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1 Introduction

In this paper, we study a family of coalescent processes that undergo “simultaneous multiple
collisions,” meaning that many clusters of particles can merge into a single cluster at one time,
and many such mergers can occur simultaneously. These processes were previously introduced
in [13] by Möhle and Sagitov, who obtained them by taking limits of scaled ancestral processes
in a population model with exchangeable family sizes. Here we take a different approach to
characterizing these processes. The approach is similar to that used by Pitman in [16] for “coa-
lescents with multiple collisions,” also called Λ-coalescents, in which many clusters of particles
can merge at one time into a single cluster but almost surely no two such mergers occur simul-
taneously. The family of processes studied here includes the Λ-coalescents as a special case, and
we generalize several facts about Λ-coalescents.

Let Pn denote the set of partitions of {1, . . . , n}, and let P∞ denote the set of partitions of
N = {1, 2, . . .}. Given m < n ≤ ∞ and π ∈ Pn, let Rmπ be the partition in Pm obtained by
restricting π to {1, . . . ,m}. That is, if 1 ≤ i < j ≤ m, then i and j are in the same block of
the partition Rmπ if and only if they are in the same block of π. Following [16], we identify
each π ∈ P∞ with the sequence (R1π,R2π, . . .) ∈ P1 × P2 × . . .. Each Pn is given the discrete
topology and P∞ is given the topology that it inherits from the product P1 ×P2 × . . ., so P∞ is
compact and metrizable. We equip P∞ with the Borel σ-field associated with this topology. We
call a Pn-valued process (Πn(t))t≥0 a coalescent if it has right-continuous step function paths
and if Πn(s) is a refinement of Πn(t) for all s < t. We call a P∞-valued process (Π∞(t))t≥0 a
coalescent if it has càdlàg paths and if Π∞(s) is a refinement of Π∞(t) for all s < t. Equivalently,
(Π∞(t))t≥0 is a coalescent if and only if for each n, the process (RnΠ∞(t))t≥0 is a coalescent.

In [16], Pitman studies “coalescents with multiple collisions,” which are P∞-valued coalescents
(Π∞(t))t≥0 with the property that for each n ∈ N , the process (RnΠ∞(t))t≥0 is a Pn-valued
Markov chain such that when RnΠ∞(t) has b blocks, each possible merger of k blocks into a single
block is occurring at some fixed rate λb,k that does not depend on n, and no other transitions
are possible. It is shown in [16] that given a collection of rates {λb,k : 2 ≤ k ≤ b < ∞}, such a
process exists if and only if the consistency condition

λb,k = λb+1,k + λb+1,k+1 (1)

holds for all 2 ≤ k ≤ b. Theorem 1 of [16] shows that (1) holds if and only if whenever 2 ≤ k ≤ b,
we have

λb,k =
∫ 1

0
xk−2(1 − x)b−k Λ(dx) (2)

for some finite measure Λ on [0, 1]. The process is then called the Λ-coalescent. When Λ is a
unit mass at zero, we obtain Kingman’s coalescent, a process introduced in [10] in which only
two blocks can merge at a time and each pair of blocks is merging at rate 1. The case in which
Λ is the uniform distribution on [0, 1] was studied by Bolthausen and Sznitman in [3].

In [18], Sagitov obtains all of the Λ-coalescents, up to a time-scaling constant, as limits of
ancestral processes in a haploid population model with an exchangeable distribution of family
sizes in which there are N individuals in each generation. The ancestral processes are Pn-valued
processes obtained by sampling n out of N individuals from the current generation and tracing
their ancestors backwards in time. A simpler formulation of this convergence result is presented
in [12], and similar results for a diploid population model are given in [14].
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An important property of the Λ-coalescent is that the rate at which blocks are merging does not
depend on the size of the blocks or on which integers are in the blocks. It is therefore natural to
pursue a generalization to a larger class of processes that still have this property but that may
undergo “simultaneous multiple collisions.” The possibility of such a generalization is mentioned
in section 3.3 of [16]. We define a (b; k1, . . . , kr; s)-collision to be a merger of b blocks into r + s
blocks in which s blocks remain unchanged and the other r blocks contain k1, . . . , kr ≥ 2 of the
original blocks. Thus, b =

∑r
j=1 kj + s. The order of k1, . . . , kr does not matter; for example,

any (5; 3, 2; 0)-collision is also a (5; 2, 3; 0)-collision. It is easily checked (see equation (11) of
[15]) that if r ≥ 1, k1, . . . , kr ≥ 2, s ≥ 0, b =

∑r
j=1 kj + s, and lj is the number of k1, . . . , kr that

equal j, then the number of possible (b; k1, . . . , kr; s)-collisions is

b!

s!
∏b

j=2(j!)
lj lj!

=
(

b
k1 . . . kr s

)
1∏b

j=2 lj !
. (3)

We define a coalescent with simultaneous multiple collisions to be a P∞-valued coalescent process
(Π∞(t))t≥0 with the property that for each n ∈ N , the process (RnΠ∞(t))t≥0 is a Pn-valued
Markov chain such that when RnΠ∞(t) has b blocks, each possible (b; k1, . . . , kr; s)-collision is
occurring at some fixed rate λb;k1,...,kr;s.

In [13], Möhle and Sagitov generalize the proofs in [12] and obtain coalescents with simultaneous
multiple collisions as limits of ancestral processes in a haploid population model. We now
describe their model and their results. Assume there are N individuals in each generation.
For all a ≥ 0, let ν

(a)
1,N , . . . , ν

(a)
N,N denote the family sizes in the ath generation backwards in

time, where ν
(a)
i,N is the number of offspring of the ith individual in the (a + 1)st generation

backwards in time. Note that ν
(a)
1,N + . . . + ν

(a)
N,N = N because the population size is fixed. The

random variables ν
(a)
1,N , . . . , ν

(a)
N,N are assumed to be independent for different generations. The

distribution of (ν(a)
1,N , . . . , ν

(a)
N,N ), which we denote by µN , is assumed to be exchangeable and to

be the same for all a. Therefore, we will suppress the superscript in the notation when we are
concerned only about the distributions of the family sizes. Möhle and Sagitov consider a random
sample of n ≤ N distinct individuals from the 0th generation. They define the Markov chain
(Ψn,N (a))∞a=0, where Ψn,N(a) is the random partition of {1, . . . , n} such that i and j are in the
same block if and only if the ith and jth individuals in the sample have a common ancestor in
the ath generation backwards in time. Let (m)k = m(m − 1) . . . (m − k + 1), and let (m)0 = 1.
Let cN be the probability that two individuals chosen randomly from some generation have the
same ancestor in the previous generation. ¿From equation (5) of [13], we have

cN =
E[(ν1,N )2]

N − 1
. (4)

The following result is part of Theorem 2.1 in [13].

Proposition 1 In the population model described above, suppose for all r ∈ N and k1, . . . , kr ≥
2, the limits

lim
N→∞

E[(ν1,N )k1 . . . (νr,N )kr ]
Nk1+...+kr−rcN

(5)

exist. Also suppose limN→∞ cN = 0. Then as N → ∞, the processes (Ψn,N (bt/cN c))t≥0 converge
in the Skorohod topology to a coalescent process (Ψn,∞(t))t≥0. Here, Ψn,∞(0) is the partition
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of {1, . . . , n} into singletons, and when Ψn,∞(t) has b blocks, each (b; k1, . . . , kr; s)-collision is
occurring at some fixed rate λb;k1,...,kr;s. Moreover, there exists a unique sequence of measures
(Fr)∞r=1 satisfying the following three conditions:

A1: each Fr is concentrated on ∆r = {(x1, . . . xr) : xi ≥ 0 for all i and
∑r

i=1 xi ≤ 1},
A2: each Fr is symmetric with respect to the r coordinates of ∆r,

A3: 1 = F1(∆1) ≥ F2(∆2) ≥ . . .,

such that all of the collision rates satisfy

λb;k1,...,kr;s =
br+s/2c∑

m=r

∫
∆m

xk1−2
1 . . . xkr−2

r T (m)
r,s (x1, . . . , xm)Fm(dx1, . . . dxm), (6)

where

T (m)
m,s (x1, . . . , xm) = (1 −

m∑
i=1

xi)s (7)

and for 1 ≤ j ≤ m,

T
(m)
m−j,s(x1, . . . , xm) = (−1)j+1

ij+1−2∑
ij=2j−1

. . .

i2−2∑
i1=1

j∏
k=0

ik(1 −
m−k∑
i=1

xi)ik+1−ik−2, (8)

when we set i0 = −1 and ij+1 = s + 1.

Möhle and Sagitov point out that when s = 0, equation (6) gives

λb;k1,...,kr;0 =
∫

∆r

xk1−2
1 . . . xkr−2

r Fr(dx1, . . . , dxr), (9)

so the moments of the measures Fr are collision rates. Also, equation (9) above and equations
(16) and (19) of [13] imply that

λb;k1,...,kr;0 = lim
N→∞

E[(ν1,N )k1 . . . (νr,N )kr ]
Nk1+...+kr−rcN

(10)

for all r ≥ 1, k1, . . . , kr ≥ 2, and b =
∑r

j=1 kj .

Note that some condition like the existence of the limits in (5) is needed to relate the distributions
µN for different values of N . The condition limN→∞ cN = 0 ensures that the limit obtained is
a continuous-time process. If instead limN→∞ cN = c > 0, then Theorem 2.1 of [13] states that
the limit is a discrete-time Markov chain.

Note that the rates λb;k1,...,kr;s calculated in (6) do not depend on n. By Lemma 3.4 of [13] and
equation (27) of [13], the rates satisfy the consistency condition

λb;k1,...,kr;s =
r∑

m=1

λb+1;k1,...,km−1,km+1,km+1,...,kr;s + sλb+1;k1,...,kr,2;s−1 + λb+1;k1,...,kr;s+1.

In section 4, we will prove Lemma 18, which shows that this condition implies the existence of a
P∞-valued coalescent (Π∞(t))t≥0 with the property that (RnΠ∞(t))t≥0 and (Ψn,∞(t))t≥0 have
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the same distribution for all n ∈ N . Thus, coalescents with simultaneous multiple collisions can
be derived from the ancestral processes studied in [13].

However, Möhle and Sagitov leave open the question of whether every possible coalescent with
simultaneous multiple collisions can be obtained as a limit of ancestral processes in their pop-
ulation model. They also do not discuss the questions of which sequences of measures (Fr)∞r=1

satisfying conditions A1, A2, and A3 of Proposition 1 are associated with coalescent processes
in the manner described above, and whether there is a natural probabilistic interpretation of
the measures Fr, aside from the interpretation of their moments as collision rates.

The primary goals of this paper are to answer these questions, and to establish an alternative
characterization of coalescents with simultaneous multiple collisions based on a single measure
Ξ on the infinite simplex

∆ = {(x1, x2, . . .) : x1 ≥ x2 ≥ . . . ≥ 0,
∞∑
i=1

xi ≤ 1}.

We will show that, up to a scaling constant, all coalescents with simultaneous multiple collisions
can be obtained as limits of ancestral process as described above, and therefore these coalescents
can be characterized either by a single measure Ξ or by a sequence of measures (Fr)∞r=1. One
advantage to the characterization based on Ξ is that every finite measure on the infinite simplex
is associated with a coalescent process. However, for a sequence of measures (Fr)∞r=1 satisfying
conditions A1, A2, and A3 of Proposition 1 to be associated with a coalescent process, we will
show that it must satisfy an additional consistency condition that does not appear to be easy
to check.

The rest of this paper is organized as follows. In section 2, we summarize the results that
establish the two characterizations of coalescents with simultaneous multiple collisions. We also
state results that give interpretations of the characterizing measures. In section 3, we give
a Poisson process construction of these coalescents. The Poisson process construction is an
important tool for studying the coalescents and is used in most of the proofs in the paper. In
section 4 we prove the results stated in section 2. In section 5, we build on work done for
the Λ-coalescent to establish some further properties of coalescents with simultaneous multiple
collisions. We establish there some regularity properties of the coalescents and derive a condition
for a coalescent with simultaneous multiple collisions to be a jump-hold Markov process with
bounded transition rates. We also present some results related to the question of whether the
coalescents “come down from infinity,” meaning that only finitely many blocks remain at any
time t > 0 even if the coalescent is started with infinitely many blocks at time zero. Finally in
section 6, we discuss the discrete-time analogs of these processes, which can also arise as limits
of ancestral processes in the population models studied in [13].

2 Summary of results characterizing the coalescents

In this section, we summarize the results needed to establish the two characterizations of the
coalescents with simultaneous multiple collisions, one involving a single measure Ξ and the other
involving a sequence of measures (Fr)∞r=1. The proofs of all propositions and theorems in this
section are given in section 4.
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We first state the main theorem of this paper, which characterizes coalescents with simultaneous
multiple collisions in terms of a measure Ξ on the infinite simplex ∆. In the statement of this
result, and throughout the rest of the paper, we refer to the point (0, 0, . . .) ∈ ∆ as “zero,” and
we denote a generic point in ∆ by x = (x1, x2, . . .).

Theorem 2 Let {λb;k1,...,kr;s : r ≥ 1, k1, . . . , kr ≥ 2, s ≥ 0, b =
∑r

j=1 kj + s} be a collection of
nonnegative real numbers. Then there exists a P∞-valued coalescent Π∞ = (Π∞(t))t≥0 satisfying:

B1: Π∞(0) is the partition of N into singletons,

B2: for each n, Πn = RnΠ∞ is a Markov chain such that when Πn(t) has b blocks,

each (b; k1, . . . , kr; s)-collision is occurring at the rate λb;k1,...,kr;s,

if and only if there is a finite measure Ξ on the infinite simplex ∆ of the form Ξ = Ξ0 + aδ0,
where Ξ0 has no atom at zero and δ0 is a unit mass at zero, such that λb;k1,...,kr;s equals

∫
∆

( s∑
l=0

∑
i1 6=...6=ir+l

(
s
l

)
xk1

i1
. . . xkr

ir
xir+1 . . . xir+l

(1 −
∞∑

j=1

xj)
s−l

)/ ∞∑
j=1

x2
j Ξ0(dx) + a1{r=1,k1=2}

(11)
for all r ≥ 1, k1, . . . , kr ≥ 2, s ≥ 0, and b =

∑r
j=1 kj + s.

Definition 3 We call a coalescent process satisfying B2 whose collision rates are given by (11)
for a particular finite measure Ξ on ∆ a Ξ-coalescent. We call a Ξ-coalescent satisfying B1 the
standard Ξ-coalescent.

Suppose π ∈ P∞ and B1, B2, . . . are the blocks of π. If (Π∞(t))t≥0 is a standard Ξ-coalescent,
then we can define a Ξ-coalescent (Ππ∞(t))t≥0 satisfying Ππ∞(0) = π by defining i ∈ Bk and
j ∈ Bl to be in the same block of Ππ∞(t) if and only if k and l are in the same block of Π∞(t).
Since any Ξ-coalescent can thus be derived easily from the standard Ξ-coalescent, we will restrict
our attention to the standard Ξ-coalescent whenever it is simpler to do so.

For any finite measure Ξ on ∆, a collection of nonnegative collision rates can be defined by (11),
so Theorem 2 implies that a standard Ξ-coalescent exists. The following proposition states that
the collision rates of a coalescent with simultaneous multiple collisions uniquely determine the
associated measure Ξ. Thus, there is a one-to-one correspondence between finite measures Ξ on
∆ and coalescent processes satisfying conditions B1 and B2 of Theorem 2.

Proposition 4 Let Ξ and Ξ′ be finite measures on the infinite simplex ∆. Let Π∞ = (Π∞(t))t≥0

be a standard Ξ-coalescent. If Π∞ is also a standard Ξ′-coalescent, then Ξ = Ξ′.

Observe that we can easily recover the Λ-coalescent as a special case of the Ξ-coalescent. Suppose
Ξ is concentrated on the subset of ∆ consisting of the sequences (x1, x2, . . .) such that xi = 0
for all i ≥ 2. Then, λb;k1,...,kr;s = 0 unless r = 1. When r = 1, the expression inside the double
summation in the numerator in the integrand of (11) is zero unless l = 0, so

λb;k1;b−k1 =
∫

∆
xk1

1 (1 − x1)b−k1/x2
1 Ξ0(dx) + a1{k1=2}.
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This result agrees with the formula for λb,k1 given in (2) when Λ is the projection of Ξ onto
the first coordinate. Note that when Ξ is a unit mass at zero, the Ξ-coalescent is therefore
Kingman’s coalescent.
We next work towards giving an interpretation of the measure Ξ. Equation (11) implies that

λ2;2;0 =
∫

∆

( ∞∑
i=1

x2
i

/ ∞∑
j=1

x2
j

)
Ξ0(dx) + a = Ξ0(∆) + a = Ξ(∆). (12)

If Ξ(∆) = 0, then all the collision rates are zero. Otherwise (12) implies that Ξ = λ2;2;0G,
where G is a probability measure defined by G(S) = Ξ(S)/Ξ(∆) for all measurable subsets S
of ∆. From (11), we see that if Ξ is multiplied by a constant, then all of the collision rates are
multiplied by the same constant. Therefore, unless Ξ = 0, any Ξ-coalescent can be obtained
from a G-coalescent, where G is a probability measure, by rescaling time by a constant factor.
To interpret G, we first give the following definition.

Definition 5 Let G be a probability measure on the infinite simplex ∆, and let S ⊂ N . Let
Θ̃ be an exchangeable random partition of N such that the ranked sequence of limiting relative
frequencies of the blocks of Θ̃ has distribution G; such partitions are defined in appendix A. Let
Θ be the random partition of S such that if i, j ∈ S, then i and j are in the same block of Θ if
and only if i and j are in the same block of Θ̃. A G-partition of S is defined to be a random
partition of S with the same distribution as Θ.

The following proposition, which is the natural analog of Theorem 4 of [16], gives an interpre-
tation of G. We write #π for the number of blocks in a partition π.

Proposition 6 Let G be a probability measure on the infinite simplex ∆. Let Π∞ = (Π∞(t))t≥0

be a standard G-coalescent. Let T = inf{t : #R2Π∞(t) = 1} be the collision time of 1 and 2. Let
B1, B2, . . . be the blocks of Π∞(T−). Let Θ be a partition of {3, 4, . . .} on {#Π∞(T−) = ∞} and
a partition of {3, 4, . . . ,#Π∞(T−)} on {#Π∞(T−) < ∞} such that i and j are in the same block
of Θ if and only if Bi and Bj are in the same block of Π∞(T ). If P (#Π∞(T−) = ∞) > 0, then
conditional on {#Π∞(T−) = ∞}, Θ is a G-partition of {3, 4, . . .}. If P (#Π∞(T−) = n) > 0,
then conditional on {#Π∞(T−) = n}, Θ is a G-partition of {3, 4, . . . , n}.

Note that essentially the same result would hold if we defined T to be the time at which two
arbitrary fixed integers merged, but we state the result in terms of the collision time of 1 and 2
to simplify notation.
We now turn to the question of whether all coalescents with simultaneous multiple collisions
can arise as limits of ancestral processes in a population model of the type discussed in [13].
Since Ψn,∞(0), as defined in Proposition 1, equals the partition of {1, . . . , n} into singletons,
only standard Ξ-coalescents can arise in this way. Also, it follows from (9) and condition
A3 of Proposition 1 that for coalescents obtained from ancestral processes as described in the
introduction, we have

λ2;2;0 = F1(∆1) = 1.

It then follows from (12) that Ξ is a probability measure. However, since λ2;2;0 is just a time-
scaling factor and the case Ξ = 0 is trivial, Proposition 7 below shows that the family of
continuous-time processes that can be obtained from the ancestral processes studied in [13]
should be regarded as essentially the same as the family of standard Ξ-coalescents.
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Proposition 7 Let Ξ be a probability measure on ∆. Then there exists a sequence (µN )∞N=1 such
that each µN is a probability distribution on {0, 1, 2, . . .}N that is exchangeable with respect to
the N coordinates with the property that if for all N , µN is the distribution of family sizes in the
population model described in the introduction, then for all n, the processes (Ψn,N (bt/cN c))t≥0

converge as N → ∞ in the Skorohod topology to (RnΠ∞(t))t≥0, where Π∞ is a standard Ξ-
coalescent.

We can use Proposition 1 and Proposition 7 to characterize the coalescents with simultaneous
multiple collisions by a sequence of measures (Fr)∞r=1. We state this result precisely below. Note
that the result can be stated without referring to the population model that originally motivated
Möhle and Sagitov to study the measures Fr.

Proposition 8 Let {λb;k1,...,kr;s : r ≥ 1, k1, . . . , kr ≥ 2, s ≥ 0, b =
∑r

j=1 kj + s} be a collection
of nonnegative real numbers. Then there exists a P∞-valued coalescent satisfying conditions B1
and B2 of Theorem 2 if and only if there is a sequence of measures (Fr)∞r=1 satisfying

A1: each Fr is concentrated on ∆r = {(x1, . . . xr) : xi ≥ 0 for all i and
∑r

i=1 xi ≤ 1},
A2: each Fr is symmetric with respect to the r coordinates of ∆r,

A3′: F1(∆1) ≥ F2(∆2) ≥ . . .,

such that (6) holds for all λb;k1,...,kr;s in the collection. If such a sequence (Fr)∞r=1 exists, then
it is unique. Moreover, suppose (Fr)∞r=1 is a sequence of measures satisfying A1, A2, and A3′.
Define a collection of real numbers {λb;k1,...,kr;s : r ≥ 1, k1, . . . , kr ≥ 2, s ≥ 0, b =

∑r
j=1 kj + s}

by (6). Then, a coalescent process satisfying B1 and B2 exists if and only if (Fr)∞r=1 also satisfies

A4: the right-hand side of (6) is nonnegative for all r ≥ 1, k1, . . . , kr ≥ 2, and s ≥ 0.

Conditions A1 and A2 come directly from Proposition 1. The reason for replacing A3 with
A3′ is to obtain coalescents for which λ2;2;0 6= 1. Condition A4, which is clearly necessary for
(Fr)∞r=1 to be associated with a coalescent process, can be viewed as a consistency condition on
the measures Fr. The following example shows that A4 does not always hold.

Example 9 Consider the sequence of measures (Fr)∞r=1 such that F1 is a unit mass at 1, F2

is a unit mass at (1/2, 1/2), and Fr = 0 for all r ≥ 3. Then, conditions A1, A2, and A3′ are
satisfied. If we define λ4;2;2 by (6), we get

λ4;2;2 =
∫

∆1

T
(1)
1,2 (x) F1(dx) +

∫
∆2

T
(2)
1,2 (x1, x2) F2(dx1, dx2)

= T
(1)
1,2 (1) + T

(2)
1,2 (.5, .5).

By (7), T
(1)
1,2 (x) = (1 − x)2, so T

(1)
1,2 (1) = 0. Using (8) with j = 1 and s = 2, and recalling that

i0 = −1 and i2 = ij+1 = s + 1 = 3, we obtain

T
(2)
1,2 (x1, x2) = (−1)2

1∑
i1=1

1∏
k=0

ik(1 −
2−k∑
i=1

xi)
ik+1−ik−2

= (−1)(1 − x1 − x2)0(1)(1 − x1)0 = −1.
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Hence, λ4;2;2 = −1, so (Fr)∞r=1 can not be associated with a coalescent process.

We next prove a result which interprets the measures Fr as distributions of limiting relative
frequencies of blocks of random partitions. This result parallels Proposition 6, which provides
a similar interpretation of Ξ. We could prove essentially the same result replacing the integers
1, . . . , 2r with any distinct integers i1, . . . , i2r.

Proposition 10 Let (Fr)∞r=1 be a sequence of measures satisfying conditions A1, A2, A3′, and
A4 of Proposition 8, and assume F1(∆1) > 0. Let Π∞ = (Π∞(t))t≥0 be a coalescent satisfying
conditions B1 and B2 of Theorem 2 such that the collision rates λb;k1,...,kr;s are defined from
(Fr)∞r=1 by (6). Let Tr = inf{t : #R2rΠ∞(t) < 2r}, which is the first time that two integers
in {1, . . . , 2r} merge. Let B1, B2, . . . be the blocks of Π∞(Tr−). Let Θr be a partition of N on
{#Π∞(Tr−) = ∞} and a partition of {1, 2, . . . ,#Π∞(Tr−)} on {#Π∞(Tr−) < ∞} such that i
and j are in the same block of Θr if and only if Bi and Bj are in the same block of Π∞(Tr). Let
Er be the event that R2rΠ∞(Tr) consists of the r blocks {1, 2}, {3, 4}, . . . , {2r − 1, 2r}. Then,
the statements P (Er) = 0, λ2r;2,...,2;0 = 0, and Fr(∆r) = 0 are equivalent. For all r such that
P (Er) > 0, there exists a probability measure Qr on ∆r satisfying the following three conditions:

(a) Fr = λ2r;2,...,2;0Qr.

(b) If P (#Π∞(Tr−) = ∞) > 0, then conditional on the event Er ∩ {#Π∞(Tr−) = ∞},
the restriction of Θr to {2r + 1, 2r + 2, . . .} is exchangeable, and the distribution

of (f1,r, . . . , fr,r), where fj,r is the limiting relative frequency of the block of Θr

containing 2j − 1 and 2j, equals Qr.

(c) If P (#Π∞(Tr−) = n) > 0, then there exists a random partition Θ′
r of N whose

restriction to {2r + 1, 2r + 2, . . .} is exchangeable such that the distribution of Θ′
r

restricted to {1, 2, . . . , n} is the same as the conditional distribution of Θr given

Er ∩ {#Π∞(Tr−) = n}. Moreover, Θ′
r can be chosen such that if f ′

j,r is the limiting

relative frequency of the block of Θ′
r containing 2j − 1 and 2j, then the distribution of

(f ′
1,r, . . . , f

′
r,r) equals Qr.

Consider again the sequence (Fr)∞r=1 of Example 9 in which F1 is a unit mass at 1, F2 is a unit
mass at (.5, .5), and Fr = 0 for r ≥ 3. Suppose there were a coalescent process (Π∞(t))t≥0

corresponding to (Fr)∞r=1. Define Tr, Θr, and Er as in Proposition 10. If P (#Π∞(T1−) = ∞) >
0, then parts (a) and (b) of Proposition 10 imply that conditional on E1 ∩ {#Π∞(T1−) = ∞},
the restriction of Θ1 to {3, 4, . . .} is exchangeable, and the block of Θ1 containing 1 and 2 has a
limiting relative frequency of 1 a.s. It follows from Lemma 40 in appendix A that Θ1 consists of
a single block almost surely on E1 ∩ {#Π∞(T1−) = ∞}. If P (#Π∞(T1−) = n) > 0, then parts
(a) and (c) of Proposition 10 imply that conditional on E1∩{#Π∞(T1−) = n}, Θ1 has the same
distribution as the restriction to {1, 2, . . . , n} of a partition Θ′

1, where the restriction of Θ′
1 to

{3, 4, . . .} is exchangeable and the block of Θ′
1 containing 1 and 2 has a limiting relative frequency

of 1 a.s. Thus, Θ1 consists of a single block almost surely on E1∩{#Π∞(T1−) = n} for all n ∈ N .
Therefore, #Π∞(T1) = 1 almost surely on E1. Since E2 ⊂ E1, we have #Π∞(T1) = 1 almost
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surely on E2. However, on E2, R4Π∞(T2) consists of the blocks {1, 2} and {3, 4}. Therefore,
P (E2) = 0. This contradicts Proposition 10 because F2(∆2) > 0. Thus, the interpretation of
the sequence (Fr)∞r=1 given in Proposition 10 provides another way of seeing that condition A4
does not always hold.

We have established in Theorem 2 and Proposition 4 a one-to-one correspondence between finite
measures Ξ on the infinite simplex ∆ and coalescent processes satisfying B1 and B2. Proposition
8 shows that these coalescent processes are also in one-to-one correspondence with the sequences
of measures (Fr)∞r=1 satisfying A1, A2, A3′, and A4. These results, of course, yield a natural
one-to-one correspondence between finite measures Ξ on ∆ and sequences of measures (Fr)∞r=1

satisfying A1, A2, A3′, and A4. The last result of this section shows how to calculate (Fr)∞r=1

given the measure Ξ. We are unable to give a simple formula for calculating Ξ directly from
(Fr)∞r=1.

Proposition 11 Let Ξ = Ξ0 + aδ0 be a finite measure on the infinite simplex ∆, where Ξ0 has
no atom at zero and δ0 is a unit mass at zero. Let (Fr)∞r=1 be the unique sequence of measures
satisfying conditions A1, A2, and A3′ of Proposition 8 such that the collision rates of a standard
Ξ-coalescent are given by (6). Let S be a measurable subset of ∆r. Then,

Fr(S) =
∫

∆

∑
i1 6=...6=ir

x2
i1 . . . x2

ir1{(xi1
,...,xir )∈S}

/ ∞∑
j=1

x2
j Ξ0(dx) + a1{r=1,(0,0,...)∈S}. (13)

3 The Poisson process construction

In [16], Pitman gives a Poisson process construction of the Λ-coalescent when Λ has no atom at
zero. Here we generalize this idea to obtain a Poisson process construction of the Ξ-coalescent
started from any π ∈ P∞ for all finite measures Ξ on the infinite simplex ∆. Our construction
does permit Ξ to have an atom at zero. This construction is a useful tool for studying the
Ξ-coalescent, in part because making computations using (11) can be tedious.

We will first define a σ-finite measure L on Z∞, which is a Polish space when equipped with the
product topology. We will then use a Poisson point process (e(t))t≥0 with characteristic measure
L, as defined in appendix B, to construct the Ξ-coalescent. For each x = (x1, x2, . . .) ∈ ∆, define
a probability measure Px on Z∞ to be the distribution of a sequence ξ = (ξi)∞i=1 of independent
Z-valued random variables such that for all i we have P (ξi = j) = xj for all j ∈ N and
P (ξi = −i) = 1−∑∞

j=1 xj. Let zij be the sequence (z1, z2, . . .) in Z∞ such that zi = zj = 1 and
zk = −k for k /∈ {i, j}. Then define a measure L on Z

∞ by

L(A) =
∫

∆

(
Px(A)

/ ∞∑
j=1

x2
j

)
Ξ0(dx) + a

∞∑
i=1

∞∑
j=i+1

1{zij∈A} (14)

for all product measurable A ⊂ Z
∞. To show that L is σ-finite, and to establish some facts that

will be useful later, we define

Ab = {ξ ∈ Z
∞ : ξ1, . . . , ξb are not all distinct} (15)
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for all b ≥ 2 and
Ak,l = {ξ ∈ Z

∞ : ξk = ξl} (16)

for all k 6= l. Note that if k 6= l then Px({ξ : ξk = ξl = j}) = x2
j for all j ∈ N , which means

Px(Ak,l) =
∑∞

j=1 x2
j . Therefore,

L(Ak,l) =
∫

∆
1 Ξ0(dx) + a

∞∑
i=1

∞∑
j=i+1

1{zij∈Ak,l} = Ξ0(∆) + a = Ξ(∆). (17)

Also, Ab =
b⋃

k=1

b⋃
l=k+1

Ak,l, so

L(Ab) ≤
b∑

k=1

b∑
l=k+1

L(Ak,l) =
(

b
2

)
Ξ(∆) < ∞. (18)

Define
A∞ = {ξ ∈ Z

∞ : ξi = ξj for some i 6= j}. (19)

Note that L(Ac∞) = 0. Thus, the union of the sets in the countable collection consisting of Ac∞
and Ab for all b ≥ 2 equals Z∞, and L assigns finite measure to each set in this collection. Hence,
L is σ-finite, so we can define a Poisson point process (e(t))t≥0 with characteristic measure L.
We now use this Poisson point process to construct a Ξ-coalescent starting from an arbitrary
π ∈ P∞. First, we define for each n a Pn-valued coalescent Ππ

n = (Ππ
n(t))t≥0 as follows. Let

T0,n = 0 and for k ≥ 1, define Tk,n = inf{t > Tk−1,n : e(t) ∈ An}. Since L(An) < ∞ by (18),
it follows from part (b) of Lemma 41 in appendix B that limk→∞ Tk,n = ∞ a.s. Therefore, by
the argument used to prove part (c) of Lemma 41 in appendix B, we have e(Tk,n) ∈ An for all k
almost surely. We will define Ππ

n to have right-continuous step function paths with jumps only
possible at the times Tk,n for k ≥ 1. Therefore, it suffices to specify Ππ

n(Tk,n) for all k ≥ 0.
Define Ππ

n(0) = Rnπ. For k ≥ 1, if Ππ
n(Tk−1,n) consists of the blocks B1, . . . , Bb, where the

blocks are ordered by their smallest elements, then Ππ
n(Tk,n) is defined to be the partition of

{1, . . . , n}, each of whose blocks is a union of some of the blocks B1, . . . , Bb, such that Bi and Bj

are in the same block of Ππ
n(Tk,n) if and only if e(Tk,n)i = e(Tk,n)j, where e(Tk,n)i and e(Tk,n)j

denote the ith and jth coordinates respectively of e(Tk,n).
Suppose m < n. We claim that (RmΠπ

n(t))t≥0 = (Ππ
m(t))t≥0. If ξ ∈ Am then ξ ∈ An, so the

processes (RmΠπ
n(t))t≥0 and (Ππ

m(t))t≥0 can only jump at times Tk,n for some k ≥ 1. Thus,
to prove the claim, it suffices to show that RmΠπ

n(Tk,n) = Ππ
m(Tk,n) for all k ≥ 0. We use

induction on k. Note first that RmΠπ
n(T0,n) = RmΠπ

n(0) = Rmπ = Ππ
m(0) = Ππ

m(T0,n). Suppose
k ≥ 1 and RmΠπ

n(Tk−1,n) = Ππ
m(Tk−1,n). Let B1, . . . , Bb be the blocks of Ππ

m(Tk−1,n) and let
B′

1, . . . , B
′
d be the blocks of Ππ

n(Tk−1,n), where blocks are ordered by their smallest elements.
Fix i, j ∈ {1, . . . ,m} and define h(i) and h(j) such that i ∈ Bh(i) and j ∈ Bh(j). Since Bi =
{1, . . . ,m} ∩ B′

i for i = 1, . . . , b, we have i ∈ B′
h(i) and j ∈ B′

h(j). Therefore i and j are in the
same block of Ππ

m(Tk,n) if and only if e(Tk,n)h(i) = e(Tk,n)h(j). Likewise, i and j are in the same
block of Ππ

n(Tk,n), and thus the same block of RmΠπ
n(Tk,n), if and only if e(Tk,n)h(i) = e(Tk,n)h(j).

We conclude that Ππ
m(Tk,n) = RmΠπ

n(Tk,n), so by induction, (RmΠπ
n(t))t≥0 = (Ππ

m(t))t≥0.
Now define a P∞-valued process Ππ∞ = (Ππ∞(t))t≥0 such that i and j are in the same block of
Ππ∞(t) if and only if i and j are in the same block of Ππ

n(t) for n ≥ max{i, j}. Then, Ππ
n = RnΠπ∞.

The proposition below establishes that Ππ∞ is a Ξ-coalescent started from π.
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Proposition 12 Let Ξ = Ξ0 + aδ0 be a finite measure on the infinite simplex ∆, where Ξ0

has no atom at zero and δ0 is a unit mass at zero. Let (e(t))t≥0 be a Poisson point process
with characteristic measure L, where L is defined by (14). For all π ∈ P∞, define a process
Ππ∞ = (Ππ∞(t))t≥0 from (e(t))t≥0 as described above. Then Ππ∞ is a Ξ-coalescent satisfying
Ππ∞(0) = π.

Proof. That Ππ∞(0) = π is clear from the definition of Ππ∞. Thus, it suffices to show that Ππ∞
satisfies condition B2 of Theorem 2 for the rates defined from Ξ as in (11). Fix n ≥ 2, and define
Ππ

n = RnΠπ∞. To see that Ππ
n is Markov, choose α1, . . . , αm ∈ Pn and choose times t1, . . . , tm+1

such that 0 < t1 < . . . < tm+1. It follows from the definition of Poisson point processes that
the process (e(tm + t))t>0 has the same law as (e(t))t>0 and is independent of (e(t))0≤t≤tm .
Therefore, we see from the construction of Ππ

n that

P (Ππ
n(tm+1) = αm+1|Ππ

n(t1) = α1, . . . ,Ππ
n(tm) = αm) = P (Παm

n (tm+1 − tm) = αm+1),

from which it follows that Ππ
n is Markov.

It remains to show that the collision rates of Ππ
n agree with the rates given in Theorem 2 for

the restriction to {1, . . . , n} of the Ξ-coalescent. Let B1, . . . , Bb be the blocks of Ππ
n(t). Let θ

be a partition of {1, . . . , b} into s singletons and larger blocks B′
1, . . . , B

′
r of sizes k1, . . . , kr. Let

Aθ consist of all sequences ξ ∈ Z
∞ such that if 1 ≤ i, j ≤ b, then ξi = ξj if and only if i and j

are in the same block of θ. Note that θ is associated with a (b; k1, . . . , kr; s)-collision in which
B1, . . . , Bb merge in such a way that Bi and Bj end up in the same block if and only if i and j
are in the same block of θ. By the above construction and part (a) of Lemma 41 in appendix B,
this collision is occurring at rate L(Aθ). Thus, we must show that L(Aθ) equals the expression
for λb;k1,...,kr;s given in (11).
A point ξ ∈ Z

∞ is in Aθ if and only if there exist l ∈ {0, 1, . . . s} and distinct positive integers
i1, . . . , ir+l such that the following hold:

(a) ξm = ij for all j ∈ {1, . . . , r} and m ∈ B′
j .

(b) There exist m1 < . . . < ml ≤ b such that ξmj = ir+j for j ∈ {1, . . . , l}.
(c) ξm < 0 for the s − l values of m such that m ≤ b, m /∈ B′

j for all j ∈ {1, . . . , r},
and m /∈ {m1, . . . ,ml}.

By summing over the possible values for l and the possible distinct integers i1, . . . , ir+l, and
counting the possible values of m1, . . . ,ml, we get

Px(Aθ) =
s∑

l=0

∑
i1 6=...6=ir+l

(
s
l

)
xk1

i1
. . . xkr

ir
xir+1 . . . xir+l

(1 −
∞∑

j=1

xj)s−l (20)

for all x 6= (0, 0, . . .). Note also that
∞∑
i=1

∞∑
j=i+1

1{zij∈Aθ} = 1{r=1,k1=2}. (21)

It follows from (14), (20), and (21) that L(Aθ) equals
∫

∆

( s∑
l=0

∑
i1 6=...6=ir+l

(
s
l

)
xk1

i1
. . . xkr

ir
xir+1 . . . xir+l

(1 −
∞∑

j=1

xj)
s−l

)/ ∞∑
j=1

x2
j Ξ0(dx) + a1{r=1,k1=2},
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which is the expression for λb;k1,...,kr;s given in (11). Hence, (Ππ∞(t))t≥0 is a Ξ-coalescent
satisfying Ππ∞(0) = π. �

Definition 13 Let Ξ be a finite measure on the infinite simplex ∆. Suppose (e(t))t≥0 is a
Poisson point process with characteristic measure L, where L is defined in terms of Ξ by (14).
If Π∞ is defined from (e(t))t≥0 as described above, then we say Π∞ is a Ξ-coalescent derived
from (e(t))t≥0.

Remark 14 Note that by taking Ξ = δ0, we can obtain a Poisson process construction of
Kingman’s coalescent. In this case, (14) reduces to

L(A) =
∞∑
i=1

∞∑
j=i+1

1{zij∈A}. (22)

Equivalently, we have L({zij}) = 1 for all i, j ∈ N with i 6= j and L({ξ}) = 0 if we do not have
ξ = zij for some i 6= j. The coalescent derived from a Poisson point process (e(t))t≥0 with the
characteristic measure L defined in (22) has the property that if the blocks are ordered by their
smallest elements, then the ith and jth blocks merge at the times t for which e(t) = zij .

Lemma 15 Let Ξ be a finite measure on the infinite simplex ∆. Let (Π∞(t))t≥0 be a Ξ-coalescent
derived from a Poisson point process (e(t))t≥0 with characteristic measure L, where L is defined
by (14). Let A be a subset of Z∞ such that 0 < L(A) < ∞, and let TA = inf{t : e(t) ∈ A}.
Then, Π∞(TA−) and e(TA) are independent.

Proof. Let (e′(t))t≥0 be defined such that e′(t) = δ if e(t) ∈ A and e′(t) = e(t) otherwise.
By parts (d) and (e) of Lemma 41 in appendix B, we have that e(TA), TA, and (e′(t))t≥0

are mutually independent. Since Π∞(TA−) is a function of (e′(t))t≥0 and TA, it follows that
Π∞(TA−) is independent of e(TA). �

4 Proofs of results characterizing the coalescents

4.1 Preliminary Lemmas

In this subsection, we give some preliminary lemmas that will be useful for some of the proofs of
results in section 2. We begin with the following result, which can be proved by a straightforward
application of the Daniell-Kolmogorov Theorem.

Lemma 16 Suppose, for each n, that Θn is a random partition of {1, . . . , n}. Suppose RmΘn

and Θm have the same distribution for all m < n. Then, there exists on some probability space
a random partition Θ∞ of N such that RnΘ∞ has the same distribution as Θn for all n.

The lemma below will enable us to construct P∞-valued coalescents from consistently-defined
Pn-valued coalescents. It is proved by an application of the Daniell-Kolmogorov Theorem as on
p.40 of [11].
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Lemma 17 Suppose, for each n, that (Πn(t))t≥0 is a Pn-valued coalescent. Suppose, for all
m < n, that the processes (RmΠn(t))t≥0 and (Πm(t))t≥0 have the same law. Then, there exists
on some probability space a P∞-valued coalescent (Π∞(t))t≥0 such that (RnΠ∞(t))t≥0 has the
same law as (Πn(t))t≥0 for all n.

The next lemma gives the consistency condition that an array of nonnegative real numbers
{λb;k1,...,kr;s : r ≥ 1, k1, . . . , kr ≥ 2, s ≥ 0, b =

∑r
j=1 kj + s} must satisfy to be the array

of collision rates for a coalescent with simultaneous multiple collisions. This condition is the
analog of condition (1) for the Λ-coalescent.

Lemma 18 Let {λb;k1,...,kr;s : r ≥ 1, k1, . . . , kr ≥ 2, s ≥ 0, b =
∑r

j=1 kj + s} be a collection of
nonnegative real numbers. Then there exists a P∞-valued coalescent Π∞ = (Π∞(t))t≥0 satisfying
conditions B1 and B2 of Theorem 2 if and only if

λb;k1,...,kr;s =
r∑

m=1

λb+1;k1,...,km−1,km+1,km+1,...,kr;s + sλb+1;k1,...,kr,2;s−1 + λb+1;k1,...,kr;s+1 (23)

for all r ≥ 1, k1, . . . , kr ≥ 2, s ≥ 0, and b =
∑r

j=1 kj + s.

When s = 0, we say that sλb+1;k1,...,kr,2;s−1 = 0 even though λb+1;k1,...,kr,2;s−1 is undefined, so
that the right-hand side of (23) makes sense.

Proof. Continuous-time Markov chains on a finite state space can be constructed with arbitrary
nonnegative transition rates. Thus, we can define for each n a Markov chain Πn = (Πn(t))t≥0

with state space Pn and right-continuous paths such that Πn(0) is the partition of {1, . . . , n}
into singletons and, when Πn(t) has b blocks, each (b; k1, . . . , kr; s)-collision is occurring at rate
λb;k1,...,kr;s.

Define for each n a process Θn = (Θn(t))t≥0 by Θn(t) = RnΠn+1(t). Suppose Θn and Πn have
the same law. Then RmΠn and Πm have the same law for all m < n. By Lemma 17, there exists
a coalescent process (Π∞(t))t≥0 such that (RnΠ∞(t))t≥0 has the same law as (Πn(t))t≥0 for all
n. The process (Π∞(t))t≥0 satisfies conditions B1 and B2 of Theorem 2. Conversely, suppose
Π∞ = (Π∞(t))t≥0 satisfies B1 and B2 of Theorem 2. Then, Πn has the same law as RnΠ∞ and
Θn has the same law as Rn(Rn+1Π∞) = RnΠ∞, so Θn and Πn have the same law. Thus, we
must show that Θn and Πn have the same law for all n if and only if (23) holds.

Let U = inf{t : {n + 1} is not a block of Πn+1(t)}. On the event {t > U}, we have that
#Πn+1(t) = #Θn(t) and Θn undergoes a (b; k1, . . . , kr; s)-collision at time t if and only if Πn+1

undergoes a (b; k1, . . . , kr; s)-collision at time t. Therefore, after time U , if Θn(t) has b blocks,
then each (b; k1, . . . , kr; s)-collision is occurring at rate λb;k1,...,kr;s.

Next, suppose Θn undergoes a (b; k1, . . . , kr; s)-collision at time t ≤ U . Then, Πn+1 could
undergo any of r + s+1 possible collisions at time t, as can be seen by considering the following
three cases:

Case 1: The block {n + 1} could remain a singleton at time t, in which case Πn+1 undergoes a
(b + 1; k1, . . . , kr; s + 1)-collision at time t.
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Case 2: The block {n + 1} could join one of the s blocks of Θn(t) that consists of a single block
of Θn(t−), in which case Πn+1 undergoes a (b; k1, . . . , kr, 2; s − 1)-collision at time t.

Case 3: The block {n + 1} could join one of the r blocks of Θn(t) consisting of two or more
blocks of Θn(t−). Then, Πn+1 undergoes a (b + 1; k1, . . . , km−1, km + 1, km+1, . . . , kr; s)-collision
for some m ∈ {1, . . . , r}.

Thus, before time U , the rate of any (b; k1, . . . , kr; s)-collision for the process Θn is the same as
the sum of the rates at which Πn+1 is undergoing one of the r + s+1 collisions described above.
The definition of Πn+1 implies that this rate equals the right-hand side of (23).

It follows from the results proved in the last two paragraphs that if (23) holds for all r ≥ 1,
k1, . . . , kr ≥ 2, s ≥ 0, and b =

∑r
j=1 kj + s, then Θn and Πn have the same law for all n. Con-

versely, suppose Θn and Πn have the same law. Then the initial rate at which Πn is undergoing
an (n; k1, . . . , kr; s)-collision is λn;k1,...,kr;s by definition, and arguments in the previous paragraph
imply that the initial rate at which Θn is undergoing an (n; k1, . . . , kr; s)-collision is given by
the right-hand side of (23) with b = n. Hence, (23) holds when b = n. Thus, if Θn and Πn have
the same law for all n, then (23) holds for all r ≥ 1, k1, . . . , kr ≥ 2, s ≥ 0, and b =

∑r
j=1 kj +s. �

4.2 Proof of Theorem 2

In this subsection, we prove Theorem 2. Recall that in section 3, we constructed from a Poisson
point process a standard Ξ-coalescent for an arbitrary finite measure Ξ on the infinite simplex
∆. This construction proves the “if” part of Theorem 2. However, Lemma 18 provides a way of
proving the “if” part of Theorem 2 more directly by checking the consistency of the transition
rates defined by (11). We provide this alternative proof below.

Proof of “if” part of Theorem 2. Suppose Ξ = Ξ0 + aδ0 is a finite measure on the infinite
simplex ∆, where Ξ0 has no atom at zero and δ0 is a unit mass at zero. Define λb;k1,...,kr;s by
(11) for all r ≥ 1, k1, . . . , kr ≥ 2, s ≥ 0, and b =

∑r
j=1 kj + s. By Lemma 18, to prove the

existence of a P∞-valued coalescent process satisfying conditions B1 and B2 of Theorem 2, it
suffices to verify (23) for all r ≥ 1, k1, . . . , kr ≥ 2, s ≥ 0, and b =

∑r
j=1 kj + s.

It suffices to verify (23) separately when Ξ0(∆) = 0 and when a = 0. When Ξ0(∆) = 0, the
right-hand side of (23) is 0 + 0 + λb+1;k1,...,kr;s+1, which equals λb;k1,...,kr;s. When a = 0, the
right-hand side of (23) can be written as

∫
∆

W (x)/
∞∑

j=1

x2
j Ξ(dx),

where

W (x) =
r∑

m=1

s∑
l=0

∑
i1 6=...6=ir+l

(
s
l

)
(xk1

i1
. . . x

km−1

im−1
xkm+1

im
x

km+1

im+1
. . . xkr

ir
xir+1 . . . xir+l

)(1 −
∞∑

j=1

xj)s−l

+ s

s−1∑
l=0

∑
i1 6=...6=ir+1+l

(
s − 1

l

)
(xk1

i1
. . . xkr

ir
x2

ir+1
xir+2 . . . xir+1+l

)(1 −
∞∑

j=1

xj)s−1−l
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+
s+1∑
l=0

∑
i1 6=...6=ir+l

(
s + 1

l

)
(xk1

i1
. . . xkr

ir
xir+1 . . . xir+l

)(1 −
∞∑

j=1

xj)s+1−l. (24)

Let A, B, and C be the three terms on the right-hand side of (24). We have

A =
s∑

l=0

∑
i1 6=...6=ir+l

(
s
l

)
(xk1

i1
. . . xkr

ir
xir+1 . . . xir+l

)(1 −
∞∑

j=1

xj)s−l(
r∑

m=1

xim).

Also, we have

B =
s∑

l=1

∑
i1 6=...6=ir+l

s

(
s − 1
l − 1

)
(xk1

i1
. . . xkr

ir
x2

ir+1
xir+2 . . . xir+l

)(1 −
∞∑

j=1

xj)s−l

=
s∑

l=1

∑
i1 6=...6=ir+l

s

(
s − 1
l − 1

)
(xk1

i1
. . . xkr

ir
xir+1 . . . xir+l

)(1 −
∞∑

j=1

xj)s−l (xir+1 + . . . + xir+l
)

l

=
s∑

l=1

∑
i1 6=...6=ir+l

(
s
l

)
(xk1

i1
. . . xkr

ir
xir+1 . . . xir+l

)(1 −
∞∑

j=1

xj)s−l(xir+1 + . . . + xir+l
)

and

C =
s∑

l=0

∑
i1 6=...6=ir+l

(
s
l

)
(xk1

i1
. . . xkr

ir
xir+1 . . . xir+l

)(1 −
∞∑

j=1

xj)s+1−l

+
s+1∑
l=1

∑
i1 6=...6=ir+l

(
s

l − 1

)
(xk1

i1
. . . xkr

ir
xir+1 . . . xir+l

)(1 −
∞∑

j=1

xj)s+1−l

=
s∑

l=0

∑
i1 6=...6=ir+l

(
s
l

)
(xk1

i1
. . . xkr

ir
xir+1 . . . xir+l

)(1 −
∞∑

j=1

xj)s−l(1 −
∞∑

j=1

xj +
∑

ir+l+1/∈S

xir+l+1
),

where S = {i1, . . . , ir+l}. By adding the above expressions for A, B, and C, we see that W (x)
equals the numerator of the integrand on the right-hand side of (11), which implies (23). This
completes the proof of the theorem. �

The proof of the “only if” part of Theorem 2 relies heavily on exchangeability arguments. Some
well-known results that we will apply are reviewed in appendix A. It will be convenient to make
the following additional definition.

Definition 19 We call a P∞-valued process (Π∞(t))t≥0 exchangeable if (Π∞(t))t≥0 has the
same distribution as (σ̂Π∞(t))t≥0 for all finite permutations σ of N , where σ(i) and σ(j) are in
the same block of σ̂Π∞(t) if and only if i and j are in the same block of Π∞(t).

Note that any coalescent process satisfying conditions B1 and B2 of Theorem 2 for some collec-
tion of rates {λb;k1,...,kr;s : r ≥ 1, k1, . . . , kr ≥ 2, s ≥ 0, b =

∑r
j=1 kj + s} is exchangeable.

16



Lemma 20 Let (ai)∞i=1 be a sequence of nonnegative real numbers such that
∑∞

i=1 ai ≤ 1. Let
(bi)∞i=1 be a bounded sequence of real numbers. Suppose bi = bj whenever ai = aj, and suppose∑∞

i=1 ak
i bi = 0 for all k ∈ N . Then bi = 0 for all i such that ai > 0.

Proof. We may assume, without loss of generality, that a1 ≥ a2 ≥ . . .. Suppose there exists an
i such that bi 6= 0 and ai > 0. Let m = min{i : bi 6= 0}, and let s = max{r ≥ 0 : am+r = am}.
We have

0 =
∞∑
i=1

ak
i bi = ak

m

m+s∑
i=m

bi +
∞∑

i=m+s+1

ak
i bi (25)

for all k ∈ N . Note that ∣∣∣∣ak
m

m+s∑
i=m

bi

∣∣∣∣ ≥ ak
m|bm|

because bm = bm+1 = . . . = bm+s by assumption. Choose B < ∞ such that |bi| ≤ B for all i.
Then ∣∣∣∣

∞∑
i=m+s+1

ak
i bi

∣∣∣∣ ≤ B

∞∑
i=m+s+1

ak
i ≤ Bak−1

m+s+1

∞∑
i=m+s+1

ai ≤ Bak−1
m+s+1.

We have ak
m|bm| > Bak−1

m+s+1 for sufficiently large k because am+s+1 < am and |bm| > 0, which
contradicts the fact that the expression on the right-hand side of (25) is zero for all k ∈ N . �

Proof of the “only if” part of Theorem 2. Suppose we have a collection of nonnegative
real numbers {λb;k1,...,kr;s : r ≥ 1, k1, . . . , kr ≥ 2, s ≥ 0, b =

∑r
j=1 kj +s} such that there exists a

coalescent process Π∞ = (Π∞(t))t≥0 satisfying conditions B1 and B2 of Theorem 2 with collision
rates λb;k1,...,kr;s. We wish to show that there is a finite measure Ξ on the infinite simplex ∆
such that all of the collision rates are given in terms of Ξ by (11).

Let T = inf{t : 1 and 2 are in the same block of Π∞(t)}. We may assume that T < ∞ a.s.
because if the rate at which the blocks containing 1 and 2 are merging is zero, then all collision
rates are zero and (11) holds with Ξ = 0. For n ≥ 2, let En be the event that 1, 2, . . . , n are in
distinct blocks of Π∞(T−). Since Π∞ is an exchangeable process, the probability that no pair
of integers in the set {1, 2, . . . , n} merges before 1 and 2 merge is at least 2/n(n− 1). Therefore,
P (En) > 0. Let Γn be a random partition of {1, . . . , n} whose distribution is the same as the
conditional distribution of Πn(T ) given En. We claim that there exists a random partition Θ∞
of N such that Θn = RnΘ∞ has the same distribution as Γn for all n. By Lemma 16, it suffices
to show that RmΓn has the same distribution as Γm for all m < n.

Fix m < n. Let θ be a partition of {1, 2, . . . ,m} in which 1 and 2 are in the same block. Let
s be the number of singletons in θ, and let k1, . . . , kr be the sizes of the larger blocks of θ.
It follows from condition B2 that if Πm(t) consists of m singletons, then the merger of the m
singletons into the blocks of the partition θ is occurring at rate λm;k1,...,kr;s. Also, the total rate
of all mergers involving the blocks {1} and {2} is λ2;2;0. Thus, P (Γm = θ) = λm;k1,...,kr;s/λ2;2;0.
If Πn(t) consists of n singletons, then condition B2 implies that the total rate of all mergers of
{1, 2, . . . , n} whose restriction to {1, 2, . . . ,m} is the merger of m singletons into the blocks of θ
is also λm;k1,...,kr;s. Therefore, we have P (RmΓn = θ) = λm;k1,...,kr;s/λ2;2;0. Thus, RmΓn has the
same distribution as Γm.
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Let Θ′∞ be the restriction of Θ∞ to {3, 4, . . .}. Since Π∞ is an exchangeable process, Θ′∞ is
an exchangeable random partition of {3, 4, . . .}. It follows from Lemma 40 in appendix A that
each block of Θ′∞ has a limiting relative frequency. Let P1 ≥ P2 ≥ . . . be the ranked sequence
of limiting relative frequencies of the distinct blocks of Θ′∞, where Pn = 0 if Θ′∞ has fewer
than n blocks with nonzero limiting relative frequencies. Note that the blocks of Θ∞ also have
limiting relative frequencies, and (Pj)∞j=1 is the ranked sequence of limiting relative frequencies
of distinct blocks of Θ∞.

We now label the blocks of Θ∞ having nonzero limiting relative frequencies by B1, B2, . . ., where
Bj has limiting relative frequency Pj on {Pj > 0} and blocks with the same limiting relative
frequency are ordered at random, independently of Θ∞. On {Pj = 0}, the block Bj is undefined.
Define a sequence of random variables (Zm)∞m=1 such that Zm = i on {m ∈ Bi} and Zm = 0
when the block of Θ∞ containing m has a limiting relative frequency of zero. Let F denote the
σ-field generated by (Pj)∞j=1. Let P0 = 1−∑∞

j=1 Pj . We make the following claim regarding the
distribution of the sequence (Zm)∞m=1:

Claim. We have P (Zm = i|F) = Pi a.s. for all m ≥ 3 and i ≥ 0. On {P1 > 0}, we have
P (Z1 = i|F) = P 2

i /
∑∞

j=1 P 2
j a.s. for all i ≥ 1. Moreover, the random variables Z1, Z3, Z4, . . .

are conditionally independent given F .

Before proving the claim, we show how we can use the claim to complete the proof of the “only
if” part of Theorem 2.

Let θ be a partition of {1, 2, . . . , b} into s singletons and larger blocks D1, . . . ,Dr of sizes
k1, . . . , kr respectively. Assume that 1 and 2 are in the block D1. Then, as we showed in
the third paragraph of this proof,

λb;k1,...,kr;s = λ2;2;0P (Θb = θ). (26)

By Lemma 40, almost surely every block of the exchangeable random partition Θ′∞ having a
limiting relative frequency of zero is a singleton. Therefore, if i, j ≥ 3, then almost surely i and
j are in the same block of Θ∞ if and only if Zi = Zj 6= 0. On {P1 > 0}, the claim implies that
Z1 = Z2 > 0 a.s., so for all positive integers i and j, we have that almost surely i and j are in
the same block of Θ∞ if and only if Zi = Zj 6= 0. Therefore, on {P1 > 0}, the event that Θb = θ
is the same, up to a null set, as the event that there exist l ∈ {0, . . . , s} and distinct positive
integers i1, . . . , ir+l such that the following hold:

(a) For all j ∈ {1, . . . , r} and m ∈ Dj , we have Zm = ij .

(b) There exist m1 < . . . < ml ≤ b such that Zmj = ir+j for j ∈ {1, . . . , l}.
(c) Zm = 0 for each of the s − l values of m such that m ≤ b, m /∈ Dj for j ∈ {1, . . . , r},

and m /∈ {m1, . . . ,ml}.

Note that l is the number of singletons in Θb that are in blocks of Θ∞ having nonzero limiting
relative frequencies. For now, fix l ∈ {0, . . . , s} and fix distinct positive integers i1, . . . , ir+l. The
claim implies that for j ∈ {2, . . . , r}, we have

P (Zm = ij for all m ∈ Dj |F) = P
kj

ij
, a.s. on {P1 > 0}. (27)
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Since 1 and 2 are in D1, it follows from the claim that

P (Zm = i1 for all m ∈ D1|F) = P k1−2
i1

P (Z1 = i1|F) = P k1
i1

/
∞∑

j=1

P 2
j , a.s. on {P1 > 0}. (28)

Also, we have

P (Zmj = ir+j for j ∈ {1, . . . , l}|F) = Pir+1 . . . Pir+l
, a.s. on {P1 > 0} (29)

and
P (Zm = 0|F) = P0, a.s. on {P1 > 0} (30)

for all m ≥ 3. By summing over the possible values of l and i1, . . . , ir+l and counting the possible
values of m1, . . . ,ml, we can conclude from equations (27) through (30), conditions (a), (b), and
(c) above, and the conditional independence of Z1, Z3, Z4, . . . given F that

P (Θb = θ|F) =
( s∑

l=0

∑
i1 6=...6=ir+l

(
s
l

)
P k1

i1
P k2

i2
. . . P kr

ir
Pir+1 . . . Pir+l

P s−l
0

)/ ∞∑
j=1

P 2
j , a.s. on {P1 > 0}.

On {P1 = 0}, the claim implies that Zm = 0 almost surely for all m ≥ 3, so Θ′∞ almost surely
consists of all singletons. The exchangeability of Π∞ implies that the probability, conditional on
the event that Θ′∞ consists of all singletons, that 1 and 2 are in the same block as q is the same
for all q ≥ 3, and therefore must be zero. Therefore, on {P1 = 0}, almost surely Θb consists of
the blocks {1, 2}, {3}, {4}, . . . , {b}. It follows that P (Θb = θ|F) = 1 a.s. on {P1 = 0} if r = 1
and k1 = 2, and P (Θb = θ|F) = 0 a.s. on {P1 = 0} otherwise. Therefore, P (Θb = θ|F) equals

( s∑
l=0

∑
i1 6=...6=ir+l

(
s
l

)
P k1

i1
P k2

i2
. . . P kr

ir
Pir+1 . . . Pir+l

P s−l
0

/ ∞∑
j=1

P 2
j

)
1{P1>0} + 1{r=1,k1=2}1{P1=0}

(31)
almost surely.

By Lemma 40 in appendix A, the point (P1, P2, . . .) is in ∆ a.s. Let G be the distribution of
(P1, P2, . . .). Write G as G0 + aδ0, where G0 has no atom at zero and δ0 is a unit mass at zero.
By taking the expectation of the expression in (31), we see that P (Θb = θ) equals

∫
∆

( s∑
l=0

∑
i1 6=...6=ir+l

(
s
l

)
P k1

i1
P k2

i2
. . . P kr

ir
Pir+1 . . . Pir+l

P s−l
0

)/ ∞∑
j=1

P 2
j dG0 + α1{r=1,k1=2}. (32)

Let Ξ = Ξ0 + aδ0, where Ξ0 = λ2;2;0G0 and a = λ2;2;0α. Note that Ξ is a finite measure on ∆.
It follows from (26) and (32) that the rates λb;k1,...,kr;s are given by (11). Hence, Theorem 2
follows from the claim. �

Proof of Claim. Since Θ′∞ is an exchangeable random partition, the sequence (Zm)∞m=3 is
exchangeable. It is clear from the definition of this sequence that its limiting empirical distribu-
tion is the probability measure with an atom of size Pj at j for all j ≥ 0. The σ-field generated
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by this random distribution is F . Lemma 38 in appendix A implies that the random variables
Z3, Z4, . . . are conditionally independent given F and that

P (Zm = i|F) = Pi a.s. (33)

for all m ≥ 3 and i ≥ 0. By the exchangeability of Π∞, the sequences (Z1, Z3, Z4, . . .) and
(Z1, Zσ(3), Zσ(4), . . .) have the same distribution for all finite permutations σ of {3, 4, . . .}. By
Lemma 39 in appendix A, Z1 and (Zm)∞m=3 are conditionally independent given F . It follows
that the random variables Z1, Z3, Z4, . . . are conditionally independent given F .

Define Qi = P (Z1 = i|F) for all i ≥ 1. It remains only to show that Qi = P 2
i /

∑∞
j=1 P 2

j a.s. on
{P1 > 0} for all i ≥ 1. Fix k ≥ 4 and n > k. Then make the following definitions:

T = inf{t : 1 and 2 are in the same block of Π∞(t)}.
Tk = inf{t : k − 1 and k are in the same block of Π∞(t)}.
En = {1, . . . , n are in distinct blocks of Π∞(T−)}.
En,k = {1, . . . , n are in distinct blocks of Π∞(Tk−)}.

Also, let θk,1 be the partition of {1, . . . , k} into the blocks {1, 2} and {3, 4, . . . , k}, and let θk,2

be the partition of {1, . . . , k} into the blocks {1, . . . , k − 2} and {k − 1, k}. Let Πk+1,n denote
the restriction of Π∞ to {k + 1, . . . , n} and let πk+1,n be any partition of {k + 1, . . . , n}. The
exchangeability of Π∞ implies that

P ({Πk(T ) = θk,1}∩En∩{Πk+1,n(T ) = πk+1,n}) = P ({Πk(Tk) = θk,2}∩En,k∩{Πk+1(Tk) = πk+1,n}).
Since T = Tk on the sets {Πk(T ) = θk,2} ∩ En and {Πk(Tk) = θk,2} ∩ En,k, it follows that

P ({Πk(T ) = θk,1}∩En∩{Πk+1,n(T ) = πk+1,n}) = P ({Πk(T ) = θk,2}∩En∩{Πk+1,n(T ) = πk+1,n})
and thus

P ({Πk(T ) = θk,1}∩{Πk+1,n(T ) = πk+1,n}|En) = P ({Πk(T ) = θk,2}∩{Πk+1,n(T ) = πk+1,n}|En).

Let Θk+1,n denote the restriction of Θ∞ to {k + 1, . . . , n}. Since the distribution of Θn is the
conditional distribution of Πn(T ) given En, we have

P ({Θk = θk,1} ∩ {Θk+1,n = πk+1,n}) = P ({Θk = θk,2} ∩ {Θk+1,n = πk+1,n}). (34)

Let Fk+1,n be the σ-field generated by Θk+1,n. Since equation (34) holds for all partitions πk+1,n

of {k + 1, . . . , n}, we have

P (Θk = θk,1|Fk+1,n) = P (Θk = θk,2|Fk+1,n) a.s.

Let Fk+1 be the σ-field generated by the restriction of Θ∞ to {k + 1, k + 2, . . .}. Since Fk+1,n ↑
Fk+1 as n → ∞, standard martingale convergence arguments (see, for example, Theorem 5.7 in
chapter 4 of [5]) give

P (Θk = θk,1|Fk+1) = P (Θk = θk,2|Fk+1) a.s.

The limiting relative frequencies of the blocks of Θ∞ can be recovered from the restriction of
Θ∞ to {k + 1, k + 2, . . .}, so the sequence (Pj)∞j=1 is Fk+1-measurable. Thus, F ⊂ Fk+1, so

P (Θk = θk,1|F) = P (Θk = θk,2|F) a.s. (35)
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for all k ≥ 4.

Using (33) combined with the fact that the random variables Z1, Z3, Z4, . . . are conditionally
independent given F , we obtain

P (Θk = θk,1|F) =
∞∑
i=1

P (Z3 = . . . = Zk = i, Z1 = Z2 6= i|F)

=
∞∑
i=1

P (Z3 = . . . = Zk = i|F)P (Z1 6= i|F)

=
∞∑
i=1

P k−2
i (1 − Qi) (36)

almost surely for all k ≥ 4. Likewise, almost surely we have, for all k ≥ 4,

P (Θk = θk,2|F) =
∞∑
i=1

∑
1≤j 6=i

P (Z3 = . . . = Zk−2 = i, Zk−1 = Zk = j, Z1 = Z2 = i|F)

=
∞∑
i=1

∑
1≤j 6=i

P (Z3 = . . . = Zk−2 = i|F)P (Zk−1 = Zk = j|F)P (Z1 = i|F)

=
∞∑
i=1

∑
1≤j 6=i

P k−4
i P 2

j Qi. (37)

¿From (35), (36) and (37), we obtain, for all k ≥ 4, the equation

0 =
∞∑
i=1

P k−4
i (P 2

i (1 − Qi) − Qi

∑
1≤j 6=i

P 2
j ) =

∞∑
i=1

P k−4
i (P 2

i − Qi

∞∑
j=1

P 2
j ) a.s. (38)

On the set {Pi = Pl}, we have Qi = Ql a.s. because, in the proof of the “only if” part of
Theorem 2, the blocks B1, B2, . . . having the same limiting relative frequency were labeled in
random order, independently of Θ∞. Therefore, P 2

i − Qi
∑∞

j=1 P 2
j = P 2

l − Ql
∑∞

j=1 P 2
j a.s. on

{Pi = Pl}. It follows from (38) and Lemma 20 that P 2
i − Qi

∑∞
j=1 P 2

j = 0 a.s. on {Pi > 0}.
Therefore,

Qi = P 2
i /

∞∑
j=1

P 2
j (39)

almost surely on {Pi > 0}. It follows that on {P1 > 0}, we have
∑

{j:Pj>0} Qj = 1 a.s.
Therefore, on the event {P1 > 0} ∩ {Pi = 0}, we have Qi = 0 a.s. Thus, (39) holds almost
surely on {P1 > 0} for all i ≥ 1, which completes the proof of the claim. �

4.3 Proofs of Propositions 4 and 6

We can establish Propositions 4 and 6 by a straightforward application of the Poisson process
construction in section 3. We prove Proposition 6 first, as it is used in the proof of Proposition
4.
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Proof of Proposition 6. Write G = G0 +αδ0, where G0 has no atom at zero. We may assume
without loss of generality that Π∞ is derived from the Poisson point process (e(t))t≥0 with
characteristic measure L given by (14) with G0 and α in place of Ξ0 and a. The construction of
Π∞ implies that T = inf{t : e(t) ∈ A1,2}, where A1,2 is defined by (16). Let Θ̃ be the random
partition of {3, 4, . . .} such that i and j are in the same block of Θ̃ if and only if e(T )i = e(T )j .
It follows from the definition of (e(t))t≥0 that Θ̃ is an exchangeable random partition. Also, we
see from the construction of Π∞ that Θ = Θ̃ on {#Π∞(T−) = ∞} and Θ is the restriction of
Θ̃ to {3, 4, . . . ,#Π∞(T−)} on {#Π∞(T−) < ∞}. Since 0 < L(A1,2) < ∞ by (17), Lemma 15
implies that Π∞(T−) is independent of e(T ) and thus is independent of Θ̃. Therefore, to show
that Θ satisfies the conclusion of Proposition 6, it suffices to show that the ranked sequence of
limiting relative frequencies of the blocks of Θ̃ has distribution G.

For every ξ = (ξi)∞i=1 ∈ Z
∞, and k ∈ N , define

Nk(ξ) = lim
n→∞

1
n

n∑
i=1

1{ξi=k}, (40)

provided this limit exists. Define N(ξ) = (N1(ξ), N2(ξ), . . .). If ξ is random with distribution
Px, as defined in section 3, then by the strong law of large numbers, we have N(ξ) = x a.s. Let
S be a Borel subset of the infinite simplex ∆, and let AS

1,2 = {ξ ∈ A1,2 : N(ξ) ∈ S}. By part (d)
of Lemma 41 in appendix B, we have

P (N(e(T )) ∈ S) = P (e(T ) ∈ AS
1,2) = L(AS

1,2)/L(A1,2).

By (17), L(A1,2) = G(∆) = 1. Since Px(A1,2) =
∑∞

j=1 x2
j , we have Px(AS

1,2) = (
∑∞

j=1 x2
j )1{x∈S}.

Therefore, by (14),

L(AS
1,2) =

∫
∆

( ∞∑
j=1

x2
j

)
1{x∈S}

/ ∞∑
j=1

x2
j G0(dx) + α

∞∑
i=1

∞∑
j=i+1

1{zij∈AS
1,2}

= G0(S) + α1{(0,0,...)∈S} = G(S).

Thus, N(e(T )) has distribution G. Since N(e(T )) is the ranked sequence of limiting relative
frequencies of blocks of Θ̃, the proposition follows. �

Proof of Proposition 4. Suppose (Π∞(t))t≥0 is both a standard Ξ-coalescent and a standard
Ξ′-coalescent. Then, the collision rates associated with the Ξ-coalescent and the Ξ′-coalescent
must be the same. By (12), we have Ξ(∆) = Ξ′(∆). Therefore, it suffices to establish the
proposition when Ξ and Ξ′, are probability measures.

Define T and Θ as in Proposition 6. First, suppose P (#Π∞(T−) = ∞) > 0. By Proposition
6, conditional on {#Π∞(T−) = ∞}, the distribution of the ranked sequence of limiting relative
frequencies of the blocks of Θ is Ξ. Since Π∞ is also a Ξ′-coalescent, this distribution must also
be Ξ′, so Ξ = Ξ′.

Next, suppose P (#Π∞(T−) = ∞) = 0. The second paragraph of the proof of the “only
if” part of Theorem 2 implies that P (#Π∞(T−) ≥ n) > 0 for all n ∈ N . Thus, for all
m ∈ N , there exists an n ≥ m such that P (#Π∞(T−) = n) > 0. Proposition 6 implies that
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conditional on {#Π∞(T−) = n}, Θ is both a Ξ-partition of {3, 4, . . . , n} and a Ξ′-partition of
{3, 4, . . . , n}. Thus, for arbitrarily large n, and therefore for all n, a Ξ-partition of {3, 4, . . . , n}
and a Ξ′-partition of {3, 4, . . . , n} have the same distribution. Thus, a Ξ-partition of {3, 4, . . .}
has the same distribution as a Ξ′-partition of {3, 4, . . .}, so Ξ = Ξ′, which completes the proof. �

4.4 Proof of Proposition 7

In this subsection, we consider a population model of the type discussed in the introduction,
and we adopt the notation used in the introduction. We begin with the following lemma.

Lemma 21 Let Ξ be a probability measure on the infinite simplex ∆. Denote by λb;k1,...,kr;s the
collision rates of the Ξ-coalescent, which are defined from Ξ by (11). Suppose, for a population
model of the type discussed in the introduction, we have limN→∞ cN = 0 and

lim
N→∞

E[(ν1,N )k1 . . . (νr,N )kr ]
Nk1+...+kr−rcN

= λb;k1,...,kr;0 (41)

for all r ≥ 1, k1, . . . , kr ≥ 2 and b =
∑r

j=1 kj. Then, for all n, the processes (Ψn,N (bt/cN c))t≥0

converge as N → ∞ in the Skorohod topology to (RnΠ∞(t))t≥0, where Π∞ is a standard Ξ-
coalescent.

Proof. By Proposition 1, for each n the processes (Ψn,N (bt/cNc))t≥0 converge in the Skorohod
topology to a coalescent process (Ψn,∞(t))t≥0 as N → ∞. As noted in the introduction, the
collision rates defined in (6) for the processes (Ψn,∞(t))t≥0, which we denote by λ′

b;k1,...,kr;s,
satisfy the consistency condition (23). By Lemma 18, there exists a process Π∞ = (Π∞(t))t≥0

satisfying conditions B1 and B2 with collision rates λ′
b;k1,...,kr;s, and (Ψn,∞(t))t≥0 has the same

distribution as (RnΠ∞(t))t≥0 for all n. By Theorem 2, Π∞ is a Ξ′-coalescent for some finite
measure Ξ′ on the infinite simplex ∆. It follows from (10) that

lim
N→∞

E[(ν1,N )k1 . . . (νr,N )kr ]
Nk1+...+kr−rcN

= λ′
b;k1,...,kr;0. (42)

Equations (41) and (42) imply that λb;k1,...,kr;0 = λ′
b;k1,...,kr;0 whenever r ≥ 1, k1, . . . , kr ≥ 2, and

b =
∑r

j=1 kj . Following Lemma 3.4 of [13], we write (23) in the form

λb+1;k1,...,kr;s+1 = λb;k1,...,kr;s −
r∑

m=1

λb+1;k1,...,km−1,km+1,km+1,...,kr;s − sλb+1;k1,...,kr,2;s−1. (43)

By induction on s, we can see from (43) and our convention that sλb+1;k1,...,kr,2;s−1 = 0 when
s = 0 that the collision rates when s = 0 determine all of the collision rates uniquely. Thus,
λb;k1,...,kr;s = λ′

b;k1,...,kr;s for all r ≥ 1, k1, . . . , kr ≥ 2, s ≥ 0, and b =
∑r

j=1 kj + s. It follows from
Proposition 4 that Ξ = Ξ′, which proves the lemma. �

We also require the following lemma, stated on p.284 of [8], regarding the factorial moments of
the multinomial distribution.
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Lemma 22 Suppose (X1, . . . ,Xc) has a multinomial(N ; p1, . . . , pc)-distribution. Then for all
nonnegative integers q1, . . . , qc, we have E[(X1)q1(X2)q2 . . . (Xc)qc ] = (N)q1+...+qcp

q1
1 . . . pqc

c .

Proof of Proposition 7. We can write Ξ = Ξ0 + aδ0, where Ξ0 has no atom at zero. Let
Π∞ = (Π∞(t))t≥0 be a standard Ξ-coalescent, and denote the collision rates of Π∞ by λb;k1,...,kr;s.
For all N ≥ 2, let TN = inf{t : #RNΠ∞(t) < N}, so TN is the first collision time of RNΠ∞.
Let S1,N , . . . , Sw,N be the sizes of the blocks of RNΠ∞(TN ). Let ν̃1,N , . . . , ν̃N,N be obtained by
randomly ordering the elements of the multiset M consisting of S1,N , . . . , Sw,N and N −w zeros.
Let VN be a random variable, independent of Π∞, such that P (VN = 1) = 1/N and P (VN =
0) = 1 − 1/N . Define (ν1,N , . . . , νN,N ) = (ν̃1,N , . . . , ν̃N,N ) on {VN = 1} and (ν1,N , . . . , νN,N ) =
(1, . . . , 1) on {VN = 0}. Let µN be the distribution of (ν1,N , . . . , νN,N ). We claim that for
all n, the processes (Ψn,N (bt/cN c))t≥0 derived from the distributions µN as described in the
introduction converge in the Skorohod topology to (RnΠ∞(t))t≥0 as N → ∞. This claim will
establish the proposition. By Lemma 21, it suffices to show that limN→∞ cN = 0 and that for
all r ≥ 1, k1, . . . , kr ≥ 2 and b =

∑r
j=1 kj , we have

lim
N→∞

E[(ν1,N )k1 . . . (νr,N )kr ]
Nk1+...+kr−rcN

= λb;k1,...,kr;0. (44)

We may assume without loss of generality that Π∞ is derived from a Poisson point process
(e(t))t≥0 with characteristic measure L, where L is defined from Ξ by (14). Define AN by (15).
Recall from (18) that L(AN ) < ∞. It follows from the construction that TN = inf{t : e(t) ∈ AN}.
Let ζN = (ζN

1 , . . . , ζN
N ) be the first N coordinates of e(TN ). If 1 ≤ i, j ≤ N , then i and j are in

the same block of RNΠ∞(TN ) if and only if ζN
i = ζN

j . For y ∈ Z
N , define

Sy = {ξ ∈ Z
∞ : (ξ1, . . . , ξN ) = y}.

Whenever Sy ⊂ AN , we have P (ζN = y) = L(Sy)/L(AN ) by part (d) of Lemma 41 in appendix
B. Let f : ZN → [0,∞) be a function such that f(y) = 0 unless Sy ⊂ AN . Also, let zN

ij denote
the first N coordinates of zij , and let Yx be the first N coordinates of a random sequence with
distribution Px, where Px is defined as in section 3. Then,

E[f(ζN )] =
∑

y∈ZN

P (ζN = y)f(y) =
1

L(AN )

∑
y∈ZN

f(y)L(Sy)

=
1

L(AN )

∑
y∈ZN

(∫
∆

f(y)Px(Sy)
/ ∞∑

j=1

x2
j Ξ0(dx) + a

∞∑
i=1

∞∑
j=i+1

f(y)1{zij∈Sy}

)

=
1

L(AN )

(∫
∆

∑
y∈ZN

f(y)Px(Sy)
/ ∞∑

j=1

x2
j Ξ0(dx) + a

∞∑
i=1

∞∑
j=i+1

∑
y∈ZN

f(y)1{zij∈Sy}

)

=
1

L(AN )

(∫
∆

E[f(Yx)]
/ ∞∑

j=1

x2
j Ξ0(dx) + a

N∑
i=1

N∑
j=i+1

f(zN
ij )

)
. (45)

Given y = (y1, . . . , yN ) ∈ Z
N and j ∈ Z, let hj,N (y) be the cardinality of {i : yi = j}. Fix r ≥ 1

and k1, . . . , kr ≥ 2. Define

fN (y) =
1

(N)r

∑
i1 6=...6=ir

(hi1,N (y))k1 . . . (hir ,N (y))kr , (46)
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where the sum is over distinct positive integers i1, . . . , ir. We claim that

E[(ν̃1,N )k1 . . . (ν̃r,N )kr ] = E[fN (ζN )]. (47)

To see (47), recall that we defined ν̃1,N , . . . ν̃r,N by randomly ordering the elements of the multiset
M . By the definitions of M and ζN and the properties of the Poisson process construction, M
consists of the cardinalities of the w nonempty sets of the form Rj,N = {i : ζN

i = j} and N − w
zeros. Note that hj,N (ζN ) is the cardinality of Rj,N , so M contains N − w zeros as well as
hj,N (ζN ) for all j such that hj,N (ζN ) 6= 0. It follows that (ν̃1,N )k1 . . . (ν̃r,N )kr is either zero or
equals (hi1,N (ζN ))k1 . . . (hir ,N (ζN ))kr for some r-tuple (i1, . . . , ir) of distinct positive integers.
Thus, when y = ζN , all possible nonzero values of (ν̃1,N )k1 . . . (ν̃r,N )kr are terms in the sum on
the right-hand side of (46). Conditional on the event that hi1,N(ζN ), . . . , hir ,N (ζN ) are nonzero,
the probability that these are the first r elements, in order, of the multiset M after a random
ordering is 1/(N)r. Thus,

E[(ν̃1,N )k1 . . . (ν̃r,N )kr |ζN ] = fN (ζN ). (48)

Equation (47) follows by taking expectations of both side of (48).

Note that for all x ∈ ∆ and all distinct positive integers i1, . . . , ir, the distribution of the vector

(hi1,N (Yx), . . . , hir ,N (Yx), N −
r∑

j=1

hij ,N (Yx))

is multinomial(N ;xi1 , . . . , xir , 1−
∑r

j=1 xij). Thus, by applying Lemma 22 with c = r+1, qi = ki

for i = 1, . . . , r, and qr+1 = 0, we obtain

E[fN (Yx)] =
1

(N)r

∑
i1 6=...6=ir

(N)k1+...+krx
k1
i1

. . . xkr
ir

∼ Nk1+...+kr−r
∑

i1 6=...6=ir

xk1
i1

. . . xkr
ir

, (49)

where ∼ denotes asymptotic equivalence as N → ∞. Also, fN (zN
ij ) = 0 unless r = 1, k1 = 2,

i ≤ N , j ≤ N , and i 6= j. In this case, h1,N (zN
ij ) = 2 and hk,N (zN

ij ) ∈ {0, 1} for k 6= 1, which
means

fN (zN
ij ) =

1
N

∞∑
k=1

(hk,N (zij))2 =
2
N

.

Therefore, if r = 1 and k1 = 2, we have

N∑
i=1

N∑
j=i+1

fN (zN
ij ) =

(
N
2

)
2
N

∼ N = Nk1+...+kr−r. (50)

Equations (45), (47), (49), and (50) imply that

E[(ν̃1,N )k1 . . . (ν̃r,N )kr ] =
1

L(AN )

(∫
∆

E[fN (Yx)]
/ ∞∑

j=1

x2
j Ξ0(dx) + a

N∑
i=1

N∑
j=i+1

fN (zN
ij )

)

∼ Nk1+...+kr−r

L(AN )

(∫
∆

∑
i1 6=...6=ir

xk1
i1

. . . xkr
ir

/ ∞∑
j=1

x2
j Ξ0(dx) + a1{r=1,k1=2}

)
.
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By (11), it follows that

E[(ν̃1,N )k1 . . . (ν̃r,N )kr ] ∼
Nk1+...+kr−r

L(AN )
λb;k1,...,kr;0 (51)

for all r ≥ 1, k1, . . . , kr ≥ 2, and b =
∑r

j=1 kj . Since (ν1,N , . . . , νN,N ) = (1, . . . , 1) with probabil-
ity 1 − 1/N and (ν1,N , . . . , νN,N ) = (ν̃1,N , . . . , ν̃N,N ) with probability 1/N , it follows from (51)
that

E[(ν1,N )k1 . . . (νr,N )kr ] ∼
Nk1+...+kr−r

NL(AN )
λb;k1,...,kr;0. (52)

When r = 1 and k1 = 2, equations (4) and (52) give

cN =
E[(ν1,N )2]

N − 1
∼

(
1

N − 1

)
N

NL(AN )
λ2;2;0 ∼ 1

NL(AN )
λ2;2;0. (53)

Since L(AN ) ≥ L(A1,2) = Ξ(∆) = 1 by (17), it follows from (53) that limN→∞ cN = 0. Moreover,
from (52) and (53), we obtain

lim
N→∞

E[(ν1,N )k1 . . . (νr,N )kr ]
Nk1+...+kr−rcN

=
λb;k1,...,kr;0

λ2;2;0
.

Since Ξ is a probability measure, we have λ2;2;0 = 1 by (12), which establishes (44) and
completes the proof of the proposition. �

4.5 Proofs of propositions related to (Fr)
∞
r=1

In this subsection, we prove Propositions 8, 10, and 11, all of which relate to the characterization
of coalescents with simultaneous multiple collisions by a sequence of measures (Fr)∞r=1.

We will use the following lemma. When (Fr)∞r=1 is associated with a population model as
described in Proposition 1, then this result is exactly Lemma 3.4 of [13]. However, the proof
in [13] uses the properties of the population model. Since we wish to apply the result without
knowing, a priori, whether the sequence (Fr)∞r=1 is associated with a population model, we will
prove the result for all (Fr)∞r=1 satisfying conditions A1, A2, and A3′ of Proposition 8.

Lemma 23 Let (Fr)∞r=1 be a sequence of measures satisfying conditions A1, A2, and A3′ of
Proposition 8. Define real numbers {λb;k1,...,kr;s : r ≥ 1, k1, . . . , kr ≥ 2, s ≥ 0, b =

∑r
j=1 kj + s}

by (6). Then (23) holds.

Proof. Verifying (23) is equivalent to verifying (43). Equation (6) implies that (43) is equivalent
to

br+(s+1)/2c∑
m=r

∫
∆m

xk1−2
1 . . . xkr−2

r T
(m)
r,s+1(x1, . . . , xm) Fm(dx1, . . . , dxm)

=
br+s/2c∑

m=r

∫
∆m

xk1−2
1 . . . xkr−2

r (1 −
r∑

i=1

xi)T (m)
r,s (x1, . . . , xm) Fm(dx1, . . . , dxm)

− s

br+(s+1)/2c∑
m=r+1

∫
∆m

xk1−2
1 . . . xkr−2

r T
(m)
r+1,s−1(x1, . . . , xm) Fm(dx1, . . . , dxm). (54)
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It follows from (8) that T
(m)
m−j,s = 0 when s < 2j, so T

(m)
r,s = 0 when s < 2(m−r) or, equivalently,

when m > r + s/2. Thus, (54) would be unchanged if we took the three sums over m in (54) up
to infinity. The resulting equality follows from (7) and (8) and is stated in the proof of Lemma
3.6 of [13]. �

Proof of Proposition 8. Suppose {λb;k1,...,kr;s : r ≥ 1, k1, . . . , kr ≥ 2, s ≥ 0, b =
∑r

j=1 kj + s}
is a collection of nonnegative real numbers such that there exists a P∞-valued coalescent Π∞
satisfying conditions B1 and B2 of Theorem 2. By Theorem 2, the rates can be obtained from
(11) for some finite measure Ξ on the infinite simplex ∆. By (12), we can write Ξ = λ2;2;0G,
where G is a probability measure. Denote the collision rates of the G-coalescent by λ′

b;k1,...,kr;s.
By Proposition 1 and Proposition 7, there exists a unique sequence of measures (F ′

r)∞r=1 satisfying
conditions A1, A2, and A3 of Proposition 1 such that the collision rates λ′

b;k1,...,kr;s are given by
(6) with Fm replaced by F ′

m on the right-hand side. Let Fr = λ2;2;0F
′
r for all r. Then (Fr)∞r=1

satisfies A1, A2, and A3′, and the collision rates λb;k1,...,kr;s are given by (6). The uniqueness of
(F ′

r)
∞
r=1, which is asserted in Proposition 1, implies the uniqueness of (Fr)∞r=1.

Next, suppose {λb;k1,...,kr;s : r ≥ 1, k1, . . . , kr ≥ 2, s ≥ 0, b =
∑r

j=1 kj + s} is a collection
of nonnegative real numbers, and suppose there is a sequence of measures (Fr)∞r=1 satisfying
A1, A2, and A3′ such that (6) holds for all λb;k1,...,kr;s. Lemma 23 implies that (23) holds, so
by Lemma 18, there exists a P∞-valued coalescent satisfying B1 and B2 with collision rates
{λb;k1,...,kr;s : r ≥ 1, k1, . . . , kr ≥ 2, s ≥ 0, b =

∑r
j=1 kj + s}.

Finally, suppose (Fr)∞r=1 is any sequence of measures satisfying A1, A2, and A3′, and define a
collection of real numbers {λb;k1,...,kr;s : r ≥ 1, k1, . . . , kr ≥ 2, s ≥ 0, b =

∑r
j=1 kj + s} by (6). If

A4 holds, then the argument in the previous paragraph implies that there exists a coalescent
process with collision rates λb;k1,...,kr;s satisfying B1 and B2. However, if the right-hand side of
(6) is negative for some r ≥ 1, k1, . . . , kr ≥ 2, and s ≥ 0, then clearly there can be no coalescent
process with collision rates λb;k1,...,kr;s satisfying B1 and B2. �

Proof of Proposition 10. Recall that (Fr)∞r=1 satisfies conditions A1, A2, A3′, and A4 of
Proposition 8, and Π∞ is a coalescent satisfying conditions B1 and B2 of Theorem 2 with collision
rates λb;k1,...,kr;s defined from (Fr)∞r=1 by (6). To prove the first statement in the proposition,
note that R2rΠ∞(0) consists of 2r singletons, and λ2r;2,...,2;0 is the rate at which these singletons
are colliding to form the blocks {1, 2}, {3, 4}, . . . , {2r − 1, 2r}. Thus, P (Er) = 0 if and only
if λ2r;2,...,2;0 = 0. Also, by (9), we have λ2r;2,...,2;0 = Fr(∆r), so λ2r;2,...,2;0 = 0 if and only if
Fr(∆r) = 0.

By Theorem 2, Π∞ must be a standard Ξ-coalescent for some finite measure Ξ. Therefore, we
may assume that Π∞ is derived from a Poisson point process (e(t))t≥0 with intensity measure
L, where L is defined in terms of Ξ by (14). We have Tr = inf{t : e(t) ∈ A2r}, where A2r is
defined by (15). Define

Dr = {ξ ∈ Z
∞ : ξ2j−1 = ξ2j for j = 1, . . . , r and ξ2i 6= ξ2j if 1 ≤ i < j ≤ r}. (55)

It follows from the construction of Π∞ that Er occurs if and only if e(Tr) ∈ Dr.

Let Θ̃r be the partition of N such that i and j are in the same block of Θ̃r if and only if
e(Tr)i = e(Tr)j . It follows from the construction that Θr equals Θ̃r on {#Π∞(Tr−) = ∞} and
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Θr is the restriction of Θ̃r to {1, 2, . . . ,#Π∞(Tr−)} on {#Π∞(Tr−) < ∞}. Suppose P (Er) > 0.
Then let Θ′

r be a random partition whose distribution is the same as the conditional distribution
of Θ̃r given Er. Since Π∞ is an exchangeable process (see Definition 19), the restriction of Θ′

r to
{2r+1, 2r+2, . . .} is exchangeable. Let f ′

j,r be the limiting relative frequency of the block of Θ′
r

containing 2j − 1 and 2j, which exists by Lemma 40 of appendix A. Let Qr be the distribution
of (f ′

1,r, . . . , f
′
r,r).

We first show that Qr satisfies condition (b) of Proposition 10. Suppose that we have
P (#Π∞(Tr−) = ∞) > 0. By Lemma 15, Π∞(Tr−) and e(Tr) are independent since L(A2r) < ∞.
Therefore, the conditional distribution of Θ̃r given Er equals the conditional distribution of
Θ̃r given Er ∩ {#Π∞(Tr−) = ∞}. The conditional distribution of the limiting relative fre-
quencies of the first r blocks of Θ̃r given Er equals Qr by definition. Since Θr = Θ̃r on
{#Π∞(Tr−) = ∞}, the conditional distribution of the limiting relative frequencies of the first r
blocks of Θ̃r given Er ∩ {#Π∞(Tr−) = ∞} equals the conditional distribution of (f1,r, . . . , fr,r)
given Er ∩ {#Π∞(Tr−) = ∞}, where fj,r is the limiting relative frequency of the block of Θr

containing 2j − 1 and 2j. Hence, conditional on Er ∩ {#Π∞(Tr−) = ∞}, the distribution of
(f1,r, . . . , fr,r) equals Qr, which is condition (b).

Next, we show that Qr satisfies condition (c). Suppose P (#Π∞(Tr−) = n) > 0. The conditional
distribution of Θr given Er ∩ {#Π∞(Tr−) = n} equals the conditional distribution of the
restriction of Θ̃r to {1, . . . , n} given Er ∩ {#Π∞(Tr−) = n}. By the independence of Π∞(Tr−)
and e(Tr), this equals the conditional distribution of the restriction of Θ̃r to {1, . . . , n} given
Er, which equals the distribution of Θ′

r restricted to {1, . . . , n}. Since Qr was defined to be the
distribution of f ′

1,r, . . . , f
′
r,r, it follows that Qr satisfies (c).

It remains to show that Qr satisfies condition (a) for all r such that P (Er) > 0. For all r,
define F ′

r = 0 if P (Er) = 0 and F ′
r = λ2r;2,...,2;0Qr if P (Er) > 0. It suffices to show that

Fr = F ′
r for all r. We first show that the sequence (F ′

r)∞r=1 satisfies properties A1, A2, and A3′

of Proposition 8. That (F ′
r)∞r=1 satisfies A1 is clear from the definition. Note that for all r, the

measure Qr is symmetric with respect to the r coordinates of ∆r because Π∞ is exchangeable.
Therefore each F ′

r is symmetric and so A2 holds. Also, we have F ′
r(∆r) = λ2r;2,...,2;0 for all

r ≥ 1. Whenever B1, . . . , B2r merge into the r blocks B1 ∪ B2, B3 ∪ B4, . . . , B2r−1 ∪ B2r, the
blocks B1, . . . , B2(r−1) merge into B1 ∪B2, B3 ∪B4, . . . , B2(r−1)−1 ∪B2(r−1). Therefore, we have
λ2(r−1);2...,2;0 ≥ λ2r;2,...,2;0 for all r ≥ 2, which means F ′

1(∆1) ≥ F ′
2(∆2) ≥ . . .. Thus, (F ′

r)
∞
r=1

satisfies A3′.

Let λ′
b;k1,...,kr;s be defined by (6) with F ′

m in place of Fm. Since both (Fr)∞r=1 and (F ′
r)

∞
r=1 satisfy

A1, A2, and A3′, the uniqueness assertion in Proposition 8 implies that we can prove Fr = F ′
r

for all r by showing that
λb;k1,...,kr;s = λ′

b;k1,...,kr;s (56)

for all r ≥ 1, k1, . . . , kr ≥ 2, s ≥ 0, and b =
∑r

j=1 kj + s. Also, Lemma 23 implies that (43)
holds for both collections of collision rates. Therefore, by induction on s, it suffices to verify (56)
when s = 0. If P (Er) = 0, then Fr(∆) = F ′

r(∆) = 0, so when s = 0, (56) follows immediately
from (9). Therefore, we may assume for the rest of the proof that P (Er) > 0.

Let θ be a partition of {1, . . . , b} into blocks of sizes k1, . . . , kr ≥ 2 such that R2rθ consists of
the blocks {1, 2}, {3, 4}, . . . , {2r − 1, 2r} and kj is the size of the block containing 2j − 1 and 2j.
Let Aθ consist of all ξ ∈ Z

∞ such that if 1 ≤ i, j ≤ b then ξi = ξj if and only if i and j are in
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the same block of θ. Define
Ur = inf{e(t) ∈ Dr}, (57)

where Dr is defined by (55). Then, Er is the event that 1, . . . , 2r are in distinct blocks of
Π∞(Ur−), and Tr = Ur on Er. Since Dr ⊂ A2r, where A2r is defined by (15), we have L(Dr) <
∞. Therefore, Π∞(Ur−) and e(Ur) are independent by Lemma 15. Using this independence for
the fourth equality and part (d) of Lemma 41 in appendix B for the fifth equality, we have

P (RbΘ′
r = θ) = P (RbΘ̃r = θ|Er) = P (e(Tr) ∈ Aθ|Er)

= P (e(Ur) ∈ Aθ|Er) = P (e(Ur) ∈ Aθ) =
L(Aθ)
L(Dr)

=
λb;k1,...,kr;0

λ2r;2,...,2;0
. (58)

Define a sequence of random variables (Zi)∞i=2r+1 such that Zi = j if i is in the same block of
Θ′

r as 2j and Zi = 0 if j is not in the same block of Θ′
r as any of 1, . . . , 2r. Since the restriction

of Θ′
r to {2r + 1, 2r + 2, . . .} is an exchangeable random partition, (Zi)∞i=2r+1 is an exchangeable

random sequence. By Lemma 40 of appendix A, (Zi)∞i=2r+1 is has a limiting empirical measure µ
given by µ({j}) = f ′

j for j = 1, . . . , r and µ({0}) = 1−∑r
j=1 f ′

j. Let F be the σ-field generated
by µ. By Lemma 38, the random variables Z2r+1, Z2r+2, . . . are conditionally independent given
F , and the conditional distribution of each Zi given F is µ. Therefore,

P (RbΘ′
r = θ|F) = (f ′

1)
k1−2 . . . (f ′

r)
kr−2. (59)

Taking expectations of both sides of (59), we get

P (RbΘ′
r = θ) =

∫
∆r

xk1−2
1 . . . xkr−2

r Qr(dx1, . . . , dxr). (60)

¿From (9), (58), and (60), we have

λb;k1,...,kr;0 = λ2r;2,...,2;0P (RbΘ′
r = θ) = λ2r;2,...,2;0

∫
∆r

xk1−2
1 . . . xkr−2

r Qr(dx1, . . . , dxr)

=
∫

∆r

xk1−2
1 . . . xkr−2

r F ′
r(dx1, . . . , dxr) = λ′

b;k1,...,kr;0,

which completes the proof. �

Remark 24 Recall that to prove Proposition 8, we used Proposition 1 to establish the fact that
if there is a coalescent process satisfying conditions B1 and B2 of Theorem 2, then the collision
rates must be determined by (6) for a unique sequence of measures (Fr)∞r=1 satisfying conditions
A1, A2, and A3′ of Proposition 8. Thus, the proof of Proposition 8 made use of the population
model introduced in [13]. In the proof of Proposition 10, we started with a coalescent process
Π∞ satisfying B1 and B2. Without using the assumption that the collision rates were derived
from (Fr)∞r=1 by (6), we then defined a sequence of measures (F ′

r)∞r=1 satisfying A1, A2, and A3′

such that the collision rates of Π∞ were given by (6), with F ′
m in place of Fm on the right-hand

side. The uniqueness of this sequence of measures, which is part of Proposition 1, follows from
(9) and the fact that measures on ∆r are uniquely determined by their moments. Consequently,
we now have an alternative proof of Proposition 8 that does not refer to the population model.
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Proof of Proposition 11. Let Π∞ be a standard Ξ-coalescent, and denote the collision rates
by λb;k1,...,kr;s. Fix r ∈ N . Define Er as in Proposition 10. First, suppose P (Er) = 0. Then
λ2r;2,...,2;0 = 0 and Fr(∆r) = 0 by Proposition 10. We see from (11) that when S = ∆r, the
right-hand side of (13) equals λ2r;2,...,2;0, which is zero. Also, the right-hand side of (13) is
nonnegative and takes on its maximum value when S = ∆r, so it is zero for all S. Thus, (13)
holds when P (Er) = 0.

Now, suppose P (Er) > 0. Assume that Π∞ is derived from a Poisson point process (e(t))t≥0

whose characteristic measure L is defined by (14). Define Tr, Θ̃r, Θ′
r, and f ′

1,r, . . . , f
′
r,r as

in the proof of Proposition 10, and let Qr be the distribution of f ′
1,r, . . . , f

′
r,r. By the proof of

Proposition 10, we have Fr(S) = λ2r;2,...,2;0Qr(S) for all measurable subsets S of ∆r. For ξ ∈ Z
∞

and k ∈ Z, define Nk(ξ) as in (40), provided this limit exists. Define Dr as in (55) and Ur as in
(57). For each measurable subset S of ∆r, define

AS,r = {ξ ∈ Dr : (Nξ2(ξ), Nξ4(ξ), . . . , Nξ2r (ξ)) ∈ S}.

On Er, if fj,r denotes the limiting relative frequency of the block of Θ̃r containing 2j−1 and 2j,
then (f1,r, . . . , fr,r) ∈ S if and only if e(Tr) ∈ AS,r. Since Θ′

r is defined to have the conditional
distribution of Θ̃r given Er, we have

Qr(S) = P ((f ′
1,r, . . . , f

′
r,r) ∈ S) = P ((f1,r, . . . , fr,r) ∈ S|Er) = P (e(Tr) ∈ AS,r|Er).

Note that Tr = Ur on Er. By Lemma 15, Π∞(Ur−) and e(Ur) are independent. Also, recall
from the proof of Proposition 10 that Er is the event that 1, . . . , 2r are in distinct blocks of
Π∞(Ur−). Using these facts and part (d) of Lemma 41 of appendix B, we get

Qr(S) = P (e(Ur) ∈ AS,r|Er) = P (e(Ur) ∈ AS,r) =
L(AS,r)
L(Dr)

.

Since L(Dr) = λ2r;2,...,2;0, which is nonzero when P (Er) > 0, it follows that Fr(S) = L(AS,r).
By the strong law of large numbers,

Px(AS,r) =
∑

i1 6=...6=ir

x2
i1 . . . x2

ir1{(xi1
,...,xir )∈S}.

Also, zij ∈ AS,r if and only if {i, j} = {1, 2}, r = 1, and (0, 0, . . .) ∈ S. Thus, by (14), L(AS,r)
equals the right-hand side of (13), which completes the proof. �

5 Further properties of the Ξ-coalescent

In this section, we establish some properties of the Ξ-coalescent, most of which are straightfor-
ward extensions of properties that have been proved in [16] or [19] for the Λ-coalescent.

5.1 Regularity Properties of the Ξ-coalescent

In this subsection, we prove some regularity properties of the Ξ-coalescent. The analogous
results for the Λ-coalescent are given as part of Theorem 1 in [16]. A consequence of the Feller
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property proved below is that the Ξ-coalescent satisfies the strong Markov property, a fact we
will use later.

Recall from the introduction that we can identify P∞ with the product space P1 × P2 × . . ..
Since each Pn is finite, the associated product topology is compact and metrizable and has a
countable basis. Also, one can check that this topology is induced by the metric d(σ, τ) = 2−n,
where n = inf{m ≥ 1 : Rmσ 6= Rmτ}.

Proposition 25 Let PΞ,π denote the law of a Ξ-coalescent Π∞ started with Π∞(0) = π. Then
the collection of laws (PΞ,π, π ∈ P∞) defines a Feller process.

Proof. Let C(P∞) be the set of continuous real-valued functions defined on P∞ with the
topology induced by the norm ‖f‖ = supσ∈P∞ |f(σ)|. Let An consist of all real-valued functions
f defined on P∞ such that f(σ) = f(τ) whenever Rnσ = Rnτ . Since, for f ∈ An, the value
of f(σ) is determined by Rnσ, we can associate with each f ∈ An a function f (n) defined on
Pn such that f(σ) = f (n)(Rnσ) for all σ ∈ P∞. Let A =

⋃∞
n=1 An. Then A is a subalgebra of

C(P∞) which contains constants and separates points, so by the Stone-Weierstrass Theorem, A
is dense in C(P∞).

We now define a family of operators (Pt, t ≥ 0) on C(P∞). For all n ∈ N , let (Pn
t , t ≥ 0) be

the transition semigroup associated with the restriction to {1, . . . , n} of a Ξ-coalescent. Then
for f ∈ An, let Ptf(σ) = Pn

t f (n)(Rnσ). Note that Ptf is in An and thus is continuous. We
must check this definition for consistency; that is, if f ∈ Am and m < n, we must check that
Pn

t f (n)(Rnσ) = Pm
t f (m)(Rmσ) for all σ ∈ P∞. For α ∈ Pn, let Πα

n denote the restriction
to {1, . . . , n} of a Ξ-coalescent Πα∞ satisfying RnΠα∞(0) = α. For α, β ∈ Pn, let pn

t (α, β) =
P (Πα

n(t) = β). Property B2 of Theorem 2 implies that for α ∈ Pn and τ ∈ Pm, we have

pm
t (Rmα, τ) =

∑
{β∈Pn:Rmβ=τ}

pn
t (α, β).

Therefore, for all f ∈ Am and σ ∈ P∞, we have

Pn
t f (n)(Rnσ) =

∑
α∈Pn

pn
t (Rnσ, α)f (n)(α) =

∑
τ∈Pm

∑
{β∈Pn:Rmβ=τ}

pn
t (Rnσ, β)f (n)(β)

=
∑

τ∈Pm

f (m)(τ)
( ∑

{β∈Pn:Rmβ=τ}
pn

t (Rnσ, β)
)

=
∑

τ∈Pm

pm
t (Rmσ, τ)f (m)(τ) = Pm

t f (m)(Rmσ),

so Ptf is consistently defined for all f ∈ A. Now let f ∈ C(P∞) be arbitrary, and let (fm)∞m=1 be
a sequence of functions in A converging uniformly to f . Note that ‖Ptfm−Ptfn‖ ≤ ‖fm−fn‖ → 0
as m,n → ∞, so the sequence (Ptfm)∞m=1 converges uniformly to some continuous function that
we define to be Ptf .

We claim that (Pt, t ≥ 0) is a Feller semigroup on C(P∞). Clearly P0 is the identity operator.
Since each (Pn

t , t ≥ 0) is the transition semigroup of a Markov process, we have ‖Pn
t ‖ ≤ 1 for

all t and n, which implies ‖Pt‖ ≤ 1 for all t. Fix f ∈ C(P∞) and let (fm)∞m=1 be a sequence in
A converging to f . Then Pt+sf = limm→∞ Pt+sfm = limm→∞ PtPsfm = PtPsf , so (Pt, t ≥ 0)
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is a semigroup. Let ε > 0, and fix m such that ‖fm − f‖ < ε/3. Let n be an integer such
that fm ∈ An. There exists a constant λn < ∞ such that the total rate of all collisions for the
restriction to {1, . . . , n} of any Ξ-coalescent is at most λn. Thus, if ‖fm‖ > 0, we can choose
δ > 0 such that P (Πα

n(t) 6= Πα
n(0)) < ε/(6‖fm‖) for all t < δ and α ∈ Pn. Then, for all t < δ

and σ ∈ P∞, we have

|Ptfm(σ) − fm(σ)| = |Pn
t f (n)

m (Rnσ) − f (n)
m (Rnσ)| ≤ 2‖f (n)

m ‖P (ΠRnσ
n (t) 6= ΠRnσ

n (0)) < ε/3.

Hence,
‖Ptf − f‖ ≤ ‖Ptf − Ptfm‖ + ‖Ptfm − fm‖ + ‖fm − f‖ < ε.

Therefore, limt↓0 ‖Ptf − f‖ = 0. It follows (see Definition 2.1 in chapter III of [17]) that
(Pt, t ≥ 0) is a Feller semigroup on C(P∞). Therefore (see Theorem 1.5 and Proposition 2.2
in chapter III of [17]), there exists a P∞-valued Feller process starting from the partition of N
into singletons with (Pt, t ≥ 0) as its transition semigroup. Since Ptf(σ) = Pn

t f (n)(Rnσ) for all
f ∈ An and σ ∈ P∞, this Feller process has the property that its restriction to {1, . . . , n} has
the same law as Πn. It follows that (Pt, t ≥ 0) is the transition semigroup for the Ξ-coalescent,
so the collection of laws (PΞ,π, π ∈ P∞) defines a Feller process, as claimed. �

We now work towards proving that the law PΞ,π depends continuously on the measures Ξ and
π. To formulate this result precisely, we need to define a topology on ∆. We will use the weakest
topology making all of the coordinate functions x 7→ xi continuous; this topology is discussed
in section 3 of [9]. With this topology, ∆ is compact and metrizable, and a sequence (x(n))∞n=1

in ∆ converges to x if and only if limn→∞ x
(n)
i = xi for all i ∈ N .

Lemma 26 For all r ≥ 1 and k1, . . . , kr ≥ 2, define the function gk1,...,kr : ∆ → R by

gk1,...,kr(x) =
∑

i1 6=...6=ir

xk1
i1

. . . xkr
ir

/ ∞∑
j=1

x2
j

for x 6= (0, 0, . . .), and gk1,...,kr((0, 0, . . .)) = 1{r=1,k1=2}. Then gk1,...,kr is bounded and continu-
ous.

Proof. For all x ∈ ∆, we have

∑
i1 6=...6=ir

xk1
i1

. . . xkr
ir

≤
∞∑

i1,...,ir=1

xk1
i1

. . . xkr
ir

=
r∏

j=1

( ∞∑
ij=1

x
kj

ij

)
. (61)

Since
∑∞

i=1 xi ≤ 1 by the definition of ∆, we have
∑∞

i=1 xk
i ≤ 1 for all k ∈ N , so

∑
i1 6=...6=ir

xk1
i1

. . . xkr
ir

≤
∞∑

i1=1

xk1
i1

≤
∞∑
i=1

x2
i .

Thus, gk1,...,kr(x) ≤ 1 for all x ∈ ∆, which means gk1,...,kr is bounded.
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Next, we show that gk1,...,kr is continuous. For n = 1, 2, . . . ,∞, define

f
(n)
k1,...,kr

(x) =
n∑

i1 6=...6=ir=1

xk1
i1

. . . xkr
ir

for all x ∈ ∆. Since xi ≤ 1/i for all x ∈ ∆, we have

|f (∞)
k1,...,kr

(x) − f
(n)
k1,...,kr

(x)| ≤
r∑

j=1

∞∑
ij=n+1

∑
i1 6=...6=ij−1 6=ij+1 6=...6=ir

xk1
i1

. . . xkr
ir

≤ r

∞∑
i1=n+1

∑
i2 6=...6=ir

x2
i1 . . . x2

ir

≤ r

( ∞∑
i1=n+1

x2
i1

) r∏
j=2

( ∞∑
ij=1

x2
ij

)
≤ r

∞∑
i1=n+1

x2
i1 ≤ r

∞∑
i=n+1

1
i2

≤ r

n

for all x ∈ ∆. Thus, the sequence of functions (f (n)
k1,...,kr

)∞n=1 converges uniformly to f
(∞)
k1,...,kr

.

Since f
(n)
k1,...,kr

is continuous for all r ≥ 1, k1, . . . , kr ≥ 2, and n < ∞, it follows that f
(∞)
k1,...,kr

is
continuous for all r ≥ 1 and k1, . . . , kr ≥ 2. Thus, gk1,...,kr is a ratio of two continuous functions
and is therefore continuous wherever the denominator is nonzero.

It remains only to show that gk1,...,kr is continuous at zero. If r = 1 and k1 = 2, then gk1,...,kr(x) =
1 for all x ∈ ∆, so gk1,...,kr is continuous at zero. Let (x(n))∞n=1 be a sequence in ∆ converging
to zero. If r ≥ 2, then (61) implies

gk1,...,kr(x
(n)) ≤

r∏
j=1

( ∞∑
ij=1

(x(n)
ij

)kj

)/ ∞∑
j=1

(x(n)
j )2 ≤

2∏
j=1

( ∞∑
ij=1

(x(n)
ij

)2
)/ ∞∑

j=1

(x(n)
j )2 =

∞∑
i=1

(x(n)
i )2.

Given ε > 0, choose N > 2/ε, and choose M such that for n > M , we have x
(n)
i < (ε/2N)1/2 for

all i = 1, . . . , N . For n > M , we have

∞∑
i=1

(x(n)
i )2 ≤

N∑
i=1

ε

2N
+

∞∑
i=N+1

1
i2

≤ ε

2
+

1
N

< ε.

Thus, limn→∞ gk1,...,kr(x
(n)) = 0. If r = 1 and k1 ≥ 3, then

gk1,...,kr(x
(n)) =

∞∑
i=1

(x(n)
i )k1

/ ∞∑
j=1

(x(n)
j )2 ≤ (x(n)

1 )k1−2
n∑

i=1

(x(n)
i )2

/ n∑
j=1

(x(n)
j )2 = (x(n)

1 )k1−2,

which approaches 0 as n → ∞. Hence gk1,...,kr is continuous at zero. �

Proposition 27 Let PΞ,π denote the law of a Ξ-coalescent Π∞ started with Π∞(0) = π. Equip
the space of finite measures on ∆ with the topology of weak convergence. Let DP∞ [0,∞) denote
the set of càdlàg P∞-valued paths with the Skorohod topology, and give the space of probability
measures on DP∞ [0,∞) the topology of weak convergence. Then, the map (Ξ, π) 7→ PΞ,π is
continuous.
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Proof. Let (Ξm)∞m=1 be a sequence of finite measures on ∆ converging weakly to Ξ, and let
(πm)∞m=1 be a sequence in P∞ converging to π. Since ∆ is compact and metrizable, the space of
finite measures on ∆ with the topology of weak convergence is metrizable, as shown in section 5
of chapter VIII of [4]. Also, P∞ is metrizable. Therefore, it suffices to show that (PΞm,πm)∞m=1

converges weakly to PΞ,π.

For all r ≥ 1 and k1, . . . , kr ≥ 2, define gk1,...,kr as in Lemma 26. By (11),

λb;k1,...,kr;0 =
∫

∆
gk1,...,kr(x) Ξ(dx)

for all r ≥ 1, k1, . . . , kr ≥ 2, and b =
∑r

j=1 kj . Therefore, by Lemma 26 and the definition
of weak convergence, if the rate of a (b; k1, . . . , kr; s)-collision for a standard Ξm-coalescent is
denoted by λm

b;k1,...,kr;s, then
lim

m→∞λm
b;k1,...,kr;0 = λb;k1,...,kr;0 (62)

for all r ≥ 1, k1, . . . , kr ≥ 2, and b =
∑r

j=1 kj . It follows from (43) by induction on s that all
collision rates λb;k1,...,kr;s can be obtained by taking finite sums and differences of collision rates
with s = 0. Hence (62) implies that

lim
m→∞λm

b;k1,...,kr;s = λb;k1,...,kr;s (63)

for all r ≥ 1, k1, . . . , kr ≥ 2, s ≥ 0, and b =
∑r

j=1 kj + s.

Let Πm∞ be a Ξm-coalescent such that Πm∞(0) = πm. Let Πm
n = RnΠm∞ for all m and n, and let

Πn = RnΠ∞. Since P∞ is complete, separable, and compact, it follows from Theorem 7.2 in
chapter 3 of [6] that to show that (PΞm,πm)∞m=1 is relatively compact, it suffices to show that
for all ε > 0 and T > 0, there exists δ > 0 such that

sup
m

P (w′(Πm
∞, δ, T ) ≥ ε) ≤ ε, (64)

where
w′(Πm

∞, δ, T ) = inf
{ti}

max
i

sup
s,t∈[ti−1,ti)

d(Πm
∞(s),Πm

∞(t))

and {ti} ranges over partitions of the form 0 = t0 < t1 . . . < tn−1 < T ≤ tn with ti − ti−1 > δ
for i = 1, . . . , n. Choose n such that 2−n < ε. Then w′(Πm∞, δ, T ) < ε as long as no two jumps of
Πm

n between times 0 and T occur in any time interval of length δ. Condition (63) implies that
the total rate of all jumps of Πm

n is bounded uniformly in m, so for sufficiently small δ, we have
P (w′(Πm∞, δ, T ) < ε) > 1 − ε for all m, which implies (64). Hence, (PΞm,πm)∞m=1 is relatively
compact.

By Theorem 7.8 in chapter 3 of [6], to show that (PΞm,πm)∞m=1 converges weakly to PΞ,π, it now
suffices to show that if 0 ≤ t1 < . . . < tk < ∞, then (Πm∞(t1), . . . ,Πm∞(tk)) converges weakly
to (Π∞(t1), . . . ,Π∞(tk)) as m → ∞. By the Portmanteau Theorem, which is Theorem 3.1 in
chapter 3 of [6], it suffices to show that

lim
m→∞P ((Πm

∞(t1), . . . ,Πm
∞(tk)) ∈ G) = P ((Π∞(t1), . . . ,Π∞(tk)) ∈ G) (65)

for all open subsets G of the k-fold product Pk∞ = P∞ × . . . × P∞. For σ = (σ1, . . . , σk) ∈ Pk∞
and τ = (τ1, . . . , τk) ∈ Pk∞, define Rnσ = (Rnσ1, . . . , Rnσk) and ρ(σ, τ) = max1≤i≤k d(σi, τi).
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Then, ρ is a metric on Pk∞ which induces the product topology. Thus, all open subsets of Pk∞
are unions of sets of the form

B(σ, ε) = {τ ∈ Pk
∞ : ρ(σ, τ) < ε} = {τ ∈ Pk

∞ : Rnτ = Rnσ},
where n = sup{j ∈ N : 2−j ≥ ε}. Thus, every open subset of Pk∞ can be written in the form

∞⋃
j=1

{τ ∈ Pk
∞ : Rnjτ = σj}, (66)

where the nj are integers and σj ∈ Pk
nj

for all j ∈ N . If M < ∞, then there exists a subset S of
Pk

N , where N = max1≤j≤M nj, such that

M⋃
j=1

{τ ∈ Pk
∞ : Rnjτ = σj} = {τ ∈ Pk

∞ : RN τ ∈ S}. (67)

The sets in (67) increase to the set in (66) as M → ∞. Therefore, to show (65), it suffices to
show that for all N < ∞ and all S ⊂ Pk

N , we have

lim
m→∞P ((Πm

N (t1), . . . ,Πm
N (tk)) ∈ S) = P ((ΠN (t1), . . . ,ΠN (tk)) ∈ S). (68)

Equation (68) follows from (63) and the fact that for sufficiently large m, we have the equality
Πm

N (0) = RNπm = RNπ = ΠN (0). Hence, (PΞm,πm)∞m=1 converges weakly to PΞ,π, which
completes the proof. �

5.2 Some Formulas

For b ≥ 2, let λb denote the total rate of all collisions when the Ξ-coalescent has b blocks.
Let N(b; k1, . . . , kr; s) be the number of possible (b; k1, . . . , kr; s)-collisions, which was given in
equation (3) of the introduction. We have

λb =
bb/2c∑
r=1

∑
{k1,...,kr}

N(b; k1, . . . , kr; s)λb;k1,...,kr;s, (69)

where s = b −∑r
j=1 kj and the inner sum is over multisets {k1, . . . , kr} because we do not have

a separate term for each possible ordering of k1, . . . , kr. We can obtain another formula for
λb using the Poisson process construction of section 3. Define Ab as in (15). Then, we have
Ac

b = {ξ ∈ Z
∞ : ξ1, . . . , ξb are distinct}. By considering the Poisson process construction and

applying part (a) of Lemma 41 of appendix B, we see that λb = L(Ab). Note that ξ ∈ Ac
b if

and only if there exist l ∈ {0, . . . , b} and distinct positive integers i1, . . . , il such that for some
m1 < . . . < ml ≤ b, we have ξmj = ij for j ∈ {1, . . . , l} and ξm < 0 for all m ≤ b such
that m /∈ {m1, . . . ,ml}. Summing over the possible values of l and i1, . . . , il, and counting the
possible values of m1, . . . ,ml, we get, for all x ∈ ∆,

Px(Ab) = 1 − Px(Ac
b) = 1 −

b∑
l=0

∑
i1 6=...6=il

(
b
l

)
xi1 . . . xil(1 −

∞∑
j=1

xj)b−l.
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Also, zij ∈ Ab if and only if i ≤ b, j ≤ b, and i 6= j, so from (14), we get

λb =
∫

∆

(
1 −

b∑
l=0

∑
i1 6=...6=il

(
b
l

)
xi1 . . . xil(1 −

∞∑
j=1

xj)b−l

)/ ∞∑
j=1

x2
j Ξ0(dx) + a

(
b
2

)
. (70)

Note that for the Λ-coalescent, when Ξ is concentrated on {x ∈ ∆ : xi = 0 for all i ≥ 2}, only
the l = 0 and l = 1 terms in the integrand of (70) are nonzero. Therefore, (70) reduces to

λb =
∫

∆
(1 − (1 − x1)b − bx1(1 − x1)b−1)/x2

1 Ξ0(dx) + a

(
b
2

)
,

which agrees with equation (6) of [16] because

lim
x1→0

(1 − (1 − x1)b − bx1(1 − x1)b−1)
x2

1

=
(

b
2

)
.

Equation (15) of [13] gives another formula for λb in terms of the sequence of measures (Fr)∞r=1

associated with Ξ as in Proposition 11.

Let γb denote the total rate at which the number of blocks is decreasing when the coalescent
has b blocks. Each (b, k1, . . . , kr, s)-collision decreases the number of blocks by b − r − s, so for
b ≥ 2 we have

γb =
bb/2c∑
r=1

∑
{k1,...,kr}

(b − r − s)N(b; k1, . . . , kr; s)λb;k1,...,kr;s. (71)

We record one simple lemma regarding the γb, which is proved in [19] for the Λ-coalescent by a
direct calculation.

Lemma 28 The sequence (γb)∞b=2 is increasing.

Proof. Let Π∞ be a standard Ξ-coalescent, and let Πn = RnΠ∞ for all n ∈ N . Fix m < n.
Then γn is the initial rate at which the number of blocks of Πn is decreasing, and γm is the
initial rate at which the number of blocks of Πm is decreasing. For all t ∈ R , we have

#Πn(t−) − #Πn(t) ≥ #Πm(t−) − #Πm(t).

That is, whenever Πm undergoes a collision, Πn undergoes a collision at the same time, and
the collision reduces the number of blocks of Πn by at least as much as it reduces the number
of blocks of Πm. It follows that the rate at which the number of blocks of Πn is decreasing is
always greater than or equal to the rate at which the number of blocks of Πm is decreasing.
Hence γn ≥ γm, which proves the lemma. �

5.3 Jump-hold coalescents

Pitman has shown in subsection 2.1 of [16] that a standard Λ-coalescent is a Markov process of
jump-hold type with bounded transition rates and step function paths if and only if∫ 1

0
x−2 Λ(dx) < ∞. (72)
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His proof is based on the observation that a standard Λ-coalescent is a Markov process of jump-
hold type with bounded transition rates and step function paths if and only if the sequence
(λb)∞b=2 is bounded. He then uses an explicit formula for λb to show that (λb)∞b=2 is bounded
if and only if (72) holds. Here, we obtain the following result for the Ξ-coalescent using the
Poisson process construction.

Proposition 29 Let Ξ be a finite measure on the infinite simplex ∆. The standard Ξ-coalescent
is a jump-hold Markov process with bounded transition rates and step function paths if and only
if Ξ has no atom at zero and ∫

∆
1/

∞∑
j=1

x2
j Ξ(dx) < ∞. (73)

Proof. Write Ξ = Ξ0 + aδ0, where Ξ0 has no atom at zero. As for the standard Λ-coalescent,
the standard Ξ-coalescent is a jump-hold Markov process with bounded transition rates and
step-function paths if and only if (λb)∞b=2 is bounded. As observed in subsection 5.2, we have
λb = L(Ab), where L is defined by (14) and Ab is defined by (15). The sets Ab increase to the
set A∞ defined in (19). Therefore, limb→∞ L(Ab) = L(A∞), so (λb)∞b=2 is bounded if and only if
L(A∞) < ∞.
We have Px(A∞) = 1 for all x ∈ ∆ such that x 6= (0, 0, . . .), and zij ∈ A∞ for all i, j ∈ N with
i 6= j. Therefore,

L(A∞) =
∫

∆
1/

∞∑
j=1

x2
j Ξ0(dx) + a

∞∑
i=1

∞∑
j=i+1

1, (74)

which is finite if and only if Ξ has no atom at zero and (73) holds. �

5.4 Proper Frequencies

Here, the results for the standard Λ-coalescent discussed in [16] carry over to the standard
Ξ-coalescent without much difficulty. If Π∞ is a standard Ξ-coalescent, then since Π∞ is an
exchangeable coalescent (see Definition 19), Π∞(t) is an exchangeable random partition of N for
all t > 0. Let B1(t), B2(t), . . . be the blocks of Π∞(t), ordered by their smallest elements, where
Bj(t) = ∅ if Π∞(t) has fewer than j blocks. By Lemma 40 in appendix A, almost surely

lim
n→∞

1
n

n∑
i=1

1{i∈Bj(t)}

exists for all j ∈ N , and we denote this limit by fj(t). We say that Π∞(t) has proper frequencies
if

∑∞
j=1 fj(t) = 1 a.s. The following result is the analog of Lemma 25 of [16].

Proposition 30 Let Ξ = Ξ0 + aδ0 be a finite measure on the infinite simplex ∆, where Ξ0 has
no atom at zero. Let Π∞ be a standard Ξ-coalescent, and fix t > 0. Then Π∞(t) has proper
frequencies if and only if a > 0 or

∫
∆

( ∞∑
j=1

xj

/ ∞∑
j=1

x2
j

)
Ξ0(dx) = ∞. (75)

37



Proof. As noted in the proof of Lemma 25 of [16], Lemma 40 of appendix A implies that Π∞(t)
has proper frequencies if and only if the singleton set {1} is almost surely not a block of Π∞(t).
Assume that Π∞ is derived from the Poisson point process (e(t))t≥0. Let

A1
∞ = {ξ ∈ Z

∞ : ξ1 = ξi for some i > 1},

and let T1 = inf{t : e(t) ∈ A1∞}. The construction of Π∞ implies that {1} is a block of Π∞(t)
if and only if T1 > t. By Lemma 41 in appendix B, we have P (T1 > t) = 0 if and only if
L(A1∞) = ∞. Note that Px(A1∞) =

∑∞
j=1 xj for all x ∈ ∆. If i < j, then zij ∈ A1∞ if and only if

i = 1. Thus,

L(A1
∞) =

∫
∆

( ∞∑
j=1

xj

/ ∞∑
j=1

x2
j

)
Ξ0(dx) + a

∞∑
j=2

1,

which is infinite if and only if a > 0 or (75) holds. �

5.5 Coming down from infinity

Let Π∞ be a standard Ξ-coalescent. By definition, #Π∞(0) = ∞. We say the Ξ-coalescent
comes down from infinity if #Π∞(t) < ∞ a.s. for all t > 0. We say the Ξ-coalescent stays
infinite if #Π∞(t) = ∞ a.s. for all t > 0. The problem of whether the Λ-coalescent comes down
from infinity has been studied thoroughly. Results of Bolthausen and Sznitman in [3] imply that
the Λ-coalescent stays infinite when Λ is the uniform distribution on [0, 1], and Sagitov shows in
[18] that if Λ(dx) = (1−α)x−αdx for 0 < α < 1, then the Λ-coalescent comes down from infinity.
Pitman shows in [16] that the Λ-coalescent comes down from infinity if Λ has an atom at zero
and stays infinite if

∫ 1
0 x−1 Λ(dx) < ∞. Pitman also shows in Proposition 23 of [16] that if Λ

has no atom at 1, then the Λ-coalescent either comes down from infinity or stays infinite. It is
then shown in [19] that the Λ-coalescent comes down from infinity if and only if

∑∞
b=2 γ−1

b < ∞.
This result does not fully generalize to the Ξ-coalescent, but we provide some partial results in
this subsection. The problem of finding a necessary and sufficient condition for a Ξ-coalescent
to come down from infinity remains open.

Let ∆f = {x ∈ ∆ : x1 + . . .+xn = 1 for some n}. Write Ξ as Ξ1 +Ξ2, where Ξ1 is the restriction
of Ξ to ∆f and Ξ2 = Ξ − Ξ1. Define L1 and L2 by (14), replacing Ξ by Ξ1 and Ξ2 respectively.
Let X1 and X2 be independent Poisson random measures on [0,∞)×Z∞ with intensity measures
λ × L1 and λ × L2 respectively, where λ denotes Lebesgue measure. Let X = X1 + X2, which
is a Poisson random measure with intensity λ × L, where L = L1 + L2. Define Poisson point
processes (e(1)(t))t≥0, (e(2)(t))t≥0, and (e(t))t≥0 from X1, X2, and X respectively, as described
in appendix B. Let Π(1)

∞ be a standard Ξ1-coalescent derived from (e(1)(t))t≥0, and let Π(2)
∞ be

a standard Ξ2-coalescent derived from (e(2)(t))t≥0. We may assume without loss of generality
that Π∞ is derived from (e(t))t≥0.

Let Af = {ξ ∈ Z
∞ : {ξ1, ξ2, . . .} is finite}, and let Tf = inf{t : e(t) ∈ Af}. For x ∈ ∆f , we have

Px(Af ) = 1, which means Px(Ac
f ) = 0. Since Ξ1 has no atom at zero, it follows from (14) that

L1(Ac
f ) =

∫
∆

Px(Ac
f )

/ ∞∑
j=1

x2
j Ξ1(dx) = 0
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and

L1(Af ) =
∫

∆
1/

∞∑
j=1

x2
j Ξ1(dx).

We consider the following three cases:

Case 1: Suppose L1(Af ) = ∞. Then L(Af ) = ∞. By Lemma 41 in appendix B, Tf = 0 a.s.
Since #Π∞(t) < ∞ for all t > Tf by properties of the Poisson process construction, the standard
Ξ-coalescent comes down from infinity.

Case 2: Suppose 0 < L1(Af ) < ∞. Then, we have 0 < Tf < ∞ a.s. by part (a) of Lemma
41. Since #Π∞(t) < ∞ for all t ≥ Tf , the standard Ξ-coalescent does not stay infinite. For all
t < Tf , we have e(1)(t) = δ and therefore e(t) = e(2)(t). Thus, Π∞(t) = Π(2)

∞ (t) for all t < Tf ,
so the standard Ξ-coalescent comes down from infinity if and only if the standard Ξ2-coalescent
comes down from infinity.

Case 3: Suppose L1(Af ) = 0. Then, L1(∆) = 0, so e(1)(t) = δ for all t. Therefore, the standard
Ξ-coalescent is the same as the standard Ξ2-coalescent.

We have now reduced the problem to the case when Ξ1 = 0. We begin our analysis of this case
with the following straightforward generalization of Proposition 23 of [16].

Lemma 31 Suppose Ξ(∆f ) = 0. Then either the standard Ξ-coalescent stays infinite or the
standard Ξ-coalescent comes down from infinity.

Proof. We essentially follow the proof of Proposition 23 of [16] but write out more details.
Define T = inf{t : #Π∞(t) < ∞}. Let p = P (T = 0). Suppose p > 0. By the Markov
property of Π∞, we have p = P (T = t|#Π∞(t) = ∞) for all t > 0. By considering t = kε/n
for k = 1, . . . , n, we see that P (T ≤ ε) ≥ 1 − (1 − p)n for all ε > 0 and n ∈ N . Therefore,
P (T = 0) = 1.

Suppose p = 0. We wish to show that this implies P (T = ∞) = 1. It suffices to show that
P (0 < T < ∞) = 0. Note that T is a stopping time with respect to the completed natural
filtration of Π∞ (see Theorem 2.17 in chapter III of [17]). Therefore, if

P ({0 < T < ∞} ∩ {#Π∞(T ) = ∞}) > 0,

then the strong Markov property of Π∞, which follows from Proposition 25, implies that

P (inf{t : #Π∞(T + t) < ∞} = 0|{0 < T < ∞} ∩ {#Π∞(T ) = ∞}) = p = 0,

which contradicts the definition of T . Thus, P ({0 < T < ∞} ∩ {#Π∞(T ) = ∞}) = 0. On
the set {0 < T < ∞} ∩ {#Π∞(T ) < ∞} ∩ {#Π∞(T−) = ∞}, the time T is a collision time.
However, Proposition 6 implies that when Ξ(∆f ) = 0, almost surely no single collision takes Π∞
down from an infinite number of blocks to a finite number of blocks. Thus,

P ({0 < T < ∞} ∩ {#Π∞(T ) < ∞}) ∩ {#Π∞(T−) = ∞}) = 0.

It remains to show that P ({0 < T < ∞} ∩ {#Π∞(T−) < ∞}) = 0. On {#Π∞(T−) < ∞}, let
n1, . . . , nb be the smallest elements in the blocks of Π∞(T−). Then let T0 = 0, and for m ≥ 1,
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let Tm be the time at which the smallest integer that is not in any of the blocks containing one
of the integers n1, . . . , nb at time Tm−1 merges with a block containing one of n1, . . . , nb. Note
that T0 < T1 < . . . < T a.s. However, for any fixed integers s1, . . . , sb, the rate at which any
particular block is colliding with one of the blocks containing s1, . . . , sb is at most λb+1 < ∞.
Since only countably many sets {s1, . . . , sb} are possible, it follows that Tm ↑ ∞ a.s. as m → ∞.
Thus,

P ({0 < T < ∞} ∩ {#Π∞(T−) < ∞}) = 0,

which completes the proof. �

Proposition 32 Suppose Ξ(∆f ) = 0 and
∑∞

b=2 γ−1
b < ∞. Then the Ξ-coalescent comes down

from infinity.

Proof. By Lemma 31, it suffices to show that E[T∞] < ∞, where T∞ = inf{t : #Π∞(t) = 1}.
Since (γb)∞b=2 is increasing by Lemma 28, we can show that E[T∞] < ∞ by the same argument
used to prove Lemma 6 of [19]. �

For the Ξ-coalescent, we are only able to establish a converse to Proposition 32 when an addi-
tional condition is satisfied.

Proposition 33 For all ε > 0, let ∆ε = {x ∈ ∆ :
∑∞

i=1 xi ≤ 1 − ε}. Suppose Ξ(∆f ) = 0 and∑∞
b=2 γ−1

b = ∞. Also, suppose

∫
∆\∆ε

1/
∞∑

j=1

x2
j Ξ(dx) < ∞ (76)

for some ε > 0. Then, the Ξ-coalescent stays infinite.

Proof. Let Π∞ be a standard Ξ-coalescent derived from a Poisson point process (e(t))t≥0 with
characteristic measure L defined by (14). Let Πn = RnΠ∞. Let Tn = inf{t : #Πn(t) = 1}. As
observed for the Λ-coalescent in equation (31) of [16], we have

0 = T1 < T2 ≤ T3 ≤ . . . ↑ T∞ ≤ ∞.

By the argument used to prove Proposition 5 of [19], it suffices to show that limn→∞ E[Tn] = ∞.
Fix ε > 0 such that (76) holds. Let Ξ1 be the restriction of Ξ to ∆ε, and let Ξ2 be the restriction
of Ξ to ∆ \ ∆ε. By (76) and Proposition 29, the Ξ2-coalescent is a jump-hold Markov process
with bounded transition rates. Therefore, by the argument used to prove Lemma 8 of [19], it
suffices to show that the Ξ1-coalescent stays infinite. We will therefore assume for the remainder
of the proof that Ξ2 = 0.

We now follow the idea of the proof of Lemma 7 of [19]. Let |S| denote the cardinality of
a set S. Fix an integer M > 1/ε. For positive integers b and l such that b > M l, define
Rb,l = {ξ ∈ Z

∞ : |{ξ1, . . . , ξb}| ≤ M l} and Sb,l = {ξ ∈ Z
∞ : M l−1 + 1 ≤ |{ξ1, . . . , ξb}| ≤ M l}.

Let gb,l(ξ) = inf{i : |{ξ1, . . . , ξi}| + (b − i) = M l}, so gb,l(ξ) ≤ b if and only if ξ ∈ Rb,l. Let
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x ∈ ∆ε. Suppose ξ = (ξ1, ξ2, . . .) has distribution Px, where Px is as defined in section 3.
Then ξ1, ξ2, . . . are independent and each is negative with probability at least ε. Also, no two
negative ξi are the same. Fix d ≤ b. On the event {gb,l(ξ) = d}, we have ξ ∈ Sb,l whenever
at least (M l−1 + 1) − (M l − (b − d)) of the random variables ξd+1, . . . , ξb are negative. Thus,
P (ξ ∈ Sb,l|gb,l(ξ) = d) is greater than or equal to the probability that the sum of b−d independent
Bernoulli random variables with success probability ε is at least (M l−1 + 1) − (M l − (b − d)).
This is greater than or equal to the probability that the sum of M l independent Bernoulli
random variables with success probability ε is at least M l−1 +1. Since ε > 1/M , this probability
approaches 1 as l → ∞ and is therefore bounded below by some constant C > 0 which does
not depend on b, d, or l. Therefore, P (ξ ∈ Sb,l|gb,l(ξ) = d) ≥ C for all d ≤ b, which means
P (ξ ∈ Sb,l|ξ ∈ Rb,l) ≥ C. Since Sb,l ⊂ Rb,l, we have P (ξ ∈ Sb,l) ≥ CP (ξ ∈ Rb,l), and therefore
Px(Sb,l) ≥ CPx(Rb,l) for all x ∈ ∆ε. Also, if zij ∈ Rb,l, then since at least b − 1 of the first b
coordinates of zij are distinct, we must have zij ∈ Sb,l. Thus, since C ≤ 1, we have

L(Sb,l) ≥
∫

∆
CPx(Rb,l)

/ ∞∑
j=1

x2
j Ξ0(dx) + a

∞∑
i=1

∞∑
j=i+1

1{zij∈Rb,l} ≥ CL(Rb,l)

for all b and l such that b > M l.

Now fix n ∈ N . For l such that M l ≤ n, let Dl be the event that M l−1 + 1 ≤ #Πn(t) ≤ M l for
some t. Assume for now that M l < n. For all b ≥ 1, let Ub = inf{t : #Πn(t) ≤ b}. When Πn(t)
has b blocks and b > M l, the total rate of all collisions that take Πn down to M l or fewer blocks
is L(Rb,l). The total rate of all collisions that take Πn down to between M l−1 +1 and M l blocks
is L(Sb,l). Therefore, for all b > M l, the strong Markov property and part (d) of Lemma 41 of
appendix B imply that if P (#Πn(Ub) = b) > 0, then

P (#Πn(Ub−1) ≤ M l|#Πn(Ub) = b) = L(Rb,l)/λb (77)

and
P (M l−1 + 1 ≤ #Πn(Ub−1) ≤ M l|#Πn(Ub) = b) = L(Sb,l)/λb. (78)

Note that the event {#Πn(UM l−) = b} is the same as {#Πn(Ub) = b} ∩ {#Πn(Ub−1) ≤ M l}.
Also, the events Dl∩{#Πn(UM l−) = b} and {#Πn(Ub) = b}∩{M l−1+1 ≤ #Πn(Ub−1) ≤ M l} are
the same. Therefore, by (77) and (78), we have P (Dl|#Πn(UM l−) = b) = L(Sb,l)/L(Rb,l) ≥ C
for all b > M l such that P (#Πn(UM l−) = b) > 0. Hence, P (Dl) ≥ C whenever M l < n. Also,
we have P (Dl) = 1 ≥ C when M l = n.

As in the proof of Lemma 6 of [19], we recursively define times R0, R1, . . . , Rn−1 by:

R0 = 0

Ri = inf{t : #Πn(t) < #Πn(Ri−1)} if i ≥ 1 and #Πn(Ri−1) > 1.

Ri = Ri−1 if i ≥ 1 and #Πn(Ri−1) = 1.

Note that Rn−1 = Tn. For i = 0, 1, . . . , n − 1, let Ni = #Πn(Ri). For i = 1, 2, . . . , n − 1, define
Li = Ri − Ri−1 and Ji = Ni−1 − Ni. Suppose n = Mk for some k ∈ N . For j = 2, 3, . . . , n,
let Ln(j) = min{s ≥ j : #Πn(t) = s for some t}. If Ni−1 ≥ j > Ni, or equivalently if
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Ni + Ji ≥ j > Ni, then Ln(j) = Ni−1. Therefore, using equation (12) of [19], which is valid for
the Ξ-coalescent as well as for the Λ-coalescent, to get the first equality, we have

E[Tn] =
n−1∑
i=1

E[γ−1
Ni−1

Ji] =
n∑

j=2

E[γ−1
Ln(j)] =

k∑
l=1

M l∑
j=M l−1+1

E[γ−1
Ln(j)].

Since (γb)∞b=2 is increasing by Lemma 28 and Ln(j) ≤ M l+1 on Dl+1 for all j ≤ M l, we have

E[Tn] ≥
k−1∑
l=1

M l∑
j=M l−1+1

E[γ−1
Ln(j)] ≥

k−1∑
l=1

M l∑
j=M l−1+1

P (Dl+1)γ−1
M l+1

≥ C
k−1∑
l=1

(M l − M l−1)γ−1
M l+1 =

C

M2

k−1∑
l=1

(M l+2 − M l+1)γ−1
M l+1.

Therefore, using the monotonicity of (Tn)∞n=1 for the first equality, we have

lim
n→∞E[Tn] = lim

k→∞
E[TMk ] ≥ lim

k→∞
C

M2

k−1∑
l=1

(M l+2 − M l+1)γ−1
M l+1

=
C

M2

∞∑
l=1

(M l+2 − M l+1)γ−1
M l+1 ≥ C

M2

∞∑
b=M2

γ−1
b = ∞,

which completes the proof. �

Suppose there exists K < ∞ such that Ξ is concentrated on {x : xi = 0 for all i > K}. Then
almost surely the Ξ-coalescent never undergoes more than K multiple collisions at one time.
Note that if

∑K
i=1 xi > 1/2, then

∑∞
i=1 x2

i ≥ max1≤i≤K x2
i ≥ 1/4K2. Therefore, if ε = 1/2 then

the left-hand side of (76) is at most 4K2Ξ(∆) < ∞, so (76) holds. Thus, Theorem 1 of [19] can
be deduced from Propositions 32 and 33. However, (76) can fail if the Ξ-coalescent can undergo
arbitrarily many collisions simultaneously.

To show that the conclusion of Proposition 33 does not necessarily hold when (76) fails, we
give the following example of a Ξ-coalescent for which Ξ(∆f ) = 0 and

∑∞
b=2 γ−1

b = ∞ but the
Ξ-coalescent comes down from infinity.

Example 34 For all n ∈ N , let yn ∈ ∆ be the point whose first 2n − 1 coordinates equal 2−n

and whose remaining coordinates equal zero. Let Ξ be the probability measure on ∆ with an
atom of size 2−n at yn for all n ∈ N . Define Ab and Ak,l as in (15) and (16) respectively. For all
k 6= l, we have Pyn(Ak,l) ≤ 2−n, so Pyn(Ab) ≤ min{1, b22−n} for b ≥ 2. Since Ξ has no atom at
zero, (14) implies that for all b ≥ 2 we have

λb = L(Ab) =
∫

∆
Px(Ab)/

∞∑
j=1

x2
j Ξ(dx) =

∞∑
n=1

1
2n

(
Pyn(Ab)

(2n − 1)2−2n

)

=
∞∑

n=1

2n

2n − 1
Pyn(Ab) ≤

∞∑
n=1

2min{1, b22−n} ≤ 2
(

2 log2 b +
∞∑

n=d2 log2 be
b22−n

)

= 2(2 log2 b + b22−(d2 log2 be−1)) ≤ 4(log2 b + b22−2 log2 b) = 4(log2 b + 1) ≤ 8 log2 b.
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We have γb ≤ bλb for all b ≥ 2 by (69) and (71). Therefore,

∞∑
b=2

γ−1
b ≥

∞∑
b=2

(bλb)−1 ≥
∞∑

b=2

(8b log2 b)−1 = ∞.

We now show that the Ξ-coalescent comes down from infinity. For all b ≥ 2, define the set
Vb = {ξ ∈ Z

∞ : |{ξ1, . . . , ξb}| ≤ b3/4}. Note that if ξ = (ξi)∞i=1 has distribution Pyn , then
P (ξi < 0) = 2−n for all i. Therefore, under Pyn , the expected number of ξ1, . . . , ξb that are
negative is 2−nb. Choose M ≥ 64 large enough that if b ≥ M then b2/3 ≤ (b3/4 − b2/3)/2.
Suppose b ≥ M and b1/3 ≤ 2n ≤ b2/3. Then

2−nb ≤ b2/3 ≤ 1
2
(b3/4 − b2/3) ≤ 1

2
(b3/4 − (2n − 1)).

Therefore, by Markov’s inequality, we have

Pyn({ξ ∈ Z
∞ : |{i ≤ b : ξi < 0}| ≤ b3/4 − (2n − 1)}) ≥ 1/2.

Under Pyn the random variables ξi can take on only 2n − 1 different positive values. Therefore,
Pyn(Vb) ≥ 1/2 if b ≥ M and b1/3 ≤ 2n ≤ b2/3. Thus, if a Ξ-coalescent has b ≥ M blocks, then
the total rate of all collisions that take the coalescent down to b3/4 or fewer blocks is

L(Vb) =
∫

∆
Px(Vb)/

∞∑
j=1

x2
j Ξ(dx) ≥

b(2/3) log2 bc∑
n=d(1/3) log2 be

1
2n

(
Pyn(Vb)

(2n − 1)2−2n

)

≥ 1
2

(
1
3

log2 b − 1
)

≥ 1
12

log2 b,

where for the last inequality we used the fact that b ≥ 64. For k ∈ N , let

Sk = {m ∈ N : M (4/3)k−1 ≤ m < M (4/3)k}.

Then, if a Ξ-coalescent has b ∈ Sk blocks, the expected time before the number of blocks is no
longer in Sk is at most

(
1
12

log2 M (4/3)k−1

)−1

= 12
(

3
4

)k−1

(log2 M)−1.

For a standard Ξ-coalescent Π∞, let Tn = inf{t : #RnΠ∞(t) = 1}. Then, for all n,

E[Tn] ≤
∞∑

k=1

12
(

3
4

)k−1

(log2 M)−1 + E[TM ] =
48

log2 M
+ E[TM ] < ∞.

Thus, (E[Tn])∞n=1 is bounded, which means E[T∞] < ∞. Hence, by Lemma 31, the Ξ-coalescent
comes down from infinity.
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6 The discrete-time Ξ-coalescent

We have shown that the continuous-time processes (Ψn,∞(t))t≥0 obtained in [13] as limits of
ancestral process all have the same distribution as some Ξ-coalescent restricted to {1, . . . , n}.
However, Möhle and Sagitov also obtain some discrete-time Markov chains as limits. They show,
as part of Theorem 2.1 of [13], that if the conditions of Proposition 1 are satisfied except that
limN→∞ cN = c > 0, then the processes (Ψn,N (bt/cN c))t≥0 converge as N → ∞ to a Markov
chain (Ψn,∞(t))t≥0 that jumps only at times t = cm for m ∈ N . Suppose η and θ are partitions
of {1, . . . , n} such that θ contains b blocks, s blocks of η consist of a single block of θ, and the
remaining r blocks of η are unions of k1, . . . , kr blocks of θ. Theorem 2.1 of [13] then states that

P (Ψn,∞(c(m + 1)) = η|Ψn,∞(cm) = θ) = cλb;k1,...,kr;s (79)

for all m ∈ N , where each λb;k1,...,kr;s is defined by (6) for a unique sequence of measures (Fr)∞r=1

satisfying conditions A1, A2, and A3 of Proposition 1. In section 5 of [13], Möhle and Sagitov
give an example in which the discrete-time ancestral process of the Wright-Fisher population
model arises as a limit in this way.

Regarding discrete-time processes of this type, we have the following analog of Theorem 2.

Proposition 35 Let {pb;k1,...,kr;s : r ≥ 1, k1, . . . , kr ≥ 2, s ≥ 0, b =
∑r

j=1 kj + s} be a collection
of nonnegative real numbers. Then there exists a P∞-valued Markov chain (Ym)∞m=0 satisfying

C1: Y0 is the partition of N into singletons,

C2: for each n, (RnYm)∞m=0 is a Markov chain with the property that if η and θ are distinct

partitions of {1, . . . n} such that θ contains b blocks, s blocks of η consist of a single

block of θ, and the remaining r blocks of η are unions of k1, . . . , kr ≥ 2 blocks of θ, then

P (RnYm+1 = η|RnYm = θ) = pb;k1,...,kr;s,

if and only if there is a finite measure Ξ on the infinite simplex ∆ with no atom at zero such
that ∫

∆
1/

∞∑
j=1

x2
j Ξ(dx) ≤ 1 (80)

and

pb;k1,...,kr;s =
∫

∆

( s∑
l=0

∑
i1 6=...6=ir+l

(
s
l

)
xk1

i1
. . . xkr

ir
xir+1 . . . xir+l

(1 −
∞∑

j=1

xj)
s−l

)/ ∞∑
j=1

x2
j Ξ(dx)

(81)
for all r ≥ 1, k1, . . . , kr ≥ 2, s ≥ 0, and b =

∑r
j=1 kj + s.

Proof. Suppose the nonnegative real numbers pb;k1,...,kr;s are defined such that there exists
a Markov chain (Ym)∞m=0 satisfying C1 and C2. Let J0 = 0, and let (Ji)∞i=1 be a sequence
of independent random variables, each having an exponential distribution with rate 1. For all
t ≥ 0, define Kt = max{i : J0 + J1 + . . . + Ji ≤ t}. Define a P∞-valued process (Π∞(t))t≥0

by Π∞(t) = YKt. Then Π∞(0) is the partition of N into singletons. Also, (RnΠ∞(t))t≥0 is a
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jump-hold Markov process such that when RnΠ∞(t) has b blocks, each (b; k1, . . . , kr)-collision is
occurring at rate pb;k1,...,kr;s. By Theorem 2, there exists a finite measure Ξ on ∆ such that the
rates pb;k1,...,kr;s are given by (11). We also have

∑
η 6=θ

P (RnYm+1 = η|RnYm = θ) ≤ 1 (82)

for all n ∈ N and θ ∈ P∞. If θ has b blocks, then the left-hand side of (82) equals

bb/2c∑
r=1

∑
{k1,...,kr}

N(b; k1, . . . , kr; s)pb;k1,...,kr;s,

which by (69) equals the total rate λb of collisions for a (continuous-time) Ξ-coalescent with b
blocks. Thus, we have λb ≤ 1 for all b ≥ 2. Since (λb)∞b=2 is increasing, we have limb→∞ λb ≤ 1.
Let L be defined from Ξ by (14). Then, λb = L(Ab), where Ab is defined by (15). Since the sets
Ab increase to the set A∞ defined in (19), we have limb→∞ λb = limb→∞ L(Ab) = L(A∞). The
expression for L(A∞) in (74) implies that limb→∞ λb ≤ 1 if and only if Ξ has no atom at zero
and (80) holds. Since Ξ has no atom at zero when (80) holds, the expression for pb;k1,...,kr;s can
be simplified to the right-hand side of (81).

Conversely, suppose there is a finite measure Ξ on the infinite simplex ∆ with no atom at zero
such that (80) and (81) hold. Let Π∞ be a standard Ξ-coalescent, derived from a Poisson
point process (e(t))t≥0 with characteristic measure L. By (74) and (80), we have L(A∞) ≤ 1.
Therefore, if we define T0 = 0 and

Tk = inf{t > Tk−1 : e(t) ∈ A∞}

for k ≥ 1, then 0 = T0 < T1 < . . . a.s. by part (b) of Lemma 41 in appendix B. Define a Markov
chain (Zm)∞m=0 by Zm = Π∞(Tm). Let η and θ be partitions of {1, . . . n} such that θ contains b
blocks, s blocks of η consist of a single block of θ, and the remaining r blocks of η are unions of
k1, . . . , kr blocks of θ. By the strong Markov property and part (d) of Lemma 41 in appendix
B, we have

P (RnZm+1 = η|RnZm = θ) = pb;k1,...,kr;s/L(A∞).

Let (Ii)∞i=1 be a sequence of independent Bernoulli random variables that take on the value 1 with
probability L(A∞). Assume the sequence is independent of (Zm)∞m=0. Let Vm = I1 + . . . + Im.
Define a Markov chain (Ym)∞m=0 by Ym = ZVm for all m. Then

P (RnYm+1 = η|RnYm = θ) = L(A∞)P (RnZVm+1 = η|RnZVm = θ) = pb;k1,...,kr;s,

which completes the proof. �

Definition 36 We call a discrete-time Markov chain satisfying C2 with transition probabilities
given by (81) for a particular finite measure Ξ a discrete-time Ξ-coalescent. A discrete-time
Ξ-coalescent satisfying C1 is called a standard discrete-time Ξ-coalescent.
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Propositions 29 and 35 imply that if Ξ is a finite measure on ∆ for which a standard discrete-time
Ξ-coalescent exists, then a standard (continuous-time) Ξ-coalescent Π∞ is a jump-hold Markov
process. Therefore, we can define the jump chain (Xm)∞m=0 associated with Π∞ by defining
Xm to be the value of Π∞ at the time of its mth jump, unless Π∞ consists of just a single
block after fewer than m jumps, in which case Xm is defined to be {N}. Then Xm+1 6= Xm

a.s. on {#Xm > 2}. This chain is different from the standard discrete-time Ξ-coalescent
(Ym)∞m=0 because P (Ym+1 6= Ym|#Ym = b) = λb for all b ≥ 2 and P (Ym+1 6= Ym|#Ym = ∞) =
limb→∞ λb = L(A∞).

Finally, we prove the analog of Proposition 7 for discrete-time Ξ-coalescents. Note that although
the time-scaling conventions in [13] are such that we can only obtain a continuous-time Ξ-
coalescent as a limit of ancestral processes when Ξ is a probability measure, the proposition
below shows that any nontrivial discrete-time Ξ-coalescent arises as a limit of ancestral processes
in a population model of the type studied in [13].

Proposition 37 Let Ξ be a finite nonzero measure on ∆ with no atom at zero such that (80)
holds. Then there exists a sequence (µN )∞N=1 such that each µN is a probability distribution on
{0, 1, 2, . . . , }N that is exchangeable with respect to the N coordinates with the property that if for
all N , µN is the distribution of family sizes in the population model described in the introduction,
then the processes (Ψn,N (bt/cNc))t≥0 converge as N → ∞ in the Skorohod topology to a process
(Ψn,∞(t))t≥0 satisfying:

(a) For all n, (Ψn,∞(t))t≥0 jumps only at times cm for m ∈ N , where c = limN→∞ cN .

(b) (Ψn,∞(cm))∞m=0 has the same distribution as (RnYm)∞m=0, where (Ym)∞m=0 is a

standard discrete-time Ξ-coalescent.

Proof. Define the measure L from Ξ as in (14). Define AN for N ∈ N by (15), and define A∞
by (19). We have limN→∞ L(AN ) = L(A∞). Also, L(A∞) ≤ 1 by (74) and (80), and L(A∞) > 0
because Ξ is nonzero.

We now follow essentially the same argument used to prove Proposition 7. First, let Π∞ be a
continuous-time Ξ-coalescent. Define ν̃1,N , . . . , ν̃N,N from Π∞ as in the proof of Proposition 7.
However, define VN such that P (VN = 1) = L(A∞) and P (VN = 0) = 1 − L(A∞). Then define
(ν1,N , . . . , νN,N ) from (ν̃1,N , . . . , ν̃N,N ) and VN as in the proof of Proposition 7.

Denote the transition probabilities for the discrete-time Ξ-coalescent by pb;k1,...,kr;s. These are
the same as the transition rates for the the continuous-time Ξ-coalescent. Therefore, we can
follow the argument in the proof of Proposition 7 to see that (51) still holds in the setting of
Proposition 37 when λb;k1,...,kr;0 is replaced by pb;k1,...,kr;0 on the right-hand side. Equation (52)
remains true if we make this change and also replace the factor of 1/N on the right-hand side,
which comes from the definition of VN , by L(A∞). That is, we have

E[(ν1,N )k1 . . . (νr,N )kr ] ∼
L(A∞)Nk1+...+kr−r

L(AN )
pb;k1,...,kr;0 ∼ Nk1+...+kr−rpb;k1,...,kr;0. (83)

Therefore,

cN =
E[(ν1,N )2]

N − 1
∼ Np2;2;0

N − 1
∼ p2;2;0, (84)
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so if c = p2;2;0, then limN→∞ cN = c > 0. By (83) and (84),

lim
N→∞

E[(ν1,N )k1 . . . (νr,N )kr ]
Nk1+...+kr−rcN

=
pb;k1,...,kr;s

p2;2;0
. (85)

By the remarks at the beginning of this section, the processes (Ψn,N (bt/cNc))t≥0 converge in
the Skorohod topology as N → ∞ to a process (Ψn,∞(t))t≥0 such that condition (a) of this
proposition is satisfied and the transition probabilities of (Ψn,∞(cm))∞m=0 are given by (79),
where each λb;k1,...,kr;s is defined by (6) for a unique sequence of measures (Fr)∞r=1 satisfying
conditions A1, A2, and A3 of Proposition 1. We thus must show that cλb;k1,...,kr;s = pb;k1,...,kr;s

for all r ≥ 1, k1, . . . , kr ≥ 2, s ≥ 0, and b =
∑r

j=1 kj + s. It is shown in [13] that equation (10)
remains valid when limN→∞ cN = c > 0. Using (10) and (85), we obtain

cλb;k1,...,kr;0 = c

(
pb;k1,...,kr;0

p2;2;0

)
= pb;k1,...,kr;0

for all r ≥ 1, k1, . . . , kr ≥ 2, and b =
∑r

j=1 kj . Lemma 3.4 of [13] implies that (43) holds for all
r ≥ 1, k1, . . . , kr ≥ 2, s ≥ 0, and b =

∑r
j=1 kj + s. By Lemma 18, we also have

pb+1;k1,...,kr;s+1 = pb;k1,...,kr;s −
r∑

m=1

pb+1;k1,...,km−1,km+1,km+1,...,kr;s − spb+1;k1,...,kr,2;s−1.

Hence, by induction on s, we obtain cλb;k1,...,kr;s = pb;k1,...,kr;s for all r ≥ 1, k1, . . . , kr ≥ 2, s ≥ 0,
and b =

∑r
j=1 kj + s, which completes the proof. �

APPENDIX A

Exchangeable Sequences and Exchangeable Random Partitions.

We review here some well-known results about exchangeable sequences and exchangeable random
partitions. We first recall a version of de Finetti’s Theorem, combining Proposition 12 and
Theorem 13 in chapter 27 of [7].

Lemma 38 Let (Zi)∞i=1 be an exchangeable sequence of R-valued random variables. Then, there
exists a random probability measure µ on the Borel subsets of R , called the limiting empirical
distribution of (Zi)∞i=1, such that for each Borel set B,

µ(B) = lim
n→∞

1
n

n∑
i=1

1{Zi∈B}

almost surely. Let F denote the σ-field generated by the random measure µ. Then the random
variables Z1, Z2, . . . are conditionally independent given F , and the conditional distribution of
each Zi given F is µ.

The following lemma is part of Proposition 3.8 of [1].
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Lemma 39 Let (Zi)∞i=1 be an exchangeable sequence with limiting empirical distribution µ. Sup-
pose V is a random variable such that (V,Z1, Z2, . . .) and (V,Zσ(1), Zσ(2), . . .) have the same dis-
tribution for all finite permutations σ of N . Then (Zi)∞i=1 and V are conditionally independent
given the σ-field generated by µ.

Given a partition π of a finite or countable set S and a finite permutation σ of S, let σ̂π be the
partition of S such that σ(i) and σ(j) are in the same block of σ̂π if and only if i and j are in
the same block of π. Following [10], we say that a random partition Π of S is exchangeable if
σ̂Π has the same distribution as Π for all finite permutations σ of S.
Given a point x = (x1, x2, . . .) in the infinite simplex ∆, let P x be the distribution of a random
partition Π obtained by first defining an i.i.d. sequence of random variables (Zi)∞i=1 such that
P (Zi = j) = xj for j ≥ 1 and P (Zi = 0) = 1 − ∑∞

j=1 xj, and then declaring i and j to be in
the same block of Π if and only if Zi = Zj ≥ 1. In [9] and [10], Kingman establishes that all
exchangeable random partitions are mixtures of random partitions that can be constructed in
this way. A simpler proof of Kingman’s result, using de Finetti’s Theorem, is given in section
of 11 of [1]. We state below a version of this result, which is essentially Theorem 2 of [10].

Lemma 40 Let Π be an exchangeable random partition of N . Let Bi be the block of Π containing
the integer i. Then

lim
n→∞

1
n

∞∑
j=1

1{j∈Bi}

exists almost surely and is called the limiting relative frequency of the block Bi. Let X1 ≥
X2 ≥ . . . be the ranked sequence of limiting relative frequencies of distinct blocks of Π, where
Xn is defined to be zero if Π has fewer than n blocks with nonzero limiting relative frequencies.
Then X = (X1,X2, . . .) is almost surely in the infinite simplex ∆. Moreover, the conditional
distribution of Π given X is PX , and therefore

P (Π ∈ B) =
∫

∆
P x(B) G(dx)

for all Borel subsets B of P∞, where G is the distribution of X.

In [10], Kingman defines Xr = limn→∞ n−1λr(n), where λr(n) is the size of the rth-largest block
of RnΠ. The observation that this definition is equivalent to the one given in Lemma 40 above
is made in the introduction of [15].

APPENDIX B

Poisson Point Processes.

We review here some basic facts about Poisson point processes, most of which are stated in
section 0.5 of [2]. Let L be a σ-finite measure on a Polish space E. We can construct a Poisson
random measure X on [0,∞) × E with intensity measure λ × L, where λ denotes Lebesgue
measure on [0,∞). Almost surely X({t} × E) equals 0 or 1 for all t ≥ 0. Therefore, we can
define a process (e(t))t≥0 taking values in E ∪ {δ}, where δ is an isolated point that we add
to the state space, by defining e(t) = δ if X({t} × E) = 0 and e(t) = x if the restriction of
X to {t} × E is a unit mass at x. The process (e(t))t≥0 is called a Poisson point process with
characteristic measure L. We record below some useful facts about Poisson point processes.
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Lemma 41 Let A be a Borel subset of E, and let TA = inf{t : e(t) ∈ A}. Then TA = 0 a.s. if
L(A) = ∞. Suppose 0 < L(A) < ∞. Then the following hold:

(a) TA has an exponential distribution with rate parameter L(A).

(b) For all t < ∞, almost surely e(s) ∈ A for only finitely many s < t.

(c) e(TA) ∈ A a.s.

(d) e(TA) is independent of TA, and if B is a Borel subset of A, then

P (e(TA) ∈ B) = L(B)/L(A).

(e) The process (e′(t))t≥0 defined such that e′(t) ∈ δ if e(t) ∈ A and e′(t) = e(t) otherwise

is a Poisson point process whose characteristic measure is the restriction of L to Ac.

Also, (e′(t))t≥0 is independent of (TA, e(TA)).

Proof. If L(A) = ∞ and ε > 0, then (λ×L)([0, ε)×A) = ∞, so almost surely X([0, ε)×A) = ∞.
Thus, e(t) ∈ A for some t < ε a.s., and so TA = 0 a.s. Next, suppose 0 < L(A) < ∞. Conditions
(a), (d), and (e) are part of Proposition 2 in section 0.5 of [2]. To prove (b), fix t < ∞. Since
(λ × L)([0, t) × A) < ∞, we have X([0, t) × A) < ∞ a.s., so e(s) ∈ A for only finitely many
s < t. Finally, to prove (c), note that for all ε > 0, we almost surely do not have e(s) ∈ A for
infinitely many values of s in (TA, TA+ε). The definition of TA thus implies that e(TA) ∈ A a.s. �
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