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development of various valuation methodologies. This paper examines the mean-variance approach to
risk-minimisation and shows that it is robust under the convergence from discrete- to continuous-time
market models. This property yields new convergence results for option prices, trading strategies and
value processes in incomplete market models.

Techniques from nonstandard analysis are used to develop new results for the lifting property of the
minimal martingale density and risk-minimising strategies. These are applied to a number of incomplete
market models:

It is shown that the convergence of the underlying models implies the convergence of strategies and value
processes for multinomial models and approximations of the Black-Scholes model by direct discretisation
of the price process. The concept of D2-convergence is extended to these classes of models, including the
construction of discretisation schemes. This yields new standard convergence results for these models.
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1. Introduction

Weak convergence results for option values and their associated trading strategies have so far been
established in the context of complete market models, where unambiguous pricing of contingent claims is
possible by means of hedging techniques. The results surveyed by Taqqu and Willinger [TW87] and the
more recent work on stronger modes of convergence by Cutland, Kopp and Willinger [CKW93a] rely on
market completeness.

For incomplete markets, convergence results for option values were obtained by Runggaldier and
Schweizer [RS95], and in a more general framework in a recent work by Prigent [Pri97]. Both use the
minimal martingale densities introduced by Föllmer and Schweizer [FS91] as their starting point and use
the weak convergence of these densities to derive the convergence of option values. However, in neither
case there is a discussion of hedging strategies associated with the various optimality criteria, although
the formulation of the general mean-variance hedging problem for incomplete market models provides
explicit expressions for such strategies under certain additional conditions on the price process. These
conditions are satisfied in all the models discussed in the above papers, but it appears that the techniques
developed there do not suffice to settle the question of convergence of trading strategies in this context.

In this paper we extend the techniques developed in [CKW93a] to show that the associated discrete-
time strategies do indeed converge to their counterpart in the limiting continuous-time model, provided
that the limiting model is complete. As in [CKW93a] we employ techniques from nonstandard analysis in
proving our results, but are able to state these results in standard terms by means of the stronger concept
of D2-convergence developed in [CKW93a]. The necessary nonstandard tools are described briefly in the
primer provided in [CKW91]; in this paper we outline new nonstandard results required for the extension
of their results to incomplete market models.

2. Mean-Variance Hedging

2.1. Discrete Time. The calculation of the minimal martingale measures and trading strategies we
wish to use in our convergence theory is particularly simple in the discrete case. We review briefly the
discrete-time setup, introduced by Schweizer in [Sch88], which will serve us throughout this paper.

Define a discrete time economy on the set T = {0, 1, . . . , T} (T ∈ N) of trading dates; the price of
some risky asset is given as a stochastic process S on a complete probability space (Ω,F , P ) with a
filtration F = (Ft)t∈T; assume that F0 is trivial (up to P -null sets) and that FT = F . Without loss
of generality we suppose that S already represents the discounted price process with respect to some
numeraire (equivalently, the risk-free discount rate is zero).

We also assume that the price process S is F-adapted and St ∈ L2(P ) for t ∈ T. Define ∆Xt =
Xt+1 − Xt for any process X on (Ω,F , P ). Note that, contrary to customary practice, we use the
‘forward’ increments.

A trading strategy in this economy is represented a as pair of processes φ = (θ, ψ) satisfying the following
conditions:

(i) (θ, ψ) is F-adapted and θT = 0;

(ii)
t−1∑
u=0

θu∆Su ∈ L2(P ) for t ∈ T;
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(iii) θtSt + ψt ∈ L2(P ) for t ∈ T.

Here θ represents the number of units of the risky asset while ψ represents the amount held in a risk-
free account. The usual definitions for the associated value process Vt(φ) = θtSt + ψt, gains process
Gt(φ) = Σt−1

u=0θu∆Su and cost process Ct(φ) = Vt(φ) − Gt(φ) apply. Recall that a strategy φ is self-
financing if and only if ∆V (φ) = ∆G(φ).

Let H ∈ L2(P ) be a contingent claim; a strategy φ is called H-admissible if VT (φ) = H ; we then say
that φ generates H . A market model is complete if for any claim H there exists a self-financing strategy
generating H . By contrast, in an incomplete model a claim H can in general not be generated by a
self-financing strategy (note that there always exists an H-admissible strategy for any H ∈ L2: take
θ ≡ 0, ψt = H · 1{t=T}). We can therefore only expect to find an H-admissible strategy which is optimal
with respect to some optimality criterion. Here we use the notion of local risk-minimisation which was
introduced in [Sch88]:

The local risk process r(φ) for a strategy φ is defined as

rt(φ) := E
[
(Ct+1(φ) − Ct(φ))2|Ft

]
for t ∈ T. We are looking for a strategy φ which minimizes this local risk by an appropriate choice of θt

and Vt (see [Sch88] for details). Note that r ≡ 0 for a self-financing strategy. It can be shown that under
the nondegeneracy condition

(1)
(E [∆St| Ft])

2

Var [∆St| Ft]
≤ L, P -a.s., t ∈ T \ {0} for some L ∈ R

there exists a unique H-admissible locally risk-minimising strategy φH . This strategy is given explicitly
by backward sequential regression: setting V H

T := H and then defining recursively

θH
t :=

Cov
[
V H

t+1,∆St|Ft

]
Var [∆St|Ft]

(2)

Vt := E
[
V H

t+1 − θH
t ∆St

∣∣Ft

]
(3)

ψH
t := V H

t − θH
t St(4)

for t ∈ T \ {T }. Finally, set θH
T := 0 and ψH

T := H . As defined in (2) θH
t can be viewed as the best

linear estimate for V H
t+1 based on the information at time t, while equations (3) and (4) ensure that φH

is mean-self-financing, i.e. the cost process C(φH) is an F-martingale.

The locally risk-minimising strategy given by equations (2)–(4) gives rise to a natural decomposition of the
contingent claim H (cf. [Sch94a]): We define the Doob decomposition of the price process S = S0+M+A,
where

∆At := E [∆St| Ft] , ∆Mt := ∆St − ∆At, A0 := 0, M0 := 0.

Then M is a martingale and A is a predictable process; both M and A are square-integrable. We can
then define the square-integrable martingale L by

∆Lt := V H
t+1 − E

[
V H

t+1

∣∣Ft

]− θH
t ∆Mt, L0 := 0.

It is easy to see that the martingales M and LH are orthogonal, i.e. their product is a martingale. Note
that ∆LH

t = ∆Ct(φH), so that LH represents the extra cost required by the strategy φH . Using (3) we
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have

∆V H
t = θH

t ∆St + ∆LH
t , for t ∈ T \ {T }

and V H
0 = E

[
H −

T∑
s=0

θH
s ∆As

]
,

so we have obtained a decomposition

(5) H = V H
0 +

T−1∑
u=0

θH
u ∆Su + LH

T ,

where LH is a square-integrable martingale orthogonal to the martingale part of S. Equation (5) is
the discrete-time version of the Föllmer-Schweizer decomposition (see below); in the case where the
price process S is already a martingale under P the decomposition (5) simplifies to the (discrete-time)
Kunita-Watanabe decomposition of H .

2.2. Continuous Time. In continuous time the set of trading dates T := [0, T ] ⊂ R for T > 0.
F = (Ft)t∈T is a filtration on some complete probability space (Ω,F , P ) which satisfies the usual con-
ditions (right-continuity and completeness) with F0 trivial and FT = F . The price process is given by
a semimartingale S ∈ S2(P ) with Doob-Meyer decomposition S = S0 + A + M where M is a square-
integrable martingale and A is a predictable process with square-integrable variation (see [Ell82] for
definitions). We also assume that A is absolutely continuous with respect to 〈M〉 — this is a nondegen-
eracy condition akin to (1) above. A trading strategy φ is a pair (θ, ψ) with θ predictable and ψ adapted
such that

(i) θ ∈ L2(S), i.e.

E


∫ T

0

θ2sd〈M〉s +

(∫ T

0

|θs|d|A|s
)2

 <∞,

(ii) the value process Vt(φ) := θtSt + ψt is square-integrable.

We can then define the gains process G(φ) :=
∫
θdS and the cost process C(φ) := V (φ)−G(φ) analogous

to the discrete-time situation. The notion of local risk-minimisation for the generating strategy of a
contingent claimH as defined above can be transferred to this setting, although this involves sophisticated
results on the differentiation of semimartingales (see [Sch90, Sch91]. It can be shown, however, that
the existence of a locally risk-minimising strategy is equivalent to the existence of a Föllmer-Schweizer
decomposition

(6) H = V0 +
∫ T

0

θH
u dSu + LH

T ,

where V0 ∈ R, θH ∈ L2(S) and LH is a square-integrable martingale orthogonal to M . The question
of existence and uniqueness of the decomposition (6) for a general claim H was settled by Monat and
Stricker [MS95].

Note that our market model is complete if LH ≡ 0 for any H ∈ L2(P ).
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2.3. Minimal Martingale Measures. We wish to express the initial value V H
0 associated with the

locally risk-minimising trading strategy φH as the expectation of the claim H under a signed martingale
measure P̂ for the price process S; the minimal martingale measure for S (cf. [Sch94b]). This measure
will be described by its density relative to P. In the discrete-time setting the density is given as the final
value (i.e. the value at time T ) of the process

(7) Ẑt =
∏
s<t

(1 − αs∆Ms)

with

(8) αt =
E [∆St| At]

Var [∆St|At]
and ∆Mt = ∆St − E [∆St| At]

The density dP̂
dP = ẐT ∈ L2(P ) defines a signed measure P̂ under which S is a martingale and V H

t =
EP̂ (H |Ft) for all t ∈ T.

In the continuous-time case we concentrate on conditions which ensure that P̂ is a true measure equivalent
to P , (thus coinciding with P on F0) such that any L2(P )−martingale orthogonal to M remains a
martingale under P̂ . In this case the density for the minimal martingale measure is defined via the
stochastic exponential

(9) ẑ = E
(
−
∫
αdm

)
where α is the density of A with respect to 〈M〉 in the Doob-Meyer decomposition of S. It is then shown
in [MR97, Chapter 26], that, under the assumption that αt(Mt −Mt−) < 1 for all t ∈ T, the integrability
condition ẑt ∈ L2(P ) is equivalent to the existence of a unique minimal martingale measure P̂ , whose
density relative to P is given by ẑT .

3. Nonstandard martingales

To compare the measures defined by these densities, we generalize the results of Section 3.1 of [CKW91],
where techniques from nonstandard analysis were used to provide alternative derivations of Black-Scholes
option pricing theory. We refer to Section 2 of [CKW91] for a primer in hyperfinite probability theory
and the basic definitions needed for a nonstandard description of Brownian Motion and related concepts.
However, we shall need to extend the setup somewhat in order to allow consideration of arbitrary cádlág
processes rather than restrict the discussion to path-continuous processes as in [CKW91]. Two funda-
mental references for these developments are [AFHL86] and [HP83]; to set the scene for these extensions
we recall (largely following [Cut00]) the principal ideas and definitions here.

3.1. The Nonstandard Universe. We shall assume given (as in [CKW91]) a fixed nonstandard exten-
sion ∗R of the real line R. The extension ∗R includes elements defined as non-zero ‘infinitesimals’ (x ∈∗ R
satisfying |x| < ε for all ε > 0 in R) and their ‘infinite’ multiplicative inverses. The extension itself is
not unique: ∗R can, for example, be defined as an ultrapower RN/U of the reals by any non-principal
ultrafilter U on N (i.e. a collection of subsets of N closed under intersections and supersets, containing
no finite sets, and such that for any A ⊂ N, either A or N \ A belongs to U .) The existence of such
ultrafilters is equivalent to the Axiom of Choice. What is important here is that the arithmetical and
order operations valid in R extend to ∗R: the tuple (∗R,+,×, <) is an ordered field.
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We may view all mathematical objects as sets. For any set S the superstructure V(S) over S is defined
as V(S) =

⋃
n∈N Vn(S), where V0(S) = S, and

Vn+1(S) = Vn(S) ∪ P(Vn(S)) (n ∈ N).

This construction can be applied in turn to R and to ∗R. Their superstructures V = V(R) and V(∗R) are
then connected by a map ∗ : V(R) 7→ V(∗R) which associates with each object M in V(R) its nonstandard
extension ∗M in V(∗R). The nonstandard universe (whose members are known as the internal sets) is
then simply given by

∗V = {x : x ∈∗ M for some M ∈ V}.
The Transfer Principle states that any bounded quantifier statement holds in V iff it holds in ∗V.
(A bounded quantifier statement is a mathematical statement which can be written to ensure that all
quantifiers range over a prescribed set. This includes most statements used in practice.) This result
enables us to ‘switch’ from the ‘standard world’ V to internal objects (elements of ∗V) and back again:
in proofs we can therefore ‘translate’ a statement into the language of internal sets, manipulate it within
∗V and then (hope to) translate the results into the context of V. For the finite part {x ∈∗ R : |x| < r for
some r ∈ R} of the set ∗R of hyperreals the important (topological) connection is made very simply via
the Standard Part Theorem, which asserts that each finite x ∈∗ R can be written uniquely as x = r + δ

for some r ∈ R and an infinitesimal δ. We write x ≈ y if x− y is infinitesimal.

3.2. Internal Probability Spaces and Loeb Measure. We work principally with hyperfinite sets in
∗R, i.e. sets of the form Ω = {1, 2, ..., N} for some N ∈∗ N \ N. Thus we define a hyperfinite time line
(T,F , Λ), where T ∈ R is fixed throughout, N is a fixed hyperfinite integer, ∆t = T/N ,

T = {0,∆t, 2∆t, ..., (N − 1)∆t, T },
F = ∗P(Ω), and Λ({t}) = ∆t. More generally, any hyperfinite set Ω and the algebra of its internal
subsets F , equipped with normalized counting measure P (i.e. P ({ω}) = 1/card(Ω)) yields a hyperfinite
probability space.

Associated with (Ω,F , P ) is a standard measure space, its Loeb space (Ω,FL, PL), and Loeb-measurable
functions f : Ω 7→ R are those which have liftings to internal F−measurable functions F : Ω 7→ ∗R.
The interplay between these (hyper-) discrete and (standard) continuous-time formulations enables us to
derive new convergence results, generalizing those of [CKW93a].

Briefly, the Loeb measure construction proceeds as follows: the internal map P : F 7→ ∗[0, 1] is finitely
additive; and we may define the map ◦P : F 7→ [0, 1] by setting ◦P (A) = ◦(P (A)). This makes (Ω,F , ◦P )
into a (standard) finitely additive measure space. By the Caratheodory extension theorem ◦P will have
a unique σ-additive extension to the σ-algebra σ(F) provided that ◦P is σ-additive in F . But this is a
consequence of the ℵ1-saturation of ∗V: this property, which is shared by any countable ultrapower, states
that for any countable decreasing family (Am)m∈N of non-empty internal sets we have

⋂
m∈NAm 6= ∅.

Hence the completion PL of ◦P , defined on the completion FL of σ(F), defines the Loeb space (Ω,FL, PL)
as a standard probability space. A key property of B ∈ FL is the existence of a set A ∈ F such that the
symmetric difference A∆B is PL-null.

Example 3.1. Lebesgue measure on [0, 1] is the Loeb measure of counting measure Λ on T (with T = 1)
as defined above. The Lebesgue σ-algebra consists of sets B ⊂ [0, 1] for which st−1

T
(B) = {t ∈ T : ◦t ∈

B} ∈ FL.
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Example 3.2. Wiener measureW on C = C0(0, T ) can be defined similarly as the Loeb measure associated
with counting probability WN on the set CN of all polygonal paths (Bt)t∈T formed by joining the points
of T linearly and satisfying B0 = 0 and ∆Bt = Bt+∆t − Bt = ±√

∆t. Wiener space is then the Loeb
space associated with the internal probability space (CN ,

∗ P(CN ),WN ). More precisely: write FN for the
completion of σ(∗P(CN)), PN = (WN )L. Then for PN -a.a. B ∈ CN , b = ◦B is a continuous path in C
and for Borel sets D ⊂ C, the measure W defined by W (D) = PN (st−1(D)) is Wiener measure. Thus
Brownian motion can be regarded as the process b : [0, T ] 7→ R defined by bt(ω) = ◦ω(t), where we have
written ω instead of B for points of Ω = CN , and Bt(ω) = ω(t) is the canonical random walk on Ω.

A function f : Ω 7→ R on a Loeb space (Ω,FL, PL) is Loeb-measurable if it is PL-measurable,
i.e. f−1([a, b]) ∈ FL for all [a, b] ⊂ R. Similarly, F : Ω 7→ ∗R is ∗-measurable if F−1([α, β]) ∈ F for
all hyperreal intervals [α, β]. We say that F is a lifting of f if f(ω) ≈ F (ω) for PL-a.a. ω ∈ Ω. The lifting
is S-integrable if

∫
Ω
|F |dP is finite and P (A) ≈ 0 implies

∫
A
|F |dP ≈ 0 for A ∈ F . A Loeb-measurable

function f has an S−integrable lifting F iff f is PL−integrable.

3.3. Stochastic Processes. If f(t, ω) is adapted to the Brownian filtration then we can find a nonantic-
ipating function F : T×Ω 7→ ∗R (i.e. F (t, ω) depends only on ω(s) for s ≤ t) such that f(◦t, ω) ≈ F (t, ω)
for almost all (t, ω) in T×Ω. We call F a nonanticipating lifting of f . Such liftings exist for Itô integrals:
given the pair (f, F ), the hyperfinite sum G(t, ω) = Σs<tF (s, ω)∆B(s, ω) is a nonanticipating lifting of
the Itô integral I(◦t, ω) =

∫ ◦t

0 fdb, that is, for almost all ω we have I(◦t, ω) ≈ G(t, ω) for all t.

These ideas extend to the various functionals of special semimartingales used in continuous-time option
pricing models, so that we can approximate these by appropriate ‘discrete’ hyperfinite counterparts in
order to establish convergence results for option prices and the associated optimal trading strategies. The
analogues in this context of the usual path-regularity properties of martingales are discussed exhaustively
in [HP83], and we shall not repeat their technical results here. The concept of SDJ-functions is crucial:
in essence this describes conditions under which an internal function F : T 7→∗ R has a cádlág standard
part:

Definition 3.3. The standard part st(F ) : [0, T ] 7→ R of the SDJ-function F is defined by st(F )(u) =
lim◦t↓u,t∈T ◦F (t) for u ∈ [0, T ].

This definition is compatible with standard parts defined in the Skorohod topology on the space ∗D[0, T ]
of ∗-cádlág functions. For this we need to demand that SDJ-functions should have at most one non-
infinitesimal jump in each monad (‘infinitesimal neighborhood’) in T and be S-continuous at 0, i.e. t ≈ 0
should imply that F (t) ≈ 0 (see [HP83] for details.)

For an internal stochastic process X : T × Ω 7→ ∗R we say that X is SDJ (resp. S-continuous) if PL-
a.a. paths t 7→ Xt(ω) have this property. The internal probability space (Ω,F , P ) becomes an internal
filtered space if it is endowed with an increasing internal sequence of algebras A = (At)t∈T on Ω, and the
process X is nonanticipating for A if ω 7→ Xt(ω) is At-measurable for each t ∈ T. Such a process M is
an SL2-martingale if E(∆Mt|At) = 0 and M2

t is S-integrable for each t ∈ T. Defining the standard part
st(M) as above we obtain a (standard) L2(PL)-martingale with respect to the filtration B = (Bt)t∈T,
where Bu = (

⋂
u<◦t,t∈T(At)L) ∪ N , with N denoting the PL−null sets in FL.

The (internal) quadratic variation [X ] : Ω × T 7→ ∗R of an internal process X is given as [X ]t =
Σs<t(∆Xs)2. For an SL2−martingale M , the quadratic variation [M ] is SDJ (resp. S-continuous) when-
ever X is, and this operation commutes with taking standard parts, i.e. we have st([M ]) = [st(M)], where
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the square-brackets process on the right is the usual (optional) quadratic variation of the L2-martingale
st(M) on the filtered space (Ω,FL, B , PL).

Stochastic integrals relative to M can again be defined as hyperfinite Stieltjes integrals by setting, for
internal Θ : Ω × T 7→ ∗R, (

∑
Θ∆M)t =

∑
s<t Θs∆Ms for t ∈ T. For this ‘integral’ to have a standard

counterpart we need to introduce the internal Doléans measure νM on Ω × T endowed with the internal
algebra AΩ×T generated by sets {A × {t} : t ∈ T, A ∈ At}, by setting νM (A × {t}) = E[1A(∆Mt)2].
The most useful class of integrands is the class SL2(νM ) of nonanticipating processes X for which X2

is S-integrable relative to νM on Ω × T. The following results, taken largely from [HP83] relate the
nonstandard and standard formulations to each other:

Theorem 3.4. Let M be an internal martingale with E(M2
t ) finite for all t ∈ T.

(i) M is S-continuous if and only if its quadratic variation [M ] is S-continuous.
(ii) If M is of class SDJ then [M ] is of class SDJ and st([M ]) = [st(M)], PL-a.s., where the process on

the right denotes the standard (optional) quadratic variation of st(M).

Theorem 3.5. (i) If M is an SL2-martingale and Θ ∈ SL2(νM ) (in particular, Θ is nonanticipating)
then

∑
Θ∆M is an SL2-martingale.

(ii) Furthermore, if M is of class SDJ, then so is
∑

Θ∆M .
(iii) If M is S-continuous then

∑
Θ∆M is S-continuous.

Theorem 3.6. Let M be an SL2-martingale of class SDJ. Let m := st(M) be its standard part and
assume that θ ∈ L2(νm). Then θ has a 2-lifting Θ (i.e. an internal function Θ : T× Ω 7→ ∗R such that
Θ(t, ω) ≈ θ(◦t, ω) PL-a.s. for all t) such that∫

θdm = st
(∑

Θ∆M
)
, PL-a.s..

Furthermore,
∫
θdm = st

(∑
Θ̄∆M

)
, PL-a.s., for any other 2-lifting Θ̄ of θ.

3.4. D2-Convergence of Wiener Functionals. Using nonstandard methods, the papers [CKW93a,
CKW95] introduced a mode of convergence for functionals on Wiener space which is stable under sto-
chastic differentiation and integration. This was motivated by the wish to consider convergence of a
sequence of contingent claims in Cox-Ross-Rubinstein option pricing models (based upon simple random
walks) together with convergence of their generating strategies and value process processes. Thus the
desired mode of convergence would need to be stable under both stochastic differentiation and stochastic
integration — which weak convergence is not.

The appropriate mode of convergence, called D2 − convergence in [CKW93a] (for reasons which will
become clear below), can be formulated for arbitrary separable metric spaces and is stated very simply
in terms of liftings:

Theorem 3.7. Let Y be a separable metric space with a Borel probability µ, and suppose that (µn) is a
family of probabilities on Borel sets Yn ⊂ Y converging weakly to µ.

If Fn : Yn → R is a family of measurable functions and f : Y → R is measurable then the following are
equivalent:

(i) FN is a lifting of f for all infinite N , i.e. for L(µN )-a.a. y ∈ YN , FN (y) ≈ f( ◦y);
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(ii)
(
Fn(y), y

) →(f(y), y
)

weakly as n → ∞. This means that the distribution of
(
Fn(y), y

) ∈ R × Yn

with y distributed according to µn converges to the distribution of
(
f(y), y

) ∈ R×Y with y distributed
under µ.

Moreover, if (i) or (ii) holds, then for all r > 0, FN ∈ SLr(µN ) for all infinite N if and only if
Eµn [|Fn|r] → Eµ [|f |r] as n→ ∞.

Example 3.8. This result is applied in [CKW95] to Wiener space: C = C[0, 1]∩ {x(0) = 0}, W = Wiener
measure, the filtration F = (Ft)0≤t≤1 is generated by the canonical Brownian Motion b(t, ω) = ω(t) for
ω ∈ C, and F = F1.

The associated discrete spaces are taken as (Cn,Fn, A n ,Wn), where Cn is the set of paths of a simple
random walk based on Tn of step size ±√

∆n (with ∆n = 1
n ) and where we interpolate linearly between

points of Tn. Write Bn(t,X) = X(t) for X ∈ Cn, then Bn(X) denotes the path (Bn(t,X))t∈Tn and
∆Bn(t,X) = ∆X(t). The filtration A n is generated by {Bn(s, ·) : s ≤ t}, and Wn is counting probability
on Cn.

Thus, given a sequence of measurable functions Fn : Cn 7→ R and a measurable function f : C 7→ R, we
have: FN is an SL2-lifting of f for all infinite N iff the sequence (Fn) converges to f ‘weakly along the
graphs’ in the sense of Theorem 3.7.

Example 3.9. Convergence of stochastic processes can be handled similarly: discretise the time interval
[0,1] as Tn = {0,∆n, 2∆n, . . . , 1} and use the counting probability Λn on Tn and Lebesgue measure λ on
[0,1]. Given φ ∈ L2(λ ×W ) and Φn : Tn × Cn → R for n ≥ 1, we then have: ΦN is an SL2-lifting of φ
for each infinite N iff (Φn(t, Bn), t, Bn) → (φ(t, b), t, b) weakly and EΛn×Wn(Φ2

n) → Eλ×W (φ2).

Specializing to the convergence of claims and strategies based upon a Black-Scholes model, a second
standard interpretation of the definition links it to L2-convergence by factoring the functions through a
discretisation of the path space — this explains the terminology (hereQ denotes the equivalent martingale
measure in the Black-Scholes model):

Definition 3.10. A family (dn)n∈N of mappings dn : C → Cn is an adapted Q-discretisation scheme if

(i) dn is A n -adapted; i.e. for each t ∈ Tn (dn(·))(t) is An,t-measurable.
(ii) dn is Q-measure-preserving; i.e. Q(d−1

n (A)) = Qn(A) for all A ∈ Fn.
(iii) dn(ω) → ω in Q-probability; i.e. for all ε > 0,

Q
(‖dn(ω) − ω‖ < ε

)→ 1 as n→ ∞.

(here ‖ · ‖ denotes the supremum norm on C.)

The existence of a adapted Q-discretisation scheme for Wiener space is shown in [CKW93a]. This leads
to the following extension of Theorem 3.7 and Definition of D2-convergence:

Theorem 3.11. Let (Hn)n∈N with Hn : Ωn → R be a sequence of claims and let h ∈ L2(Q). Then the
following are equivalent:

(i) Hn

(
dn(·))→ h in L2(Q).

(ii) HN is an SL2(QN)-lifting of h for all infinite N .
(iii)

(
Hn(ω), ω

)→ (
h(ω), ω

)
weakly and EQn

[
H2

n

]→ EQ

[
h2
]
.

Definition 3.12. Let (Hn)n∈N and h be claims as in Theorem 3.11. We say that Hn D
2-converges to h

if any of the equivalent conditions (i)–(iii) in Theorem 3.11 hold. We then write Hn
D2→ h.
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4. The Minimal Martingale Measure

We saw in 2.3 that for a semimartingale s with Doob-Meyer decomposition

(10) s = s0 +
∫
αd〈m〉 +m

the density for the minimal martingale measure is defined via the stochastic exponential

(11) ẑ = E
(
−
∫
αdm

)
In discrete time the density is given by the process

(12) Ẑt =
∏
s<t

(1 − αs∆Ms)

with

(13) αt =
E [∆St| At]

Var [∆St|At]
and ∆Mt = ∆St − E [∆St| At]

(cf. equation (8)). Proposition 4.1 below will help to establish the connection between (11) and (12) on
the hyperfinite time line. Elements of T are usually denoted by s, t while u, v are used for elements of
[0, T ].

Proposition 4.1. Let X : Ω × T → ∗R be an internal martingale of class SDJ. Let x : Ω × [0, T ] → R

be its standard part, x := st(X). Define an internal martingale Z : Ω × T → ∗R by

Zt :=
∏
s<t

(1 + ∆Xs).

Then Z is of class SDJ and z := st(Z) = E(x), PL-a.s., where

E(x)v = exp
(
xv − 1

2
[x]v

) ∏
u≤v

(1 + ∆xu) exp
(
−∆xu +

1
2
(∆xu)2

)

denotes the stochastic exponential of x.

Proof. The proof of this proposition uses essentially the same techniques as the proof of Lemma 3.1
in [CKW91]. The only additional technical result that is required here is the approximation of the ‘pure
jump’ part of a cádlág function by an internal function. This can be achieved pathwise by approximating
the (at most countably many) jumps of x(ω) by points in T and employing Countable Comprehension to
extend this to an internal subset; a complete proof is given in the Appendix. �

Corollary 4.2. Let M : Ω × T → ∗R be an SL2-martingale of class SDJ and m := st(M) its standard
part. Let a be a predictable process in L2(νm) and A be an SL2(νM )-lifting of a. Then

st
(∏

(1 +A∆M)
)

= E
(
−
∫
a dm

)
.

Proof. It follows from Theorems 3.5 and 3.6 that
∑
A∆M is a martingale of class SDJ and st(

∑
A∆M) =∫

a dm. The result then follows from Proposition 4.1. �

Remark 4.3. It will be shown in Section 6 how Corollary 4.2 implies convergence results for option
prices in a sequence of discrete-time models. Similar results are obtained in [Pri97]; however the above
formulation was derived independently and makes use of different techniques. In [Pri97] the notion of
uniform tightness of a sequence of martingales is used together with the results in [JMP89] to obtain the
weak convergence of the sequence of associated stochastic integrals (see also [DP92]).
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5. Trading Strategies and Value Processes

In this section we present a general result (extending Theorem 3.5 in [CKW95]) which will be used to
relate the optimal trading strategies for discrete incomplete market models to those in complete continuous
time models. We will illustrate these results in the next section when we consider (incomplete) discrete
time approximations of the Black-Scholes model.

Suppose the process S : Ω×T→ ∗R is an internal SL2(P )-martingale of class SDJ. As usual we denote the
internal Doléans measure of S by νS . Let s := st(S) be the standard part of S, so that s : Ω× [0, T ] → R

is an L2(PL)-martingale.

We make the following assumptions (S1) and (S2) on the processes S and s. In the next section we
will introduce a class of models for which these are satisfied. Furthermore, note that (S1) and (S2) are
satisfied for the models considered in [CKW91, CKW93b].

(S1) For any nonanticipating process Θ : Ω × T→ ∗R and any θ ∈ L2(νs) we have

Θ is a SL2(νS)-lifting of θ ⇔ ΘS is a SL2(P × Λ)-lifting of θs.

(S2) Any h ∈ L2(PL) can be represented as

(14) h = v0 +
∫ T

0

θudsu

with a unique θ ∈ L2(νs) and v0 ∈ R.

Now let h ∈ L2(PL) and v0, θ be defined as in (14). Define processes g, v, ψ : Ω × [0, T ] → R by

gt :=
∫ t

0

θudsu, vt := v0 + gt, ψt := vt − θtst.

Let H ∈ SL2(P ) be a lifting of h. We want to obtain an internal decomposition of H of the form

H = V0 +
∑
u<t

Θu∆Su + Lt,

with V0 ∈ ∗R and L an internal martingale orthogonal to S. We can obtain this decomposition by the
sequential regression described in Section 2: Let

Vt := E[H |At], Θt :=
E [Vt+∆t∆St| At]
E [ (∆St)2| At]

.

(with Θt = 0 if E[(∆St)2|At] = 0) and set ΘT := 0. So V is a SL2-martingale. By transfer of
Lemma A.3.3 in [Sch88] we see that

E
[
(Θt∆St)2

]
<∞.

The internal martingale L defined by

L0 := 0, ∆Lt := ∆Vt − Θt∆St

is internally orthogonal to S, i.e.

E [∆Lt∆St| At] = E
[
∆Vt∆St − Θt(∆St)2|At

]
= E [Vt+∆t∆St| At] − VtE [∆St| At] − ΘtE

[
(∆St)2

∣∣At

]
= 0 for t ∈ T \ {T }

11



(where the last equality uses the martingale property of S and the definition of Θt). Then

Vt = V0 +
∑
u<t

Θu∆Su + Lt and VT = H.

Finally, we define internal processes G,Ψ : Ω × T → ∗R by

Gt :=
∑
u<t

Θu∆Su, Ψt := Vt − ΘtSt.

We need the following lemmata. The first characterizes orthogonality of martingales in terms of orthog-
onality with respect to the space generated by stochastic integrals. The following two give a simple
criterion for an internal martingale to be infinitesimal.

Lemma 5.1. Let X,Y : Ω × T→ ∗R be internal martingales. Then X and Y are orthogonal, i.e.

(15) E [∆Xt∆Yt|At] = 0 for all t ∈ T,

if and only if for all nonanticipating Θ : Ω × T → ∗R the process Z defined by

Zt = Yt

∑
s<t

Θs∆Xs

is an internal martingale, i.e. Y and
∑

Θ∆X are orthogonal.

Proof. Suppose X and Y are orthogonal. Calculating ∆Zt yields

∆Zt = YtΘt∆Xt + ∆Yt

∑
s<t

Θs∆Xs + ∆YtΘt∆Xt

Since X and Y are martingales

E [∆Zt| At] = YtΘtE [∆Xt|At] + E [∆Yt|At]
∑
s<t

Θs∆Xs + ΘtE [∆Yt∆Xt|At] = 0.

For the converse note that the process

Zt := Xt

∑
s<t

∆Ys = XtYt

is a martingale. �

Lemma 5.2. Let X : Ω×T → ∗R be an S-continuous process and PL(Xt ≈ 0) = 1 for each t ∈ T. Then

PL(Xt ≈ 0 for all t ∈ T) = 1.

Proof. This is a nonstandard version of the standard result that two continuous processes which are
versions of each other are already indistinguishable.

Let Ω̃ := {ω ∈ Ω : X(ω) is S-continuous}. Then PL(Ω̃) = 1. For r ∈ [0, T ] let r̄ := max{t ∈ T : t ≤ r},
i.e. r̄ is the element in T immediately to the left of r. Now let S := {q̄ : q ∈ Q ∩ [0, T ]} ⊂ T. Since there is
a one-to-one correspondence between the elements in Q ∩ [0, T ] and those in Swe see that S is countable
and S-dense, i.e. st(S) = [0, T ].

For s ∈ S define
Ds := {ω ∈ Ω̃ : ◦|Xs(ω)| > 0} = {ω ∈ Ω : Xs(ω) 6≈ 0} ∩ Ω̃.

Then PL(Ds) = 0 by assumption. Let
D :=

⋃
s∈S

Ds.

12



Then PL(D) = 0 and PL(Ω̃ \D) = 1. For fixed ω ∈ Ω̃ \D the path X·(ω) is S-continuous and Xt(ω) ≈ 0
for all t ∈ S. Let x := st(X(ω)), so x is a continuous function which is zero on Q∩ [0, T ]. Hence Xt(ω) ≈ 0
for all t ∈ T. �

Lemma 5.3. Let X : Ω × T → ∗R be an internal martingale with X0 = 0. If E[X2
T ] ≈ 0 then Xt ≈ 0

for all t ∈ T, PL-a.s., i.e. st(X) ≡ 0.

Proof. Let [X ] be the internal quadratic variation of X . We know that

E[X2
t ] = E[X2

0 ] + E
[
[X ]t

]
= E

[
[X ]t

]
for t ∈ T.

It follows that E
[
[X ]T

]
= E[X2

T ] ≈ 0. Since [X ]T ≥ 0 this implies that [X ]T (ω) ≈ 0 for PL-a.a. ω.
But [X ]0 = 0 and [X ] is an increasing process, hence the path [X ]·(ω) is S-continuous for PL-a.a. ω.
Therefore X is S-continuous.

Since [X ] is an increasing process we have

0 ≤ E[X2
t ] = E

[
[X ]t

] ≤ E
[
[X ]T

] ≈ 0 for t ∈ T.

Hence, for fixed t ∈ T, Xt ≈ 0 PL-a.s.. Lemma 5.2 then implies that Xt ≈ 0 for all t ∈ T, PL-a.s.. �

We can now prove the main result of this section:

Theorem 5.4. Under the assumptions (S1) and (S2) (cf. page 11) we have

(i) Θ is an SL2(νS)-lifting of θ;
(ii) Ψ is an SL2(P × Λ)-lifting of ψ;
(iii) G and V are SL2-martingales of class SDJ and satisfy, PL-a.s.,

st(G) = g,

st(V ) = v,

hence st(V ) = st(V0 +G).(16)

Proof. First note that v0 = EL[h] ≈ E[H ] = V0. Since S is an SL2-lifting of s and θ ∈ L2(νs) there
exists a 2-lifting Θ̄ of θ such that

◦
(∑

t<T

Θ̄t∆St

)
=
∫ T

0

θudsu, PL-a.s.

Then H̄ := V0 +
∑

t<T Θ̄t∆St is also an SL2-lifting of h, hence

0 ≈ E
[
(H − H̄)2

]
= E

[(∑
t<T

Θt∆St + LT −
∑
t<T

Θ̄t∆St

)2]

= E
[(∑

t<T

(Θt − Θ̄t)∆St

)2]
+ E

[
L2

T

]

+2E
[
LT

∑
t<T

(Θt − Θ̄t)∆St

]
(17)

The internal process

Mt := Lt

∑
u<t

(Θu − Θ̄u)∆Su

13



is a martingale by Lemma 5.1. Since M0 = 0 we have

E

[
LT

∑
t<T

(Θt − Θ̄t)∆St

]
= 0.

Therefore the final term in (17) disappears and

∫
Ω×T

(Θ − Θ̄)2 dνS = E

[(∑
t<T

(Θt − Θ̄t)∆St

)2
]

≈ 0

and E
[
L2

T

] ≈ 0.

Hence Θ is also a 2-lifting of θ with respect to νS and Θ ∈ SL2(νS). By assumption (S1) this is equivalent
to ΘS being a SL2(P × Λ)-lifting of θs. Furthermore, G is an SL2-martingale of class SDJ and hence

st(G) = st
(∑

Θ∆S
)

=
∫
θds = g, PL-a.s..

As E[L2
T ] ≈ 0 it follows from Lemma 5.3 that the paths of st(L) are constant zero, PL-a.s., hence

st(V ) = st(H0 +G+ L) = ◦H0 + st(G) = h0 + gt = v PL-a.s.,

Finally, this implies that Ψ = V − ΘS is an SL2-lifting of ψ = v − θs. �

Remark 5.5. In the language of mathematical finance Theorem 5.4 shows that the lifting property of
a claim H implies the lifting property of the associated locally-risk-minimising (or variance-optimal1)
strategy and its value and gains process.

Theorem 5.4 therefore includes the results of [CKW91, Thorem 3.5] and [CKW93b, Theorem 4.1] as
special cases. It should be noted however that the models in [CKW91, CKW93b] are internally complete.
It is therefore possible to obtain an internally self-financing trading strategy generating the claim H , so
that equation (16) is automatically satisfied: for self-financing strategies we have V = V0 +G.

The crucial point in Theorem 5.4 is that the additional cost process L is infinitesimal, so that the internal
strategies here are self-financing ‘in the limit’. This last statement will be made precise in the next
section.

We summarize the results of this section in the following theorem which is a generalisation of the main
result in [CKW93a]:

Theorem 5.6. With the above notation and assumptions (S1) and (S2) the following are equivalent:

(i) H is an SL2(P )-lifting of h.
(ii) Θ is an SL2(νS)-lifting of θ, and Ψ is an SL2(P × Λ)-lifting of ψ.
(iii) ΘS and Ψ are SL2(P × Λ)-liftings of θs and ψ, respectively.
(iv) G is an SL2-martingale of class SDJ and st(V0 +G) = v0 + g, PL-a.s..
(v) V is an SL2-martingale of class SDJ and st(V ) = v, PL-a.s..

1Since S is a martingale the locally-risk-minimising and variance-optimal strategies coincide in this case (cf. [Sch93]).
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6. Applications

In this section we apply the results of Section 5 to two alternative approximations of the BS model. These
models were introduced in [MV96] and [RS95] where convergence results for certain classes of contingent
claims have been obtained. Using our results we can extend these to a wider class claims and — more
importantly — to the associated trading strategies and value processes.

6.1. The Multinomial Cox-Ross-Rubinstein Model. Let β ∈ N be fixed and let µ, σ, s0 ∈ R,
σ, s0 > 0. For n ∈ N we define the n-th (β + 1)-nomial CRR model as follows: For T ∈ R+ let
Tn := {0,∆nt, . . . , T} with ∆nt := T/n. The price process Sn is obtained by sampling the price process
of a complete binomial CRR model (on the finer time set Tβ

n := {0,∆nt/β, 2∆nt/β, . . . , T}) at the points
t ∈ Tn. Set Ωn := {0, 1, . . . , β}Tn\{T} and Fn := P(Ωn). The counting measure on Tn is denoted by Λn.

Remark 6.1. It will be useful later to have some notation for the binomial model on Tβ
n: let Ωβ

n :=
{−1,+1}Tβ

n\{T} and Qβ
n be the measure on (Ωβ

n,P(Ωβ
n)) given by the binomial probabilities q and 1 − q.

Denote by W β
n the binomial random walk on Tβ

n with step size ±√∆nt/β and the price process Sβ
n is

given by

(18) Sβ
n,t(ω) = s0

∏
s<t

(
1 + µ

∆nt

β
+ σ∆W β

n,s

)
, s, t ∈ Tβ

n,

where ∆W β
n,t := W β

n,t+∆nt/β −W β
n,t.

We want to specify a probability measure Qn on Ωn such that the price process

(19) Sn,t+∆ := Sn,t · uωtdβ−ωt , Sn,0 := s0

with

u := 1 + µ
∆nt

β
+ σ

√
∆nt/β and d := 1 + µ

∆nt

β
− σ

√
∆nt/β

is a martingale under Qn. One possible choice would be the minimal martingale measure as defined in
Section 2.3; however, we choose the unique martingale measure for the price process on Tβ

n given by the
probabilities

q :=
1 − d

u− d
=

1
2
(
1 − µ

σ

√
∆nt/β

)
and 1 − q =

1
2
(
1 +

µ

σ

√
∆nt/β

)
for an ‘up-’ or ‘down-movement’ between times in Tβ

n. We then define the measure Qn on (Ωn,Fn) by

Qn

(
ωt = j

)
:=
(
β

j

)
qj(1 − q)β−j

for ω = (ω0, . . . , ωT−∆nt) ∈ Ωn and (ωt)t∈T\{T} independent. We denote the expectation with respect
to Qn by En[ · ]. A filtration A n = (An,t)t∈Tn is again generated by the multinomial random walk
Wn : Ωn × Tn → R with

∆Wn,t := (−β + 2ωt)
√

∆nt/β, Wn,0 := 0.

Since En [∆Wn,t| An,t] = −µ
σ ∆nt, Wn is not a martingale under Qn. We therefore define an adjusted

multinomial process W̃n : Ωn × Tn → R with

∆W̃n,t := ∆Wn,t +
µ

σ
∆nt, W̃n,0 := 0,
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so that

En

[
∆W̃n,t

∣∣An,t

]
= 0(20)

Varn

[
∆W̃n,t

∣∣An,t

]
= ∆nt

(
1 − (µ

σ

)2∆nt/β
)
.(21)

The n-th (β+1)-nomial CRR model satisfies the assumptions of Section 2.1, so that any claimH : Ωn → R

in this model can be replicated by a mean-self-financing strategy ΦH = (ΘH ,ΨH) which is risk-minimising
since Sn is a martingale.

The Hyperfinite Version. For any infinite N ∈ ∗N \ N we have an internal (β + 1)-nomial CRR
model on the hyperfinite filtered probability space (ΩN ,FN , A N , QN) with associated Loeb space
(ΩN , L(FN ), L(QN )).

Lemma 6.2. (i) The processes WN and W̃N are S-continuous.
(ii) w̃ := st(W̃N ) is a standard Brownian motion on (ΩN , L(FN ), L(QN)).
(iii) The price process SN is SLr(QN )-integrable for each r ∈ [1,∞).

Proof. This is analogous to the proof of Theorem 3.3.5 in [AFHL86]. �

By Lemma 6.2(i) WN,t is finite, L(QN)-a.s.. It then follows from (19) and the proof of Lemma 3.1(a)
in [CKW91] that, L(QN)-a.s.,

SN,t ≈ s0 exp
(
(µ− 1

2
σ2)t+ σWN,t

)
= s0 exp

(−1
2
σ2t+ σW̃N,t

)
for all t ∈ TN . Hence, SN is S-continuous and

su := st(SN )u = s0 exp
(−1

2
σ2u+ σw̃u

)
for u ∈ [0, T ], L(QN)-a.s..

Since w̃ is a standard Brownian motion, s is indeed the price process in a Black-Scholes model under the
unique martingale measure Q := L(QN ). Hence each claim h ∈ L2(Q) can be represented as

h = vh
0 +

∫ T

0

θh
udsu

for some θh ∈ L2(νs) and vh
0 ∈ R. We now verify assumption (S1) on page 11 by employing the following

lemma:

Lemma 6.3. Suppose SN satisfies

(22) E
[
(∆SN,t)2

∣∣AN,t

]
= (SN,t)2K∆N t

for some finite constant K ∈ ∗R with ◦K > 0. For any nonanticipating process Θ and any θ ∈ L2(νs)
we then have

Θ is a SL2(νSN )-lifting of θ ⇔ ΘSN is a SL2(QN × ΛN )-lifting of θs.

Proof. The internal algebra AΩN×ΛN on ΩN ×TN is generated by the sets {A×{t} : t ∈ TN , A ∈ AN,t}
(cf. [AFHL86]). Using (22)

νSN (A× {t}) = E
[
1A(∆SN,t)2

]
= E

[
1AS

2
N,t

]
K∆N t

for t ∈ TN , A ∈ AN,t. Since SN,t is non-infinitesimal L(QN )-a.s., and square-S-integrable we have

νSN (B) ≈ 0 ⇔ (QN × ΛN )(B) ≈ 0
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for B ∈ AΩN×TN. This implies that Θ lifts θ with respect to νSN if and only if ΘSN lifts θs with respect
to QN × ΛN . Furthermore,∫

ΩN×TN

Θ2 dνSN = E
[∑

t<T

Θ2(∆SN,t)2
]

= E
[∑

t<T

(ΘSN,t)2K∆N t
]

= K

∫
ΩN×TN

(ΘSN )2 d(QN × ΛN )

by (22) and the tower property for conditional expectations. Hence, Θ ∈ SL2(νSN ) if and only if
ΘSN ∈ SL2(QN × ΛN). �

In order to check (22) we calculate

(23) E
[
(∆SN,t)2

∣∣AN,t

]
= (SN,t)2

(
E
[(
uωtdβ−ωt

)2]− 1
)

Now

E
[(
uωtdβ−ωt

)2] =
β∑

j=0

(
β

j

)
u2jd2(β−j)qj(1 − q)β−j

=
(

1 + σ2 ∆N t

β
− µ2(∆N t/β)2

)β

= 1 + (σ2 + ε)∆N t

with ε ≈ 0. Substituting into (23) we see that SN satisfies (22) with K = σ2 + ε.

We are now in a situation where we can apply Theorem 5.6, so that the valuation of claims and calculation
of mean-self-financing trading strategies in the hyperfinite (β + 1)-nomial CRR model are equivalent to
the corresponding operations in the BS model.

Convergence Results. As in Section 3.4 we can consider the space of continuous paths C = {x ∈
C[0, T ] : x(0) = 0} with the measure Q together with the finite subspaces Cn of polygonal paths of Wn

and measure Qn. Using Theorem 3.11 in the context of these spaces we have the following analogue of
Theorem 4.7 in [CKW93a]:

Theorem 6.4. Let Hn : Ωn → R be a sequence of claims in the (β + 1)-nomial CRR models and
h ∈ L2(Q) a claim in the BS model. Then the following are equivalent:

(i) Hn
D2→ h.

(ii) ΦHn
D2→ φh.

(iii) V (ΦHn) D2→ V (φh).

(iv) G(ΦHn) D2→ G(φh) and V Hn
0 → V h

0 .

An important aspect of D2-convergence is the existence of a discretisation scheme which maps paths in C
back into Cn (see Definition 3.10).

Proposition 6.5. There is an adapted Q-discretisation scheme for the (β + 1)-nomial CRR model.

Proof. Let (dβ
n)n∈N be the adapted Q-discretisation scheme for the binomial CRR model on Ωβ

n

(cf. [CKW93a]), so that dβ
n : C → Cβ

n where Cβ
n := {W β

n (ω) : ω ∈ Ωβ
n} denotes the path space for

the binomial CRR model. Define a map d̃n : Cβ
n → Cn by

(d̃n(ω))(t) := ω(t) for ω ∈ Cβ
n and t ∈ Tn
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and filling in linearly between points in Tn. So d̃n samples paths in Cβ
n at points in Tn and ‘forgets’ what

happens between these points. We now define dn : C → Cn as

dn := d̃n ◦ dβ
n.

To see that (dn)n∈N is an adapted Q-discretisation scheme we note that dn is A n -adapted and Q-measure
preserving since dβ

n and d̃n are. It only remains to show that dn(ω) → ω in Q-probability. Fix ε > 0 and
let δ > 0. As (dβ

n)n∈N is a discretisation scheme there exist nδ ∈ N such that

(24) Q
(‖dβ

n(ω) − ω‖ < ε/2
)
> 1 − δ for all n ≥ nδ.

Furthermore, ‖d̃n(ω) − ω‖ ≤ 2(β + 1)
√

∆nt/β for all ω ∈ Cβ
n . We therefore have ñ ∈ N such that

‖d̃n(ω) − ω‖ < ε/2 for all n ≥ ñ and ω ∈ Cβ
n . Hence, for n ≥ max{nδ, ñ},

Q
(‖dn(ω) − ω‖ < ε

)
= Q

(‖d̃n(dβ
n(ω)) − dβ

n(ω) + dβ
n(ω) − ω‖ < ε

)
≥ Q

(‖d̃n(dβ
n(ω)) − dβ

n(ω)‖ + ‖dβ
n(ω) − ω‖ < ε

)
≥ Q

(
ε/2 + ‖dβ

n(ω) − ω‖ < ε
)

> 1 − δ.

�

Remark 6.6. The convergence result in Theorem 6.4 could also have been obtained under the minimal
martingale measure for the multinomial CRR model. Therefore our choice of the measure Qn might
seem arbitrary; however, note that the minimal martingale measure depends on the specification of the
‘physical’ probability in the underlying model. We may therefore also use a martingale measure from the
beginning. Furthermore, our choice of Qn allows the construction of an adapted discretisation scheme
from the already existing one for the binomial CRR model as in the proof of Proposition 6.5.

It was shown in [CKW93a, Theorem 4.4] that a sequence of D2-convergent claims can always be obtained
by means of an adapted discretisation scheme. However, when considering a specific claim h in the BS
model a D2-convergent sequence (Hn)n∈N approximating h can often be found in a more direct and
natural way:

Example 6.7. If the claim h only depends on the price of the risky asset at maturity, i.e. h = f(sT ) for
some function f : R → R then Hn := f(Sn,T ) is a natural choice of an approximating sequence for h.
Indeed, if f is piecewise continuous and satisfies a polynomial growth condition it is easy to see that

Hn
D2→ h.

Example 6.8 (Asian options). If h =
(

1
T

∫ T

0
stdt−K

)+ is an Asian call option with fixed strike price K
then the claims Hn :=

(
1
T

∑
t<T Sn,t∆nt − K

)
+ yield a D2-convergent sequence approximating h. To

see this note that, for N ∈ ∗N \ N, SN is S-continuous, i.e. for ω ∈ Ω̃N ⊂ ΩN the path SN,·(ω) is
S-continuous where L(QN )(Ω̃N ) = 1. In particular, SN,·(ω) is bounded, hence S-integrable with respect
to ΛN . Therefore

◦
(∑

t<T

SN,t(ω)∆N t
)

=
∫ T

0

st(ω) dt for ω ∈ Ω̃N ,

which shows that HN is a lifting of h. By Lemma 6.2(iii) SN,t ∈ SLr(QN) for any r ∈ [1,∞). This
implies that

∑
t<T SN,t∆nt ∈ SLr(QN ) for any r ∈ [1,∞). The same applies to an Asian option with

average strike price, i.e. h =
(
sT − K

T

∫ T

0 stdt
)+.
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Summing up the results of this section we have shown that, for any β ∈ N, the (β+1)-nomial CRR model
has exactly the same convergence properties as the complete binomial CRR model, provided we are using
mean-variance hedging for pricing and replicating claims in these models. When using finite models as
approximations of the continuous time BS model the use of binomial models does therefore not offer any
advantage over multinomial models. This gives a theoretical justification for the use of trinomial models
in numerical methods for derivatives pricing and hedging; trinomial models are often preferred because
they allow a more efficient calculation of prices (see [Wel98] for examples) and hedging parameters (the
‘greeks’); it should also be noted that the use of trinomial models is equivalent to explicit finite difference
methods for the numerical solutions of the pricing PDE (cf. for example [CS98]).

6.2. Direct Discretisation of the Price Process. In this section we consider a Black-Scholes model
on a filtered probability space (Ω,F , P ) with time-dependent deterministic drift (µt)t∈[0,T ] and volatility
(σt)t∈[0,T ]. We assume that the functions µ, σ : [0, T ] → R are piecewise continuous and bounded.
Furthermore, σt > 0 for all t ∈ [0, T ].

It is well-known that this model is complete (see e.g. [BK98, MR97]), so that there is a unique equivalent
martingale measure Q for the price process s, and under this measure s is the solution to the stochastic
differential equation

dst

st
= σt dw̃t

where w̃ is a standard Brownian motion under Q, i.e. s is given as

(25) st = s0 exp
(
−1

2

∫ t

0

σ2
u du+

∫ t

0

σu dw̃u

)
.

From now on we will work with the measure Q; a filtration F on (Ω,F) is generated by w̃. For any
h ∈ L2(Q) let φh be the unique self-financing strategy generating h.

To define a sequence of discrete time models approximating (25) we follow the ‘direct discretisation’
approach in [RS95]. We first approximate the volatility function σ by a sequence of piecewise constant
functions: For n ∈ N and ∆nt := T/n define σn : [0, T ] → R by

(26) σn(t) := σ(0)1{0}(t) +
∑
s<t

σ(s)1(s,s+∆nt](t)

(with the sum taken over Tn = {0,∆nt, . . . , t}). This means that σn(t) = σ(t) for t ∈ Tn and σn remains
constant between points in Tn. So σn is left-continuous with right limits, bounded and strictly positive.

We define another Q-martingale sn : Ω × [0, T ] → R by

sn,t := s0 exp
(
−1

2

∫ t

0

σ2
n,u du +

∫ t

0

σn,u dw̃u

)
We can then obtain a discrete time process Sn : Ω×Tn → R by evaluating sn at the discretisation points
t ∈ Tn, so that Sn satisfies

Sn,t+∆nt = Sn,t exp
(
−1

2
σ2

n,t∆nt+ σn,t∆w̃t

)
, t ∈ Tn \ {T },(27)

Sn,0 = s0,

where ∆w̃t := w̃t+∆nt − w̃t ∼ N (0,∆nt).
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The Discrete Time Model and its Internal Version. We define the n-th discretised BS model
as follows: Let Ωn := RTn\{T}, Fn := B(Ω) and Qn the probability defined by ωt ∼ N (0,∆nt) and
ω0, . . . , ωT−∆nt independent. A filtration A n is generated by the process Wn : Ωn × Tn → R with
∆Wn,t := ωt, Wn,0 := 0. The price process Sn is then defined as in (27), with ∆w̃t replaced by ∆Wn,t.

The discretised BS model satisfies the assumptions of Section 2.1 so that any claim H ∈ L2(Qn) can be
replicated by a risk-minimising mean-self-financing strategy ΦH = (ΘH ,ΨH). Again the variance-optimal
strategy ξH coincides with ΘH .

As before, for infinite N , this gives rise to an internal model on (ΩN , A N ,FN , QN ) with associated
Loeb space (ΩN , L(FN), L(QN )). By [Cut87, Theorem 2.2] the internal process WN is S-continuous and
w := st(WN ) is a standard Brownian motion on the Loeb space.

Due to the piecewise continuity of σ we have

σN (t) = ∗σ(t) ≈ σ( ◦t) for L(ΛN)-a.a. t ∈ TN ,

so that σN is an S-bounded lifting of σ. Hence

SN,t = s0 exp
(
−1

2

∑
s<t

σ2
N,s∆N t+

∑
s<t

σN,s∆WN,s

)

is S-continuous and

st(SN )u = s0 exp
(
−1

2

∫ t

0

σ2
udu +

∫ t

0

σudwu

)
.

Calculating

E
[
Sr

N,t

]
= sr

0 exp
(
−1

2
(r − r2)

∑
s<t

σ2
N,s∆N t

)
for r ∈ R

shows that SN is an SLr-martingale for any r ∈ [1,∞). Finally

E
[
(∆SN,t)2

∣∣AN,t

]
= S2

N,t

(
exp(σ2

N,t∆N t) − 1
)

= S2
N,t(σ

2
N,t + εt)∆N t

with εt ≈ 0 for all t ∈ TN , so that we can use the proof of Lemma 6.3 to show that assumption (S1) in
Section 5 is satisfied. Hence Theorem 5.6 holds for this internal model and the BS model (25); we can
now use it to obtain standard convergence results for the sequence of discretised BS models (27):

Convergence Results. As in Section 6.1 we assume that Ω = C for the BS model and we consider the
subspaces Cn ⊂ C of polygonal paths of Wn. We therefore have the following analogue to Theorem 6.4:

Theorem 6.9. Let Hn : Ωn → R be a sequence of claims in the discretised BS models and h ∈ L2(Q) a
claim in the BS model. Then the following are equivalent:

(i) Hn
D2→ h.

(ii) ΦHn
D2→ φh.

(iii) V (ΦHn) D2→ V (φh).

(iv) G(ΦHn) D2→ G(φh) and V Hn
0 → V h

0 .

We will see below how we can obtain an almost trivial adapted Q-discretisation scheme (dn)n∈N for these
models, so that we also have the alternative characterization of D2-convergence in terms of ‘L2(dn(·))-
convergence’ given by Theorem 3.11:
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Proposition 6.10. The family of mappings dn : C → Cn defined by

(28) (dn(ω))(t) := ω(t) for ω ∈ C and t ∈ Tn,

with dn(ω) filled in linearly between points in Tn, is an adapted Q-discretisation scheme.

Proof. Firstly, dn is A n -adapted by definition. Furthermore, Q(d−1
n (A)) = Qn(A) for all A ∈ Fn due

to the fact that the finite-dimensional distributions of a Brownian motion are multivariate normal. It
therefore only remains to show that dn(ω) → ω in Q-probability.

Using [Cut87, Theorem 2.2] once again we see that, for infinite N ∈ ∗N \ N, the standard part of the
process dN : ∗C × TN → ∗R defined by (28) is a standard Brownian motion on ( ∗C, L( ∗F), L( ∗Q)),
hence

L( ∗Q)
(‖dN ( ∗ω) − ∗ω‖ ≈ 0

)
= 1,

in particular, for any positive ε ∈ R,

1 = L( ∗Q)
(‖dN( ∗ω) − ∗ω‖ < ε

) ≈ ∗Q
(‖dN ( ∗ω) − ∗ω‖ < ε

)
.

By the nonstandard characterization of convergence of a sequence in R this means that

Q
(‖dn(ω) − ω‖ < ε

)→ 1 as n→ ∞.

�

7. Conclusion

Although the proofs employed in this paper make extensive use of nonstandard stochastic analy-
sis, as developed in [HP83] and [AFHL86], the main results themselves (including the formulation of
D2−convergence) are expressed entirely within the framework and terminology of standard stochastic
analysis. The nonstandard tools used here, however, provide a degree of insight into the essential struc-
ture of the models and the relationship between them which is not easily obtained by purely standard
methods.

The techniques developed in this paper enable us to extend to certain incomplete market models the
convergence theory developed in [CKW93a] for approximations to the Black-Scholes model. By utilizing
the stability properties of the minimal martingale measure approach and developing the appropriate
liftings, we were able to demonstrate the equivalence of the D2−convergence of contingent claims and
that of their associated strategies, which distinguishes this mode of convergence from the more usual
weak convergence methodology.

Weak convergence results for strategies do not, to our knowledge, exist in the literature for the various
models dealt with in this paper. The D2−convergence results obtained in the final section of this paper
provide a theoretical justification for the multinomial approximations often used in practice and for direct
sampling methods applied to continuous-time models.

However, our methodology still requires the limiting model to be complete, even though this restriction
is not placed on the approximating discrete models. It would be interesting to see an extension of this
approach to situations where the limit model is also allowed to be incomplete.
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8. Appendix: Proof of Proposition 4.1

The following lemma is needed in the proof of Proposition 4.1. It shows how the “pure jump” part of a cadlag

function can be approximated by an internal function.

Lemma 8.1. Let F : T→ ∗
R be an SDJ function such that

(29)
∑
s<T

(∆Fs)
2 is finite.

Let f := st(F ) be the standard part of F . Then there exists an internal subset T̃ of T such that the functions

J : T→ ∗
R, j : [0, T ] → R defined as

J(t) :=
∑
s<t
s∈T̃

∆Fs +
1

2
(∆Fs)

2 and j(v) :=
∑
u≤v

∆fu +
1

2
(∆fu)2

satisfy j = st(J). Furthermore, the functions K : T→ ∗
R, k : [0, T ] → R defined as

K(t) :=
∏
s<t
s∈T̃

(1 + ∆Fs) and k(v) :=
∏
u≤v

(1 + ∆fu)

satisfy k = st(K).

Proof. Let B := max{|∆Fs| + 1 : s ∈ T}. Then B is finite and | ◦∆Fs| ≤ B for all s ∈ T. There are at most

countably many points u ∈ [0, T ] such that |∆fu| > 0. Since F is SDJ there exists a unique s ∈ T for every

u ∈ [0, T ] with |∆fu| > 0 such that s ≈ u,

(30) ◦F (s) = f(u−) and ◦F (s + ∆t) = f(u), hence ◦∆Fs = ∆fu.

Now let J := {u ∈ [0, T ] : |∆fu| > 0} = {u1, u2, . . .} be the (possibly) finite set of jump points of f .

Case (i): J is a finite — possibly empty — set. Let T̃ be the set of corresponding jump points s of F as defined

in (30). Then T̃ is finite (or empty), hence internal and, for t ∈ T,

(31) ◦J(t) =
∑
s<t
s∈T̃

◦∆Fs +
1

2
( ◦∆Fs)

2 and ◦K(t) =
∏
s<t
s∈T̃

(1 + ◦∆Fs).

Case (ii): J is countably infinite. Due to assumption (29) the set of u ∈ [0, T ] such that |∆fu| > c is finite for any

fixed c > 0. We may therefore assume (by applying Case (i) to a subset of J if necessary) that |∆fu| < 1
2

for all

u ∈ J. Let (ui)i∈Nbe an enumeration of the points in J and (si)i∈Nthe sequence of corresponding non-infinitesimal

jump points in T as defined in (30). By Countable Comprehension (see e.g. Section 1.2.3 in [Cut00]) this sequence

can be extended to a sequence (si)i∈ ∗Nwith si ∈ T for all i ∈ ∗
N.

Now let ε̄ := max{|Fs − ◦Fs| : s ∈ T}, so ε̄ ≈ 0 and max{|∆Fs − ◦∆Fs| : s ∈ T} ≤ 2ε̄.

Choose M ∈ ∗
N \ N such that Mε̄ ≈ 0 and M ≤ N (e.g. let M = min{[1/

√
ε̄], N} where [r] denotes the integer

part of r ∈ ∗
R).

Define T̃ := {si : i ≤ M} ⊂ T. Then T̃ is internal and

(32) ◦J(t) = ◦
(∑

s<t
s∈T̃

∆Fs +
1

2
(∆Fs)

2
)

=
∑
s<t
s∈T̃

◦∆Fs +
1

2
( ◦∆Fs)

2
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as

∣∣∣
∑
s<t
s∈T̃

∆Fs − ◦∆Fs +
1

2

(
(∆Fs)

2 − ( ◦∆Fs)
2
)∣∣∣

≤
∑
s<t
s∈T̃

|∆Fs − ◦∆Fs| + 1

2
|∆Fs − ◦∆Fs| · |∆Fs + ◦∆Fs|

≤ M(2ε̄ + 2Bε̄) ≈ 0.

Furthermore, writing log(1 + x) = x + ε,

∣∣∣log(
∏
s<t
s∈T̃

(1 + ∆Fs)
)− log

(∏
s<t
s∈T̃

(1 + ◦∆Fs)
)∣∣∣ ≤

∑
s<t
s∈T̃

∣∣∣log(1 + ∆Fs) − log(1 + ◦∆Fs)
∣∣∣

=
∑
s<t
s∈T̃

∣∣∣∣∣log
(
1 +

∆Fs − ◦∆Fs

1 + ◦∆Fs

)∣∣∣∣∣

≤
∑
s<t
s∈T̃

∣∣∣∆Fs − ◦∆Fs

1 + ◦∆Fs

∣∣∣+ |εs|.

Recall that |∆fu| < 1
2

for all u ∈ J, so that, for s ∈ T̃, | ◦∆Fs| ≤ 1
2
, which implies that 1 + ◦∆Fs ≥ 1

2
. Since

| log(1 + x) − x| ≤ |x|2 for |x| ≤ 1
2

we see that |εs| ≤ 4|∆Fs − ◦∆Fs|2 and hence the final sum is bounded by

∑
s<t
s∈T̃

2|∆Fs − ◦∆Fs| + 4|∆Fs − ◦∆Fs|2 ≤ M(4ε̄ + 16ε̄2) = 4Mε̄(1 + 4ε̄) ≈ 0,

thus, by the S-continuity of the exponential function

(33) ◦K(t) = ◦
(∏

s<t
s∈T̃

(1 + ∆Fs)
)

=
∏
s<t
s∈T̃

(1 + ◦∆Fs).

We now show that st(J) = j and st(K) = k in either case: Let v ∈ [0, T ]. Then there are points v′, v′′ ∈ J such

that v′ ≤ v < v′′ and s /∈ J for all v′ < s < v′′ (i.e. v′, v′′ are the nearest jump points to the left and right of v

— note that possibly v′ = v). Let t′, t′′ be the corresponding points in T̃ as defined in (30). Then ◦|v − t′′| > 0.

Hence, using (31) and (32), and observing that j only changes values at points u ∈ J while ◦J(·) changes values

only at the corresponding points s ∈ T̃,

st(J)(v) = lim◦t↓v

◦J(t) = lim◦t↓v

∑
s<t
s∈T̃

◦∆Fs +
1

2
( ◦∆Fs)

2

=
∑

s<t′
s∈T̃

◦∆Fs +
1

2
( ◦∆Fs)

2

=
∑
u≤v′

∆fs +
1

2
(∆fs)

2 = j(v).

An analogous argument (using (31) and (33)) then shows that st(K) = k. �

Proof of Proposition 4.1. Let Ω̃ be the subset of Ω such that X(ω) and [X](ω) are SDJ and st([X](ω)) = [x](ω)

for all ω ∈ Ω̃. We know from Theorem 3.4(ii) that PL(Ω̃) = 1. Now fix ω ∈ Ω̃.
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Let T̃ be the internal subset of T obtained by applying Lemma 8.1 to the path X(ω) (i.e. T̃ contains all s ∈ T

such that ◦|∆Xs(ω)| > 0). Set T′′ := T \ T̃ and write Z(ω) = Z′ · Z′′ with

Z′
t :=

∏
s<t
s∈T̃

(1 + ∆Xs)

= exp
(∑

s<t
s∈T̃

∆Xs − 1

2
(∆Xs)

2 − ∆Xs +
1

2
(∆Xs)

2
)∏

s<t
s∈T̃

(1 + ∆Xs),(34)

Z′′
t :=

∏
s<t

s∈T′′

(1 + ∆Xs).(35)

Since | log(1 + y) − y + 1
2
y2| ≤ |y|3 for |y| ≤ 1

2
and ◦|∆Xs| = 0 for all s ∈ T

′′ we have

log(Z′′
t ) =

∑
s<t

s∈T′′

log(1 + ∆Xs) =
∑
s<t

s∈T′′

∆Xs − 1

2
(∆Xs)

2 + εs with |εs| ≤ |∆Xs|3.

Let ε̄ := max{|∆Xs| : s ∈ T
′′}. Then ε̄ ≈ 0 and

∣∣∣
∑
s<t

s∈T′′

εs

∣∣∣ ≤ ε̄
∑
s<t

(∆Xs)
2 = ε̄ · [X]t ≈ 0

as [X] is SDJ; hence, by the S-continuity of the exponential function,

Z′′
t ≈ exp

(∑
s<t

s∈T′′

∆Xs − 1

2
(∆Xs)

2
)
.

Therefore, by (34) and (35),

Zt ≈ exp
(
Xt − 1

2
[X]t
)∏

s<t
s∈T̃

(1 + ∆Xs)
∑
s<t
s∈T̃

exp
(
−∆Xs +

1

2
(∆Xs)

2
)
.

Observing that st(X) = x and st([X]) = [x] it then follows from the definition of T̃ in Lemma 8.1 and the

S-continuity of the exponential function that

st(Z)v = exp
(
xv − 1

2
[x]v
) ∏

u≤v

(1 + ∆xu) exp
(
−∆xu +

1

2
(∆xu)2

)
.

�
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