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Abstract: We consider a hypersurface of dimension d imbedded in a d + 1 dimensional
space. For each x ∈ Zd, let ηt(x) ∈ R be the height of the surface at site x at time t. At rate 1
the x-th height is updated to a random convex combination of the heights of the ‘neighbors’ of x.
The distribution of the convex combination is translation invariant and does not depend on the
heights. This motion, named the random average process (RAP), is one of the linear processes
introduced by Liggett (1985). Special cases of RAP are a type of smoothing process (when
the convex combination is deterministic) and the voter model (when the convex combination
concentrates on one site chosen at random). We start the heights located on a hyperplane
passing through the origin but different from the trivial one η(x) ≡ 0. We show that, when
the convex combination is neither deterministic nor concentrating on one site, the variance of
the height at the origin at time t is proportional to the number of returns to the origin of
a symmetric random walk of dimension d. Under mild conditions on the distribution of the
random convex combination, this gives variance of the order of t1/2 in dimension d = 1, log t
in dimension d = 2 and bounded in t in dimensions d ≥ 3. We also show that for each initial
hyperplane the process as seen from the height at the origin converges to an invariant measure
on the hyper surfaces conserving the initial asymptotic slope. The height at the origin satisfies
a central limit theorem. To obtain the results we use a corresponding probabilistic cellular
automaton for which similar results are derived. This automaton corresponds to the product
of (infinitely dimensional) independent random matrices whose rows are independent.
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1 Introduction

We consider a stochastic process ηt in RZd. To each site i ∈ Zd at each time t corresponds a
height ηt(i). These heights evolve according to the following rule. For each i ∈ Zd let u(i, ·)
be a random probability distribution on Zd. Each height has an independent Poisson clock of
parameter 1. When the clock rings for site i at time t, a realization of u is chosen, independent
of everything, and then the height at site i moves to the position∑

j∈Zd

u(i, j)ηt(j).

In other words, at rate one each height is replaced by a random convex combination of the
current heights. The weights of this convex combination are chosen independently at each
time. We call this process the random average process (RAP). The motion is well defined
under suitable conditions on the distributions of u and η0. The formal generator is given by

Lf(η) =
∑
i

∫
dν(u)[f(uiη)− f(η)] (1.1)

where ν is the distribution of the matrix u and ui is defined as the operator:

(uiη)(k) =

{
η(k) if k 6= i∑
j u(i, j)η(j) if k = i.

(1.2)

That is, ui replaces the height at i by a convex combination of the heights at Zd.

The RAP is a special case of the linear processes of chapter IX of Liggett (1985). Particular
examples of the RAP are the noiseless smoothing process and the voter model.

In the noiseless smoothing process the distribution ν concentrates all its mass on a con-
stant matrix; that is, there exists a matrix a such that ν(u = a) = 1. Liggett and Spitzer
(1981), Andjel (1985) and Liggett (1985) studied the (noisy) smoothing process: at each event
of the Poisson processes, the (deterministic) random convex combination is multiplied by an
independent positive random variable W of mean 1 —the noise. The above papers studied
questions about existence and ergodicity of the process when the heights are restricted to be
non negative. It would be interesting to study the ergodicity questions for the case of general
initial conditions.

In the voter model ν concentrates mass on the set of matrices u with the following property:
for each i there is exactly one j with u(i, j) different from zero —and hence equal to 1. In other
words, when the clock rings for height i, it is replaced by the height j for which u(i, j) = 1.
In the usual voter model the heights assume only two values. See Durrett (1996) for a recent
review on the voter model.

In this paper we will concentrate on the other cases, but some marginal results will concern
the smoothing process and the voter model. The latter model will be discussed briefly also in
the final section of the paper.

For most of our results the initial configuration is a hyperplane passing through the origin:
given a vector λ ∈ Rd, for each i ∈ Zd we set

η0(i) = iλ∗, (1.3)
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the (matrix) product of i and the transpose of λ (i.e. the inner product). Notice that if λ ≡ 0,
then ηt ≡ 0 because this initial configuration is invariant for the process. We assume that
the distribution of u(i, j) is translation invariant: u(i, j) and u(i + k, j + k) have the same
distribution. Our main result is to show that when the initial configuration is a hyperplane,
the variance of the height at the origin at time t is proportional to the expected time spent in
the origin by a symmetric random walk perturbed at the origin. Denoting V as the variance,
we show that if η0(i) = iλ∗ for all i, then

Vηt(0) = (σ2 + µ2)
∫ t

0
P(Ds = 0|D0 = 0)ds (1.4)

where

µ = ν
(∑

j

jλ∗u(0, j)
)
, σ2 = ν

(∑
j

jλ∗u(0, j)− µ
)2
 (1.5)

and Dt is a random walk (symmetric, perturbed at the origin) with transition rates

q(0, k) =
∑
j

ν(u(0, j)u(0, j + k))

q(`, ` + k) = νu(0, k) + νu(0,−k), ` 6= 0.

Our result implies that starting with a hyperplane perpendicular to λ, the fluctuations of
the height at the origin behave asymptotically as follows: for 0 < σ2 + µ2 <∞,

Vηt(0) is of the order of


√
t if d = 1

log t if d = 2
constant if d ≥ 3.

(1.6)

Here the phrase “f(t) is of the order of g(t)” means that we can find positive constants A and
B such that Ag(t) ≤ f(t) ≤ Bg(t) for all t ≥ 0.

In Section 4 we show a central limit theorem for ηt(0) when the initial configuration is an
hyperplane.

We are able to obtain the asymptotic behavior of the variance for random initial configura-
tions only in some particular one dimensional cases (d = 1). When the initial configuration is a
hyperplane and σ2 > 0 the asymptotic variance of the height at the origin is of the same order
for both biased (µ 6= 0) and unbiased (µ = 0) cases. If the initial configuration is distributed
according to a measure with spatial fluctuations, one expects the biased and unbiased cases
to have different asymptotic variances: the height at the origin in the biased case should pick
up the spatial fluctuations of the initial configuration. This is the case in a one dimensional
example as we show in Section 6.

We study the asymptotic distribution of the process. We show that, starting with a hy-
perplane, the process as seen from the height at the origin η̃t defined by η̃t(i) = ηt(i) − ηt(0)
converges weakly to an invariant measure. Furthermore we show that, if η̄ is distributed ac-
cording to the limiting invariant measure, then the mean of the differences is conserved, i.e.
E[η̄(i)− η̄(j)] = E[η0(i)−η0(j)] and the variance of the differences has the following asymptotic
behavior: for 0 < σ2 + µ2 <∞,

V[η̄(i)− η̄(j)] is of the order of


|i− j| if d = 1
log |i− j| if d = 2
constant if d ≥ 3

(1.7)
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(the use of the phrase “is of the order of” makes sense because by translation invariance the
distribution of η̄(i) − η̄(j) depends only on i − j). To prove the above in d = 2 we need a
stronger condition: that a second-plus-delta moment is finite:

∑
j |j|2+δνu(0, j) <∞ for some

δ > 0. Except for a few one dimensional cases, we are unable to further describe this measure.
It is reasonable to conjecture that the limiting measure is the unique invariant measure for η̃t
with the same slope as the initial hyperplane.

Asymptotic results similar to (1.6) and (1.7) have been obtained by Hammersley (1967) for
a system in Zd called harness. In this system, each coordinate takes the mean value of the
heights of some fixed set of neighbors plus a zero mean random variable. Toom (1998) studies
the tail behavior of harnesses.

In the one dimensional RAP, if u(i, i + 1) = 1 − u(i, i − 1), then each height is replaced
by a convex combination of the nearest neighboring heights. In this case the heights remain
ordered if started so and when projected on a vertical line form a point process. We can think
that a particle is located at each event of this point process. In a previous unpublished work,
the authors call the resulting process on the particle configuration conservative nearest-particle
system. If u(i, i+1) is uniformly distributed in [0, 1], then the Poisson process of parameter ρ is
reversible for the particle system, for each ρ > 0. In Section 6 we describe the correspondence
between the RAP and the particle system and correct a statement of Ferrari (1996) about the
asymptotic variance of a tagged particle in the conservative nearest-particle system.

Kipnis, Marchioro and Presutti (1982) studied the nearest-neighbor one dimensional process
with u(i, i+1) = 1−u(i, i−1) uniformly distributed in [0, 1], i ∈ Z. They consider L differences
between successive RAP-heights and impose different boundary conditions in the extremes of
the interval {0, . . . , L− 1}. In the limit as L→∞ they show that the height difference profile
in the normalized interval (so that the length is kept to be 1) is a linear interpolation of the
boundary conditions. This implies that the hydrodynamic limit of the height difference process
corresponds to the heat equation. We discuss the relationship between this limiting equation
and the one obtained for the RAP. For d ≥ 1 we show that if µ = 0, then the hydrodynamic
equation for the RAP is also the heat equation. If µ 6= 0 then the hydrodynamic equation is a
linear transport equation. See Section 8.

We perform a Harris graphical construction of the RAP: a family of independent rate-one
Poisson processes indexed by the sites i ∈ Zd is considered. To each time event of each Poisson
process a realization of u independent of everything is attached. If at time t a Poisson mark
appears at site i and u is the corresponding realization of the weights, then at time t the new
configuration is uiη(t−), where ui was defined in (1.2). We show that this construction works
if E|j|2u(0, j) < ∞ and the initial configuration η0 satisfies η0(j) ≤ C|j|2 for all j and some
constant C independent of j.

Consider a random walk Ỹt ∈ Zd with rates νu(i, j) to jump from i to j, i, j ∈ Zd. To
construct it we use the same Poisson marks and realizations of u used in the construction of
ηt. The motion is the following: if Ỹt− = i, a Poisson mark of site i appears at time t and u
is the realization of the weights corresponding to this mark, then Ỹt will be equal to j with
probability u(i, j). (The probability space must be conveniently enlarged in order to perform
this walk.)

Call Ft the sigma algebra generated by the Poisson marks and the realization of the u’s
on these marks between 0 and t. When conditioned to Ft, Ỹt can be seen as a “random walk
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in a space-time random environment”. Provided that the Harris construction is feasible, the
following duality relation holds almost surely:

ηt(x) = E(η0(Y
x,t
t ) | η0,Ft) (1.8)

where Y x,t
s , 0 ≤ s ≤ t is the walk following the marks from t to 0 backwards in time starting at

the site x. Notice that Ỹt and Y 0,t
t have the same distribution. A key piece of our proofs is the

fact that E(Ỹt | Ft) is a martingale.

The case where u is constant, that is, when there exists a stochastic matrix a such that
ν(u = a) = 1, (1.8) corresponds to a potlatch process which is the dual of the smoothing
process. When u is not allowed to have more than one positive coordinate — equal to one and
the others equal to zero — (Y x,t

s : 0 ≤ s ≤ t) conditioned on Ft is just a realization of the
deterministic walk starting at x in the time interval [0, t] with transition probabilities given by
the distribution of u. Hence in this case

ηt(x) = η0(Y
x,t
t ),

and the processes (Y x,t
s : 0 ≤ s ≤ t, x ∈ Zd) perform coalescing random walks, dual of the voter

model.

To show the above results we prefer to introduce a probabilistic cellular automaton (PCA).
The time of the PCA is discrete and at all times each site chooses an independent random
convex combination of its own height and the heights at the other sites and updates its height
to this new one. If we denote by Xn the vector of heights at time n indexed by Zd, and by
un(·, ·) a random sequence of iid stochastic matrices, then X∗n = (

∏n
k=1 un−k)X

∗
0 . The matrices

un have also the property that {un(i, i+ ·) : i ∈ Zd} is a family of iid random vectors for n ≥ 1.
The results described above are shown for this PCA and then a standard approximation of the
particle system by a family of PCA’s is performed.

In Section 2 we introduce the PCA and prove in Proposition 2.3 the discrete-time version of
(1.4). In Section 3 we prove some estimates for the discrete version of the random walk Dt which
lead to the asymptotics (1.6). In Section 4 we show the central limit theorem for the discrete
version of ηt(0) starting with the hyperplane. In Section 5 we show that the process starting
with the hyperplane converges to an invariant measure with the properties (1.7). In Section 6
we discuss the one dimensional biased case and show that, when the initial distribution of height
differences is an independent positive increment process with fluctuations, these fluctuations
appear in the variance of the height at the origin. In Section 7 we discuss the passage from
discrete to continuous time and in Section 8 we discuss the hydrodynamic limit. In Section 9,
we discuss briefly the voter model.

2 Discrete time: Probabilistic cellular automaton

The process we study in this Section is a discrete time system or probabilistic cellular automaton
whose configurations belong to RZd. Under this evolution at time n each site chooses a random
convex combination of its own height and the heights of the other sites at time n−1 and jumps
to this new height. Let (Xn)n≥0 denote the height system: Xn(i) is the height of site i at time
n. The formal definition goes as follows. Let {un(i, i+ ·), n ≥ 1, i ∈ Zd} be an i.i.d. family of
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random probability vectors distributed in [0, 1]Z
d

independent of X0. Denote by P and E the
probability and expectation induced by this family of random variables. Call ν the (marginal)
distribution of u1(·, ·). Under ν, for all i, j ∈ Zd, u1(i, j) ∈ [0, 1] and

∑
j u1(i, j) = 1 almost

surely.

We further assume ∑
j

|j|2ν[u1(0, j)] <∞, (2.1)

where |j| =
√
jj∗. To avoid dealing with periodicity, we assume that

ν[u1(0, j)] > 0 for |j| ≤ 1. (2.2)

For n ≥ 1 and i ∈ Zd we define Xn(i) as

Xn(i) =
∑
j

un(i, j)Xn−1(j). (2.3)

This may define a degenerate random variable. In the case un(i, j) = 0 if |i− j| > M for some

M (finite range), (2.3) defines a Markov process on {0, 1}Zd. After introducing the concept of
duality below we give sufficient conditions for (2.3) to define a Markov process. Definition (2.3)
means that the transpose of the height process at time n is the product of n infinite dimensional
independent identically distributed random matrices times the transpose of the heights vector
at time 0:

X∗n =

(
n∏
k=1

un−k+1

)
X∗0

Notice that not only the matrices are independent, but the rows inside each matrix are inde-
pendent too.

The height at the origin at time n, Xn(0), can be expressed as a conditional expectation of
a function of a simple random walk in a (space–time) random environment. To our probability
space attach a family {wn(i) : n ≥ 0, i ∈ Zd} of iid random variables uniformly distributed in
[0, 1] and independent of everything else. For 1 ≤ k ≤ n, let Y x,n

k denote the position at time
k of a random walk in Zd running up to time n, starting at site x defined by Y x,n

0 = x and for
1 ≤ k ≤ n:

Y x,n
k =

∑
j

j1{wk(Y x,n
k−1) ∈ In−k(Y

x,n
k−1, j)},

where for each i ∈ Zd, {Ik(i, j) : j ∈ Zd} is a (random) partition of the interval [0, 1] with
lengths |Ik(i, j)| = uk(i, j). For k ∈ {0, . . . , n − 1}, the process Y x,n

k is a random walk with
transition probabilities

P(Y x,n
k = j|Y x,n

k−1 = i) = E[un−k(i, j)] = ν(u1(i, j)).

Let Fn be the σ-algebra generated by {um(i, j) : i, j ∈ Zd, 0 ≤ m ≤ n}. Conditioned to Fn,
Y x,n
k has the following transition probabilities

P(Y x,n
k = j|Y x,n

k−1 = i,Fn) = un−k(i, j) =: vk−1(i, j)

In words, conditioned to Fn, the walk at time k jumps from i to j with probability vk(i, j).
Since this walk uses the un(i, j) backwards in time, we will call Y x,n

n the backward walk.
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Lemma 2.1. Assume
E|X0(Y

0,n
n )| <∞ (2.4)

for all n ≥ 0. Then Xn(x) is well defined for all n and x and

Xn(x) = E[X0(Y
x,n
n )|Fn]. (2.5)

In particular, if X0(i) = iλ∗ for some deterministic vector λ, then

Xn(x) = E(Y x,n
n |Fn)λ∗. (2.6)

Proof. We first want to show that

E|X0(Y
x,n
n )| <∞ (2.7)

for all n and x. Let us first consider |x| = 1.

By Fubini,

E|X0(Y
0,n+1
n+1 )| = E

∑
j

u1(0, j)|X0(Y
0,n+1
n + j)|

=
∑
j

Eu1(0, j)E|X0(Y
0,n+1
n + j)| (2.8)

=
∑
j

ν[u1(0, j)]E|X0(Y
0,n+1
n + j)| (2.9)

≥ ν[u1(0, x)]E|X0(Y
0,n+1
n + x)|. (2.10)

Now, by translation invariance,

E|X0(Y
x,n
n )| = E|X0(Y

0,n
n + x)| = E|X0(Y

0,n+1
n + x)| ≤ E|X0(Y

0,n+1
n+1 )|

ν[u1(0, x)]
<∞. (2.11)

by (2.2) and the hypothesis. Use induction on k = ||x||1 for the other x’s.

Again by Fubini and a straightforward induction argument, we have that

Xn(x) =
∑
i1

∑
i2

. . .
∑
in

un(x, i1)un−1(i1, i2) . . . u1(in−1, in)X0(in)

= E[X0(Y
x,n
n )|Fn]. (2.12)

This finishes the proof.

From (2.1), we have that E|Yn|2 <∞. Hence, a sufficient condition for the existence of the
process under this hypothesis is that

E|X0(j)| ≤ C|j|2 (2.13)

for some positive constant C.1

1Strengthenings of (2.1) allow for weakenings of (2.13).
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For x ∈ Zd, let
Zn(x) := E(Y x,n

n |Fn). (2.14)

Consider also Z̃n(x), the position at time n of the (forward) process, defined by

Z̃n(x) = E(Ỹ x
n |Fn), (2.15)

where Ỹ x
n is a (forward) random walk in a random environment starting at x and such that,

for k ≥ 1,
Ỹ x
k+1 =

∑
j

j1{wk(Ỹ x
k ) ∈ Ik(Ỹ x

k , j)}, (2.16)

where wn(i) is the same sequence of iid random variables uniformly distributed in [0, 1] defined
above and {Ik(i, j) : j} is the partition of the interval [0, 1] with lengths |Ik(i, j)| = uk(i, j)
defined above. Given Fn, the conditional probabilities for this walk are

P(Ỹ x
k+1 = j|Ỹ x

k = i,Fn) = uk(i, j) (2.17)

for 1 ≤ k ≤ n.

Remark 2.1.

Let Xn, Zn and Z̃n denote the vectors Xn(·), Zn(·) and Z̃n(·), respectively. Clearly, for all
n ≥ 0

Zn = Z̃n and (2.18)

Xn = {E[X0(Ỹ
x
n )|Fn], x ∈ Zd} (2.19)

in distribution. We will resort to this relation in most of what follows. One of its main uses
here is based on the fact that the centered forward process Z̃n is a martingale. We observe
that even if the fixed time marginal distribution of the backward and forward walks coincide,
it is not true that the backward process is a martingale. This explains why we introduce the
forward process.

For x ∈ Zd, define

Zn(x) = Zn(x)λ
∗ and Z̃n(x) = Z̃n(x)λ

∗. (2.20)

From (2.18), for all n, we have that

Zn = Z̃n (2.21)

in distribution, where Zn := Zn(·) and Z̃n := Z̃n(·).
For the remainder of this section, and in the next three, we study Z̃n, its asymptotics and

those for related processes. The relationships (2.6), (2.14) and (2.18) then yield asymptotics
for Xn starting on an inclined hyperplane (that is, starting on X0(i) = iλ∗ for all i, where λ is
a non-null deterministic vector of Zd).
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2.1 Martingale property and variance of the forward process Z̃n
We start by showing that the centered forward process is a martingale. Let µ =

∑
j jλ

∗ν[u1(0, j)].

Lemma 2.2. The process Z̃n− nµ is a martingale with respect to the filtration {Fn : n ≥ 0}.

Proof. We have, for n ≥ 1 and x ∈ Zd,

Z̃n(x) =
∑
k

E[Ỹ x
n |Ỹ x

n−1 = k,Fn]P(Ỹ x
n−1 = k|Fn)

=
∑
k

∑
j

jun(k, j)P(Ỹ x
n−1 = k|Fn−1)

=
∑
k

kP(Ỹ x
n−1 = k|Fn−1) +

∑
k

∑
j

(j − k)un(k, j)P(Ỹ x
n−1 = k|Fn−1)

= Z̃n−1(x) +Wx
n , (2.22)

where
Wx

n = E(θn(Ỹ
x
n−1)|Fn),

with
θn(k) =

∑
j

(j − k)un(k, j), (2.23)

for all n and k. Iterating, we get

Z̃n(x) =
n∑
i=1

Wx
i + x. (2.24)

Now,

E(Wx
i |Fi−1) =

∑
k

∑
j

E[(j − k)ui(k, j)|Ỹ x
i−1 = k,Fi−1]P(Ỹ x

i−1 = k|Fi−1)

=
∑
j

E[jui(0, j)]
∑
k

P(Ỹ x
i−1 = k|Fi−1) =

∑
j

jν[u1(0, j)] (2.25)

by the independence of ui(k, ·) from Fi−1 for all i and k. The result follows from (2.24) and (2.25)
by multiplying by λ∗.

Let D := {Dn, n ≥ 0} be a Markov chain in Zd with the following transition probabilities:

P(Dn+1 = k|Dn = `) =
∑
j

E[u1(0, j)u1(`, j + k)] =: γ(`, k). (2.26)

Notice that these are homogeneous off the origin. Indeed, for ` 6= 0 γ(`, k) depends only on
k − `:

γ(`, k) =
∑
j

ν[u1(0, j)]ν[u1(`, j + k)] =
∑
j

ν[u1(0, j)]ν[u1(0, j + k − `)], (2.27)

where the first equality follows by the independence of u1(0, ·) and u1(`, ·) and the second by
the translation invariance of u1(i, i+ ·).
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But at the origin, there obviously is no independence and thus no factoring, which produces
an inhomogeneity there. Nevertheless, it is useful to think of D as a random walk with an
inhomogeneity of the transition probabilities at the origin, as the results of the next section
attest. By an abuse of tradition, we adopt the terminology.

We prove in Lemma 2.4 below that Dn is symmetric, i.e. γ(`, ` + k) = γ(`, `− k).
The next result relates the variance of Z̃n(0) to the number of visits of Dn to the origin up

to time n. Let
σ2 = V[θn(0)λ

∗] (2.28)

Proposition 2.3. Let Pn =
∑n−1
i=0 P(Di = 0|D0 = 0). Then

V(Z̃n(0)) = σ2Pn. (2.29)

Since Z̃n(x) = Z̃n(0)+xλ∗ in distribution, the above result holds for Z̃n(x), x ∈ Zd, as well.

The finiteness of σ2 is implied by the second moment condition (2.1).

Corollary 2.4. When Xn starts as a hyperplane, that is, when X0(i) = iλ∗ for all i ∈ Zd with
λ a deterministic vector of Zd, then

V(Xn(0)) = σ2Pn. (2.30)

Proof of Corollary 2.4. Immediate from Proposition 2.3, (2.18) and (2.6).

Proof of Proposition 2.3. Since Z̃n(0)− nµ is a martingale with increments

W̄0
n :=W0

nλ
∗ − µ,

we have

V(Z̃n(0)) :=
n∑
i=1

V(W̄0
i ). (2.31)

Since θn(k) is independent of Fn−1 and E[θn(k)]λ∗ = µ for all k,

W̄0
n =

∑
k

[θn(k)λ
∗ − µ]P(Ỹ 0

n−1 = k|Fn−1) (2.32)

defines a centered random variable. Hence we have

V(W̄0
n) = E(W̄0

n)
2

= E
∑
k,l

[θn(k)λ
∗ − µ][θn(l)λ

∗ − µ]P(Ỹ 0
n−1 = k|Fn−1)P(Ỹ 0

n−1 = l|Fn−1)

= σ2E
∑
k

P2(Ỹ 0
n−1 = k|Fn−1), (2.33)

since E{[θn(k)λ∗ − µ][θn(l)λ∗ − µ])} = 0 for all k 6= l, by the independence among the u’s. To
get the result by iteration it remains only to verify that

E
∑
k

P2(Ỹ 0
n = k|Fn) = P(Dn = 0|D0 = 0) (2.34)
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for all n ≥ 1. For that, let D̃n = Ỹ 0
n − Ŷ 0

n , with Ŷ 0
n an independent copy of Ỹ 0

n (given Fn). It
is immediate that (2.34) holds with the right hand side replaced by P(D̃n = 0).

Now,

P(D̃n = 0) = EP(D̃n = 0|Fn)
= E

∑
k,l

P(D̃n = 0|Ỹ 0
n−1 = k, Ŷ 0

n−1 = l,Fn)P(Ỹ 0
n−1 = k, Ŷ 0

n−1 = l|Fn)

= E
∑
k

P(D̃n = 0|Ỹ 0
n−1 = k, Ŷ 0

n−1 = k,Fn)P(Ỹ 0
n−1 = k, Ŷ 0

n−1 = k|Fn)

+E
∑
k

∑
6̀=0

P(D̃n = 0|Ỹ 0
n−1 = k, Ŷ 0

n−1 = k + `,Fn)

×P(Ỹ 0
n−1 = k, Ŷ 0

n−1 = k + `|Fn)
= E

∑
k

∑
j

(un(k, j))
2P(Ỹ 0

n−1 = k, Ŷ 0
n−1 = k|Fn−1)

+E
∑
k

∑
6̀=0

∑
j

un(k, j)un(k + `, j)P(Ỹ 0
n−1 = k, Ŷ 0

n−1 = k + `|Fn−1)

=
∑
k

∑
j

E
[
(un(k, j))

2
]
P(Ỹ 0

n−1 = k, Ŷ 0
n−1 = k)

+
∑
6̀=0

∑
k

∑
j

E[un(k, j)un(k + `, j)]P(Ỹ 0
n−1 = k, Ŷ 0

n−1 = k + `)

=
∑
j

E
[
(un(0, j))

2
]∑

k

P(Ỹ 0
n−1 = k, Ŷ 0

n−1 = k)

+
∑
6̀=0

∑
j

E[un(0, j)un(`, j)]
∑
k

P(Ỹ 0
n−1 = k, Ŷ 0

n−1 = k + `)

= γ(0, 0)
∑
k

P(Ỹ 0
n−1 = k, Ŷ 0

n−1 = k)

+
∑
6̀=0

γ(`, 0)
∑
k

P(Ỹ 0
n−1 = k, Ŷ 0

n−1 = k + `)

=
∑
`

γ(`, 0)P(D̃n−1 = −`), (2.35)

where

γ(0, 0) =
∑
j

E(u1(0, j))
2, γ(`, 0) =

∑
j

E[u1(0, j)u1(`, j)].

By symmetry,
P(D̃n = 0) =

∑
`

γ(`, 0)P(D̃n−1 = `). (2.36)

A similar calculation yields

P(D̃n = k) =
∑
`

γ(`, k)P(D̃n−1 = `), (2.37)

where γ(`, k) is given by (2.26).

11



Since Dn also satisfies the same relations (2.36), (2.37), we conclude that 2

P(D̃n = k) = P(Dn = k|D0 = 0)

for all k, in particular k = 0, and this establishes (2.34).

Lemma 2.5. The transitions γ(`, k) given by (2.26) correspond to those of a symmetric random
walk perturbed at the origin.

Proof. By translation invariance

γ(0, k) =
∑
j

E(u1(0, j − k)u1(0, j)) = γ(0,−k)

and for ` 6= 0, by translation invariance and independence of u1(0, ·) and u1(`, ·),

γ(`, ` + k) =
∑
j

E(u1(0, j)u1(`, j + ` + k))

=
∑
j

Eu1(0, j)Eu1(`, j + ` + k)

=
∑
j

Eu1(0, j)Eu1(0, j + k)

=
∑
j

Eu1(0, j − k)Eu1(0, j)

= γ(`, `− k).

This finishes the proof.

3 Random walk estimates

We show in this section various asymptotic results involving P(Dn = 0|D0 = 0) and related
quantities. We use these results to prove the discrete-time version of the asymptotics (1.6) in
Corollary 3.5 below.

We will exclude, for most of this and the coming sections, the case when u concentrates on
delta functions. That is, we will focus on the case that

P(sup
j
u1(0, j) < 1) > 0. (3.1)

Otherwise, the RAP will be a Voter Model and will behave qualitatively in a different way.
We will discuss the Voter Model briefly in the final section. Till then, unless explicitly noticed,
we will be restricted to (3.1).

Notice that under (3.1),
γ := γ(0, 0) < 1, (3.2)

2Notice that D̃0 = 0.
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where γ(·, ·) was defined in (2.26).

Recall that Dn was defined in (2.26). The random walk Dn is not spatially homogeneous
(but almost). The (time homogeneous) transition probabilities are distinct (only) at the origin.
This poses a small technical problem for deriving the results of this section, since the supporting
random walk results we need will be quoted from Spitzer (1964), which treats only the homo-
geneous case. The second moment condition assumed in Section 2 implies a second moment
condition for the random walk Dn, which is then seen to be recurrent. It is also aperiodic due
to (2.2).

We start by proving monotonicity of P(Dn = 0|D0 = 0) with respect to n.

Lemma 3.1. P(Dn = 0|D0 = 0) is non-increasing in n.

Proof. Equation (5.8) below says that P(Dn+1 = 0|D1 = 0) − P(Dn+1 = 0|D1 = k) is the
increment on the variance of a martingale. It thus has to be non negative. Then

P(Dn+1 = 0|D0 = 0) =
∑
k

P(Dn+1 = 0|D1 = k)P(D1 = k|D0 = 0)

≤
∑
k

P(Dn+1 = 0|D1 = 0)P(D1 = k|D0 = 0)

= P(Dn = 0|D0 = 0).

Our next step is to calculate the power series of P(Dn = 0|D0 = 0) in terms of that of the
related quantity P(T = n), where T is the return time of the walk to the origin after leaving
it. We will establish a comparison between the first power series and that for the homogeneous
walk, from which the asymptotics of interest of the two walks are shown to be the same.

Let
f(s) =

∑
n≥0

P(Dn = 0|D0 = 0)sn; g(s) =
∑
n≥0

P(Hn = 0|H0 = 0)sn (3.3)

be the power series of P(Dn = 0|D0 = 0) and P(Hn = 0|H0 = 0), respectively, where Hn is the
homogeneous random walk with transition probability function

γH(`, k) =
∑
j

E(u1(0, j))E(u1(`, j + k)) (3.4)

for all ` and k. Notice that the transition functions of Dn and Hn differ only at the origin.

Lemma 3.2. f(t) is of the order of g(t).

Proof. Let {gi, i = 1, 2, . . .} be the successive waiting times of the walk at the origin and
{Ti, i = 1, 2, . . .} the successive return times to the origin after leaving it and let Gi and τi
denote their partial sums, respectively.

We then have

P(Dn = 0|D0 = 0) =
∑
i≥0

P(n ∈ [Gi + τi, Gi+1 + τi)), (3.5)

where G0 = τ0 = 0.
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The last probability can be written as

∑
r≥0

P(Gi + τi = r)P(n ∈ [r, r+ gi+1)) =
n∑
r=0

P(Gi + τi = r)P(gi+1 > n − r)

=
n∑
r=0

γn−rP(Gi + τi = r),

where γ was defined in (3.2).

Thus

P(Dn = 0|D0 = 0) =
n∑
r=0

γn−r
∑
i≥0

P(Gi + τi = r) (3.6)

and forming the power series, we get

f(s) :=
∑
n≥0

P(Dn = 0|D0 = 0)sn

=

∑
n≥0

γnsn

∑
n≥0

∑
i≥0

P(Gi + τi = n)sn


= (1− γs)−1

∑
i≥0

E(sGi+τi)

= (1− γs)−1
∑
i≥0

[E(sg1)E(sT )]i

=
1

1− γs
1

1− (1−γ)s
1−γs ψT (s)

=
1

1− s+ (1− γ)s[1− ψT (s)]
,

=
1/(1− s)

1 + (1− γ)sφT (s)
, (3.7)

where the second identity follows from the fact that the right hand side in (3.6) represents the
general term in a power series obtained as the product of the two power series in the right hand
side of that identity. ψT (s) denotes E(sT ) and

φT (s) =
∑
n≥0

P(T > n)sn. (3.8)

The last passage in (3.7) is due to the fact that 1− ψT (s) = (1− s)φT (s).

Similarly,

g(s) =
1/(1− s)

1 + (1− γ′)sφT̃ (s)
, (3.9)

where γ′ = γH(0, 0),
φT̃ (s) =

∑
n≥0

P(T̃ > n)sn (3.10)

and T̃ is the return time of the walk H to the origin after leaving it.
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Thus,
f(s)

g(s)
=

1 + (1− γ)sφT (s)

1 + (1− γ′)sφT̃ (s)
=

[1/φT̃ (s)] + (1− γ)s [φT (s)/φT̃ (s)]

[1/φT̃ (s)] + (1− γ′)s . (3.11)

Now
φT (s) =

∑
x 6=0

φTx(s)px,

where Tx is the hitting time of the origin of the walk starting at x, px, x 6= 0, is the distribution
of the jump from the origin and φTx =

∑
n≥0 P(Tx > n)sn.

We have, on the one hand, that

lim
s→1

φT̃ (s) = E(T̃ ) =∞ (3.12)

and, on the other, by P32.2 in Spitzer (1964) p.379,

lim
s→1

φTx(s)/φT̃ (s) = a(x) <∞, (3.13)

for all x. By P28.4 and P12.3 in Spitzer (1964) pp.345 and 124, respectively, a is integrable
with respect to (px) since |x| is (we leave the latter to be checked by the reader).

To be able to apply the dominated convergence theorem to conclude that

lim
s→1

f(s)

g(s)
=

1− γ
1− γ′

∑
x

a(x)px (3.14)

we need to find b(x) integrable with respect to (px) such that

φTx(s)/φT̃ (s) ≤ b(x) (3.15)

for all s < 1.

For that, let N denote the set of nearest neighboring sites to the origin. Let

℘ := min
e∈N

p′e, (3.16)

τ := max
e∈N

Te, (3.17)

where (p′x) is the distribution of the jump of H from the origin. By (2.2), ℘ > 0. Notice first
that

φTx(s)/φT̃ (s) ≤ φTx(s)/℘
∑
e∈N

φTe(s). (3.18)

Now notice that Tx is stochastically smaller than the sum of ||x||1 independent copies of τ .
Thus,

(1− s)φTx(s) = 1− ψTx(s) = 1− E(sTx) (3.19)

≤ 1− [E(sτ)]||x||1 ≤ ||x||1[1− E(sτ)] (3.20)

= (1− s)||x||1φτ(s), (3.21)

where φτ (s) =
∑
n≥0 P(τ > n)sn.
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It is clear that φτ (s) ≤
∑
e∈N φTe(s) and we get the uniform integrable domination by taking

b(x) = ℘−1||x||1.

Next, we will use the behavior of f(s) as s→ 1 to read the behavior of
∑n−1
i=0 P(Di = 0|D0 =

0) as n→∞.

Lemma 3.3. In d = 1 and 2,
∑n−1
i=0 P(Di = 0|D0 = 0) is of the order of

√
n and log n,

respectively. In d ≥ 3, it is bounded.

Proof. By the previous lemma, f(s) behaves the same as g(s). Spitzer (1964), P7.9 (on p.75)
says that P(Hn = 0|H0 = 0) is O(n−d/2). This implies (we leave this as an exercise to the
reader) that g(s) is O[(1 − s)−1/2] as s → 1 for d = 1, O[log(1− s)−1] for d = 2 and constant
for d ≥ 3. Then so does f(s).

This in turn gives information on
∑n
i=1 P(Di = 0|D0 = 0), the expected number of visits to

the origin, from the fact that

e

e+ 1
f(1− 1/n) ≤

n−1∑
i=0

P(Di = 0|D0 = 0) ≤ 2ef(1− 1/n), (3.22)

for all large enough n. To get the lower bound above, we write

f(1− 1/n) =
∞∑
i=0

P(Di = 0|D0 = 0)(1− 1/n)i

≤
n−1∑
i=0

P(Di = 0|D0 = 0) +
∞∑
i=n

P(Di = 0|D0 = 0)(1− 1/n)i.

Then the monotonicity of Lemma 3.1 allows us to bound the last term from above by

(1− 1/n)nnP(Dn = 0|D0 = 0) ≤ e−1
n−1∑
i=0

P(Di = 0|D0 = 0), (3.23)

where the inequality is justified again by the monotonicity of P(Di = 0|D0 = 0). The bound
follows.

For the upper bound, we write

f(1− 1/n) ≥ (1− 1/n)n
n−1∑
i=0

P(Di = 0|D0 = 0). (3.24)

The factor in front of the above sum is bounded below by (2e)−1 for all large enough n and the
bound follows.

In d = 1 and 2, we conclude that
∑n−1
i=0 P(Di = 0|D0 = 0) is of the order of

√
n and log n,

respectively. In d ≥ 3, it is bounded.

Corollary 3.4. Let λ be a non null deterministic vector in Zd and assume σ2 > 0. Then

V(Z̃n(0)) is of the order of


√
n if d = 1

log n if d = 2
constant if d ≥ 3,

(3.25)
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where Z̃n = Z̃nλ
∗ was defined in (2.20).

Proof. Follows from Lemma 3.3 and Proposition 3.2.

Corollary 3.5. Let X0(i) = iλ∗ for all i with λ a non-null deterministic vector of Zd and
assume σ2 > 0. Then the asymptotics (3.25) hold for Xn(0).

Proof. Immediate from Corollary 3.4, (2.18), (2.14) and (2.6).

Remark 3.2. Corollary 3.4 is the discrete-time version of (1.6). Notice however that there is a
difference. While in the discrete time one multiplies by σ2, in the continuous time the constant
is σ2 + µ2. In particular this means that for the smoothing process, for which σ2 = 0, if µ 6= 0,
we get nontrivial fluctuations in continuous time and no fluctuations in discrete time. In the
latter case the motion reduces to a hyperplane that moves deterministically at speed µ. In the
continuous case the nontrivial fluctuations come from the fluctuations of the Poisson processes.

Remark 3.3. Exact expressions for the constants of proportionality in 1 and 2 dimensions
follow from those mentioned in Remark 3.1 and from strengthenings of (3.22). For the latter,
in 2 dimensions, we can use the lower and upper bounds f(1− logn/n) and f(1− 1/n log n)+
const., respectively, instead on (3.22). In 1 dimension, we can use P20.2 in Spitzer(1964), on
p.225. We leave the details for the interested reader.

Remark 3.4 In the case where assumption (3.1) does not hold, γ(0, 0) = 1 and thus Dn is
absorbed at the origin. It follows that P(Dn = 0|D0 = 0) ≡ 1 and Pn = n. V(Z̃n(0)) is then of
order n in all dimensions in this case and, provided σ2 > 0, so is the variance of Xn(0) starting
from X0(i) = iλ∗. (This is the case of the voter model, to be discussed in the last section.)

4 Central limit theorem

In this section we prove a central limit theorem for Z̃n(0). By (2.6) and (2.18), it then holds
also for the the coordinate heights of the RAP starting as a hyperplane. For simplicity, we
study only the one dimension nearest-neighbor case where u1(i, j) = 0 for |i − j| 6= 1. This
contradicts part of assumption (2.2). The reason to adopt it in this section — and only in this
section, which is independent of the following ones — is that, in this case, the chain D̃ has
nearest neighbor jumps only (but in 2Z!); thus to go from a site to the other, it necessarily
passes first through all intermediate sites. The results from the previous sections that we will
need, the martingale property of Z̃n(0) − nµ and the divergence to ∞ of Pn as n → ∞, are
both valid in this case, with the same proofs as for the original case in the previous sections.)
We will also take λ = 1. The case of general jumps (not necessarily nearest neighbors) in d = 1
and d ≥ 2 can be similarly treated.

Theorem 4.1. As n→∞, P−1/2
n (Z̃n(0)−nµ) converges to a centered normal random variable

with variance σ2.

Notice that in the case we are considering Pn is of the order of
√
n as argued at the end of

the previous section.

Corollary 4.2. If Xn starts as the straight line with 45o of inclination, then Xn(0) satisfies
the same Central Limit Theorem as Z̃n(0).
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Proof of Corollary 4.2. By (2.18), (2.14) and (2.6), Xn(0) and Z̃n(0) have the same distri-
bution.

Proof of Theorem 4.1. To establish this CLT, it is enough to check the two conditions of the
corollary to Theorem 3.2 in Hall and Heyde (1980) (identifying Xni there with P−1/2

n W̃i and
Fni with Fi). The first condition is trivially satisfied while the second one can be written as

V 2
n = P−1

n

n∑
i=1

{
E[(W̄0

i )
2|Fi−1]− E[(W̄0

i )
2]
}
→ 0 (4.1)

in probability as n → ∞. Calculating the expectations above by further conditioning on Ỹ 0
i−1

(as in many of the calculations so far), we can write (4.1) as

σ2P−1
n

n−1∑
i=0

[
P(D̃i = 0|Fi)−P(D̃i = 0)

]
→ 0. (4.2)

We note at this point that, by the simplifying assumptions at the beginning of the section,
D̃ lives in 2Z and takes nearest neighbor jumps only.

Back to (4.2), it suffices to prove that the variance of its left hand side goes to 0 as n→∞.
For that, write the variance of the sum in (4.2) as

n−1∑
j=1

E

{
n−1∑
i=0

[
P(D̃i = 0|Fi∧j)−P(D̃i = 0|Fi∧(j−1))

]}2

. (4.3)

Some terms in the sum inside the expectation sign cancel to yield

n−1∑
i=j

[
P(D̃i = 0|Fj)−P(D̃i = 0|Fj−1)

]
. (4.4)

We look now into the summands above. We first condition in D̃j to get∑
k

P(D̃i = 0|D̃j = k)
[
P(D̃j = k|Fj)−P(D̃j = k|Fj−1)

]
. (4.5)

We further condition in Ỹ 0
j−1 and Ŷ 0

j−1 to get∑
k,l,l′

P(D̃i = 0|D̃j = k)

×
[
P(D̃j = k|Ỹ 0

j−1 = l′ + l, Ŷ 0
j−1 = l′,Fj)−P(D̃j = k|Ỹ 0

j−1 = l′ + l, Ŷ 0
j−1 = l′)

]
× P(Ỹ 0

j−1 = l′ + l, Ŷ 0
j−1 = l′|Fj−1). (4.6)

Let us introduce the notation

un,k := un(k, k + 1). (4.7)
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Notice that the possible values for k in (4.6) are l− 2, l and l + 2 3 and that

P(D̃j = l − 2|Ỹ 0
j−1 = l′ + l, Ŷ 0

j−1 = l′,Fj) = (1− uj,l′+l)uj,l′,
P(D̃j = l|Ỹ 0

j−1 = l′ + l, Ŷ 0
j−1 = l′,Fj) = (1− uj,l′+l)(1− uj,l′) + uj,l′+luj,l′ and

P(D̃j = l + 2|Ỹ 0
j−1 = l′ + l, Ŷ 0

j−1 = l′,Fj) = (1− uj,l′)uj,l′+l.

Substituting in (4.6), we get, after some more manipulation,∑
l,l′

[
P(D̃i = 0|D̃j = l + 2)−P(D̃i = 0|D̃j = l)

]
×{uj,l′+l(1− uj,l′)− E[uj,l′+l(1− uj,l′)]}P(Ỹ 0

j−1 = l′ + l|Fj−1)P(Ỹ 0
j−1 = l′|Fj−1)

+
∑
l,l′

[
P(D̃i = 0|D̃j = l − 2) −P(D̃i = 0|D̃j = l)

]
×{uj,l′(1− uj,l′+l)− E[uj,l′+l(1− uj,l′)]}P(Ỹ 0

j−1 = l′ + l|Fj−1)P(Ỹ 0
j−1 = l′|Fj−1). (4.8)

We will analyze explicitly only the first sum above by taking the sum over i, squaring and
taking expectations. The second one has the same behavior.

To alleviate notation, let us define

An
j,l :=

n−1∑
i=j

[
P(D̃i = 0|D̃j = l + 2) −P(D̃i = 0|D̃j = l)

]
(4.9)

uj,l′+l(1− uj,l′) := uj,l′+l(1− uj,l′)−E[uj,l′+l(1− uj,l′)] (4.10)

pj(l) := P(Ỹ 0
j−1 = l|Fj−1). (4.11)

We want then to estimate

E

∑
l,l′
An
j,luj,l′+l(1− uj,l′)pj(l′ + l)pj(l

′)


2

. (4.12)

We will show below that (4.12) is (at most) of the order of P(D̃j = 0). Substituting in (4.3)
and performing the sum in j, we get a term of the order of Pn. To find (an upper bound to) the
variance of (4.2), we multiply by constant times P−2

n (already taking into account the second
sum in (4.8)). Since Pn →∞ as n→∞, the last variance then goes to 0 as n→∞ as desired.

We rewrite (4.12) as

E

 ∑
l,l′,k,k′

An
j,lA

n
j,kE

[
uj,l′+l(1− uj,l′)uj,k′+k(1− uj,k′)

]
pj(l

′ + l)pj(l
′)pj(k

′ + k)pj(k
′)

 , (4.13)

where we use the independence between the u’s and p’s (the A’s are deterministic).

3Since D̃ lives in 2Z and takes nearest neighbor jumps only.
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Now we bound (4.13) by constant times

E

 ∑
l,l′,k,k′

∣∣∣E [uj,l(1− uj,l′)uj,k(1− uj,k′)]∣∣∣ pj(l)pj(l′)pj(k)pj(k′)
 , (4.14)

since |An
j,l| is uniformly bounded in l, j and n (we will prove this below).

The expectation inside the sum above vanishes if {l, l′} ∩ {k, k′} = ∅. The sum over pairs
with full intersection is bounded above by

2E

∑
l,l′

E
[
uj,l(1− uj,l′)

]2
p2
j(l)p

2
j(l
′)

 . (4.15)

The expectation inside the sum is constant for l 6= l′ and separately for l = l′. Thus it is
bounded above uniformly by a constant, so this part of the sum is bounded above by constant
times

E

∑
l,l′
p2
j(l)p

2
j(l
′)

 = E

{∑
l

p2
j(l)

}2

≤ E

{∑
l

p2
j(l)

}
= P(D̃j = 0). (4.16)

For pairs with intersection at only one point, we argue similarly to bound the sum by
constant times

E

∑
l,l′,k

p2
j(l)pj(l

′)pj(k)

 = E

{∑
l

p2
j(l)

}
= P(D̃j = 0). (4.17)

All cases have been considered and we thus have the result.

Lemma 4.3. |An
j,l| is uniformly bounded in l, j and n.

Proof. By the time translation invariance of the model, it suffices to prove the uniform
boundedness of

n∑
i=0

[
P(D̃i = 0|D̃0 = l)−P(D̃i = 0|D̃0 = l + 2)

]
(4.18)

for l ≥ 0. Consider the
∑n
i=0 P(D̃i = 0|D̃0 = l + 2) and condition on the time T that the walk

starting in l + 2 first hits l 4 to get

n∑
i=0

i∑
j=0

P(D̃i = 0|D̃j = l)P(T = j) =
n∑
i=0

i∑
j=0

P(D̃i−j = 0|D̃0 = l)P(T = j), (4.19)

by translation invariance again. Reversing the order of the sum in (4.19)

n∑
j=0

n∑
i=j

P(D̃i−j = 0|D̃0 = l)P(T = j) (4.20)

4Notice that, since D̃ lives in 2Z and takes nearest neighbor jumps only, P(T ≤ i|D̃i = 0, D̃0 = l+ 2) = 1.
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and the variable i to k = i− j
n∑
j=0

n−j∑
k=0

P(D̃k = 0|D̃0 = l)P(T = j) = E

[
n−T∑
i=0

P(D̃i = 0|D̃0 = l) 1{T ≤ n}
]
. (4.21)

Thus (4.18) becomes

E

 n∑
i=n−T+1

P(D̃i = 0|D̃0 = l) 1{T ≤ n}
+ P(T > n)

n∑
i=0

P(D̃i = 0|D̃0 = l). (4.22)

The probabilities inside the sums are maxima when l = 0 (by the martingale argument already
used in the proof of Lemma 3.1, which applies to this case as well). Rewrite (4.22) (for l = 0)
as

n∑
j=1

n∑
i=n−j+1

P(D̃i = 0|D̃0 = 0)P(T = j) + P(T > n)
n∑
i=0

P(D̃i = 0|D̃0 = 0). (4.23)

Changing variables i to k = n− i in the first sum, it becomes

n∑
j=1

j−1∑
k=0

P(D̃n−k = 0|D̃0 = 0)P(T = j) (4.24)

and changing the order of summation,

n−1∑
k=0

n∑
j=k+1

P(D̃n−k = 0|D̃0 = 0)P(T = j) =
n−1∑
k=0

P(D̃n−k = 0|D̃0 = 0)P(n ≥ T > k). (4.25)

Summing the second term in (4.23), we finally get

n∑
k=0

P(D̃n−k = 0|D̃0 = 0)P(T > k). (4.26)

Now since D̃ is a one dimensional simple symmetric random walk (in 2Z; it is homogeneous off
the origin and T does not depend on the transitions from the origin), we have that P(T > n)
is of the order of n−1/2 (see Spitzer (1964) P32.1 on p.378 and P32.3 on p.381). By the
arguments at the end of the previous section, so is P(D̃n = 0). This implies that (4.25) is
bounded in n. The argument is finished.

5 Convergence to an invariant distribution

In this section we prove that Z̃n as seen from the height at the origin converges almost surely.
This has the immediate consequence that Xn when starting with a hyperplane converges weakly
as seen from the height at the origin.

Let
Ẑn := Z̃n − Z̃n(0), (5.1)

that is, Ẑn(x) := Z̃n(x)− Z̃n(0) for all x.
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Proposition 5.1. Ẑn converges almost surely. Let Ẑ∞ denote the limit. If σ2 > 0, then

V[Ẑ∞(x)− Ẑ∞(y)] is of the order of


|x− y| if d = 1,
log |x− y| if d = 2,
constant if d ≥ 3.

(5.2)

If σ2 = 0, then Ẑn(x)− Ẑn(y) = Ẑ0(x)− Ẑ0(y) for all n ≥ 0.

Corollary 5.2 below contains the discrete-time version of the asymptotics announced in (1.7).
In Proposition 5.3 we show that the weak limit is invariant for the process.

Let
X̂n := Xn −Xn(0), (5.3)

that is, X̂n(x) := Xn(x)−Xn(0) for all x.

Corollary 5.2. When Xn starts as a hyperplane, that is, when X0 = {iλ∗, i ∈ Zd}, with λ a

deterministic vector of Zd, then X̂n converges weakly. Let X̂∞ denote the weak limit. If σ2 > 0,
then

V[X̂∞(x)− X̂∞(y)] is of the order of


|x− y| if d = 1,
log |x− y| if d = 2,
constant if d ≥ 3.

(5.4)

If σ2 = 0, then X̂n(x)− X̂n(y) = X̂0(x)− X̂0(y) for all n ≥ 0.

Proof of Corollary 5.2.

Under the assumed initial conditions, by (2.6), X̂n = Xnλ
∗ −Xn(0)λ∗ and it is clear that

the last quantity equals Ẑn in distribution.

Proof of Proposition 5.1. We start proving the proposition by showing that for each x ∈ Zd,
E(Ẑn(x)− xλ∗)2 is uniformly bounded in n. Since it is a martingale, it then converges almost
surely and in L2 (see Theorem 2.5 and Corollary 2.2 in Hall and Heyde (1980) for instance).
Given x,

V(Ẑn(x)) = 2V(Z̃n(0)) − 2C(Z̃n(0), Z̃n(x)− xλ∗), (5.5)

where C denotes the covariance, since Z̃n(x) − xλ∗ and Z̃n(0) are equally distributed by the
translation invariance of the model. We already have an expression for the first term on the
right hand side from Proposition 2.3. We need to derive one for the last one, which we do now.
We already have from the proof of Lemma 2.2 that

Z̃n(x)− xλ∗ =
n∑
i=1

W̃x
i , (5.6)

with W̃x
i = E

[
θi(Ỹ x

i−1)λ
∗|Fi

]
. Notice that E(θi(Ỹ x

i−1)λ
∗) = µ for all x. Thus,

C(Z̃n(0), Z̃n(x)− xλ∗) = E

 n∑
i,j=1

{
E
[
θi(Ỹ

0
i−1)λ

∗|Fi
]
− µ

} {
E
[
θj(Ỹ

x
j−1)λ

∗|Fj
]
− µ

}
= E

∑
i,j

∑
k,l

(θi(k)λ
∗ − µ)(θj(j)λ

∗ − µ)P(Ỹ 0
i−1 = k|Fi−1)P(Ỹ x

j−1 = l|Fj−1)

= σ2
∑
i

E
∑
k

P(Ỹ 0
i−1 = k|Fi−1)P(Ỹ x

i−1 = k|Fi−1),
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the last equality due to the independence of at least one of the θ’s (the one with higher subscript)
of the conditional probabilities and of the other θ when i 6= j, and due to the null mean of the
(θλ∗ − µ)’s. σ2 is the second moment of the θλ∗’s.

Now, reasoning as in the proof of Proposition 2.3,

E
∑
k

P(Ỹ 0
i−1 = k|Fi−1)P(Ỹ x

i−1 = k|Fi−1) = P(Di−1 = 0|D0 = x). (5.7)

From the above discussion, we conclude that

E(Ẑn+1(x)− xλ∗)2 = 2σ2
n∑
i=0

(P(Di = 0|D0 = 0)−P(Di = 0|D0 = x)) . (5.8)

After a similar reasoning as used in the proof of Lemma 4.3 above, one sees that the last
expression equals

n∑
k=0

P(Dn−k = 0|D0 = 0)P(Tx > k), (5.9)

where Tx is the hitting time of the origin by the walk D starting at x.

Since the above expression is the variance of a martingale, it is monotone in n. To show it
is bounded, it suffices to consider its power series (in the variable 0 ≤ s < 1) and show it is
bounded as s→ 1 when multiplied by 1−s. The limiting value of this procedure gives the limit
in n of (5.9), which in turn gives the variance of Ẑ∞(x), by the L2 Martingale Convergence
Theorem.

Now

F (s) :=
∞∑
n=0

n∑
k=0

P(Dn−k = 0|D0 = 0)P(Tx > k)sn

= f(s)φTx(s),

where f(s) is the power series of P(Dn = 0|D0 = 0) and φTx that of P(Tx > n) (as in Section
3).

We have
φTx(s) = (1− s)−1(1− ψTx(s)) (5.10)

(using the notation of Section 3) and from (3.7), we get

(1− s)F (s) =
1− ψTx(s)

1− s+ (1− γ)s[1− ψT (s)]
. (5.11)

Using (5.10) again, (5.11) turns into

φTx(s)

1 + (1− γ)sφT (s)
. (5.12)

After a similar line of reasoning as in the proof of Lemma 3.2, we get that the above expression
equals

a(x)

(1− γ)∑y a(y)py
(5.13)
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in the limit as s → 1.5 The finiteness of the sum in (5.13) follows from the decay of a
(Spitzer(1964), P28.4 on p.345, P12.3 on p.124 6) and integrability of p.

Remark 5.1. Substituting (5.13) into (5.8), we get

V(Ẑ∞(x)) = lim
n→∞

E(Ẑn(x)− xλ∗)2 =
2σ2

(1− γ)∑y a(y)py
a(x). (5.14)

In 3 or more dimensions, the expression in (5.8) is the difference of two positive quantities,
the first of which is bounded in n (of course then also the second, which is smaller), as follows
from Spitzer(1964), P7.9 on p.75. We conclude that it is bounded in n and x.

Now we argue the asymptotics (5.4). Assume σ2 > 0.

We first remark that in 3 or more dimensions there is no space scaling, since (5.8) is bounded
in x as well as in n as seen above.

In 1 and 2 dimensions, the spatial scaling is given by the scaling of a(x), as readily seen
from (5.14).

In 1 dimension a(x) scales as |x| (Spitzer(1964) P28.4 on p.345). (Under our hypotheses,
E(
∑
j ju1(0, j))2 <∞.)

In 2 dimensions, in order to use P12.3 on p.124 of Spitzer(1964) to state that a(x) scales
as log |x|, we need to make the stronger assumption of finiteness of any moment of

∑
j ju1(0, j)

greater than 2.

The case σ2 = 0 follows from (5.8).

Remark 5.2. The case σ2 = 0 corresponds to the discrete time smoothing process with no
randomness (W ≡ 1 in Definition (0.1) of Liggett (1985)). In this case the hyperplanes are
invariant configurations.

Proposition 5.2. Let X̂n defined by X̂n(x) = Xn(x) −Xn(0) be the RAP as seen from the

height at the origin. Then Ẑ∞ is invariant for X̂n. That is, if u is a copy of u1 independent of
Ẑ∞, then uẐ∞ and Ẑ∞ have the same distribution.

Proof. Let u be a copy of u1 independent of Ẑ∞ and Ẑn, n ≥ 1. and let u0 denote the matrix
that has all its rows identical to the vector {u(0, x), x}. Now, let û = u − u0. To prove the

proposition, it suffices to show that ûẐ∗∞ = Ẑ∗∞ in distribution. But that is clear from the facts

that ûẐ∗n = Ẑ∗n+1 in distribution and that ûẐ∗n converges weakly to ûẐ∗∞. The latter point is

argued from the L2 convergence of uẐ∗n and u0Ẑ∗n as follows.

Given x,

E[uẐ∗n(x)− uẐ∗∞(x)]2 = E[u(Ẑ∗n − Ẑ∗∞)(x)]2

5Here, the assumption (2.2) plays a role. For u with distribution leading to periodicity of D (like the one
considered in Section 4), we have to take the height differences within sublattices of Zd, among which there is
independence of the dynamics and thus the individual height fluctuations sum and diverge in consequence (in
the aforementioned example, the odd and even sublattices of Z2 are independent).

6The latter proposition requires a finite 2 + ε moment condition on
∑
j ju1(0, j).
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= E[
∑
y

u(x, y)(Ẑn(y)− Ẑ∞(y))]2

≤ E
∑
y

u(x, y)[Ẑn(y)− Ẑ∞(y)]2

=
∑
y

νu1(0, y − x)E[Ẑn(y)− Ẑ∞(y)]2

= E[Ẑn(0)− Ẑ∞(0)]2, (5.15)

where the inequality follows by Jensen and the last identity is due to space translation invariance
of the distribution of Ẑn(y)− Ẑ∞(y). The same inequality is true with u replaced by u0 since
it amounts to replacing x by 0. One concludes

E[ûẐ∗n(x)− ûẐ∗∞(x)]2 ≤ 4E[Ẑn(0) − Ẑ∞(0)]2. (5.16)

and L2 convergence follows from the L2 Martingale Convergence Theorem.

6 The one dimensional case

In the one dimensional case we are able to treat random initial conditions. Let (Xn)n≥0 denote
the height system and (xi)i∈Z be its initial configuration. Thus we have

X0 = (xi); x0 = 0.

Assume xi+1 − xi = yi with yi i.i.d. with Eyi = 1/α > 0 and Vyi = β2. Notice that this
distribution satisfies the sufficient condition for the existence of the process given by (2.13).
Denote yi − (1/α) by ȳi and let X̄0(i) = X0(i)− (1/α)i and Sn(0) = E(X̄0(Y 0

n )|Fn). We then
have, by (2.19),

Xn(0) = Sn(0) + (1/α)Zn(0), (6.1)

in distribution, where as before, Zn(0) = E(Y 0
n |Fn). Notice that ESn(0) = 0.

Proposition 6.1. Sn(0) and Zn(0) are uncorrelated for all n. If
∑
jEu1(0, j) = 0, then VSn(0)

is of order
√
n. If

∑
jEu1(0, j) 6= 0, then VSn(0) is of the order of n.

The proposition above allows us to obtain different behavior of the fluctuations of the height
at the origin in the biased and unbiased cases. The corollary below shows that in the unbiased
case the fluctuations are sub diffusive (variance proportional to the square root of time) but in
the biased case they are diffusive (variance proportional to the time).

Corollary. If
∑
jEu1(0, j) = 0, then VXn(0) is of order

√
n. If

∑
jEu1(0, j) 6= 0, then VXn(0)

is of the order of n.

Proof of Corollary. Since Sn(0) and Zn(0) are uncorrelated, VXn(0) = (1/α)2VZn(0) +
VSn(0). We have shown in Corollary 3.4 that VZn(0) is of the order of

√
n in dimension one.

Then, Proposition 6.1 shows that VXn(0) is of the order of VSn(0).
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Proof of Proposition 6.1.

E(Sn(0)Zn(0)) = E
[
E(X̄0(Y

0
n )|Fn)E(Y 0

n |Fn)
]

= E

[∑
k

X̄0(k)P(Y 0
n = k|Fn)

∑
k

kP(Y 0
n = k|Fn)

]

= E

∑
k,l

X̄0(k)lP(Y 0
n = k|Fn)P(Y 0

n = l|Fn)


=
∑
k,l

E(X̄0(k))lE[P(Y 0
n = k|Fn)P(Y 0

n = l|Fn)] = 0,

since E(X̄0(k)) = 0 for all k. This proves uncorrelatedness.

Sn(0) =
∑
k

X̄0(k)P(Y 0
n = k|Fn)

=
∑
k<0

−1∑
i=k

ȳiP(Y 0
n = k|Fn) +

∑
k>0

k∑
i=1

ȳi−1P(Y 0
n = k|Fn)

=
∑
i>0

ȳi−1P(Y 0
n ≥ i|Fn)−

∑
i<0

ȳiP(Y 0
n ≤ i|Fn)

=
∑
i≥0

ȳiP(Y 0
n > i|Fn)−

∑
i<0

ȳiP(Y 0
n ≤ i|Fn)

Thus

E(Sn(0))
2 = E

∑
i≥0

ȳiP(Y 0
n > i|Fn)

2

+E

[∑
i<0

ȳiP(Y 0
n ≤ i|Fn)

]2

−2E

∑
i≥0

ȳiP(Y 0
n > i|Fn)

∑
i<0

ȳiP(Y 0
n ≤ i|Fn)


The first expectation on the right equals∑

i,j≥0

E(ȳiȳj)E[P(Y 0
n > i|Fn)P(Y 0

n > j|Fn)] (6.2)

which is then seen to be
β2
∑
i≥0

E[P2(Y 0
n > i|Fn)], (6.3)

since E(ȳiȳj) = E(ȳi)E(ȳj) = 0 for all i 6= j and Eȳ2
i = β2 for all i. Similarly, the second

expectation equals
β2
∑
i<0

E[P2(Y 0
n ≤ i|Fn)] (6.4)

and the last one vanishes.
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We get the following upper and lower bounds for E(Sn(0))2, (the bounds are based on
P2(· · ·) ≤ E(P2(· · · |Fn)) ≤ P(· · ·))

β2

∑
i≥0

P(Y 0
n > i) +

∑
i<0

P(Y 0
n ≤ i)

 = β2E(|Y 0
n |) (6.5)

and

β2

∑
i≥0

P2(Y 0
n > i) +

∑
i<0

P2(Y 0
n ≤ i)

 , (6.6)

respectively. When E
∑
j ju1(0, i) = 0, the random walk Y 0

n has zero mean and, since the
variance is positive and finite, these bounds are both of order

√
n. When E

∑
j ju1(0, i) 6= 0,

the random walk Y 0
n is not centered and the bounds are of order n.

7 Continuous time

In this Section we discuss the continuous time process described in the introduction. Each site in
Zd is provided with an exponential clock of rate 1. Every time it rings, the corresponding height
jumps to a random convex combination of its own height and the heights of its neighboring
sites. Let ηt, t ≥ 0, denote this process. The way we choose to show the results for this process
is to approximate it by a family of discrete time processes, similar to the discrete process we
considered before. A direct approach should also work.

Let T (i, k) be the successive times of the Poisson process of site i, k ≥ 1 and let uk(i, ·) the
k-th (independent) realization of the random vector u(i, ·). Fix as scaling parameter a positive
integer N and define a family {βNn,i, n ≥ 1, i ∈ Zd} by

βNn,i = 1{T (i, k) ∈ [(n− 1)/N, n/N) for some k ≥ 1}

Hence (βNn,i) is a family of (i.i.d. Bernoulli) random variables with parameter P(T (i, 1) ≤ 1/N) =

1 − exp(−1/N). Let Kn =
∑n
k=1 β

N
k,i. For a fixed initial configuration X0 ∈ RZd define the

process (XN
n )n≥0 by

XN
0 (i) = X0(i),

XN
n (i) = βNn,i

∑
j

uKn(i, j)X
N
n−1(j) + (1− βNn,i)XN

n−1(i), n ≥ 1.

Let FNn be the sigma algebra generated by {βk,i, uk(i, j), 1 ≤ k ≤ n, i ∈ Zd}. By Lemma 2.1
XN
n (0) is described as the conditional expectation of a function of a random walk:

XN
n (0) = E(XN

0 (Y N,0,n
n ) | FNn ), (7.1)

where Y N,0,n
k , k = 0, . . . , n, is the backward random walk starting at the origin and for 0 ≤ k ≤

n,

P(Y N,0,n
k = j|Y N,0,n

k−1 = i,FNn ) = βNn−k,iuKn−k(i, j) + (1− βNn−k,i)1{i = j}
=: uNn−k(i, j),
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Notice that {uNk (i, ·) : k ≥ 0, i ∈ Zd} is a family of iid vectors.

As in most of the paper so far, we will concentrate attention on the case of initial inclined
hyperplanes for the rest of the section. That is, we suppose X0(i) = iλ∗ for all i with λ a
deterministic non-null vector of Zd.

The same arguments of Section 2 yield

VXN
n (0) = σ2

NEMN (n)

where MN (n) is the time spent at the origin in the time interval [0, n] of a (symmetric inho-
mogeneous at the origin) random walk DN

t with transition probabilities

γN(`, k) =
∑
j

E(uN1 (0, j)uN1 (`, j + k))

and, recalling that u1(i, j) has the same distribution as u(i, j),

σ2
N = V

[∑
j jλ

∗uN1 (0, j)
]

=
1

N

(
V
[∑

j jλ
∗u(0, j)

]
+
[
E
∑
j jλ

∗u(0, j)
]2)
−

E
[∑

j jλ
∗u(0, j)

]2
N2

+ O
(
1/N2

)
=

1

N

(
σ2 + µ2

)
+ o(1/N)

where µ and σ2 are defined in (1.5). It is a standard matter to prove that the process Y x,t
s ,

s ∈ [0, t], defined by the almost sure coordinatewise limit

Y x,t
s = lim

N→∞
Y
N,x,bNtc
bNsc ,

is a continuous time random walk with transition rates {u·(·, ·)}. This walk uses the Poisson
marks and the realizations of the u backwards in time from t to 0.

Using (7.1), we prove in Lemma 7.1 below that E(Y
N,x,bNtc
bNtc |FNbNtc) converges in L1 to

E(Y x,t
t |Ft), where Ft is the sigma algebra generated by the Poisson processes and the real-

izations of the {u·(·, ·)} corresponding to the Poisson marks in the interval [0, t]. It is then easy
to show that the limiting process

ηt = lim
N→∞

XN
bNtc and XN

0 = η0 (7.2)

exists, has generator (1.1) and
ηt(x) = E(η0(Y

x,t
t )|Ft). (7.3)

Lemma 7.1. If Eη0(j) ≤ const. |j|2 for all j then XN
bNtc converges coordinatewise to ηt in L1

as N → ∞ for all fixed t. If E (η0(j)2) ≤ const. |j|2 for all j then there is also convergence
in L2.

Proof. Fix x ∈ Zd. Consider the event

AN
t = {Y x,t

s jumps twice in a time interval [(n− 1)/N, n/N) for some 1 ≤ n ≤ bNtc
or jumps once in [bNtc, bNtc+ 1/N)}.

28



Then

E|XN
bNtc(x)− ηt(x)| ≤ E|η0(Y

x,t
t )− η0(Y

N,x,bNtc
bNtc )| (7.4)

= E[|η0(Y
x,t
t )− η0(Y

N,x,bNtc
bNtc )|;AN

t ]. (7.5)

Notice that FNbNtc ⊂ Ft for all t. The latter expectation can be written, disregarding constant
factors, as ∑

i,j

E|η0(i)− η0(j)|P(Y x,t
t = i, Y

N,x,bNtc
bNtc = j, AN

t ) (7.6)

≤
∑
i,j

(E|η0(i)|+ E|η0(j)|)P(Y x,t
t = i, Y

N,x,bNtc
bNtc = j, AN

t ) (7.7)

≤
∑
i,j

(i2 + j2)P(Y x,t
t = i, Y

N,x,bNtc
bNtc = j, AN

t ) (7.8)

= E[(Y x,t
t )2;AN

t ] + E[(Y N,x,bNtc
bNtc )2;AN

t ] (7.9)

and the argument for convergence in L1 closes with the observation that (Y x,t
t )2 and (Y

N,x,bNtc
bNtc )2

are uniformly integrable and P(AN
t ) → 0 as N → ∞ for all fixed t, both of which assertions

are not difficult to check. Convergence in L2 follows the same steps, with the | · · · | expressions
in (7.4-7.7) replaced by [· · ·]2. (The corresponding of inequality (7.4) follows by Jensen.)

Now, by Lemmas 2.1 and 7.1, when η0(x) = xλ∗

Vηt(x)) = lim
N→∞

VXN
bNtc(x)

= lim
N→∞

σ2
NEMN (bNtc) (by Proposition 2.3)

= (σ2 + µ2)EM(t),

where M(t) is the time spent in the origin up to t by a continuous time random walk (Dt)t≥0

with transition rates given by

q(0, k) =
∑
j

ν(u(0, j)u(0, j + k)) (7.10)

and, for ` 6= 0 and k ∈ Zd,

q(`, `+ k) = νu(0, k) + νu(0,−k). (7.11)

Now the asymptotic variance for the continuous case follows from the asymptotics of the
number of visits of a continuous time symmetric random walk with an inhomogeneity at the
origin. The asymptotics of Section 2 can be obtained also for the continuous time walk.

The convergence to an invariant measure follows for the continuous case similarly as above,
by using the discrete time approximation and the fact that E(Yt | Ft) is a martingale. Here Yt
is the limiting process obtained from Y N

bNtc, the walk with transitions

P(Y N
k = j|Y N

k−1 = i) = βNk,iuKk(i, j) + (1− βNk,i)1{i = j}
=: uNk (i, j).
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We have

V[ηt(x)− ηt(0)] = lim
N→∞

2σ2
N [EMN(bNtc)− EMN

x (bNtc)]

= (σ2 + µ2)[EM(t)− EMx(t)],

where the subscript x means that the corresponding random walk starts at x. Now the fact
that the last quantity is bounded and the martingale property imply the convergence. The fact
that the limit is invariant follows as in Proposition 5.2.

We leave the extension of the results of Sections 4, 5 and 6 to the reader, who may employ
the approximation above.

Comparison with Liggett’s results. In display (0.2) of Chapter IX, Liggett (1985) defines
linear systems using families of random operators Az(x, y) and linear coefficients a(x, y). Our
process corresponds to the choice a(x, y) = 0 for all x, y and

Az(x, y) =
{
u(x, y) if x = z
1{x = y} if x 6= z

.

Then conditions (1.3) and (1.4) of Liggett are satisfied. On the other hand the hypothesis of
his Lemma 1.6 reads

sup
x
ν
∑
y

u(x, y) = sup
x
ν
∑
y

u(0, y − x) = ν
∑
y

u(0, y) = 1

by translation invariance. This implies that also Liggett’s (1.5) is satisfied and his construction
works for our case. We have proposed two somewhat simpler constructions. One of them,
sketched in the introduction exploits the existence of a almost sure duality relation. The other
is a standard passage from discrete to continuous time developed in Section 7.

It is also interesting to notice that when computing the two point correlation functions
in the translation invariant case of his Theorem 3.1, a function called qt(x, y) there plays a
fundamental role (see page 445). While in the general case

∑
y qt(x, y) is not expected to be

one, in the RAP case qt(x, y) are the probability transition functions at time t of the random
walk with rates q(x, y) given by (7.10) and (7.11).

His Theorem 3.17 can be applied to our process to yield weak convergence to constant
positive configurations, when starting with translation invariant positive initial conditions. He
does not treat initial conditions we considered in Theorem 5.1 (presumably because his work
has a different perspective).

The nearest-neighbors case. Conservative nearest-particle systems. Consider d = 1
and u(i, j) = 0 if |i−j| > 1. In this case if the initial heights are ordered, that is η0(i) < η0(i+1)
for all i, then the same will occur for later times. If we project the heights on a vertical line,
we obtain a point process. We can interpret that at each event of this point process there is a
particle. If η0(0) = 0, then the initial point process has a particle at the origin. The dynamics
obtained by this projection can be described as follows. Each particle, after an exponential
time chooses a random position between the neighboring particles and jump to it. Since the
interaction occurs only with the two nearest-neighboring particles and the number of particles
is conserved, we called this motion conservative nearest particle system. See Liggett (1985) for
examples of (non conservative) nearest-particle systems.
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To study the height at the origin ηt(0) in the height system is equivalent to tagging the
particle at the origin and following it in the particle system. The particle interpretation also
allows us to study the projection of configurations that otherwise will be not localized. In
particular, when u(i, i+ 1) = 1−u(i, i− 1) is a uniform random variable in [0, 1], any homoge-
neous Poisson process is reversible for the particle system, when we disregard the labels of the
particles. To see this, notice that if X and Y are independent exponential random variables of
the same parameter and u is uniform in [0, 1] and independent of the above random variables,
then u(X + Y ) and (1− u)(X + Y ) are again independent exponential random variables with
the same parameter. The reversibility of the Poisson process for the particle system implies
that the particle system as seen from the tagged particle has as reversible measure the Poisson
process conditioned to have a particle at the origin. This in particular implies that if initially
the differences between successive heights are iid exponentially distributed with some parameter
ρ, then this distribution is reversible for the process as seen from the height at the origin.

Another consequence of this isomorphism between the particle process and the height system
is that we get the asymptotic behavior for the motion of the tagged particle in the conservative
nearest-particle system. The continuous time version of the Corollary to Proposition 6.1 implies
that the motion of the tagged particle in the non biased case (µ = 0) is subdiffusive. That is,
starting with the Poisson process, the variance of ηt(0) will behave asymptotically as

√
t. This

corrects Theorem 9.1 in Ferrari (1996) which states wrongly that the behavior was diffusive.

8 Hydrodynamics

Let φ : Rd → R be a continuous function. Let φn : Zd → R be defined by

φn(i) = φ(i/n)

If the distribution of u(i, j) is symmetric in the sense that u(i, j) and u(j, i) have the same
distribution, then the following hydrodynamic limit holds:

lim
n→∞

E(Xn2t(nr)|X0 = φn) = Φ(r, t)

where Φ is the solution of the heat equation with initial condition φ. In other words, Φ is the
solution of (

∂Φ

∂t

)
h

= Dh (∆Φ)h ,

where Dh =
∑
j |jh|u(0, j), where jh is the h-th coordinate of the vector j ∈ Zd. To show the

above one just computes the derivative of the h-th coordinate of EXn2t(rn) as follows

lim
n→∞

n2 E(Xn2t(rn)−Xn2t−1(rn))h

= lim
n→∞

n2
∑
j

E(un2t(rn, rn + j))hE(Xn2t−1(rn + j)−Xn2t−1(rn))h

= lim
n→∞

n2
∑
j:jh>0

E(un2t(rn, rn + j))hE(Xn2t−1(rn + j) +Xn2t−1(rn− j)−Xn2t−1(rn))h

where (·)h is the h-th coordinate of the vector (·). When n→∞ this gives the desired result.
Presumably both the law of large numbers and local equilibrium hold.
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Using duality it is possible to prove the convergence to the diffusion equation for the case
when the mean is zero but the distribution of the u is not symmetric. If the mean µ is different
of zero, one proves that the process converges to a linear pde. In this case space and time are
scaling in the same way.

We close this Section giving a comparison between the hydrodynamics of the ηt process
and the ξt process studied by Kipnis, Marchioro and Presutti (1982). Consider the continuous
time ηt process in one dimension with nearest-neighbor interaction: u(i, i+ 1) = 1− u(i, i− 1)
uniformly distributed in [0, 1] and u(i, j) = 0 otherwise. For this process the Poisson Processes
of rate ρ on the line are invariant (and reversible) measures. The ξt process is just defined by
the differences:

ξt(i) = ηt(i+ 1) − ηt(i)
Since the Poisson process is invariant for the ηt process, the measure defined as product of
independent exponentials of parameter ρ is invariant for the ξt process.

Kipnis, Marchioro and Presutti (1982) consider this process but in a finite interval ρL =
{1, . . . , L} with the following boundary conditions: at the times of a Poisson process of rate 1,
the value at site 1 is updated independently of everything by replacing whatever is in the site
by an exponential random variable of mean ρ−; at the times of a (independent of everything)
Poisson process of rate 1, the value at site L is updated independently of everything by replacing
whatever is in the site by an exponential random variable of mean ρ+. They studied the unique
invariant measure around site rL, r ∈ [0, 1] and obtained that, as L → ∞, this measure
converges to a product of exponentials with parameter ϕ(r) = rρ− + (1− r)ρ+. This is called
local equilibrium. The function ρ(s) is the solution of the heat equation

∂2ϕ

∂r2
= 0

with boundary conditions
ϕ(0) = ρ−; ϕ(1) = ρ+.

The corresponding solution for the hydrodynamic limit of the corresponding ηt process is a non
equilibrium stationary profile growing with time: the solution of the equation

∂Φ

∂t
=
∂2Φ

∂r2

with Neumann conditions

∂Φ

∂r

∣∣∣∣∣
r=0

= ρ−;
∂Φ

∂r

∣∣∣∣∣
r=1

= ρ+.

This solution is

Φ(r, t) = (ρ+ − ρ−)
r2

2
+ rρ− + t(ρ+ − ρ−).

And the relation is
∂Φ

∂r
= ϕ.
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9 The Voter Model

In this section, we consider briefly the case where

P(sup
j
u1(0, j) = 1) = 1, (9.1)

which turns Xn into the voter model. We will mention some (simple) results, without precise
statements and no proofs, which we leave to the reader.

The dual of this model is even simpler than in the other cases (3.1), since it is X0 on the
positions of coalescing random walks. So (2.19) becomes

Xn(x) = X0(Yx,nn ), (9.2)

in distribution, where {Yx,nk , x ∈ Zd, 0 ≤ k < n} is a family of coalescing random walks such
that Yx,n0 = x for all x ∈ Zd and with transition probabilities given by

P(Yx,nk+1 = j|Yx,nk = i) = P(u1(i, j) = 1) (9.3)

for all x ∈ Zd and 0 ≤ k < n.

As concerns the fluctuations of the height at the origin for the model starting as a hyper-
plane, we first notice that γ(0, 0), as defined in (2.26), equals 1 and, in consequence, so does
P(Dn = 0|D0 = 0), with Dn defined in (2.26). We conclude from Corollary 2.4 that in all
dimensions

V(Xn(0)) = σ2n. (9.4)

Thus, whenever σ2 > 0 (that is whenever u is non deterministic), the height of the origin
fluctuates as the square root of the time in all dimensions. This is a far departure from the
other (non voter model) cases (see Corollary 3.5).

For more general initial conditions, the model is easier to study too, due to (9.2). For the
case treated in Section 6, it is easy to derive (precise) fluctuations and a Central Limit Theorem
too. We will not elaborate more.

Finally, as regards the model as seen from the height at the origin, it is well known from
coalescing random walks that in 1 and 2 dimensions there is coalescence of all the random
walks and thus the differences vanish (under any initial condition) almost surely in the dual.
We conclude that the direct model becomes rigid in the limit (that is, the height differences
vanish in probability).

In 3 or more dimensions, the dual model does not exhibit coalescence of all the random walks.
Since non-coalescing walks behave forever as independent walks, their difference fluctuates as
the square root of the time and thus does not converge in any sense. Therefore, the height
differences do not converge in any dimension greater than or equal to 3, in another far departure
from the non-voter model case (see results in Section 5).
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