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Abstract Let Z2
cp be the close-packed graph of Z2, that is, the graph obtained by

adding to each face of Z2 its diagonal edges. We consider site percolation on Z2
cp,

namely, for each v we choose X(v) = 1 or 0 with probability p or 1−p, respectively,
independently for all vertices v of Z2

cp. We say that a word (ξ1, ξ2, . . . ) ∈ {0, 1}N is
seen in the percolation configuration if there exists a selfavoiding path (v1, v2, . . . )
on Z2

cp with X(vi) = ξi, i ≥ 1. pc(Z2, site) denotes the critical probability for site-
percolation on Z2. We prove that for each fixed p ∈ (

1 − pc(Z2, site), pc(Z2, site)
)
,

with probability 1 all words are seen. We also show that for some constants Ci > 0
there is a probability of at least C1 that all words of length C0n

2 are seen along a
path which starts at a neighbor of the origin and is contained in the square [−n, n]2.
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1. Introduction.
Benjamini and Kesten (1995) introduced the problem whether ‘all words are seen

in percolation on a graph G’. The set-up is as follows. G is an infinite connected
graph and the vertices of G are independently chosen to be occupied with proba-
bility p and vacant with probability 1 − p. The resulting probability measure on
configurations of occupied and vacant vertices of G is denoted by Pp. We set

X(v) =
{

1 if v is occupied
0 if v is vacant.

Under Pp the X(v), v a vertex of G, are i. i. d. binomial variables with Pp{X(v) =
1} = p.

A path on G will be a sequence π = (v0, v1, . . . , ), with v0, v1, . . . vertices of G,
such that vi and vi+1 are adjacent for i ≥ 0. The path π is called self-avoiding if
all its vertices are distinct. A path may be finite or infinite. A word is an (finite or
infinite) sequence ξ = (ξ1, ξ2, . . . ) of zeroes and ones. A finite word (ξ1, . . . , ξn) of n
zeroes and ones is said to have length n. The space of all infinite words is denoted
by

Ξ = {0, 1}N.
We will say that the word ξ = (ξ1, ξ2, . . . ), is seen along a path π = (v0, v1, . . . ) on
G if π is self-avoiding and X(vi) = ξi, i ≥ 1 (note that the state of the initial vertex
v0 doesn’t figure in this definition).

Benjamini and Kesten (1995) investigated when all words in Ξ are seen along
some self-avoiding path on G. They also considered the even stronger requirement
that all words of Ξ are seen along some self-avoiding path which starts at a fixed
vertex v0. They showed that even this stronger phenomenon occurs with positive
probability when p = 1/2 and G = Zd for sufficiently high d. A weaker phenomenon
is that almost all words from Ξ are seen along some self-avoiding path. Here ‘almost
all’ is with respect to some measure µ on Ξ. In all investigations so far one has
taken µ to be a product measure

µ =
∞∏

i=1

µi , (1.1)

with µ({0}) = 1−µ({1}) = β for some 0 < β < 1. Kesten, Sidoravicius and Zhang
(1998) proved that if p = 1/2 and G is the triangular lattice, then almost all words
are seen in this sense (for any 0 < β < 1).

This paper deals only with the graph Z2
cp, which is obtained by ‘close packing’

the faces of Z2. Throughout this paper we think of the square latice Z2 as being
imbedded in R2 in the standard way. Let F be a face of Z2. Close-packing F means
adding an edge to Z2 between any pair of vertices on the perimeter of F which are
not yet adjacent. The vertex set of Z2

cp is therefore the same as the vertex set of
Z2, and the edge set of Z2

cp consists of the edge set of Z2 plus, for each face F of
Z2, two ‘diagonal’ edges between pairs of vertices on the perimeter of F . Z2

cp and
Z2 are a matching pair of graphs in the terminology of Kesten (1982), Section 2.2.
(In the notation of that section Z2

cp and Z2 are based on the ‘mosaic’ Z2 and the
collection of all its faces.) Note that Z2

cp is not a planar graph anymore. pc(Z2, site)
will denote the critical probability for site percolation on Z2. It is known that

pc(Z2, site) ≥ .556
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(see van den Berg and Ermakov (1996)). Moreover, it follows from Theorem 3.1 and
Corollary 3.1 in Kesten (1982) (see also pp. 54-56 there) or from Russo (1981) that
the critical probability for site percolation on Z2

cp is 1 − pc(Z2, site). Throughout
we will fix p so that

1 − pc(Z2, site) < p < pc(Z2, site). (1.2)

In this note we will prove the following result.

Theorem. Let p satisfy (1.2). Then

Pp{all ξ ∈ Ξ are seen along some path on Z2
cp from the origin} > 0 (1.3)

and
Pp{all ξ ∈ Ξ are seen along some path on Z2

cp} = 1. (1.4)

Moreover, there exist constants Ci = Ci(p) > 0 such that

Pp{for all large n all words of length C2n
2 are seen along some path on

Z2
cp from the origin and inside [−n, n]2} ≥ C1. (1.5)

We note that the triangular lattice is a sublattice of Z2
cp. Thus, at p = 1/2,

the result of Kesten, Sidoravicius and Zhang (1998) already shows that almost all
words (with respect to a measure µ of the form (1.1)) are seen somewhere on Z2

cp.
(1.3) is of course a much stronger statement (which does not hold on the triangular
lattice, even at p = 1/2).

Acknowledgement The authors thank several institutes for their support and
hospitality while this research was being carried out. In the case of H. K., the
Inst. Hautes Etudes Scientifiques during May-July 1999; in the case of V. S.,
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2000; in the case of Y. Z., IMPA/CNPq during May 1998. This research was also
supported in part by NSF Grant # 9970943 to Cornell University and by NSF Grant
# 9618128 to the University of Colorado, and Faperj Grant # E-26/150.940/99 and
PRONEX.

2. “Double paths” and their properties.

It is convenient for our proofs to introduce a planar graph M which is closely
related to Z2

cp. M is obtained from Z2 by adding in each face F of Z2 a vertex
which is connected by an edge to each of the four vertices on the perimeter of F .
We call the added vertices central vertices and to help us in picturing these we think
of them as being located at the points (i + 1

2
, j + 1

2
), i, j ∈ Z2. Another way of

picturing M is to make the crossing of two ‘diagonal’ edges, which are added to a
face F when forming Z2

cp from Z2, into a vertex of M. A path and a self-avoiding
path on M are defined in the obvious way.

We shall frequently associate a self-avoiding path (w1, w2, . . . ) on Z2
cp to a self-

avoiding path (v0, v1, . . . ) on M. This is done in the following unique way. We
take

w1, w2 . . . as the successive noncentral vertices among v1, v2, . . . . (2.1)
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We regard the wi also as vertices on Z2
cp. With this interpretation it is clear that

(w1, w2, . . . ) is a self-avoiding path on Z2
cp. We call this path the path associated

to (v0, v1, . . . ). Note that v0 never is a vertex of the associated path, even if v0 is
a noncentral vertex.

We will call a self-avoiding path (v0, v1, . . . , vn) on M occupied (vacant) if and
only if all noncentral vertices among the vi are occupied (respectively, vacant). The
occupancy or vacancy of the central vertices will not be significant for our purposes,
since we only want to discuss words seen on Z2

cp. Accordingly, if π = (v0, v1, . . . )
is a path on M and ξ = (ξ1, ξ2, . . . ) is a word, then we say that ξ is seen along π
(on M) if and only if

X(wi) = ξi, i ≥ 1. (2.2)

Intuitively speaking this says that ξ is seen along the path associated to π. This
is not quite accurate though, because when we consider whether ξ is seen along a
path on Z2

cp we ignore the initial point of the path. Because of this technicality,
(2.2) really says that X(w1) = ξ1 and (ξ2, ξ3, . . . ) is seen along the path associated
to π.

Next we define a double path on M. This is defined to be a pair of self-avoiding
paths π′, π′′ on M which satisfy the following properties (2.3)-(2.7):

π′ and π′′ have no vertices in common; (2.3)

π′ is occupied and π′′ is vacant; (2.4)

the initial points of π′ and π′′, u′ and u′′, are neighbors on M; (2.5)

the final points of π′ and π′′, v′ and v′′, are neighbors on M. (2.6)

In addition we will require the minimality property (2.7) below. Let π̃′ and π̃′′

be a pair of paths on M which satisfy (2.3)-(2.6) with π′ replaced by π̃′ and π′′

replaced by π̃′′. Denote by R(π̃′, π̃′′) the interior of the Jordan curve formed by
concatenating π̃′, {v′, v′′}, (the reverse of) π̃′′ and {u′′, u′}. Let R(π̃′, π̃′′) be the
union of R(π̃′, π̃′′) and its boundary (that is, the above Jordan curve). Then we
further require that

R(π′, π′′) is minimal among all such R(π̃′, π̃′′), (2.7)

that is, there does not exist a pair π̃′, π̃′′ satisfying (2.3)-(2.6) and such that
R(π̃′, π̃′′) is strictly contained in R(π̃′, π̃′′).

In order to find double paths, the following observation will be useful. For any
given pair π̃′, π̃′′ which satisfies (2.3) - (2.6), there exist at most finitely many pairs
π̂′, π̂′′ of paths on M which also satisfy (2.3)-(2.6) as well as

R(π̂′, π̂′′) ⊂ R(π̃′, π̃′′).

(Throughout this paper A ⊂ B will mean that A is contained in B, but not nec-
essarily strictly; thus A = B is possible if A ⊂ B). Now, for any pair π̃′, π̃′′ which
satisfy (2.3)-(2.6), there exists a pair π′, π′′ which satisfies (2.3)-(2.7) (that is, a
double path) which in addition satisfies

R(π′, π′′) ⊂ R(π̃′, π̃′′). (2.8)

The following lemma gives an important necessary condition for π′, π′′ to be a
double path.
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Lemma 1. If π′, π′′ is a double path, and if v is a vertex on π′, then there exists
a vertex w adjacent (on M) to v, such that w is connected by a vacant path on M
in R(π′, π′′) \ π′ to π′′.

Similarly, if v is a vertex on π′′, then there exists a vertex w adjacent (on M)
to v, such that w is connected by an occupied path on M in R(π′, π′′) \ π′′ to π′.

Note that it is possible in the first part of the lemma that w ∈ π′′. In this case,
the vacant path from w to π′′ consists of w only. A similar comment applies to the
second part.

Proof of Lemma 1. Because of the symmetric roles of π′, π′′ we only need to prove
the first part of the Lemma. We then apply Proposition 2.2 of Kesten (1982) with
‘occupied’ and ‘vacant’ interchanged (note that J should be J on lines 1 and 2
from bottom on p. 30 of Kesten (1982)). We make the following choices: For the
mosaic M in Proposition 2.2 we take the present M. The graphs G and G∗ are
both taken equal to M (this is indeed a matching pair based on the mosaic M,
because all faces of M are already close packed; see Def. 4 on p. 18 of Kesten
(1982)). For the occupancy configuration on M we extend the existing occupancy
configuration on the noncentral vertices by declaring each central vertex on π′′ to
be vacant and all central vertices not on π′′ to be occupied. J is the Jordan curve
formed by concatenating π′, {v′, v′′}, (the reverse of) π′′ and {u′′, u′}. Finally,
A1 = {v}, A2 = the piece of π′ from v (including v) to v′, followed by the edge
{v′, v′′}, A3 = π′′, and finally A4 =the edge {u′′, u′} followed by the piece of π′ from
u′ to v (including v). Then J = R(π′, π′′) and by the minimality property (2.7)
there does not exist an occupied path r∗ on G∗ = M inside R(π′, π′′)\A1 ∪ A3 from

a vertex of
◦
A2 to a vertex of

◦
A4. (As in Kesten (1982),

◦
Ai stands for Ai minus its

endpoints.) Indeed, if such a path r∗ would exist, then it would contain a crosscut
r̃ of R(π′, π′′) and we could change π′ to a new path π̃′ by replacing a piece of π′

by r̃, such that
R(π̃′, π′′) $ R(π′, π′′).

(As in Newman (1951) we define a crosscut of R to be a simple curve in R with
only its endpoints on the boundary of R.) This would contradict (2.7). Proposition
2.2 of Kesten (1982) now gives the existence of a path r on G = M from v to π′′

in R(π′, π′′) \A1 ∪A3 such that all vertices of r in J \A1 ∪A3 are vacant. In fact,
r minus its initial point v must be disjoint from π′, because all vertices on π′ are
occupied. We now take for w the first vertex on r after v. The path required in the
lemma is then the piece of r from w to π′′. �

Now let (π′, π′′) be a double path starting at (u′, u′′) and ending at (v′, v′′), and
define

Θ = Θ(π′, π′′) =
⌊1
4

min(‖v′ − u′‖, ‖v′′ − u′′‖)⌋, (2.9)

where ‖ · ‖ denotes the Euclidean norm. (This definition differs slightly from
the corresponding one in Kesten, Sidoravicius and Zhang (1998).) Finally, let
ξ = (ξ1, . . . ) ∈ Ξ be any infinite word. The next proposition (which is purely deter-
ministic) shows how one can ‘see’ an initial segment of the word ξ inside R(π′, π′′).
This proposition is our principal technical step. It is entirely analogous to Lemma
8 in Kesten, Sidoravicius and Zhang (1998).
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Proposition 2. Let (π′, π′′) be a double path starting at (u′, u′′) and ending at
(v′, v′′) and let ξ ∈ Ξ be arbitrary. Then there exist paths σ′ = (σ′

0 = u′, σ′
1, . . . ), σ

′′ =
(σ′′

0 = u′′, σ′′
1 , . . . ) on M with the following properties:

σ′, σ′′ ⊂ R(π′, π′′); (2.10)

σ′ and σ′′ start at u′ and u′′, respectively; (2.11)

the endpoints of σ′ and σ′′ belong to {v′, v′′}; (2.12)

one sees an initial segment of ξ on M from u′(u′′) along σ′(σ′′).

This initial segment of ξ contains at least (ξ1, . . . , ξΘ−1). (2.13)

Proof. We only prove that we can find the path σ′ from u′. The argument for
σ′′ is the same except for an interchange of the roles of ‘occupied’ and ‘vacant’.
For brevity we shall suppress the primes on σ. We have to show that one can
choose a path σ = (σ0 = u′, σ1, . . . , σν) on M contained in R(π′, π′′), such that
σ1 is adjacent to u′, σν ∈ {v′, v′′}, and such that along σ one sees on M an initial
segment containing at least the first Θ − 1 components of ξ. We prove this in the
following recursive way. The steps differ slightly, depending on whether u′ is a
central vertex or not. If u′ is a central vertex, then we find a vertex σ1 of Z2

cp which
is adjacent on M to u′ and which lies in R(π′, π′′) and is such that σ1 is occupied
(vacant) if ξ1 = 1 (ξ1 = 0). We further find a new double path (π′

1, π
′′
1 ) with σ1 the

initial point of one of them and with endpoints (v′, v′′), and such that

R(π′
1, π

′′
1 ) ⊂ R(π′, π′′) \ {u′}. (2.14)

If u′ is noncentral, then we either use the same construction as just outlined or
take σ1, σ2 such that σ1 is a central vertex adjacent on M to u′ and such that σ2 is
adjacent on M to σ1. Moreover σ2 has to be a vertex of Z2

cp which lies in R(π′, π′′)
and such that σ2 is occupied (vacant) if ξ1 = 1 (ξ1 = 0). This time we find a new
double path (π′

1, π
′′
1 ) with σ2 the initial point of one of them and with endpoints

(v′, v′′), and such that

R(π′
1, π

′′
1 ) ⊂ R(π′, π′′) \ {u′, σ1} (2.15)

holds (instead of (2.14)).
We then repeat this step with (π′

1, π
′′
1 ) replacing (π′, π′′). This construction will

continue until for the first time we come to a double path (π′
ν , π

′′
ν ) with

Θ(π′
ν , π

′′
ν ) ≤ 1.

Our construction is such that the initial point of one of π′
k+1, π

′′
k+1 is within distance

2 of one of the initial points of π′
k, π

′′
k , and the endpoints of all the double paths are

v′ and v′′. Therefore,

Θ(π′
k+1, π

′′
k+1) ≥ Θ(π′

k, π
′′
k ) − 1
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and it takes at least Θ(π′, π′′)−1 steps before we stop. Since at each recursive step
one ξi is used, it is clear that we will see at least (ξ1, · · · , ξΘ−1) when our process
stops.

Several cases have to be distinguished in our construction, depending on the
value of ξ1 and on whether u′ is a central vertex or not.
Case (Ia) ξ1 = 1 and u′ is a central vertex. This case is treated in exactly the
same way as Case (i) in Lemma 8 of Kesten, Sidoravicius and Zhang (1998). We
briefly state the essentials. We take σ1 to be the first vertex of π′ \ {u′}. Since u′

is a central vertex, σ1 is necessarily a vertex of Z2
cp. Since σ1 ∈ π′, it is occupied,

in agreement with the requirement X(σ1) = ξ1 = 1.
We next take π̂′ to be the piece of π′ from σ1 to v′ (this is just π′ minus its first

edge). We also want a vacant path π̂′′. To choose this, we observe that by Lemma
1 there must exist a vacant path π2 on M from a neighbor u1 on M of σ1 to π′′,
and such that

π2 ∈ R(π′, π′′) \ π′. (2.16)

Now form the vacant path π̂′′ on M from u1 to v′′ which consists of π2 followed
by the piece of π′′ from the endpoint of π2 to v′′. Then (π̂′, π̂′′) is a pair of paths,
occupied and vacant, respectively, from (σ1, u1) to (v′, v′′). π̂′ and π̂′′ have no
vertex in common, by virtue of (2.16) and (2.3). Finally, by construction, π̂′, π̂′′

and {σ1, u1} are contained in R(π′, π′′) \ {u′}, so that

R(π̂′, π̂′′) ⊂ R(π′, π′′) \ {u′}.

It is not clear that (π̂′, π̂′′) itself has the minimality property corresponding to
(2.7). However, using the observation before Lemma 1, we can take for (π′

1, π
′′
1 ) an

occupied and vacant pair of paths from (σ1, u1) to (v′, v′′) which makes R(π′
1, π

′′
1 )

minimal. This will automatically satisfy

R(π′
1, π

′′
1 ) ⊂ R(π̂′, π̂′′) ⊂ R(π′, π′′) \ {u′}. (2.17)

Thus (2.14) will be satisfied and we are done with our recursive step in Case (Ia).

Case (Ib) ξ1 = 1 and u′ is not a central vertex. Now u′ is a vertex of Z2
cp. It

may be that the first vertex of π′ \ {u′} is also a vertex of Z2
cp. Then we take σ1

equal to this first vertex of π′ \ {u′} and proceed as in case (Ia).
The only other possibility is that π′ begins with u′, w1, w2 with w1 some central

vertex and w2 some vertex of Z2
cp such that u′ and w2 are adjacent on Z2

cp, but
not necessarily on M. In this case we take σ1 = w1, σ2 = w2. We then again
proceed as in case (Ia), but now with σ1 replaced by σ2. That is, we take for π̂′ the
piece of π′ from σ2 to v′. We further form π̂′′ by concatenating a vacant path in
R(π′, π′′) \π′ from a neighbor of σ2 to π′′ with a piece of π′′ ending at v′′. We then
find the new double path (π′

1, π
′′
1 ) which satisfies (2.15) by applying the observation

before Lemma 1, as in Case (Ia).

Case (IIa) ξ1 = 0 and u′ is a central vertex. This case closely follows case (ii)
of Lemma 8 in Kesten, Sidoravicius and Zhang (1998). By a translation we may
assume that u′ = ( 1

2
, 1

2
). We define H to be the unit square centered at u′, that is,

H = {(x, y) : |x− 1
2
| < 1

2
, |y − 1

2
| < 1

2
}.
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We denote the first vertex of π′ \ {u′} by u1 and consider the four neighbors of u′

on M. These are all vertices of Z2
cp at the four ‘corners’ of H (see Figure 1).

u

u

,

u

u
,,

2 1

π

π
,

,,

H

Figure 1. The solidly drawn square is the boundary of H. The interior
of the hatched triangle is contained in R(π′, π′′).

One of them is u1 (which is occupied) and another one is u′′ (which is vacant).
Without loss of generality we take u1 = (1, 0). Now the interior of one of the
triangles with vertices u′, u1 and (0,0) or with vertices u′, u1 and (1,1) must be
contained in R(π′, π′′). For the sake of argument assume that

the interior of the triangle with vertices at u′, u1 and (0, 0)

is contained in R(π′, π′′).

Write u2 for the third vertex of this triangle, that is, u2 = (0, 0). We claim that
u2 must be vacant. Assume, to arrive at a contradiction, that u2 is occupied (and
hence u2 /∈ π′′). If u2 is not a vertex on π′, then we can replace the first edge of
π′ (i.e., the edge {u′, u1}) by the two edges {u′, u2}, {u2, u1}. This will remove the
triangle with vertices u′, u1, u2 from R(π′, π′′), in contradiction to the minimality
property (2.7). If, on the other hand, u2 is a vertex of π′, then we can replace
the piece of π′ from u′ to u2 by the single edge {u′, u2}. Since this last edge is a
crosscut of R(π′, π′′), this replacement will again strictly decrease R(π′, π′′). This
is impossible, again by (2.7). This proves our claim that u2 is vacant.

We next claim that there exists a vacant connection r on M from u2 to π′′. It
may be that u2 already lies on π′′, in which case the sought vacant connection r
consists of {u2} only. To see that r exists in general, we move along the arc of the
perimeter of H from u2 to u′′ which does not contain u1. Let u3 be the first vertex
of π′ ∪ π′′ we meet while moving along this arc and denote by A2 the piece from
u2 to u3 of this arc (including its endpoints u2 and u3). As in case (ii) of Lemma
8 in Kesten, Sidoravicius and Zhang (1998) it cannot be the case that u3 ∈ π′.
Indeed, if u3 were a vertex of π′, then the edge {u′, u3} would be a crosscut of
R(π′, π′′), because its endpoints would lie on π′, and it could be connected in H

to
◦
A2 ⊂ R(π′, π′′) without intersecting π′ ∪ π′′. But if {u′, u3} is a crosscut of

R(π′, π′′), then we can replace the piece of π′ from u′ to u3 by the single edge
{u′, u3} and strictly decrease R(π′, π′′). Since this contradicts (2.7), we must have
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u3 ∈ π′′. If A2 is vacant, then we can take r = A2. In the other cases we prove the
existence of r by an application of Proposition 2.2 of Kesten (1982). We make the
following choices. For the occupancy configuration of M we extend the occupancy
configuration on Z2

cp by taking all central vertices on π′′ vacant and all vertices
off π′′ occupied. Further we take A1 = {u2}, A2 as above, A3 = the piece of π′′

from u3 to v′′, and A4 = the edge {v′′, v′}, followed by the piece of (the reverse
of) π′ from v′ to u1, followed by the edge {u1, u2}. These arcs make up a Jordan
curve J which is contained in R(π′, π′′). Therefore the interior of J is contained in
R(π′, π′′). Moreover, there cannot exist in J an occupied path r∗ on M from some

vertex w in
◦
A2 to some vertex in

◦
A4 (a vertex in

◦
A4 is a vertex in π′). Indeed, since

w ∈
◦
A2, w would be a neighbor on M of u′. Therefore, the edge {u′, w} followed by

such a path r∗ would form an occupied crosscut of R(π′, π′′), and no such crosscut
can exist by the minimality property (2.7). We can therefore apply Proposition
2.2 of Kesten (1982) (with ‘occupied’ and ‘vacant’ interchanged and corrected by
replacing J by J in lines 1 and 2 from bottom on p. 30). This guarantees the
existence of a vacant path r on M in J ⊂ R(π′, π′′) from u2 to A3 ⊂ π′′. r is
necessarily disjoint from π′, since all vertices on π′ are occupied and all vertices on
r are vacant. This proves that r has the desired properties.

We can now complete our choices for this recursive step. We take σ1 = u2 (which
satisfies the requirement X(σ1) = 0 = ξ1). We further take π̂′

1 =piece of π′ from
u1 to v′, and π̂′′ = the path r followed by the piece of π′′ from the endpoint of r to
v′′. Finally, we again choose π′

1, π
′′
1 such that (2.17) holds and such that R(π′

1, π
′′
1 )

is minimal in the family of possible R(π′
1, π

′′
1 ) satisfying (2.17).

Case (IIb) ξ1 = 0 and u′ is not a central vertex, but u1 := first vertex of
π′ \ {u′} is central. The argument is similar to that of the last case. By translation
and rotation we may assume that u′ = (0, 0) and u1 = ( 1

2 ,
1
2). One ‘side’ of the

edge {u′, u1} must lie in R(π′, π′′). By symmetry we may therefore assume that
the interior of the triangle with vertices u′, u1 and (1, 0) is contained in R(π′, π′′).

We now follow the argument of the preceding case. This time we take H to be
the ‘diamond’ {(x, y) : |x| + |y| = 1} (see Figure 2).

u
,

u
2

H
u
,,

π
,,

u1
π
,

Figure 2. The solidly drawn diamond is the boundary of H. The
interior of the hatched triangle is contained in R(π′, π′′).

u2 will denote the vertex (1, 0). The boundary of H is a Jordan curve which
necessarily contains the initial point u′′ of π′′. When one moves from u2 to u′′
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along the arc of the boundary of H which does not contain u1, then one will meet
a first vertex, u3 say, of π′ ∪ π′′. We denote by A2 the arc of the boundary of H
from u2 to u3. As in the preceding case we now show that u2 must be vacant and
u3 ∈ π′′. Moreover, u2 must have a vacant connection r on M in R(π′, π′′) to π′′.

Finally we complete this recursive step when u1 = ( 1
2
, 1

2
), by taking σ1 =

u2, π̂′ = the piece of π′ from u1 to v′ and π̂′′ = the path r followed by the
piece of π′′ from the endpoint of r to v′′.

Case (IIc) ξ1 = 0 and neither u′ nor u1 are central. Now we may assume that
u′ = (0, 0) and u1 = (1, 0). In this case there is again a triangle adjacent to the
edge {u′, u1} whose interior is contained in R(π′, π′′). Without loss of generality,
let this be the triangle with vertices u′, u1 and ( 1

2
,− 1

2
). We then take u2 = ( 1

2
,− 1

2
).

This vertex does not lie on π′ for the same reasons as in case (IIa). It is a central
vertex. Since it does not lie on π′ we may declare this site to be vacant. We further
declare all central vertices on π′′ vacant and all central vertices off π′′ other than u2

occupied. We can now use the same proof as in case (IIb) or case (IIa) to show that
there exists a vacant connection r on M in R(π′, π′′) \ π′ from u2 to π′′. However,
σ1 and the paths π̂′, π̂′′ have to be chosen slightly differently than in the previous
cases. Let π̃ be the (vacant) path consisting of r and the piece of π′′ from the
endpoint of r to v′′. Denote the first vertex of π̃ after its initial point by ρ and take
π̂′′ to be the piece of π̃ from ρ to v′′. Thus, basically, π̂′′ equals π̃ minus its first
edge.

Since r starts at ( 1
2 ,− 1

2 ) and u′ = (0, 0) and u1 = (1, 0) lie on π′, ρ can only take
the values (0,−1) and (1,−1). If ρ = (1,−1), then ρ is adjacent to u1 on M. We
now take σ1 = u2 = ( 1

2 ,− 1
2 ), σ2 = ρ = (1,−1), π̂′ = the piece of π′ from u1 to v′,

and π̂′′ = π̃. Then (2.15) holds. This finishes the recursive step when ρ = (1,−1).
If ρ = (0,−1), then ρ is not adjacent to u1 on M. In this situation we therefore

take for π̂′ the path consisting of the edge from u2 to u1 followed by the piece of
π′ from u1 to v′. We further take σ1 = ρ = (0,−1) and π̂′′ = π̃, as before. Now π̂′

and π̂′′ again start at adjacent points on M (namely at u2 and ρ = σ1) and end at
v′ and v′′. Also (2.14) holds. Moreover σ1 is adjacent to u′ on M and X(σ1) = 0,
as required. This finishes the recursive step for this last case. �

3. Proof of the first part of Theorem 1.

With proposition 2 we can prove (1.3) and (1.4) quickly from known facts about
supercritical percolation. Even though (1.3), and consequently also (1.4), is con-
tained in (1.5), we give first a direct proof of (1.3) and (1.4), because this is much
easier than (1.5), and most readers will be satisfied with (1.3) and (1.4). The proof
of (1.5) will be given in a separate section.

Throughout this section Ci will denote a strictly positive, finite constant (inde-
pendent of n). Define the following events:

E1 = {there exists an infinite occupied path π̃′ on M from the origin

in (the fourth quadrant) ∪ 0 = (0,∞) × (−∞, 0) ∪ {0}},

E2 = {there exists an infinite vacant path π̂′′ on M from a neighbor

of the origin and inside the first quadrant (0,∞)2},
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and

E3 = {for infinitely many k there exists a vacant circuit on M surrounding

the origin in the annulus [−2k+1, 2k+1]2 \ [−2k, 2k]2]}.

Then (1.2) implies that Pp{E1} > 0, Pp{E2} > 0 and Pp{E3} = 1 (see Grimmett
(1999), Theorem 11.70, Smythe and Wierman (1978), Section 3.4). Since E1 and
E2 are defined in terms of disjoint sets of vertices, they are independent and

Pp{E1 ∩E2 ∩E3} = Pp{E1 ∩E2} = Pp{E1}Pp{E2} > 0. (3.1)

Now assume that E1∩E2∩E3 occurs, and that π̃′, π̂′′ are an occupied and a vacant
path as described in E1 and E2, respectively. Let u′′ be the initial point of π̂′′.
Also let Ck be a vacant circuit surrounding the origin in [−2k+1, 2k+1]2 \ [−2k, 2k]2.
Then both paths π̃′ and π̂′′ must intersect Ck. One can then construct from a piece
of π̂′′ and a piece of Ck a vacant path π̃′′ on M from u′′ to a vertex v′′, adjacent on
M to a vertex v′ ∈ π̃′. We can and will even choose π̃′ disjoint from π̃′′. As in the
argument following (2.6) there then exists a double path (π′, π′′) from (u′ = 0, u′′)
to (v′, v′′) so that (2.8) holds. By Proposition 2 there then exists for each infinite
word ξ a path σ from 0 = u′ to v′ or v′′ such that an initial piece of ξ is seen along
σ. Since v′ ∈ Ck, any path from 0 to v′ or v′′ must contain at least 2k +1 noncentral
vertices. Thus the length of the piece of ξ which is seen along σ is at least 2k.

This argument works for all ξ and all k. Therefore, the left hand side of (1.3) is
at least Pp{E1 ∩E2 ∩ E3} > 0. This proves (1.3). In turn, (1.4) then follows from
(1.3) and the ergodic theorem (compare Harris (1960), Lemmas 3.1 and 5.1).

4. Proof of (1.5).

Before we turn to the details of the proof of (1.5) we give a brief outline. The
proof is based on the construction of a “snake” inside of which the finite words
will be seen. A snake will be the region R(π̃′, π̃′′) between an occupied path π̃′

and a vacant path π̃′′ which “wiggle a lot” (see Figure 3). More specifically, if
u′, v′ (u′′, v′′) are the initial and endpoint of π̃′ (of π̃′′, respectively), then any path
on M from u′ to {v′, v′′} and contained in R(π̃′, π̃′′) will be forced to go back and
forth between the strips [0, n/4] × R and [3n/4, n] × R at least C3n times. Thus,
any such path will have length at least C3n · n/2. If (π′, π′′) is a double path from
(u′, u′′) to (v′, v′′) with R(π′, π′′) ⊂ R(π̃′, π̃′′), then an initial piece of any word can
be seen along a path from u′ to (v′, v′′) in R(π′, π′′) (by Proposition 2). Because
such a path must have length at least C3n

2/2, we will actually see any word of
length C4n

2 along some path from u′ to (v′, v′′) inside R(π′, π′′).
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Figure 3. A schematic diagram of a snake. π̃′ and π̃′′ are the solidly
drawn and dashed curves in the boundary of the snake and the curves
++++ represent two typical crosscuts λ2i−1.

A somewhat more topological description of the situation is as follows. Let J1

be the Jordan curve formed by concatenating π̃′, {v′, v′′}, the reverse of π̃′′ and
{u′′, u′}. R(π̃′, π̃′′) is the interior of J1. If J is a Jordan curve, we will denote

its interior by
◦
J . (This should not be confused with

◦
A when A is an arc as in

Section 2.) The way we will force a path from u′ to {v′, v′′} to go back and forth
between the strips [0, n/4]×R and [3n/4, n]×R is by constructing disjoint crosscuts
λ2i−1, 1 ≤ i ≤ C3n, from π̃′ to π̃′′ in R(π̃′, π̃′′) with λ2i−1 ⊂ [0, n/4] × R when i is

even, and λ2i−1 ⊂ [3n/4, n]×R when i is odd. Each such crosscut λ2i−1 divides
◦
J1

into two components, one of which has {u′, u′′} in its boundary, and the other of
which has {v′, v′′} in its boundary. This will force a path from u′ to {v′, v′′} to cross
each λ2i−1. In fact, these λ’s will be constructed in such a way that a path from
u′ to {v′, v′′} has to cross λ1, λ3, . . . in succession. Because the crosscuts λ2i−1 are
alternately located in the strips [0, n/4] × R and [3n/4, n] × R this will also force
any path from u′ to {v′, v′′} to go back and forth between these strips, as desired.

In our construction, we will take u′ = the origin and the crosscuts λ2i−1 will be
constructed from appropriate left-right and top-bottom crossings of [−n, n]2. The
next lemma gives the deterministic (topological) part of the proof. As usual, the
details of these arguments are messier than the simple intuitive picture suggests.
The last lemma will then estimate the probability that the various required crossings

of [−n, n]2 exist. Let R = [a, b] × [c, d] be a rectangle and
◦
R = (a, b) × (c, d) be its

interior. A left-right crossing of R is a self-avoiding path on M inside [a, b]× (c, d)
with one endpoint on {a} × (c, d) and the other endpoint on {b} × (c, d). If ρ is

a left-right crossing of R, then
◦
R \ ρ consists of two components which contain

[a, b] × {d} and [a, b] × {c} in their boundary, respectively. We shall denote these
components by ρ+ = ρ+(R) and ρ− = ρ−(R), respectively. In a similar way one
defines a top-bottom crossing of R and its left and right component. If σ is the
top-bottom crossing, its left and right component will be denoted by σ` = σ`(R)
and σr = σr(R), respectively. All paths in the next lemma are paths on M.

Lemma 2. Let S(n) = [−n, n]2 and let n be divisible by 4. Assume that the
following conditions (4.1)-(4.5) are satisfied:

∃ left-right crossings ρ1, . . . , ρ4k−1 of the rectangle [−n, n] × [0, n] (4.1)
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such that
all ρi are disjoint, (4.2)

ρi is vacant if i ≡ 0, 3(mod 4),

ρi is occupied if i ≡ 1, 2(mod 4), (4.3)

ρ+
i+1(S(n)) ⊂ ρ+

i (S(n)), 1 ≤ i ≤ 4k − 2, (4.4)

and

ρi has only one point on the vertical line x = n/4 if i ≡ 1, 2(mod 4)

and has only one point on the vertical line x = 3n/4 if i ≡ 0, 3(mod 4).
(4.5)

Assume further that

∃ a top-bottom crossings τ1 of [0, n/4] × [−n, n]

and top-bottom crossings τ2, τ3 of [3n/4, n] × [−n, n] (4.6)

such that
τ1, τ2, τ3 are disjoint, (4.7)

τ1 and τ3 are occupied and τ2 is vacant, (4.8)

and
τr
3 ([3n/4, n]× [−n, n]) ⊂ τr

2 ([3n/4, n]× [−n, n]). (4.9)

Finally, assume that there exists an occupied path γ on M from u′ = 0 to the
vertical line x = n inside [0, n]× [−n, 0] and a vacant path δ on M from a neighbor
u′′ of u′ to the horizontal line y = n inside (−n, 0) × [0, n]. Then there exist a
constant C5 > 0, an occupied path π̃′ on M from u′ to some v′ and a vacant path
π̃′′ on M from u′′ to a neighbor v′′ of v′ such that

π̃′ and π̃′′ are disjoint, (4.10)

R(π̃′, π̃′′) ⊂ S(n), (4.11)

and

every path from u′ to {v′, v′′} inside R(π̃′, π̃′′) has length ≥ C5n(k − 1). (4.12)

Proof. This proof will be broken down into a number of steps.
Step 1. This step is a simple observation which we shall use repeatedly. Let J be

a Jordan curve with interior
◦
J , and let τ be a crosscut of

◦
J with endpoints a and b

on J . Then J is made up of two closed arcs from a to b, which have only the points

a and b in common. If these two arcs are denoted by A1,A2, then
◦
J \ τ consists

of two components, K1 and K2 say, and the boundary of Ki consists of Ai ∪ τ (see
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Newman (1951), Theorem V.11.8). Now let σ be a further simple curve with one
endpoint, c, on τ and the other endpoint, d, on J , such that

σ \ {c, d} ⊂
◦
J \ τ. (4.13)

Then
d ∈ Ai \ {a, b} implies that σ is a crosscut of Ki. (4.14)

This is rather obvious, because σ \ {c, d} ⊂ K1 ∪ K2 by virtue of (4.13). Also
by (4.13), σ \ {c, d} does not intersect the boundary of K1, nor the boundary of
K2. Thus σ \ {c, d} is entirely contained in K1 or entirely contained in K2. But
if d ∈ Ai \ {a, b}, then d lies only in the boundary of Ki and therefore near d, σ
cannot contain points of K3−i. Thus σ \ {c, d} ⊂ Ki, which proves (4.14).

Step 2. In this step we construct a first Jordan curve which will surround our
snake. This Jordan curve will consist of pieces of γ, δ, τ3 and ρ4k−1. We begin with
a Jordan curve J1 which is constructed by concatenating the following curves: γ
from u′ = 0 to its endpont a1 on {n}× [−n, n], the segment of {n}× [−n, n] from a1

to the upper right hand corner of S(n), (n, n), the segment, s say, of [−n, n] × {n}
from (n, n) to the endpoint b1 of δ, the reverse of δ from b1 to u′′ and finally {u′′, u′}.
Then one sees from the location of γ and δ that

◦
J1 ⊃ (0, n)2. It also follows from

the fact that ρ4k−1 is a left-right crossing of [−n, n] × [0, n], that ρ4k−1 contains
a piece ρ′4k−1 which connects a point c4k−1 on δ to the segment from a1 to (n, n)
on the right edge of S(n). In fact we shall take for ρ′4k−1 the piece of ρ4k−1 from
its last intersection with δ (when starting on {−n} × [0, n]) to its endpoint d4k−1

on {n} × [−n, n]. Clearly ρ′4k−1 minus its endpoints is contained in
◦
S(n). Thus by

(4.14) (with J taken as the boundary of S(n), viewed as a Jordan curve, and τ =
the reverse of δ, followed by {u′′, u′} and γ), we see that

ρ′4k−1 is a crosscut of
◦
J1 (4.15)

(see Figure 4). For the same reason, for i = 1, 2, 3, τi contains a piece τ ′i from a
point ei on γ to a point fi of s on the top edge of S(n), such that τ ′i is a crosscut

of
◦
J1. In particular the piece of τi between ei and fi does not intersect γ except at

ei (see Figure 4 again).

+ + + ++ + + + + + + + + + + + + + + + + + + +
+

+ + + + + + + + + +
+

(n,n)

(n,-n)

(-n,n)

a

b

d

c

e

fs

0
u"

γ

δ
τ

τ

1

1 2

2

2

1

4k-1

4k-1

Figure 4. The Jordan curve J1 and various crosscuts of
◦
J1.
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Now, by (4.15), ρ′4k−1 divides
◦
J1 into two components, which we denote by Kγ

and Ks. The boundary of Kγ consists of γ, followed by the segment of {n}× [−n, n]
from a1 to d4k−1 along the right edge of S(n), then by ρ′4k−1 to c4k−1 and by the
piece of δ from c4k−1 to u′′ and finally by {u′′, u′}. Ks has s in its boundary. τ ′i
starts on γ which is in the boundary of Kγ and ends on s, which is contained in the

boundary of Ks. Thus the crosscut τ ′i of
◦
J1 runs from one component of

◦
J1 \ ρ′4k−1

to the other. Consequently, τ ′i must have a first intersection gi with ρ′4k−1 (when
starting at ei). Call the piece of τ ′i from ei to gi, τ

′′
i . Again by (4.14) (with J1

taken for J),
τ ′′i is a crosscut of Kγ , i = 1, 2, 3. (4.16)

Hereafter the construction of the snake will take place in the component K of
Kγ whose boundary consists of the following pieces: γ from u′ = 0 to e3, τ ′′3 (which
runs from e3 to g3), the piece of ρ′4k−1 from g3 to the endpoint c4k−1 of ρ′4k−1 on
δ, the piece of δ from this endpoint to u′′, and {u′′, u′}. We denote this boundary
(when viewed as a Jordan curve) by J2. For later use we point out that the first
two pieces of J2 (i.e., the piece of γ and τ ′′3 ) are occupied while the pieces of ρ′4k−1

and δ are vacant.

Step 3. Here we exhibit some crosscuts of K which will be used in the construc-
tion of our snake. We claim that

the piece τ ′′i of τ ′i between ei and gi is a crosscut of K, i = 1, 2. (4.17)

This is a consequence of the locations of the τi and (4.9), as we shall now demon-
strate. The fact that τr

3 ([3n/4, n] × [−n, n]) ⊂ τr
2 ([3n/4, n] × [−n, n]) implies that

if we move along the top edge of S(n) from (n, n) to b1, then we must meet
f3 before f2 (because in the neighborhood of f3 there are points which lie in
τr
3 ([3n/4, n] × [−n, n]) and hence in τr

2 ([3n/4, n] × [−n, n]); thus when we reach
f3 we cannot have left τr

2 ([3n/4, n] × [−n, n]) yet). This says that f2 lies on the
segment of s between f3 and b1. Near f2 there are therefore points of τ ′2 which lie

in the component of
◦
J1 \ τ ′3 whose boundary consists of the piece of s from f3 to b1,

(the reverse of) δ, {u′′, u′}, the piece of γ from u′ to e3 and τ ′3. Since τ ′2 does not
intersect the boundary of this component as one moves from e2 to f2, also e2 lies
in the part of γ which belongs to the boundary of this component, i.e., the part of
γ between u′ and e3. But this part of γ also belongs to the boundary of K, so that
e2 lies in the boundary of K. Then τ ′′2 must be a crosscut of K (since we already
know from (4.16) that τ ′′2 either lies entirely in K or entirely in the other component
of Kγ \ τ ′′3 ). The same argument can be made with the subscript 1 replacing the
subscript 2, if we take into account that one meets f3 before f1 as one moves along
s from (−n, n) to b1. Indeed τ3 and f3 lie to the right of the vertical line x = 3n/4
and τ1 and f1 lie to the left of the vertical line x = n/4. This establishes our claim
(4.17).

Since the τi are top-bottom crossings of S(n) we shall think of τ ′′1 and τ ′′2 as
“vertical crossings” of K. This terminology is merely a crutch for us to form some
mental picture of the τ ′′i and also to distinguish them from the “horizontal crossings”
of K which we now construct from the ρj , 1 ≤ j ≤ 4k − 2. In fact, it follows from
the fact that ρj is a left-right crossing of [−n, n] × [0, n], that ρj must intersect δ
as well as τ ′′3 . Let cj be the last intersection of ρj with δ and let hj be the first
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intersection of ρj and τ ′′3 after cj , as one moves from {−n} × [0, n] to {n} × [0, n]
along ρj . Finally, let dj be the endpoint of ρj on {n} × [0, n] (which is part of the
right edge of S(n)). As in (4.15), the piece of ρj between cj and dj is a crosscut of
◦
J1. The same argument as used for (4.17) now shows that for each j ≤ 4k− 2, the
piece ρ′′j of ρj from cj to hj is a crosscut of K. The role of the relation (4.9) in the
argument will now be taken over by the relation

ρ+
4k−1(S(n)) ⊂ ρ+

j (S(n)),

which follows from (4.4). In fact, K\ρ′′j consists of two components, which we shall
denote by K±

j , where K+
j (K−

j ) contains a piece of ρ′4k−1 (a piece of γ, respectively)
in its boundary (see Figure 5). Then the argument which shows that ρ′′j is a crosscut
of K shows at the same time that

K+
j+1 ⊂ K+

j , 1 ≤ j ≤ 4k − 2. (4.18)

The intuitive picture is now as indicated in Figure 5. We have the component K,
which is “close to” the square [0, n]2, and whose boundary consists of an occupied
path on M from u′ to a neighbor of g3 (which we shall call v′), and a vacant path
from u′′ to g3; g3 will be v′′. (Note that g3 is necessarily a central vertex, for
otherwise it would have to be vacant, as a vertex on ρ4k−1, as well as occupied, as
a vertex of τ3. We therefore can take v′′ = g3 without having to check that g3 is
vacant.) To the left of x = n/4 (right of 3n/4) we have an occupied (vacant) vertical
crossing τ ′′1 (τ ′′2 , respectively). We also have a sequence of horizontal crossings ρ′′j
with ρ′′j+1 “above” ρ′′j .
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Figure 5. The component K with the crossings τ ′′1 , τ
′′
2 and some ρ′′j .

Step 4. We now define further paths σ`, pieces of which will go into the boundary
of the snake. We shall use the notation

Acl = (topological) closure of A

for A ⊂ R2 .
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The definition of σ` depends on the parity of `. Let us first consider the case
when ` is odd. Then note that τ ′′1 runs between e1 and g1. These points lie in
different components of K \ ρ′′j ; e1 ∈ K−

j and g1 ∈ K+
j . Therefore, as one traverses

τ ′′1 from e1 to g1 there is a last point in the
(K−

2`−1

)cl. Call this point, which is an
intersection of τ ′′1 and ρ2`−1, y2`−1. After this point τ ′′1 lies in K+

2`−1, but in some
neighborhood of y2`−1, τ

′′
1 is still in K−

2`. The first point after y2`−1 where τ ′′1 hits
ρ′′2` we shall denote by z2`. Thus,

the piece of τ ′′1 from y2`−1 to z2` (minus its endpoints y2`−1 and z2`) ⊂ K−
2`∩K+

2`−1.
(4.19)

We now define σ` as the selfavoiding path which consists of the concatenation of
the following three paths: the piece of ρ′′2`−1 from h2`−1 to y2`−1, the piece of τ ′′1
from y2`−1 to z2` and the piece of ρ′′2` from z2` to h2`. For odd ` all these pieces
are occupied (by (4.3) and (4.8)) so that

σ` is occupied for odd `. (4.20)

The endpoints h2`−1 and h2` of σ` lie on the boundary of K and σ` contains points
of τ ′′1 which lie in K. Thus,

σ` is a crosscut of K. (4.21)

For ` even we interchange the roles of left and right. We now define σ` as a path
consisting of pieces of ρ2`−1 and ρ2` which run from c2`−1 to τ ′′2 and from τ ′′2 to c2`

with a connecting piece of τ ′′2 . We will again have (4.21), but

σ` is vacant for even `. (4.22)

For odd ` we shall denote by H` that component of K\σ` whose boundary consists
of σ` and the piece of τ ′′3 between h2`−1 and h2` (but no pieces of ρ4k−1, δ or γ).
Note that this boundary lies in

(K+
2`−1

)cl ∩ (K−
2`

)cl
. (4.23)

In fact the parts of the boundary of H` on τ ′′1 and on ρ2` together also form a
crosscut of K+

2`−1 and an alternative description of H` is therefore that

H` is the component of K+
2`−1 \ σ` whose boundary consists of

σ` and the piece of τ ′′3 between h2`−1 and h2`. (4.24)

Since the boundary of H` lies in the set (4.23) we also have (see Newman (1951),
Theorem V.11. 1 and its proof)

H` ⊂ K+
2`−1 ∩ K−

2`. (4.25)

For even ` we take for H` that component of K \ σ` whose boundary consists of σ`

and the piece of δ between c2`−1 and c2` (but no pieces of ρ4k−1, τ
′′
3 or γ). Then

(4.25) also holds for even `.
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Step 5. We shall now define a path ζ, which will in fact be the boundary of our
snake. Roughly speaking, ζ is the Jordan curve J2, which is the boundary of K,
except that the pieces between h2`−1 and h2` are replaced by σ` for ` odd, and
the pieces between c2`−1 and c2` are replaced by σ` for ` even. Somewhat more
formally, to traverse ζ we start at u′ = 0 and move along γ to e3. We then move
along τ ′′3 from e3 to h1. From h1 to h2 we do not move along τ ′′3 , but instead follow
σ1. After arriving at h2 we continue along the piece of τ ′′3 between h2 and h5. We
then move from h5 to h6 along σ2. We continue in this way till we reach h4k−2.
From there we go along τ ′′3 till its intersection with ρ′′4k−1 (which we called g3). The
part of ζ described so far is occupied. We now go back to u′′ by a vacant piece of
ζ. This part of ζ consists first of ρ′′4k−1 from g3 to c4k−1, the intersection of ρ′′4k−1

with δ. We then move along the reverse of δ to c4k−4. Instead of following the piece
of δ from c4k−4 to c4k−5 we follow the reverse of σ2k−2 from c4k−4 to c4k−5. We
then go along the reverse of δ to c4k−8 and follow the reverse of σ2k−4 etc., until
we arrive at c3. From there we move along the reverse of δ to u′′. Finally, to make
ζ into a closed curve we add the segment between the adjacent points (on M) u′′

and u′.
We claim that ζ is a Jordan curve, located in the closure of K. This follows

quickly from the construction of the σ`. Each σ` is a self-avoiding path which lies
in K except for its endpoints h2`−1, h2` or c2`−1, c2`, which lie on the boundary of
K, so that indeed ζ ⊂ (K)cl. We therefore only have to prove that the different σ`

are disjoint. But we already saw that σ` is contained in the set (4.23) and we claim
that these regions are disjoint for different `. Indeed

(K+
p

)cl ∩ (K−
p

)cl = ρ′′p (4.26)

essentially by definition (see Newman (1951), Theorem V.11.8). Moreover, for
j > p,

ρ′′p ∩ (K+
j

)cl = ∅. (4.27)

To see this note that ρ′′p cannot contain any point of K+
j , because in the neighbor-

hood of such a point there would be points outside K+
p , and hence outside K+

j (by

(4.18)). Neither can ρ′′p intersect ρ′′j , by assumption (4.2). Therefore ρ′′p ∩ (K+
j

)cl

can only consist of points in (boundary of K+
j )\ρ′′j . This is an arc of J2, the bound-

ary of K. But if there were a point in ρ′′p ∩ ( boundary of K+
j ) \ ρ′′j , then again any

neighborhood of that point would contain points outside K+
p but inside K+

j . As we
just saw this is impossible, so that (4.26) holds. Finally, (4.18), (4.26) and (4.27)
together show that

(K+
j

)cl ∩ (K−
p

)cl ⊂ (K+
j

)cl ∩ (K+
p

)cl ∩ (K−
p

)cl = ∅ for j > p. (4.28)

Thus the regions in (4.23) and the σ` for different ` are indeed disjoint .

Step 6. In this step we complete the proof of the lemma. Let
◦
ζ denote the interior

of ζ. Since ζ ⊂ (K)cl, it must be the case that
◦
ζ ⊂ K (see Newman (1951), proof

of Theorem V.11.1), and (◦
ζ
)cl =

◦
ζ ∪ ζ ⊂ (K)cl

.
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Now let φ : [0, 1] →
◦
ζ ∪ ζ be a path in

◦
ζ ∪ ζ which starts at u′ = 0 and ends at

or adjacent to g3. Then φ is also a path in the closure of K. It begins at u′ ∈(K−
1

)cl ⊂ (K−
j

)cl for all j, and ends near g3 and hence in
(K+

4k−2

)cl ⊂ (K+
j

)cl \ ρ′′j
for all j ≤ 4k− 2 (note that g3 ∈ ρ4k−1 and hence g3 /∈ ρj for j ≤ 4k− 2) . φ must
therefore intersect each of the ρ′′j which separate K+

j from K−
j . In fact more is true.

If wp is the last point of φ on ρ′′p , then φ must still intersect ρ′′j for all j > p after

wp (because also wp ∈ ρ′′p ⊂ (K−
p

)cl ⊂ K−
j ). For j = 2q − 1 with q odd, denote the

part of ρ′′j between y2q−1 (on τ ′′1 ) and c2q−1 (on δ) by λ2q−1 (see Figure 6). When
q is even

(n, 0)0

e

h

h

c

τ

ττ

λ

λ
σ

σ

σ
o

1

2

1

3

3

,,

,,
,,

1

2

3

1 2

3

1

γ

Figure 6. A path φ (solidly drawn) inside the “snake”.

let λ2q−1 be the piece of ρ2q−1 between its first intersection with τ ′′2 (when starting
at c2q−1) and h2q−1.

The most important part of our argument is now that

φ must intersect λ2q−1 after wp for 2q − 1 > p. (4.29)

For the sake of argument we prove this for odd q. We first observe that the bound-

ary of each Hq is disjoint from
◦
ζ. Indeed, this boundary consists of σq ⊂ ζ, which

certainly lies outside
◦
ζ, and the piece of τ ′′3 strictly between h2q−1 and h2q. The

latter piece is disjoint from ζ, because this piece was replaced by σq in the con-

struction of ζ. But then this piece of τ ′′3 either lies entirely in
◦
ζ or entirely in the

exterior of ζ. Because points of τ ′′3 can be connected to infinity by paths which lie
outside the closure of K (except for their initial point), and hence in the exterior of
ζ, the piece of τ ′′3 between h2q−1 and h2q lies in the exterior of ζ. This proves our

claim that the boundary of Hq is disjoint from
◦
ζ.

The fact that the boundary of Hq is disjoint from
◦
ζ implies that any two points

of
◦
ζ can be connected by a path in

◦
ζ which does not intersect the boundary of Hq.

Consequently, all of
◦
ζ either lies in Hq or in the complement of the

(Hq

)cl. The

latter case must occur, because
◦
ζ contains points arbitrarily close to u′ = 0 which
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can be connected to infinity outside Hq (in fact, 0 can be connected to infinity

outside K). We conclude that
◦
ζ ∩ Hq = ∅. This of course implies that not even ζ

can intersect the open set Hq, so that

(
◦
ζ ∪ ζ) ∩Hq = ∅. (4.30)

Now assume, to derive a contradiction, that (4.29) fails. Since we already know
that φ must leave (K−

2q−1)
cl and enter (K+

2q−1)
cl, φ must cross ρ′′2q−1 after wp, that

is, there must exist a tq such that

φ(tq) ∈ρ′′2q−1 and φ(t) ∈ (K+
2q−1

)cl \ ρ′′2q−1

for some t > tq, arbitrarily close to tq. (4.31)

If (4.29) fails, then
φ(tq) ∈ ρ′′2q−1 \ λ2q−1. (4.32)

This says that φ(tq) lies in the piece of ρ′′2q−1 between y2q−1 and h2q−1, that is the
piece of ρ′′2q−1 in the boundary of Hq. Also, φ(tq) 6= y2q−1 ∈ λ2q−1. But, as we
saw in the lines before (4.25), the parts of σq on ρ′′2q−1 and on τ ′′1 form a crosscut
of K+

2q−1. Hq is one of the components of K+
2q−1 after this crosscut is removed

from K+
2q−1, and (4.29) puts φ(tq) in the boundary of Hq, but not in boundary

of the other component of (K+
2q−1 minus the crosscut). Therefore, φ(tq) has some

neighborhood U so that
U ∩ K+

2q−1 ⊂ Hq. (4.33)

But, by virtue of φ(t) ∈
◦
ζ ∪ ζ and of (4.30), we cannot have φ(t) ∈ Hq. Thus for

some t > tq, but arbitrarily close to tq it must be the case that

φ(t) ∈ (K+
2q−1

)cl \ (
ρ′′2q−1 ∪ K+

2q−1

)
(4.34)

(see (4.31) and (4.33)). Since K+
2q−1 is a component of K \ ρ′′2q−1, the right hand

side here is contained in the arc of the boundary of K from h2q−1 to c2q−1 which
contains ρ′′4k−1. But as t ↓ tq, the points φ(t) here have to approach φ(tq) ∈ ρ′′2q−1.
By our assumption, φ(tq) /∈ λq, so that in particular, φ(tq) 6= c2q−1. This forces
φ(t) to take values on the segment of τ ′′3 strictly between h2q−1 and h2q. This,
however, is also impossible, because we already proved in the lines following (4.29)
that this arc lies in the exterior of ζ. Thus (4.29) must hold.

It is now easy to complete the proof. (4.29) also holds when j = 2q−1 for an even
q, by the same proof as for odd q, with only the roles of left and right interchanged.
Now (4.29) implies that a path φ from u′ to {v′, v′′} must successively intersect
λ1, λ3, . . . , λ2k−1. But τ ′′1 lies to the left of the vertical line x = n/4. Thus as one
traverses ρ′′2q−1 from h2q−1 to c2q−1 one first hits the vertical line x = n/4 before
one hits τ ′′1 , and also the point y2q−1 of τ ′′1 must lie on or to the left of the line
x = n/4. Since ρ′′1 has only one point in common with the vertical line x = n/4
(by assumption (4.4)), the piece λ2q−1 from y2q−1 to c2q−1 must lie entirely in the
half plane (−∞, n/4] × R. For similar reasons, for even q, λ2q−1 ⊂ [3n/4,∞) × R.
Thus, the distance between λ2r−1 and λ2r+1 is at least n/2, for each 1 ≤ r ≤ 2k−2.
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Consequently, if φ successively intersects λ1, λ3, . . . , λ4k−3, then its length is at least
(2k − 2)n/2. �

The remainder of the proof uses fairly standard block techniques from percola-
tion to show that the conditions of Lemma 2 with k ∼ bC6nc are fulfilled with a
probability which rapidly approaches 1 as n → ∞. First we introduce our blocks
or renormalized sites. The renormalized site (i, j) will depend on the configuration
of occupied and vacant sites in the square [(14i− 13)N, (14i+ 13)N − 1]× [(14j −
13)N, (14j + 13)N − 1] for an N to be determined below. The renormalized site
(0, 0) will be colored white if all the paths listed in (4.35)-(4.40) exist on M. The
reader is advised to look at Figure 7 for these paths, before reading the formal
description.

there exists an occupied circuit surrounding the origin

in each of the 2 annuli S(4N) \ S(3N), S(5N) \ S(4N).
(4.35)

there exists a vacant circuit surrounding the origin

in each of the 4 annuli S(2N) \ S(N), S(3N) \ S(2N),

S(6N) \ S(5N) and
◦
S(7N) \ S(6N); (4.36)

there exist occupied left-right crossings of each of the 4 rectangles

[−13N,−N + 1] × [−N/3,−1], [−13N,−N + 1] × [0,N/3 − 1],

[N, 13N − 1] × [−N/3,−1] and [N, 13N − 1] × [0,N/3 − 1];
(4.37)

there exist occupied top-bottom crossings of each of the 4 rectangles

[−N/3,−1] × [N, 13N − 1], [0,N/3 − 1] × [N, 13N − 1],

[−N/3,−1] × [−13N,−N + 1] and [0,N/3 − 1] × [−13N,−N + 1];
(4.38)

there exist vacant left-right crossings of each of the 8 rectangles

[−13N,−N + 1] × [−N,−2N/3 − 1], [−13N,−N + 1] × [−2N/3,−N/3 − 1],

[−13N,−N + 1] × [N/3, 2N/3 − 1], [−13N,−N + 1] × [2N/3,N ],

[N, 13N − 1] × [−N,−2N/3 − 1], [N, 13N − 1] × [−2N/3,−N/3 − 1],

[N, 13N − 1] × [N/3, 2N/3 − 1] and [N, 13N − 1] × [2N/3,N ]; (4.39)
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S(2N)

S(3N)

S(4N)

S(5N)

S(6N)

S(7N)

S(N)

Figure 7. A schematic diagram of the paths which are needed for (0, 0)
to be white. Occupied paths are solidly drawn and vacant paths are
dashed. The squares in the figure are (from the inside out) S(N) −
S(7N).

there exist vacant top-bottom crossings of each of the 8 rectangles

[−N,−2N/3 − 1] × [N, 13N − 1], [−2N/3,−N/3 − 1] × [N, 13N − 1],

[N/3, 2N/3 − 1] × [N, 13N − 1], [2N/3,N ] × [N, 13N − 1],

[−N,−2N/3 − 1] × [−13N,−N + 1], [−2N/3,−N/3 − 1] × [−13N,−N + 1],

[N/3, 2N/3 − 1] × [−13N,−N + 1] and [2N/3,N ] × [−13N,−N + 1];
(4.40)

The renormalized site (i, j) is colored white if translates by (14iN, 14jN) of the
paths in (4.35)-(4.40) exist in (14iN, 14jN) + [−13N, 13N − 1]2. All renormalized
sites which are not colored white are colored black. Two renormalized sites (i, j)
and (i′, j′) will be adjacent if |i − i′| + |j − j′| = 1, so that the renormalized
sites can be viewed as the sites of Z2. Thus the colorings can be viewed as a site
percolation process on Z2. Since the color of (i, j) depends on the configuration in
[(14i−13)N, (14i+13)N−1]×[(14j−13)N, (14j+13)N−1] ⊂ (14iN, 14jN)+S(14N)
the coloring of the sites is not an not an independent percolation process on Z2,
but a 1-dependent one. That is, the color configurations of two collections of sites
A1 and A2 are independent if |(i, j) − (i′, j′)|∞ > 1 for all (i, j) ∈ A1, (i′, j′) ∈ A2.

It is clear that

αN := Pp{(i, j) is white} is independent of (i, j). (4.41)

It is also standard that
lim

N→∞
αN = 1, (4.42)
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because for our percolation process on the original lattice Z2
cp, under (1.2),

Pp{@ occupied left-right crossing of [0, bxNc] × [0,N ] on Z2
cp}

= Pp{∃ vacant path on Z2 from [0, bxNc] × {1} to [0, bxNc] × {N − 1}
in [0, bNxc] × [1,N − 1]}

≤ C7 exp(−C8N) (4.43)

for some constants Ci ∈ (0,∞) which depend on p and x only (see Kesten (1982),
Proposition 2.2 (corrected to replace J \ A1 ∪ A3 by J \ A1 ∪ A3 on p. 30, L. 1,
2 f.b.) and Theorem 5.1; see also Grimmett (1999), p.293 and Theorem 5.4). The
same statement is true for vacant crossings and for occupied and vacant top-bottom
crossings of [0,N ] × [0, bxNc]. These exponential bounds for the non-existence of
paths on Z2

cp immediately imply similar bounds on M. An exponential upper bound
for the nonexistence of circuits in the annuli S((i+ 1)N) \ S(iN), 1 ≤ i ≤ 6, also
follows from (4.43) (see Grimmett (1999), Theorem 11.70).

Our definition of the coloring also has the following geometric (deterministic)
consequence: Assume that

there is a white path v1, v2, . . . , vr, with vk = (ik, jk)

which forms a left-right crossing of [a, b] × [c, d] on Z2. (4.44)

Then

there exist on M two occupied left-right crossings, ρ1, ρ2,

and two vacant left-right crossings, ρ3, ρ4, of

[(14a− 13)N, (14b+ 13)N − 1] × [(14c− 13)N, (14d+ 13)N − 1]

in the set Λ(v1, . . . , vr) :=
⋃
k≤r

(
14vk + [−7N, 7N − 1] × [7N, 7N − 1]

)
∪ [(14i1 − 13)N, (14i1 − 7)N − 1] × [(14j1 − 7)N, (14j1 + 7)N − 1]

∪ [(14ir + 7)N, (14ir + 13)N − 1] × [(14jr − 7)N, (14jr + 7)N − 1]
(4.45)

(note that i1 = a, ir = b); also

ρ1 − ρ4 will be disjoint; (4.46)

in addition these crossings will be such that

ρ1 and ρ2 lie “below” ρ3, ρ4. (4.47)

If we write ρ+
i = ρ+

i (a, b, c, d) for the component of

[(14a− 13)N, (14b+ 13)N − 1] × [(14c− 13)N, (14d+ 13)N − 1] \ ρi,

then the precise meaning of (4.47) is that

ρ+
4 ⊂ ρ+

3 ⊂ ρ+
2 ⊂ ρ+

1 . (4.48)
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If ((14a − 13)N, `i) and ((14b + 13)N − 1, ri) are the endpoints of ρi on the left
and right edge of [(14a − 13)N, (14b + 13)N − 1] × [(14c − 7)N, (14d + 7)N − 1],
respectively, then an equivalent way of expressing (4.46) (under (4.34)) is that

`1 < `2 < `3 < `4, (4.49)

or that
r1 < r2 < r3 < r4. (4.50)

We leave a formal proof of this to the reader. We merely illustrate in Figure 8
how two disjoint vacant and two disjoint occupied left-right crossings of [(14i −
7)N, (14i− 1)N − 1] × [(14j − 1)N, (14j + 1)N ] can be continued through [(14i −
7)N, (14i+7)N −1]× [(14j−7)N, (14j+7)N −1] and end in top-bottom crossings
of [(14i− 1)N, (14i+ 1)N ]× [(14j− 13)N, (14j− 1)N − 1], or of [(14i− 1)N, (14i+
1)N ]× [(14j + 1)N, (14j+ 13)N − 1], provided the renormalized site (i, j) is white.

Figure 8. Two illustrations of the continuation of two disjoint occupied
and two disjoint vacant paths through a white site.

We now show that the properties listed above are enough to give us (1.5). The
following lemma is the main step.

Lemma 3. There exists an N and constants Ci = Ci(p) ∈ (0,∞) such that for all
large n,

Pp{(4.1)-(4.5) of Lemma 2 with n replaced by 56Nn and with k = C9n hold}
≥ 1 − C10 exp(−C11n).

Proof. Define the following events for the renormalized sites:

F1 = {there exist at least 3n disjoint white left-right

crossings of [−4n, n− 2] × [1, 4n− 1]};

F2 = {there exist at least 3n disjoint white left-right

crossings of [n+ 2, 3n− 2] × [1, 4n− 1]};
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and

F3 = {there exist at least 3n disjoint white left-right

crossings of [3n+ 2, 4n] × [1, 4n− 1]}.

Assume that F1 occurs. Then there exist integers a1 < a2 < · · · < a3n ⊂ [1, 4n− 1]
and 3n disjoint white left-right crossings of [−4n, n−2]× [1, 4n−1] whose endpoints
on {n−2}×[1, 4n−1] are (n−2, a1), (n−2, a2), . . . , (n−2, a3n). Similarly, if also F2

occurs, then there are 3n disjoint white left-right crossings of [n+2, 3n−2]×[1, 4n−1]
with left and right endpoints (n+2, bi) and (3n− 2, ci), respectively, with 1 ≤ b1 <
b2 < · · · < b3n ≤ 4n − 1 and 1 ≤ c1 < c2 < · · · < c3n ≤ 4n − 1. Finally, if F3

occurs, then there exist 3n disjoint white left-right crossings of [3n+2, 4n] with left
endpoints (3n+ 2, di) with 1 ≤ d1 < · · · < d3n ≤ 4n− 1.

Now let F1∩F2∩F3 occur and let ai, bi, ci and di be as in the prceding paragraph.
The number of integers in [1, 4n − 1] which are not equal to one of the aj is at
most n − 1. Thus, at least 3n − (n − 1) ≥ 2n of the bi are also equal to some
aj . For similar reasons, among 2n of the i for which bi equals some aj , there are
at least n values of i for which ci equals some dj . Thus, there exist at least n
pairs (bi, ci) such that bi equals some aj and ci equals some dj . By discarding
some of the ai − di and renumbering the remaining ones, we therefore can find
b1 < · · · < bn and c1 < · · · < cn for which there exist disjoint white left-right
crossings of [−4n, n− 2]× [1, 4n− 1] with right endpoints (n− 2, bi), disjoint white
left-right crossings of [n + 2, 3n − 2] × [1, 4n − 1] from (n + 2, bi) to (3n − 2, ci)
and disjoint white left-right crossings of [3n+2, 4n]× [1, 4n− 1] with left endpoints
(3n+2, ci). By properties (4.45)-(4.47) this means that there exist for each 1 ≤ i ≤ n
on Z2

cp two occupied left-right crossings ρi,1, ρi,2 and two vacant left-right crossings
ρi,3, ρi,4 of

[(−4n(14)− 13)N, ((n− 2)(14) + 13)N − 1] × [0, 4n(14)N ]

whose right endpoint lies in {((n− 2)(14) + 13)N − 1} × [(bi(14) − 7)N, (bi(14) +
7)N − 1], and all four of them disjoint. Similarly, the white path from (n+2, bi) to
(3n− 2, ci) gives us two occupied left-right crossings ρ′i,1, ρ

′
i,2 and two disjoint left-

right crossings ρ′i,3, ρ
′
i,4 of [((n+2)(14)−13)N, ((3n−2)(14)+13)N−1]×[0, 4n(14)N ]

with starting point in {((n+2)(14)−13)N}× [(bi(14)−7)N−N, (bi(14)+7)N−1]
and endpoint in {((3n− 2)(14)+13)N− 1}× [(ci(14)− 7)N, (ci(14)+7)N− 1]. All
four of these paths are disjoint. Finally, there exist similar left-right crossings ρ′′i,j
of [((3n+ 2)(14)− 13)N, (4n(14)+ 13)N − 1]× [0, 4n(14)N ] with starting points in
{((3n+2)(14)− 13)N}× [(ci(14)− 7)N, (ci(14)+7)N − 1]. Moreover, ρi,1 and ρi,2

lie below ρi,3 and ρi,4 and the same statement holds for the ρ′ and for the ρ′′.
We now want to connect ρi,j , ρ

′
i.j , ρ

′′
i,j to form a left-right crossing of the whole

rectangle [(−4n(14)− 13)N, (4n(14)+13)N − 1]× [0, 4n(14)N ], in such a way that
the resulting family of crossings (when suitably renumbered) satisfies (4.1)-(4.5).
It is clear that there exists a path ψi,j on M in

[((n−2)(14)+13)N, ((n+2)(14)−13)N ]× [(bi(14)−7)N, (bi(14)+7)N−1] (4.51)

which connects ρi,j to ρ′i,j . It is even possible to choose ψi,j such that it intersects
the vertical line {x = n(14)N} in one point only. By our construction the order of
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the right endpoints of the ρi,j , 1 ≤ j ≤ 4, is the same as that of the left endpoints
of the ρ′i,j (see (4.49) and (4.50)). It is not hard to see that, for sufficiently large
N , this allows us to even choose the ψi,j , 1 ≤ j ≤ 4, disjoint. In a similar way we
can choose disjoint paths ψ′

i,j , 1 ≤ j ≤ 4, on M, inside

[((3n− 2)(14) +13)N, ((3n+2)(14)− 13)N− 1]× [(ci(14)− 7)N, (ci(14) +7)N − 1]
(4.52)

which connect ρ′i,j and ρ′′i,j in such a way that ψ′
i,j intersects the vertical line

{x = 3n(14)N} in one point only. We shall denote by by G(i) the event that ψi,j

and ψ′
i,j are occupied for j = 1, 2 and vacant for j = 3, 4. Now note that the

occurrence of F1 ∩ F2 ∩ F3 tell us nothing about the occupancy of vertices in(
[((n− 2)(14) + 13)N,((n+ 2)(14)− 13)N − 1] × Z

)
∪

(
[((3n− 2)(14) + 13)N, ((3n+ 2)(14)− 13)N − 1] × Z

)
.

There exists therefore a C12 > 0 such that

Pp{G(i)|F1 ∩ F2 ∩ F3} ≥ C12.

If F1 ∩ F2 ∩ F3 and G(i) occur, then the ρi,j , ρ
′
i,j , ρ

′′
i,j with their connections

ψi,j , ψ
′
i,j form four disjoint left-right crossings of [(−4n(14)−13)N, (4n(14)+13)N−

1]× [0, 4n(14)N ], the lower two of which are occupied and the top two of which are
vacant. Moreover, these crossings have only one point in common with each of the
vertical lines {x = n(14)N} and {x = 3n(14)N}.

Next we note that for given distinct bi the regions (4.51) are disjoint for different
i. Similarly, the regions in (4.52) are disjoint. Thus, conditionally on F1 ∩ F2 ∩ F3

and a choice of the bi, ci, the events G(i), 1 ≤ i ≤ n, are independent. Since there
are n possible choices for i, standard large deviation estimates for the binomial
distribution tell us that

Pp{G(i) occurs for at least C6n/2 values of i|F1 ∩ F2 ∩ F3}
≥ 1 − C13 exp(−C14n). (4.53)

We claim further that the paths which are constructed from the ρi,j , ρ
′
i,j , ρ

′′
i,j , ψi,j , ψ

′
i,j

for different values of i are disjoint. This is so, because for two disjoint paths
v1, . . . , vr and w1, . . . , ws on Z2, the sets Λ(v1, . . . , vr) and Λ(w1, . . . , ws), in which
the paths of (4.45) are located, are disjoint. It follows that if F1 ∩ F2 ∩ F3 occurs,
and G(i) occurs for at least C12n/2 values of i, then we can renumber the resulting
left-right crossings of [(−4n(14) − 13)N, (4n(14) + 13)N − 1] × [0, 4n(14)N ] and
obtain that (4.1)-(4.5) are satisfied with n replaced by 56Nn and k by C12n/2.
(Note that (4.4) is merely a question of numbering of the crossings, because the
components ρ+

i (S(n)) are automatically nested if the ρi are disjoint). In view of
(4.53) it therefore suffices for this lemma to show that for large enough N

Pp{F`} ≥ 1 − C15 exp(−C16n), ` = 1, 2, 3. (4.54)

Fortunately it is well known how to prove (4.54) (see Grimmett (1999), Lemma
11.22 and the argument following Theorem 2.45, or Kesten, Theorem 11.1). Since
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we do not have independent percolation for the white sites we add a few words.
For the sake of argument take ` = 1. Note that Z2 and Z2

cp are a matching pair
in the terminology of Kesten (1982). Then, as in the references just mentioned, by
Menger’s theorem (and Proposition 2.2 in Kesten (1982)), the maximal number of
disjoint white left-right crossings of [−4n, n−2]×[1, 4n−1] on Z2 equals the minimal
number of white sites on any self-avoiding path on Z2

cp from [−4n, n− 2] × {2} to
[−4n, n− 2] × {4n− 2} inside [−4n, n− 2] × [2, 4n− 2]. Thus, by a simple Peierls
argument

Pp{F1 fails}
≤ Pp{∃ a self-avoiding path on Z2

cp starting on [−4n, n− 2] × {2} and

containing 4n− 3 sites, but with fewer than 3n white sites}
≤ (5n− 1)84n−424n−3(1 − αN )(n−3)/64. (4.55)

Here (5n − 1) is a bound for the number of starting points of the paths, 84n−4

is a bound on the number of paths of 4n − 3 sites from a given point, 24n−3 a
bound on the number of choices for the subset of the vertices which have to be
black. Finally, (1 − αN )(n−3)/64 is a bound for the probability that a given subset
of n− 3 vertices is black, because any such set contains a further subset of at least
(n− 3)/5 vertices, any two of which have distance of at least 2 between them, and
have therefore independent colors. (4.54) for ` = 1 and large N now follows from
(4.42). �

The remainder of the proof of (1.5) is now easy. The estimate (4.43) shows that
under (1.2)

Pp{(4.6)− (4.9) with n replaced by 56Nn hold} ≥ 1 − C17 exp(−C18n).

Also the γ of the hypotheses of Lemma 2 exist for all n if there exists an occupied
path on M from 0 to infinity in the sector {(x, y) : x ≥ 0,−x ≤ y ≤ 0}, and
this event has a strictly positive probability (see Grimmett (1999), Theorem 11.55
and its proof). A similar argument applies to the existence of both γ and δ, as
required in the hypotheses of Lemma 2. We conclude that there exists a constant
C19 = C19(p) > 0 so that the probability that all hypotheses of Lemma 2 are fulfilled
for n replaced by 56Nn and k replaced by C9n and for all n ≥ n0 simultaneously,
is at least

C19 −
∑

n≥n0

[
C10e

−C11n + C17e
−C18n

]
.

Fix n0 so large that the right hand side here is at least C19/2. Then by Lemmas 2
and 1, there is a probability of at least C19/2 that for all n ≥ n0 all words of length
C5C9(56)Nn2 are seen in S(56Nn). This proves (1.5).
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Kesten, H., Sidoravicius, V. and Zhang, Y. (1998), Almost all words are seen in critical site
percolation on the triangular lattice, Elec. J. Probab. 3, 1-75.

Newman, M. H. A. (1951), Elements of the Topology of Plane Sets of Points, second ed., Cambr.

Univ. Press.
Russo, L. (1981) On the critical percolation probabilities, Z. Wahrsch. verw. Gebiete 56, 229-237.
Smythe, R. T. and Wierman, J. C. (1978), First-passage Percolation on the Square Lattice, Lecture

Notes in Mathematics, vol 671, Springer-Verlag.


