One can easily check that the density Q0r is a smooth bounded function of non-negative b if
t > 0, and it is integrable in t.

Theorem 6.5. For x ≥ 0, b ≥ 0, and t > 0, we define a function

p0r(t, x, b) ≡ p00(t, x, b) +
∫ t

0
ds J(s, x) Q0r(t − s, b), (6.7)

where Q0r is the function in (6.6). Let {P0r
x [ω(t) ∈ db] : x ≥ 0} denote the distribution in

Definition 6.4. Then we have

P0r
x [ω(t) ∈ db] = p0r(t, x, b) db, (6.8)

and these distributions are continuous linear functionals on Bb[0,∞).

Proof. The theorem is immediate from Lemma 6.2 and (6.6). �

The following theorem is easily proved using (6.4) in the same way as Theorem 5.11 so we omit
its proof.

Theorem 6.6. (i) Let f be a bounded smooth function on the interval [0,∞) such that f(0) =
0 = f ′′(0). We put

v(t, x) ≡
∫ ∞

0
P0r

x [ω(t) ∈ db] f(b). (6.9)

Then in the classical sense, this v satisfies (1.4) with ` = 0 and m = 2.
(ii) P0r

x [ω(t) ∈ db] satisfies Chapman-Kolmogorov equations (4.5), and the assertion in Remark
4.7 holds with P0r

x [w(t) ∈ db] in place of P0
x[ω(t) ∈ db].
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7 Stopped monopole

7.1 Stopped monopole and dipole

Definition 7.1. Let {Pss
x [ω(t) ∈ db] : x ≥ 0} be defined by

Pss
x [ω(t) ∈ db] = P00

x [ω(t) ∈ db]+

+
∫ t

0

∫ ∞

−∞

{
Px[τ0(ω) ∈ ds, ω(τ0) is a monopole and in da]

+ Px[τ0(ω) ∈ ds, ω(τ0) is a dipole and in da]
}

δ(b − a) db.

(7.1)

Remark 7.2. The family of distributions given in the last definition represents a BPP whose
both particles are stopped after exiting (0,∞). An intuitive description of the process is the
following.

1. A monopole starts from a point x ≥ 0, and moves according to the transition probability
density p(t, x) until it hits the interval (−∞, 0).

2. After BPP hits the interval (−∞, 0), both particles are stopped.

Theorem 7.3. For x ≥ 0, b ≥ 0, and t > 0, we define a linear functional on C1
b [0,∞),

pss(t, x, b) ≡ p00(t, x, b) +
∫ t

0
ds
{
K(s, x) δ(b) − J(s, x) δ′(b)

}
. (7.2)

Then we have
Pss

x [ω(t) ∈ db] = pss(t, x, b) db. (7.3)

Both sides of the last formula are continuous linear functionals on C1
b [0,∞).

Proof. The result follows easily from (3.13) and Definition 7.1. �

Theorem 7.4. (i) Let f be a bounded smooth function defined on the interval [0,∞) such that
f (4)(0) = 0 = f (5)(0). We define

v(t, x) ≡
∫ ∞

0
Pss

x [ω(t) ∈ db] f(b). (7.4)

Then in the classical sense, this v satisfies (1.4) with ` = 4 and m = 5.
(ii) Pss

x [ω(t) ∈ db] satisfies Chapman-Kolmogorov equations (4.5) in the sense of a linear func-
tional on C1

b [0,∞).

Proof. We apply the Fourier-Laplace transform to Pss
x [ω(t) ∈ db], and denote it by U ss(λ, x, β).

Then (7.2) is transformed into

U ss(λ, x, β) = Ĝ00(λ, x, β) + K̂(λ, x)
1
λ

+ Ĵ(λ, x)
iβ

λ
, (7.5)

from which we see that (5.10) holds for this U ss. Recalling (3.18), (3.19) and (3.20), we easily
see that

∂4
xU ss(λ, 0, β) = 0 and ∂5

xU ss(λ, 0, β) = 0.

This proves part (i) of the theorem, since the Fourier-Laplace transform is unique. For (ii), it is
sufficient to note that ∂xpss(t, x, b) is a linear functional on C1

b [0,∞) and the left hand side of
(4.5) is well-defined with p00(t, x, b) replaced by ∂xpss(t, x, b). �
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7.2 Stopped monopole and killed dipole

Definition 7.5. Let {Ps0
x [ω(t) ∈ db] : x ≥ 0} be given by

Ps0
x [ω(t) ∈ db] = P00

x [ω(t) ∈ db]+

+
∫ t

s=0

∫ ∞

a=−∞
Px[τ0(ω) ∈ ds, ω(τ0) is a monopole and in da] δ(a − b) db.

(7.6)

Remark 7.6. A heuristic view of BPP with the boundary behavior specified in the section
title is this.

1. A monopole starts from a point x ≥ 0, and moves according to the transition probability
density p(t, x) until it hits the interval (−∞, 0).

2. If ω(τ0) is a monopole when BPP hits (−∞, 0), then it is stopped at the point ω(τ0).

3. If ω(τ0) is a dipole when BPP hits (−∞, 0), then it is killed.

Theorem 7.7. For x ≥ 0, b ≥ 0, and t > 0, we define a linear functional on Bb[0,∞),

ps0(t, x, b) ≡ p0(t, x, b) +
∫ t

0
ds K(s, x) δ(b). (7.7)

We have
Ps0

x [ω(t) ∈ db] = ps0(t, x, b) db, (7.8)

where both expressions are continuous linear functionals on Bb[0,∞).

Proof. The result follows easily from the definition (7.6). �

Theorem 7.8. (i) Let f be a bounded smooth function on the interval [0,∞) such that f ′(0) =
0 = f (4)(0). We put

v(t, x) ≡
∫ ∞

0
Ps0

x [ω(t) ∈ db] f(b). (7.9)

Then in the classical sense, this v satisfies (1.4) with ` = 1 and m = 4.
(ii) Ps0

x [ω(t) ∈ db] satisfies Chapman-Kolmogorov equations (4.5) in the sense of a linear
functional on Bb[0,∞).

Proof. Let U s0(λ, x, β) be the Fourier-Laplace transform of Ps0
x . Apply the Fourier-Laplace

transform to (7.7). The equation is transformed to

U s0(λ, x, β) = Ĝ00(λ, x, β) + K̂(λ, x)
1
λ

. (7.10)

From this, we see that (5.10) holds for this U s0 and that

∂xU s0(λ, 0, β) = 0 and ∂4
xU s0(λ, 0, β) = 0.

The first assertion of the theorem follows from this and from uniqueness of the Fourier-Laplace
transform. The proof of the second is the same as in Theorem 7.3. �

We present an example of a “not well-posed problem” for (1.4):
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Example 7.9. Let f be a bounded smooth function on the interval [0,∞) such that f ′(0) =
0, f ′′(0) = 0, and f (4)(0) = 0. Recalling Theorems 5.7 and 7.8, we define functions

v1(t, x) ≡
∫ ∞

o
Pr0[ω(t) ∈ db] f(b); v2(t, x) ≡

∫ ∞

o
Ps0[ω(t) ∈ db] f(b).

These v1 and v2 are classical solutions of (1.4) with ` = 1. We consider their Laplace transforms

Vj(λ, x) ≡
∫ ∞

0
dt exp{−λt} vj(t, x), j = 1, 2,

which satisfy
∂4

xVj(λ, x) = −λVj(λ, x) + f(x), j = 1, 2.

Since they are smooth and both satisfy ∂xVj(λ, 0) = 0, we have

0 = ∂5
xVj(λ, 0) = −λ∂xVj(λ, 0) + f ′(0) = 0, j = 1, 2.

This fact implies that solutions to (1.4) are not unique when ` = 1 and m = 5. Note that an
analogous argument also holds when ` = 0 and m = 4.

7.3 Stopped monopole and reflected dipole

This case calls for an approximation procedure similar to those discussed in earlier sections. We
are looking for a family {εPsr

x [ω(t) ∈ db] : x ≥ 0} satisfying

εPsr
x [ω(t) ∈ db] = P00

x [ω(t) ∈ db]+

+
∫ t

0

∫ ∞

−∞
Px[τ0(ω) ∈ ds, ω(τ0) is a monopole and in da] δ(a − b) db

+
∫ t

0

∫ ∞

−∞
Px[τ0(ω) ∈ ds, ω(τ0) is a dipole and in da] εPsr

ε+a[ω(t − s) ∈ db].

(7.11)

Remark 7.10. An intuitive description of {εPsr
x [ω(t) ∈ db] : x ≥ 0} is the following. Let ε be

a fixed positive number.

1. A monopole starts from a point x ≥ 0, and moves according to the transition probability
density p(t, x) until it hits the interval (−∞, 0).

2. If ω(τ0) is a monopole when BPP hits (−∞, 0), then it is stopped at the point ω(τ0).

3. If ω(τ0) is a dipole when BPP hits (−∞, 0), then it restarts from the point ε + ω(τ0).

Let εU sr(λ, x, β) denote the Fourier-Laplace transform of εPsr
x , if it exists. Recall (3.13) and

note that (7.11) can be transformed to

εU sr(λ, x, β) = Ĝ00(λ, x, β)+

+ K̂(λ, x)
1
λ

+ Ĵ(λ, x) ∂x
εU sr(λ, ε, β).

(7.12)

The following lemma is similar to several lemmas presented earlier in the paper so we omit its
proof.
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Lemma 7.11. (i) For ε > 0, the following is a solution of (7.12):

εU sr(λ, x, β) = Ĝ00(λ, x, β) + +K̂(λ, ε)
1
λ

+

+ Ĵ(λ, ε)
∂xĜ00(λ, ε, β) + ∂xK̂(λ, ε)/λ

1 − ∂xĴ(λ, ε)
.

(7.13)

(ii) When ε > 0 is small, this εU sr satisfies (3.4) for every c > 0 and it is the Fourier-Laplace
transform of a Schwartz temperate distribution εPsr

x [ω(t) ∈ db].

Lemma 7.12. εPsr
x [ω(t) ∈ db] converges to a limit as ε → 0, in the distribution sense.

Definition 7.13. The above limit will be denoted by {Psr
x [ω(t) ∈ db] : x ≥ 0}, and called the

distribution of BPP with stopped monopole and reflecting dipole on the boundary.

Proof. Recall (3.18) through (3.20), and let ε → 0 in (7.12). Then

U sr(λ, x, β) ≡ lim
ε→0

εU sr(λ, x, β) = Ĝ00(λ, x, β) + K̂(λ, x)
1
λ
−

− Ĵ(λ, x)
∂2

xĜ00(λ, 0, β) + ∂2
xK̂(λ, 0)/λ

∂2
xĴ(λ, 0)

.
(7.14)

This satisfies (3.4), so Lemma 3.1 implies our assertion. �

We will apply the inverse Fourier-Laplace transform to

−∂2
xĜ00(λ, 0, β) + ∂2

xK̂(λ, 0)/λ
∂2

xĴ(λ, 0)
= −∂2

xĜ00(λ, 0, β)
∂2

xĴ(λ, 0)
− ∂2

xK̂(λ, 0)
λ ∂2

xĴ(λ, 0)
(7.15)

in the distribution sense. We already know a formula for the first term of (7.15), which is the
same as Q0r in (6.6). As for the second term

− ∂2
xK̂(λ, 0)

λ ∂2
xĴ(λ, 0)

=
1√

2λ3/4
,

we can apply the inverse Fourier-Laplace transform in the sense of Schwartz temperate distri-
bution, to obtain

− 2
π

(∫ ∞

0
dy exp{−y4t}

)
δ(b).

We conclude that the inverse Fourier-Laplace transform of (7.15) is

Qsr(t, b) ≡ Q0r(t, b) − 2
π

(∫ ∞

0
dy exp{−y4t}

)
δ(b). (7.16)

This is a linear functional on Bb[0,∞). The following theorem is immediate from Lemma 7.12
and the above arguments. Therefore we omit its proof.
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Theorem 7.14. For x ≥ 0, b ≥ 0, and t > 0, we define a linear functional on Bb[0,∞),

psr(t, x, b) ≡ p00(t, x, b) +
∫ t

0
ds K(s, x) δ(b)+

+
∫ s

0
ds J(s, x)Qsr(t − s, b)

(7.17)

where Qsr is given in (7.16). We have

Psr
x [ω(t) ∈ db] = psr(t, x, b) db. (7.18)

Both sides are continuous linear functionals on Bb[0,∞).

Theorem 7.15. (i) Let f be a bounded smooth function on the interval [0,∞) such that f ′′(0) =
0 = f (4)(0). We put

v(t, x) ≡
∫ ∞

0
Psr

x [ω(t) ∈ db] f(b). (7.19)

Then in the classical sense, this v satisfies (1.4) with ` = 2 and m = 4.
(ii) Psr

x [ω(t) ∈ db] satisfies Chapman-Kolmogorov equations (4.5), and Remark 4.7 holds with
Psr

x [ω(t) ∈ db] in place of P0
x[ω(t) ∈ db].

Proof. Note that the Fourier-Laplace transform is unique. By (7.14), we see that (5.10) holds
for U sr. Moreover using (3.18) through (3.20), we have

∂2
xU sr(λ, 0, β) = 0 and ∂4

xU sr(λ, 0, β) = 0.

These prove (i), and (ii) can be proved by the same arguments as similar results in earlier
sections. �

8 Stopped dipole

8.1 Stopped dipole and killed monopole

Definition 8.1. Let {P0s
x [ω(t) ∈ db] : x ≥ 0} be given by

P0s
x [ω(t) ∈ db] = P00

x [ω(t) ∈ db]+

+
∫ t

0

∫ ∞

∞
Px[τ0(ω) ∈ ds, ω(τ0) is a dipole and in da]δ(a − b) db.

(8.1)

Remark 8.2. Intuitively, we are dealing with the following model.

1. A monopole starts from a point x ≥ 0, and moves according to the transition probability
density p(t, x) until it hits the interval (−∞, 0).

2. If ω(τ0) is a monopole when BPP hits (−∞, 0), then it is killed.

3. If ω(τ0) is a dipole when BPP hits (−∞, 0), then it is stopped at the point ω(τ0).
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The following theorem can be easily derived from (3.13).

Theorem 8.3. For x ≥ 0, b ≥ 0, and t > 0, we define a linear functional on C1
b [0,∞),

p0s(t, x, b) ≡ p00(t, x, b) +
∫ s

0
ds J(s, x) δ′(b). (8.2)

Then we have
P0s

x [ω(t) ∈ db] = p0s(t, x, b) db, (8.3)

where both expressions are continuous linear functionals on C1
b [0,∞).

Theorem 8.4. (i) Let f be a bounded smooth function on the interval [0,∞) such that f(0) =
0 = f (5)(0). We put

v(t, x) ≡
∫ ∞

0
P0s

x [ω(t) ∈ db] f(b). (8.4)

Then in the classical sense, this v satisfies (1.4) with ` = 0 and m = 5.
(ii) P0s

x satisfies Chapman-Kolmogorov equations (4.5).

Proof. If we denote by U0s(x, λ, β) the Fourier-Laplace transform of P0s
x , then (8.3) is trans-

formed into the following equality:

U0s(x, λ, β) = Ĝ00(x, λ, β) + Ĵ(x, λ, β)
iβ

λ
, (8.5)

from which we see that (5.10) holds for this U0s. Using (3.18) through (3.20), we have

U0s(λ, 0, β) = 0 and ∂5
xU0s(λ, 0, β) = 0.

These prove (i). Note that ∂xp0s(t, x, b) is a linear functional on C1
b [0,∞). The second part of

the theorem can be proved by arguments used earlier in the paper. �

8.2 Stopped dipole and reflected monopole

For the last time in this paper we use an approximation procedure to construct a process. The
first step is to find {εPrs

x [ω(t) ∈ db] : x ≥ 0} such that

εPrs
x [ω(t) ∈ db] = P0

x[ω(t) ∈ db]+

+
∫ t

0

∫ ∞

−∞
Px[τ0(ω) ∈ ds, ω(τ0) is a monopole and in da] εPrs

ε+ω(τ0)[ω(t) ∈ db]+

+
∫ t

0

∫ ∞

−∞
Px[τ0(ω) ∈ ds, ω(τ0) is a dipole and in da] δ(b − a)db.

(8.6)

Remark 8.5. The approximating process evolves according to the following rules. Fix ε > 0.

1. A monopole starts from a point x ≥ 0, and moves according to the transition probability
density p(t, x) until it hits the interval (−∞, 0).

2. If ω(τ0) is a monopole when BPP hits (−∞, 0), then it restarts from the point ε + ω(τ0).
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3. If ω(τ0) is a dipole when BPP hits (−∞, 0), then it is stopped at the point ω(τ0).

Assuming existence, we denote by εU rs(λ, x, β) the Fourier-Laplace transform of εPrs
x . Recall

(3.13). We see that (8.6) is transformed into the following equation:

εU rs(λ, x, β) = Ĝ00(λ, x, β) + K̂(λ, x) εU sr(λ, ε, β) + Ĵ(λ, x)
iβ

λ
. (8.7)

We omit the proof of the following result.

Lemma 8.6. (i) For ε > 0, the following is a solution of (8.7):

εU rs(λ, x, β) = Ĝ00(λ, x, β) + Ĵ(λ, x)
iβ

λ
+

+ K̂(λ, x)
Ĝ00(λ, ε, β) + iβ Ĵ(λ, ε)/λ

1 − K̂(λ, ε)
.

(8.8)

(ii) When ε > 0 is small, this εU rs satisfies (3.4) for every c > 0 and it is the Fourier-Laplace
transform of a Schwartz temperate distribution εPrs

x [ω(t) ∈ db].

We have just proved that if ε > 0, then there exist distributions εPrs
x [ω(t) ∈ db] satisfying

equations (8.6). However the following proposition asserts that we cannot pass to 0 with ε.
Hence we cannot construct a BPP with reflection for the monopole and stopped dipole, at least
not using our method.

Proposition 8.7. (8.8) diverges as ε → 0.

Remark 8.8. Proposition 8.7 is not very surprising if we consider the corresponding problem
(1.4). Table 1.2 suggests that, if a BPP with reflection for the monopole and stopped dipole
exists, then it corresponds to (1.4) with ` = 1 and m = 5. But solutions to this boundary value
problem (1.4) are not unique. So we cannot find a “fundamental solution” of such (1.4), which
would serve as a transition density for the corresponding BPP .

Proof of Proposition 8.7. From (3.18) through (3.20), we see that

1 − K̂(λ, ε) =
ε2

2
∂2

xK̂(λ, 0) + o(ε2)

= −ε2
√

λ

2
+ o(ε2),

(8.9)

Ĝ00(λ, ε, β) +
iβ Ĵ(λ, ε)

λ
=

iβ

λ
× ε ∂xĴ(λ, 0) + o(ε)

=
ε i β

λ
+ o(ε).

(8.10)

This shows that
Ĝ00(λ, ε, β) + iβ Ĵ(λ, ε)/λ

1 − K̂(λ, ε)

diverges as ε → 0, and so (8.8) also diverges. �
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9 Conservation of charge

Let {Qx[ω(t)] : x ≥ 0} be the generic notation for the distribution of BPP on [0,∞) with any
boundary conditions for the monopole and dipole.

Definition 9.1. We say that Qx[ω(t) ∈ db] is conservative if

ρ(t, x) ≡
∫

[0,∞)
Qx[ω(t) ∈ db] = 1 for all t > 0 and x > 0. (9.1)

Theorem 9.2. Let {Qx[ω(t) ∈ db] : x ≥ 0} be the distribution of any BPP on [0,∞) constructed
in this paper. Then Qx[ω(t) ∈ db] is conservative if and only if there is no killing for the
monopole.

Remark 9.3. This result intuitively supports for the names “monopole” and “dipole.” Since
a dipole carries two charges of equal magnitude but opposite signs, its loss does not change the
total amount of charge. On the other hand, the monopole carries charge of single sign, and its
loss changes the total amount of charge.

Proof of Theorem 9.2. Inspecting Table 1.2, we see that there is no killing for the monopole if
and only if ` ≥ 1 and m ≥ 1.

Assume that ` ≥ 1 and m ≥ 1 in (1.4). Since ρ(0, x) = 1 in view of (9.1), we see that ρ is a
solution of (1.4) with the constant initial function

f(x) ≡ 1.

The constant function v(t, x) ≡ 1 is a solution of (1.4) with f ≡ 1, if ` ≥ 1 and m ≥ 1. Now
uniqueness of the solution implies that ρ(t, x) ≡ 1, and Qx[ω(t) ∈ db] is conservative.

On the other hand, if ` = 0, then the constant v(t, x) ≡ 1 is not a solution of (1.4) with the
constant initial function f ≡ 1, and uniqueness of the solution implies that ρ(t, x) 6= 1 for some
(t, x). In this case, Qx[ω(t) ∈ db] is not conservative. �
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