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Abstract

We consider Lipschitz percolation in d + 1 dimensions above planes tilted by an
angle γ along one or several coordinate axes. In particular, we are interested in the
asymptotics of the critical probability as d → ∞ as well as γ ↑ π/4. Our principal
results show that the convergence of the critical probability to 1 is polynomial as
d → ∞ and γ ↑ π/4. In addition, we identify the correct order of this polynomial
convergence and in d = 1 we also obtain the correct prefactor.
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1 Introduction and main results

The model of Lipschitz percolation was introduced in [2]. Since its introduction
it has been the subject of numerous articles and has shown various connections and
applications to other topics such as lattice embeddings, plaquette, entanglement and
comb percolation or the pinning of interfaces in random media (see e.g. [5], [3], [6],
[7]. In the present article we investigate the critical probability for the existence of a
Lipschitz surface of open sites that lies above a hyperplane which is tilted (along one or
several coordinate axes) by an angle γ. We are particularly interested in the asymptotics
of this critical probability as d → ∞ and γ ↑ π/4. An immediate consequence of our
results is the existence of non-negative stationary supersolutions to the problem

ut(x, t) = ∆u(x, t) + f(x, ā · x+ u(x, t), ω) + F

for ā ∈ (−α, α)d and F > 0 independent of ā for some α > 0 in the sense of [3], i.e.,
where f describes randomly placed local obstacles. This setting is related to the study of
singular homogenization problems, since – as a cell problem – it determines the effective
velocity H(ā) of an interface with slope ā.
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Asymptotics for Lipschitz percolation above tilted planes

Our context is that of site percolation in Zd+1 with parameter p ∈ [0, 1]. That is,

Ω := {0, 1}Zd+1

is the set of configurations and the corresponding probability distribution
Pp is the product measure of Bernoulli distributions with parameter p. A site x ∈ Zd+1 is
called open (with respect to ω) if ω(x) = 1, and closed if ω(x) = 0.

Our main objects of study are Lipschitz functions and surfaces defined as follows. A
function F : Zd → Z is called Lipschitz if for any x̄, ȳ ∈ Zd the implication

‖x̄− ȳ‖1 = 1⇒ |F (x̄)− F (ȳ)| ≤ 1

holds true. We use the term Lipschitz surface to refer to a subset of Zd+1 that is the
graph of a Lipschitz function. Furthermore, given a realization ω ∈ Ω, we call the
Lipschitz surface open if all sites in the Lipschitz surface are open in the sense of site
percolation, i.e., if ω(x̄, F (x̄)) = 1 for all x̄ ∈ Zd.

It was proven in [2] that the event of existence of an open Lipschitz surface completely
contained in the upper half-plane Zd ×N undergoes a phase transition. That is, for any
dimension d ≥ 1 there exists a critical probability pL(d) ∈ (0, 1) such that the following
holds: For p < pL(d) one has that Pp-a.s. there exists no open Lipschitz surface in Zd×N,
whereas for p > pL(d) one has that Pp-a.s. there exists an open Lipschitz surface in
Zd ×N. Furthermore, an upper bound for pL(d) and tail estimates for the height of the
minimal surface were established for p sufficiently large. These results were improved
in [6], where in particular exponential tails for the height of the minimal Lipschitz
surface have been established for all p > pL(d). The results were complemented with
an asymptotic lower bound yielding 1/d as the correct order of magnitude for 1− pL(d).
Applications and related results can be found in [3], [7], [5].

While the investigation of Lipschitz percolation up to now has been focused on
Lipschitz surfaces that stay above the hyperplane L := Zd × {0}, we are interested
in the effect of ‘tilting’ this plane. To make this more precise let us define for any
d ∈ N, α ∈ [0, 1) and η ∈ {−1, 0,+1}d the tilted planes

Lα,dη :=
{

(x1, . . . , xd+1) ∈ Zd+1 | xd+1 =
⌊
α

d∑
i=1

ηixi

⌋}
.

Note that these are indeed d-dimensional hyperplanes of Zd+1, but for simplicity we will
refer to them as ‘planes’. For computational convenience we introduce the parameter α
as in the above definition, instead of directly working with the angle γ by which a plane
is tilted along all the coordinate axes in direction ei for which ηi = 1, 1 ≤ i ≤ d, in the
above choice of η (and −γ in the case that η = −1). However, given η, there is a natural
one-to-one correspondence between α and the angle γ. Also, note that the case of α = 0

as well as the case η = 0 correspond to γ = 0 and thus to standard Lipschitz percolation.
The restriction to α ∈ [0, 1), resp. γ < π/4, is natural, once one realizes that for η 6= 0,
α ≥ 1 (resp. γ ≥ π/4), and any p < 1, Pp-a.s. there exists no open Lipschitz surface above
the plane Lα,dη .

In the study of Lipschitz percolation above tilted planes, the related concept of
Lipschitz percolation above ‘inverted pyramids’ turns out to be helpful. Thus, we
introduce for any d ∈ N, α ∈ [0, 1) and η ∈ {−1, 0,+1}d the inverted pyramid ∇α,dη as

∇α,dη :=
{

(x1, . . . , xd+1) ∈ Zd+1 | xd+1 = max
η′∈{−1,0,+1}d
‖η′‖1=‖η‖1

{⌊
α

d∑
i=1

η′ixi

⌋}}
.

We can now formulate our main result:

Theorem 1.1. There exists a phase transition for both Lipschitz percolation above
planes and Lipschitz percolation above inverted pyramids, and their critical probabilities
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coincide. This critical probability pL(α, d, η) is nontrivial and depends on η only via ‖η‖1.
Hence, we may denote it by pL(α, d, ‖η‖1) for which we obtain

1− pL(α, d, d) � d−
1

1−α , as d→∞, (1.1)

and

1− pL(α, d, d) � (1− α)d, as α→ 1. (1.2)

Here we write f(s) � g(s) as s → s̄ for two functions f and g if there exist positive
and finite constants c, C such that lim infs→s̄ f(s)/g(s) ≥ c and lim sups→s̄ f(s)/g(s) ≤ C.

For the reader’s convenience, Theorem 1.1 is a concise summary of the principal
asymptotics for pL(α, d, η) obtained in this article. The actual asymptotics we obtain are
more precise and will be given as individual results below.

The article is structured as follows. Section 2 is concerned with general results
on Lipschitz percolation in the set-up of tilted planes. Proposition 2.2 establishes the
non-trivial phase transition for pL(α, d, η), whereas Lemma 2.3 exposes the monotonicity
relations for the individual parameters.

Section 3 outlines all bounds on the critical probabilities separated into two sub-
sections, one for lower and one for upper bounds. Using the notation of (2.3), the
asymptotics (1.1) and (1.2) follow by combining Propositions 3.1 and 3.6, as well as
Propositions 3.4 and 3.7, respectively. As explained in Proposition 3.5, for d = 1 we
obtain the exact asymptotic behavior for α → 1. In addition, Proposition 3.2 provides
lower bounds for the critical probabilities, depending on how the number of tilted axes
behaves asymptotically with the dimension.

The corresponding proofs and further auxiliary results are contained in Section 4.
All proofs are based on a duality between the minimal Lipschitz surface and so-called
λ-paths, thus extending the Peierls-type argument used in [2] and [6].

2 Further notation and auxiliary results

We begin by defining the events to be considered and to this end denote by Lα,dη,> the
upper half space strictly above Lα,dη , i.e.,

Lα,dη,> :=
{

(x1, . . . , xd+1) ∈ Zd+1 | xd+1 >
⌊
α

d∑
i=1

ηixi

⌋}
.

For this purpose, denote the set of all Lipschitz functions by Λ.

Definition 2.1. Let LIPα,dη denote the event that there exists an open Lipschitz surface

contained in Lα,dη,>, i.e.,

LIPα,dη :=
{
ω ∈ Ω | ∃F ∈ Λ : ∀x̄ ∈ Zd : ω((x̄, F (x̄))) = 1 and F (x̄) >

⌊
α

d∑
i=1

ηix̄i

⌋}
.

Similarly to the case of planes we use LIP(∇α,dη ) to denote the event of existence of a
Lipschitz surface above the inverted pyramid ∇α,dη , i.e.,

LIP(∇α,dη ) :={
ω ∈ Ω | ∃F ∈ Λ : ∀x̄ ∈ Zd : ω((x̄, F (x̄))) = 1 and F (x̄) > max

η′∈{−1,0,+1}d
‖η′‖1=‖η‖1

{⌊
α

d∑
i=1

η′ix̄i

⌋}}
.
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Proposition 2.2. For any d ≥ 1, α ∈ [0, 1) and η ∈ {−1, 0,+1}d, there exists a critical
probability pL(α, d, η) ∈ (0, 1) such that

Pp(LIP(∇α,dη )) = Pp(LIP
α,d
η ) =

{
0, p ∈ [0, pL(α, d, η)),

1, p ∈ (pL(α, d, η), 1].
(2.1)

In fact, for any η′ ∈ {−1, 0, 1} with ‖η‖1 = ‖η′‖1,

pL(α, d, η) = pL(α, d, η′). (2.2)

Therefore, pL(α, d, η) depends on η only through the number of nonzero entries.

This means that there exists a phase transition for both Lipschitz percolation above
tilted planes and above inverted pyramids, and their critical probabilities coincide. Due
to (2.2) it is convenient to define pL(α, d, k) := pL(α, d, η) for any η ∈ {−1, 0,+1} such
that ‖η‖1 = k ∈ {0, . . . , d}. Furthermore, we set

qL(α, d, k) := 1− pL(α, d, k). (2.3)

For notational convenience we will formulate most of our results for qL instead of pL
since the latter usually tends to 1 and hence the former to 0.

Proof of Proposition 2.2. First observe that due to the symmetries of Zd and the i.i.d.-
product structure of Pp, the quantity Pp(LIP

α,d
η ) depends on η only through ‖η‖1. Thus,

if the postulated critical probabilities exist, then they must fulfill (2.2).
We now start with showing the second equality in (2.1) for some pL(α, d, η) ∈ [0, 1].

Since LIPα,dη is an increasing event, it is immediate that Pp(LIP
α,d
η ) is nondecreasing in p.

Therefore, it is sufficient to show that it takes values in {0, 1} only.
Define the shift θ : ω 7→ ω(·, . . . , ·+ 1) in the (d+ 1)-st coordinate. Then θ is measure

preserving for Pp and ergodic with respect to Pp. As a consequence, since θ−1(LIPα,dη ) ⊂
LIPα,dη and Pp(θ−1(LIPα,dη )) = Pp(LIP

α,d
η ), the event LIPα,dη is Pp-a.s. invariant with respect

to θ, i.e., Pp(LIP
α,d
η 4θ−1(LIPα,dη )) = 0, and by Proposition 6.15 in [1] this already implies

Pp(LIP
α,d
η ) ∈ {0, 1}.

This establishes the second equality in (2.1) for some pL(α, d, η) ∈ [0, 1].
In order to obtain the first equality of (2.1), due to the second equality in (2.1) and

LIP(∇α,dη ) ⊆ LIPα,dη , it remains to show that Pp(LIP
α,d
η ) = 1 implies Pp(LIP(∇α,dη )) = 1. By

symmetries, Pp(LIP
α,d
η ) = 1 already yields

Pp

( ⋂
η′∈{−1,0,+1}d
‖η′‖1=‖η‖1

LIPα,dη′
)

= 1.

Note that the pointwise maximum of Lipschitz functions is a Lipschitz function again
and thus ⋂

η′∈{−1,0,+1}d
‖η′‖1=‖η‖1

LIPα,dη′ ⊆ LIP(∇α,dη ).

Thus (2.1) holds true.
It remains to show the nontriviality of the phase transition, i.e., that pL(α, d, η) ∈ (0, 1).

Proposition 3.1 below in particular shows that pL(α, d, d) < 1 for all α ∈ [0, 1) and d ≥ 1;
hence, using (2.6) below, we deduce pL(α, d, k) < 1 for all 0 ≤ k ≤ d. On the other hand,
pL(α, d, k) > 0 for all 0 ≤ k ≤ d follows from the fact that the critical probability for
the existence of an infinite connected component in the 1-norm in (d+ 1)-dimensional
Bernoulli site-percolation (which is a lower bound for pL(α, d, k)) is strictly positive.
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Using the above result one can obtain some simple but helpful monotonicity results
for the critical probabilities.

Lemma 2.3. For all d ∈ N, and α, α′ ∈ [0, 1) such that α ≤ α′, we have

∀ k = 0, . . . , d : pL(α, d, k) ≤ pL(α′, d, k), (2.4)

∀ k = 0, . . . , d : pL(α, d, k) ≤ pL(α, d+ 1, k), (2.5)

and
∀ k = 0, . . . , d− 1 : pL(α, d, k) ≤ pL(α, d, k + 1). (2.6)

Proof. We start by proving the monotonicity in α, which is best seen considering Lipschitz
surfaces above inverted pyramids. Note that for α′ ≥ α, one has ∇α′,dη ≥ ∇α,dη , in the

sense that for any (ȳ, yα
′

d+1) ∈ ∇α′,dη and (ȳ, yαd+1) ∈ ∇α,dη we have yα
′

d+1 ≥ yαd+1. Hence

LIP(∇α′,dη ) ⊆ LIP(∇α,dη ), which implies (2.4).
On the other hand, to prove (2.5) choose η ∈ {−1, 0,+1}d+1 with ‖η‖1 = k, and let

1 ≤ j ≤ d + 1 be such that ηj = 0. Then (2.5) follows directly from the fact that the
cross section of a Lipschitz surface in Lα,d+1

η,> with Zj−1 × {0} × Zd−j+1 mapped to Zd

by eliminating the j-th coordinate is again a Lipschitz surface contained in Lα,d
η(j),>

, for

η(j) := (η1, . . . , ηj−1, ηj+1, . . . , ηd+1), combined with the fact that ‖η(j)‖1 = k and (2.2).
Lastly, (2.6) follows from the fact that for any 1 ≤ j ≤ d, ∇α,dηj→0

≥ ∇α,dη in the above

sense and thus LIP(∇α,dηj→0
) ⊃ LIP(∇α,dη ), where ηj→0 is obtained from η by replacing the

j-th coordinate by 0.

3 Bounds on the Critical Probabilities

For functions f, g we write f(s) . g(s) as s→ s̄, if lim sups→s̄ f(s)/g(s) ≤ 1, we write
f(s) & g(s) as s→ s̄, if lim infs→s̄ f(s)/g(s) ≥ 1, and asymptotic equivalence is denoted
by f(s) ∼ g(s), s→ s̄ (i.e., if f(s) . g(s) and f(s) & g(s) as s→ s̄). With this notation we
can write the results on the bounds in [6] as

qL(0, d, 0) ≥ (8d)−1, for all d ∈ N,
qL(0, d, 0) . (2d)−1, as d→∞.

(3.1)

3.1 Lower Bounds for qL(α, d, k)

Proposition 3.1 (General bound). For any d ≥ 1 and α ∈ [0, 1) one has

qL(α, d, d) ≥ 1

2
(4d)−

1
1−α .

Note that for α = 0 this is exactly the lower bound of (3.1). In a similar way one can
find bounds for the critical probability in the case that the number k of axes along which
the plane is tilted depends on the dimension d:

Proposition 3.2. Consider a function ϕ : N→ N0 with ϕ(d) ≤ d for all d ∈ N.

1. If for some α ∈ [0, 1) one has that ϕ(d) ∈ o(d1−α) as d→∞, then

qL(α, d, ϕ(d)) &
1

8
d−1, as d→∞.

2. If for some α ∈ [0, 1) and c ∈ [0, 1] one has ϕ(d) ∼ cd1−α as d→∞, then there exists
a constant C(c, α) > 0 such that

qL(α, d, ϕ(d)) & C(c, α)d−1, as d→∞.
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3. If for some c ∈ (0, 1] one has ϕ(d) ∼ cd as d→∞, then for α ∈ (0, 1),

qL(α, d, ϕ(d)) &
1

4
(1− α)(cd)−

1
1−α , as d→∞.

Remark 3.3. The constant in Proposition 3.2, (b), satisfies C(c, 0) = C(0, α) = 1/8 for
any c ∈ [0, 1], α ∈ [0, 1); this is what one would hope for, given that these cases correspond
to standard Lipschitz percolation.

The bound in Proposition 3.2, (c), is an improvement compared to Proposition 3.1 at
the expense of being of asymptotic nature only.

Proposition 3.4. For each d ≥ 1 and each k = 1, . . . , d there exists a constant C(k, d) > 0

such that for all α ∈ [0, 1) one has

qL(α, d, k) ≥ C(k, d)(1− α)k.

Proposition 3.5. For d = 1 one has qL(α, 1, 1) & (1− α) as α→ 1, which together with
Proposition 3.7 below yields

qL(α, 1, 1) ∼ (1− α), as α→ 1.

3.2 Upper Bounds for qL(α, d, k)

Proposition 3.6 (Asymptotic behavior for d → ∞). For every α ∈ [0, 1) there exists a
constant C(α) such that

qL(α, d, d) . C(α)d−
1

1−α , as d→∞.

More precisely, C(α) = θ
1

1−α /(eθ − 1), where θ is the unique solution to θeθ/(eθ − 1) =

1/(1− α) and C(0) = 1.

Proposition 3.7 (General bound). For any α ∈ [0, 1) and d ∈ N

qL(α, d, d) ≤ d!(1− α)d

1 + d!(1− α)d
≤ d!(1− α)d.

Remark 3.8. Since qL(α, d, k) ≤ qL(α, k, k) by Lemma 2.3, Proposition 3.7 immediately
implies upper bounds for qL(α, d, k) for any k = 1, . . . , d also.

4 Proofs

As explained in [6] for standard Lipschitz percolation, the lowest open Lipschitz
surface (above Lα,dη ) may be constructed as a blocking surface to a certain type of paths
called (admissible) λ-paths. This characterization is the core of the proofs in this section.

Denote by e1, . . . , ed+1 ∈ Zd+1 the standard basis vectors of Zd+1.

Definition 4.1. For x, y ∈ Zd+1 a λ-path from x to y is any finite sequence x =

u0, . . . , un = y of distinct sites in Zd+1 such that for all i = 1, . . . , n

ui − ui−1 ∈ {ed+1} ∪ {−ed+1 ± ej | j = 1, . . . , d}.

Such a path will be called admissible (with respect to ω), if for all i = 1, . . . , n the
following implication holds:

If ui − ui−1 = ed+1, then ui is closed (with respect to ω).
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For any x, y ∈ Zd+1 denote by x� y the event that there exists an admissible λ-path
from x to y. We then define for all x̄ ∈ Zd, α ∈ [0, 1), d ∈ N and η ∈ {−1, 0,+1} the
function

Fα,dη (x̄) := sup{n ∈ Z | ∃y ∈ Lα,dη : y� (x̄, n)}+ 1. (4.1)

Note that the graph of Fα,dη is contained in Lα,dη,>. As in [2] and [6], the graph of this
function corresponds to the minimal open Lipschitz surface:

Lemma 4.2. The function defined in (4.1) describes a Lipschitz function whose graph
consists of open sites, if and only if it is finite for all x̄ ∈ Zd. This in turn holds true if and
only if it is finite at x̄ = 0.

Thus, in the analysis of the existence of an open Lipschitz surface we can focus on
the behavior of Fα,dη (0) as defined above.

Proof. Of course, for each of the two equivalences stated, only one implication needs to
be proven and in this the choice of steps allowed to λ-paths will become clear.

Assume, for example, that Fα,dη (x̄)(ω) = ∞ for some ω ∈ Ω and x̄ ∈ Zd. Then, in
particular, for any n ∈ N this implies the existence of an admissible λ-path starting
in Lα,dη (in this ω) reaching (x̄, ‖x̄‖1 + n). Since downward-diagonal steps of the type
−ed+1±ej for j = 1, . . . , d are always permitted (i.e., do not depend on ω), this admissible
λ-path can be extended by ‖x̄‖1 suitable steps to reach (0, n). Since n ∈ N was arbitrary,
this means that Fα,dη (0)(ω) =∞ proving the second equivalence.

To address the first, note that, by definition (x̄, Fα,dη (x̄) − 1) is the “highest” site
reachable by some admissible λ-path from Lα,dη for any x̄ ∈ Zd. If (x̄, Fα,dη (x̄)) were
closed in ω, this path could be extended by an upward step to an admissible λ-path
reaching (x̄, Fα,dη (x̄)), contradicting the definition of Fα,dη . In addition, note that for any
x̄, ȳ ∈ Zd such that ‖x̄ − ȳ‖1 = 1, as above, (x̄, Fα,dη (x̄)) is reachable by an admissible
λ-path in ω. Again, using that the downward-diagonal step −ed+1 + (x̄ − ȳ) is always
permitted, we can extend this to an admissible λ-path reaching (ȳ, Fα,dη (x̄)− 2), which
implies Fα,dη (ȳ) ≥ Fα,dη (x̄)− 1. By symmetry this yields |Fα,dη (x̄)− Fα,dη (ȳ)| ≤ 1 and thus
proves that Fα,dη is Lipschitz in ω.

It will be useful to define Lα,dη (h) := Lα,dη +hed+1 and denote by Lα,dη (h) the random set
of sites in Lα,dη (h) reachable by an admissible λ-path started in the origin. We have taken
the practice of marking elements of Zd with a bar as in x̄ ∈ Zd in order to distinguish
them from canonical elements x ∈ Zd+1. In the same vein, for x = (x1, . . . , xd+1) ∈ Zd+1,
we use x̄ to refer to (x1, . . . , xd) as well as (x̄, xd+1) to denote x. In addition, by a slight
abuse of notation we use 0 to denote the origin of Z,Zd and Zd+1. As we have tacitly
done above already, it will be necessary to distinguish between N and N0. For a set A
we will use |A| to denote its cardinality.

In addition, due to the symmetries of Zd and the product structure of Pp, we will
w.l.o.g. from now on assume that for any k = 1, . . . , d, the vector η is of the form

η = (1, . . . , 1︸ ︷︷ ︸
k times

, 0, . . . , 0︸ ︷︷ ︸
d−k times

).

4.1 Lower Bounds for qL(α, d, k)

We begin with a criterion ensuring the existence of an open Lipschitz surface by
providing suitable conditions for the Pp-a.s. finiteness of Fα,dη as defined in (4.1).
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Lemma 4.3 (Criterion for existence of an open Lipschitz surface). Let Fα,dη be defined as
in (4.1). Then, for any x̄ ∈ Zd and h ∈ N,

Pp

(
Fα,dη (x̄)−

⌊
α

d∑
i=1

ηix̄i

⌋
≥ h

)
≤ Ep[|Lα,dη (h− 2)|]. (4.2)

In particular, if

lim
h→∞

Ep[|Lα,dη (h)|] = 0, (4.3)

then

Pp(LIP
α,d
η ) = 1. (4.4)

Proof of Lemma 4.3. In order to prove (4.2) we start by observing that for every x̄ ∈ Zd,

the random variable Fα,dη (0) + 1 stochastically dominates Fα,dη (x̄)−
⌊
α

d∑
i=1

ηix̄i

⌋
, (4.5)

where the +1 stems from lattice effects. Now we estimate

Pp(F
α,d
η (0) ≥ h+ 1) = Pp

(
∃z ∈ Lα,dη : z� (0, h)

)
≤

∑
z∈Lα,dη

Pp(z� (0, h))

≤
∑

z∈Lα,dη (h)

Pp(0� z) = Ep[|Lα,dη (h)|].

In combination with (4.5), this supplies us with (4.2) which finishes the proof. Note that

we used the fact that if a site x = (x̄, h) with h ≥
⌊
α
∑d
i=1 ηix̄i

⌋
is reachable from Lα,dη

by an admissible λ-path, then so is any site x = (x̄, i) with
⌊
α
∑d
i=1 ηix̄i

⌋
≤ i ≤ h. This

stems from the observation that if we remove the last step the admissible λ-path took in
the upward direction and then trace it, we obtain again an admissible λ-path reaching
the site right below x.

The fact that (4.3) implies (4.4) follows immediately from (4.2) in combination with
the observation below (4.1).

The common core of the proofs of Propositions 3.1 and 3.2 can be summarized in the
following, somewhat technical lemma.

Lemma 4.4 (A general lower bound). Let α ∈ [0, 1), d ∈ N and k = 0, . . . , d. Then for any
choice of

p1, p2, p3, p4 ∈ (0, 1) such that
4∑
i=1

pi = 1 (4.6)

we obtain

qL(α, d, k) ≥ min

{
1

k
p1
√
p2p3 , p1

(p3

k

) 1
1−α

,
p1p4

2(d− k)

}
. (4.7)

Note that the above holds true for all possible choices of our parameters – in particular
for k ∈ {0, d} – if we use the convention of 1/0 =∞. This somewhat unelegant agreement
may be justified in this case as it avoids the need of repeating analogous computations
without the respective terms.
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Asymptotics for Lipschitz percolation above tilted planes

Proof of Lemma 4.4. In order to obtain the existence of an open Lipschitz surface and
thus the lower bound through Lemma 4.3, we will show the following estimate under
appropriate assumptions on q = 1− p:

For d ≥ 1, α ∈ [0, 1), k = 1, . . . , d and q smaller than the right-hand side of (4.7), there
exist constants δ ∈ (0, 1) and C > 0 such that for all h ∈ N,

Ep[|Lα,dη (h)|] ≤ Cδh−1. (4.8)

We will say that the j-th step of a λ-path (un) is positive downward, if uj − uj−1 ∈
{−ed+1 +el | l = 1, . . . , k} and negative downward if uj−uj−1 ∈ {−ed+1−el | l = 1, . . . , k}
and use D+ = D+(u), resp D− = D−(u) to denote the number of these steps. In analogy,
D = D(u) will denote the number of downward steps such that uj − uj+1 ∈ {−ed+1 ± el |
l = k + 1, . . . , d} and U = U(u) will be the number of upward steps, i.e., those for which
uj − uj−1 = ed+1.

Now for any natural numbers U, D+, D− and D, the number of λ-paths starting in the
origin with U upward steps as well as D+ positive, D− negative and D neutral downward
steps, respectively, can be estimated from above by(

U +D+ +D− +D

U,D+, D−, D

)
kD

++D−(2(d− k))D.

Thus the expected number of such paths which are admissible can be upper bounded by(
U +D+ +D− +D

U,D+, D−, D

)
kD

++D−(2(d− k))DqU . (4.9)

In addition, due to the multinomial theorem, for any p1, p2, p3, p4 chosen as in (4.6) we
have (

U +D+ +D− +D

U,D+, D−, D

)
pU1 p

D+

2 pD
−

3 pD4 ≤ 1,

and hence (
U +D+ +D− +D

U,D+, D−, D

)
≤
( 1

p1

)U( 1

p2

)D+( 1

p3

)D−( 1

p4

)D
. (4.10)

In order to simplify notation, note that the ‘best strategy’ for admissible λ-paths is to go
for the negative orthant in the first d coordinate axes, in the sense that∑

y∈Lα,dη (h)

Pp(0� y) ≤ 2d
∑

y∈Lα,dη (h)∩((−N0)d×Z)

Pp(0� y).

Since at each downward step of a λ-path the (d+1)-st coordinate of the path is decreased
by one, the total number U(u) of upward steps of a λ-path (un) starting in 0 and ending
in Lα,dη (h) ∩ ((−N0)d ×Z) fulfills

U(u) = D+(u) +D−(u) +D(u) + bα(D+(u)−D−(u))c+ h

and

D+(u)−D−(u) ≤ 0.
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Asymptotics for Lipschitz percolation above tilted planes

Using (4.9) and (4.10) and choosing q < p1 we can thus estimate∑
y∈Lα,dη (h)∩((−N0)d×Z)

Pp(0� y)

≤
∑

D+,D−,D≥0 :D+−D−≤0
U=h+D++D−+D+bα(D+−D−)c

(
q

p1

)U (
k

p2

)D+ (
k

p3

)D− (
2(d− k)

p4

)D

≤
∑

D+,D−,D≥0,
D−−D+≥0

(
q

p1

)D++D−+D+bα(D+−D−)c+h(
k

p2

)D+ (
k

p3

)D− (
2(d− k)

p4

)D

=
∑
n≥0

∑
∆≥0

∑
m≥0

(
q

p1

)n+∆+n+m+b−α∆c+h(
k

p2

)n(
k

p3

)∆+n(
2(d− k)

p4

)m

=

(
q

p1

)h∑
n≥0

(
q2k2

p2
1p2p3

)n ∑
∆≥0

(
q

p1

)∆+b−α∆c(
k

p3

)∆ ∑
m≥0

(
2(d− k)q

p1p4

)m

≤
(
q

p1

)h∑
n≥0

(
q2k2

p2
1p2p3

)n ∑
∆≥0

(
q

p1

)∆(1−α)−1(
k

p3

)∆ ∑
m≥0

(
2(d− k)q

p1p4

)m

=

(
q

p1

)h−1∑
n≥0

(
q2k2

p2
1p2p3

)n ∑
∆≥0

(
q1−αk

p1−α
1 p3

)∆ ∑
m≥0

(
2(d− k)q

p1p4

)m
. (4.11)

Now note that if

q < min

{
1

k
p1
√
p2p3 , p1

(p3

k

) 1
1−α

,
p1p4

2(d− k)

}
(4.12)

then all sums in (4.11) converge and q/p1 < 1. Thus

Ep[|Lα,dη (h)|] =
∑

y∈Lα,dη (h)

Pp(0� y)

≤ 2d
(
q

p1

)h−1
1

1− q2k2

p21p2p3

1

1− q1−αk

p1−α1 p3

1

1− 2(d−k)
p1p4

and with

δ = δ(q, p1) :=
q

p1
and

C = C(α, d, k, q, p1, p2, p3, p4) := 2d
p2

1p2p3

p2
1p2p3 − q2k2

p1−α
1 p3

p1−α
1 p3 − q1−αk

p1p4

p1p4 − 2(d− k)q

we obtain the claim in (4.8). Lemma 4.3 then guarantees the existence of an open
Lipschitz surface for q as in (4.12) which completes the proof.

Depending on our choice of the parameters p1, p2, p3, p4 we now obtain different
bounds for the critical probability leading to the results of Propositions 3.1 and 3.2.

Proof of Proposition 3.1. In order to obtain Proposition 3.1 set

p1 =
1

2
and p2 = p3 =

1

4
− 1

2
p4.

Note that since we consider the case of k = d, the last term on the right-hand side of
(4.7) is infinite and hence irrelevant. Comparing the first two terms on the right-hand
side of (4.7), one can easily see that the second is the dominating one. Thus, taking
p4 ↓ 0, from (4.7) we can deduce the validity of Proposition 3.1.

EJP 20 (2015), paper 117.
Page 10/23

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-4251
http://ejp.ejpecp.org/


Asymptotics for Lipschitz percolation above tilted planes

Proof of Proposition 3.2. (a) Assume ϕ(d) ∈ o(d1−α) as d→∞. Then for any fixed choice
of p1, . . . , p4, as d→∞ the last term on the right-hand side of (4.7) is the minimal one
and thus determines the lower bound for the critical probability given in (4.7). For every
ε > 0, choosing p1 = 1/2, p2 = p3 = ε/2 and p4 = 1/2− ε, we get

lim inf
d→∞

qL(α, d, ϕ(d))d ≥ 1

22

(
1

2
− ε
)
.

Since this is true for any ε > 0, the claim follows.
(b) Now consider the case that for some c ∈ [0, 1] and α > 0 one has ϕ(d) ∼ cd1−α as

d→∞. Then the second and third term on the right-hand side of (4.7) are of the same
order and smaller than the first term. Hence, they dictate the bound. The claim then
holds for any feasible choice of p1, . . . , p4 and

C(α, c) := min

{
p1

(p3

c

) 1
1−α

,
1

2
p1p4

}
.

For α = 0 we have to take into consideration all three terms of the right-hand side of
(4.7), and thus obtain the claim with

C(0, c) := min

{
p1
√
p2p3

c
, p1

p3

c
,

1

2

p1p4

1− c

}
.

(c) Now assume that for some c ∈ (0, 1] one has ϕ(d) ∼ cd as d→∞. In this case, the
second term on the right-hand side of (4.7) is the asymptotically decisive contribution.
Again, for any ε > 0, choosing

p1 =
1− α
2− α

− 2ε, p2 = p4 = ε, and p3 = 1− 1− α
2− α

=
1

2− α

yields

lim inf
d→∞

qL(α, d, ϕ(d))d
1

1−α ≥
(

1− α
2− α

− 2ε

)(
1

2− α
1

c

) 1
1−α

.

Since ε was arbitrary,

lim inf
d→∞

qL(α, d, ϕ(d))d
1

1−α ≥ 1− α
2− α

(
1

2− α
1

c

) 1
1−α

= (1− α)

(
1− 1− α

2− α

) 2−α
1−α

(
1

c

) 1
1−α

≥ (1− α)
1

4

(
1

c

) 1
1−α

.

The next step is to prove Proposition 3.4.

Proof of Proposition 3.4. We will again want to apply Lemma 4.3. In order to derive
an upper bound for the expectation in (4.3), instead of directly looking at λ-paths, we
will consider a coarse-grained version of them and estimate the probability of these
paths reaching a certain height. The reason for coarse-graining is the following: if q is
approximately equal to qL(α, d, k), then an admissible λ-path starting in 0 (say) will on
average pick up at most 1− α closed sites per horizontal step and if q is slightly above
qL(α, d, k), then such a path will certainly exist. When α is very close to one, then the
average number of sites which such a path visits between two successive visits of closed
sites will be of the order (1−α)−1 (which is large). If d ≥ 2, then there will automatically
be lots of admissible λ-paths visiting exactly the same closed sites (in the same order) but
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Figure 1: Lα,dη is
marked by the black
dots and the cor-
responding coarse-
grained boxes are
hatched. Bα,d,η0 is
double hatched.

taking different routes in between successive visits to closed sites, the factor increasing
to infinity as α approaches 1. This means that estimating the probability that there exists
an admissible λ-path (with a certain property) by the expected number of such paths
(via Markov’s inequality) becomes very poor when α is close to 1. Therefore, we will
define larger boxes in Zd+1 and define equivalence classes of paths by just observing the
sequence of larger boxes they visit. The boxes will then be tuned such that the number
of closed sites inside a box is of order one.

Recall that w.l.o.g. we assume ηi = 1, i = 1, . . . , k and ηi = 0, i = k + 1, . . . , d. To
facilitate reading, we have structured the proof into three steps.

Step 1: Coarse-grained λ-paths. In order to define the abovementioned paths we
partition Zd+1 by dividing Rd+1 into boxes as illustrated in Figure 1. Define

Bα,d,η0 :=
{
r ∈ Rd+1 | ∀i = 1, . . . , k : ri ∈ [0, 1), ∀i = k + 1, . . . , d : ri ∈ [0, (1− α)−1)

and rd+1 ∈
(
α

d∑
i=1

ηiri − 1, α

d∑
i=1

ηiri

]}
and likewise for a ∈ Zd+1 set Bα,d,ηa := Bα,d,η0 + v(a), where

v(a) : =
∑

i=k+1,...,d

aiei +
∑

i=1,...,k

ai
1

1− α
(ei + αηied+1) + ad+1ed+1

=
∑

i=k+1,...,d

aiei +
∑

i=1,...,k

ai
1

1− α
ei +

 ∑
i=1,...,k

ai
α

1− α
ηi + ad+1

 ed+1.

Note that these boxes are translations of Bα,d,η0 shifted either in the direction of ed+1

or parallel to the inclination of Lα,dη and are such that Zd+1 =
⋃
a∈Zd+1

(
Bα,d,ηa ∩Zd+1

)
,

where the union is over disjoint sets. For any y ∈ Zd the coordinates of the box it is
contained in are given by a(y) ∈ Zd+1 as

ai(y) :=


yi, i = k + 1, . . . , d

b(1− α)yic, i = 1, . . . , k

yd+1 − bα
∑d
j=1 ηjyjc, i = d+ 1
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We will refer to these as the coarse-grained coordinates. Note that they describe the
position of the boxes relative to Lα,dη . For y ∈ Zd the (d+ 1)-st coordinate of its coarse-
grained coordinates a(y) gives its height (or distance in the (d+ 1)-st coordinate) relative
to Lα,dη . Since α, d and η are fixed for this proof, we will often drop the superscripts for
the sake of better readability. With the above partition of Zd+1 at hand, we can now
define coarse-grained λ-paths. If we sample a standard λ-path only on the boxes Ba,
a ∈ Zd+1, it visits, we obtain a path on these boxes. Such a path on Ba, a ∈ Zd+1, that is
the trace of a standard λ-path will be called a coarse-grained λ-path. These paths can
take a step from a box Ba to Ba′ only if

a′ − a ∈ {ed+1} ∪ {−ei | i = 1, . . . , k} (4.13)

∪ {−ed+1} ∪ {±ei − ed+1 | i = 1, . . . , d} ∪ {ei − 2ed+1 | i = 1, . . . , k}.

(But note that not all paths consisting of the type of steps described in (4.13) are traces of
standard λ-paths and thus coarse-grained λ-paths.) We call a box Ba closed (with respect
to ω) if and only if ω(x) = 0 for at least one x ∈ Ba. Similarly to the case of λ-paths, we
will call a coarse-grained λ-path admissible if for each of its upward steps, i.e., those
steps for which a′ − a = ed+1, the box Ba′ is closed. A moment’s thought reveals that
the above sampling procedure maps admissible λ-paths to admissible coarse-grained
λ-paths, and thus the existence of an admissible λ-path from some x ∈ Zd+1 to y ∈ Zd+1

implies the existence of an admissible coarse-grained λ-path from Ba(x) to Ba(y). We
therefore investigate the behavior of these coarse-grained λ-paths more closely.

Step 2: An estimate for coarse-grained λ-paths. Recalling (4.13), note that there is only
one kind of step in a coarse-grained λ-path that will not change its height relative to Lα,dη ,
i.e., its coarse-grained coordinate in the (d+ 1)-st dimension, namely those of the form
−ei with i = 1 . . . , k. Use CG(M) to denote the set of all coarse-grained λ-paths starting
with B0 of length M ∈ N whose endpoint, i.e., its last box, is above or intersects Lα,dη .
For π ∈ CG(M), use U = U(π) to denote the number of its ‘up’ -steps, i.e., those steps
that increase the (d+ 1)-st coarse-grained coordinate. Similarly, use D = D(π) to denote
the number of steps that decrease the (d+ 1)-st coarse-grained coordinate (possibly by
more than 1) and Di

0 = Di
0(π) the number of steps in each dimension i = 1, . . . , d, that

do not alter the (d + 1)-st coarse-grained coordinate. Due to the natural restrictions
on the movements of the standard and thus the coarse-grained λ-paths, Di

0 = 0 for any
i = k + 1, . . . , d. We can now make the following observation: In order for π to end in a
box above or intersecting Lα,dη , we necessarily have

U ≥ D.

In addition, observe that due to the length of the boxes in the corresponding directions
being 1/(1− α), between two steps of type Di

0 (for the same i) there needs to be at least
one step of type D or U (not Dj

0, j 6= i). This implies that

Di
0 ≤ D + U + 1.

Therefore, for a coarse-grained λ-path π ∈ CG(M), recalling that it ends above or
intersecting Lα,dη ,

M = U +D +

d∑
i=1

Di
0 ≤ 2U + ‖η‖1(2U + 1) = 2U(k + 1) + k

⇐⇒ U ≥ M − k
2(k + 1)

.

(4.14)
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Thus, we will now estimate the probability of the event on the right-hand side in the
above display. Write m(π) for the number of distinct boxes visited by a path π ∈ CG(M).
Then the exponential Chebychev inequality yields for any β > 0 and γ ∈ (0, 1) that

Pp(there exists π ∈ CG(M) whose boxes contain at least γM closed sites)

≤
∑

π∈CG(M)

Pp(boxes of π contain at least γM closed sites)

≤
∑

π∈CG(M)

1

exp(βγM)
Ep[exp(β(# of closed sites in boxes of π))]

=
∑

π∈CG(M)

1

exp(βγM)
Ep[exp(β(# of closed sites in m(π) distinct boxes))]

=
∑

π∈CG(M)

1

exp(βγM)
(Ep[exp(β(# of closed sites in B0))])m(π)

=
∑

π∈CG(M)

1

exp(βγM)
(exp(β)q + (1− q))d

1
1−α e

km(π)

≤
∑

π∈CG(M)

1

exp(βγM)
(exp(β)q + (1− q))d

1
1−α e

kM

≤ (2(2d+ 1))M
1

exp(βγM)
(exp(β)q + (1− q)︸ ︷︷ ︸
≤exp(q(exp(β)−1))

)d
1

1−α e
kM

≤ exp
(
M
(

log(4d+ 2)− βγ + q(exp(β)− 1)

(
2− α
1− α

)k ))
, (4.15)

where in the penultimate inequality we estimated the total number of coarse-grained
λ-paths of length M by (2(2d+ 1))M . Observe that, choosing β = 1+ε

γ log(4d+ 2) for some
ε > 0 the expression inside the exponential is negative if, and only if,

−ε log(4d+ 2)+q(exp(
1 + ε

γ
log(4d+ 2))− 1)

(
2− α
1− α

)k
< 0

⇔ q <
ε log(4d+ 2)

exp((1 + ε)γ−1 log(4d+ 2))− 1

(
1− α
2− α

)k
. (4.16)

Step 3: Returning to λ-paths. In order to apply Lemma 4.3 we need to estimate the
probability of reaching a site y ∈ Lα,dη (h) with an admissible λ-path. Recall that coarse-
grained λ-paths were defined in such a way that the existence of an admissible λ-path
from 0 ∈ Zd+1 to y ∈ Zd+1 implies the existence of an admissible coarse-grained λ-path
from B0 to Ba(y). This path then has length M at least ‖a(y)‖1 and thus

M ≥ ‖a(y)‖1

≥
d∑
i=1

|ai(y)|+ h

=
∑

i=k+1,...,d

|yi|+
∑

i=1,...,k

|b(1− α)yic|+ h

≥
∑

i=k+1,...,d

|yi|+
∑

i=1,...,k

((1− α)|yi| − 1) + h

≥ (1− α)‖ȳ‖1 − k + h.
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Therefore, for any h ∈ N and y ∈ Lα,dη (h) using (4.14) in the third step,

Pp(0� y) ≤ Pp(there exists an admissible coarse-grained λ-path from B0 to Ba(y))

≤ Pp(there exists π ∈ CG((1− α)‖ȳ‖1 − k + h) admissible)

≤ Pp(there exists π ∈ CG((1− α)‖ȳ‖1 − k + h)

whose boxes contain at least
(1− α)‖ȳ‖1 − k + h− k

2(k + 1)
closed sites)

≤ exp
((

(1− α)‖ȳ‖1 − k + h
)

×
(
− ε log(4d+ 2) + q(exp((1 + ε)4(k + 1) log(4d+ 2))− 1)

(
2− α
1− α

)k ))
,

where we choose h ≥ 3k and set γ := 1
4(k+1) to apply (4.15) for the last inequality.

Assuming

q <
ε log(4d+ 2)

exp((1 + ε)4(k + 1) log(4d+ 2))− 1

1

2k︸ ︷︷ ︸
=:C(k,d,ε)

(1− α)k

(4.16) holds and combining the observations above we can estimate (4.3) by∑
y∈Lα,dη (h)

Pp(0� y) ≤
∑

y∈Lα,dη (h)

exp
(

((1− α)‖ȳ‖1 − k + h)

× (−ε log(4d+ 2) + q(exp(
1 + ε

γ
log(4d+ 2)− 1)d 1

1− α
ek︸ ︷︷ ︸

=:c̄(k,d,ε,α,q)=c̄<0

)
)

= exp((−k + h)c̄)
∑

y∈Lα,dη (h)

exp((1− α)‖ȳ‖1c̄)

≤ exp((−k + h)c̄)

∞∑
i=1

exp((1− α)ic̄)(2d+ 1)i︸ ︷︷ ︸
<∞

.

Thus

lim
h→∞

Ep[|Lα,dη |] = lim
h→∞

∑
y∈Lα,dη (h)

Pp(0� y) = 0.

Therefore, the assumptions of Lemma 4.3 hold which implies the existence of an open
Lipschitz surface. Hence,

qL(α, k, d) ≥ C(k, d, ε)(1− α)k.

Note that for our result, any ε > 0 is sufficient. However, the optimal ε is given by
ε = 1+h

4(k+1) log(4d+2) , where h is such that − exp(−1− 4(k + 1) log(4d+ 2)) = h exp(h).

Proof of Proposition 3.5. In order to prove the lower bound for qL(α, 1, 1) we show the
existence of an open Lipschitz surface for sufficiently small q by analyzing the existence
of an admissible λ-path starting in Lα,1(1) reaching the site (0, h) for large h ∈ N0. Writing

x
A
� y for the event of existence of an admissible λ-path from x ∈ Z2 to y ∈ Z2 that only
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uses sites in the set A ⊆ Z2, and defining Lα,1(1),≥ := Lα,1(1),> ∪ L
α,1
(1) we observe that

Pp(L
α,1
(1) � (0, h)) = Pp(L

α,1
(1)

Lα,1
(1),≥
� (0, h)) ≤ 2Pp

( ⋃
n∈N0

{
(n, bαnc)

Lα,1
(1),≥
� (0, h)

})
≤ 2

∞∑
n=0

Pp((n, bαnc)
Lα,1

(1),≥
� (0, h)), (4.17)

for any h ∈ N0. Therefore we need to find suitable upper bounds for the summands.
A first helpful bound, albeit without the restriction on the space, can be obtained

similarly to (4.9). Observe that any λ-path from (n, bαnc) to (0, h) must have made a
total of 4k + d(2− α)ne+ h steps for some k ∈ N0: n+ k to the downward left, k to the
downward right and n−bαnc+h+2k upwards. Then, counting the number of admissible
λ-paths under consideration

Pp((n, bαnc)
Lα,1

(1),≥
� (0, h)) ≤ Pp((n, bαnc)� (0, h))

≤
∑
k∈N0

(
2n+ h− bαnc+ 4k

n+ k, k, n− bαnc+ h+ 2k

)
qn−bαnc+h+2k. (4.18)

This upper bounds the terms for small n in (4.17), but can also be used to obtain an
adequate estimate for large n. This is, however, more elaborate: For n ∈ N0 define

An := {−n,−(n− 1), . . . ,−1, 0, 1, . . .} ×Z,

Yn := max{r ∈ Z | (0, 0)
An
� (−n, r)}.

Yn is defined as the height of the highest site above −n reachable by an admissible
λ-path started in 0 under the restriction of using only the sites in An, but in fact also

Yn = max{r ∈ Z | {0} ×Z−
An
� (−n, r)}. Now denote by Ȳ0 a copy of Y0, independent of

(Yn)n∈N0 . Then, for any n ∈ N0, if Yn <∞ Pp-a.s.,

Ȳ0 stochastically dominates Yn+1 − (Yn − 1) under Pp(· | Yi, i ≤ n) (4.19)

since the conditioning can be seen as discarding those paths in the construction using any
site visited by the previous paths leading to the (−i, Yi), i ≤ n. Therefore, a closer study
of the distribution of Ȳ0 seems advisable. The observations below will, in particular, prove
Y0 to be finite Pp-a.s. which by induction with (4.19) assures the necessary finiteness of
all Yn, n ∈ N0. Using (4.18),

Pp(Ȳ0 ≥ m) ≤ Pp((0, 0)� (0,m))

≤ qm +
∑
k∈N

3m+4kqm+2k

≤ qm + (3q)m
(9q)2

1− (9q)2
,

(4.20)

for q < 1/9. Hence, we can upper bound the expectation

Ep[Ȳ0] ≤ q +

∞∑
m=2

qm +
(9q)2

1− (9q)2

∞∑
m=1

(3q)m

≤ q + Cq2

for a suitable C > 0 and small q. As a consequence, assuming q sufficiently small for

q + Cq2 − 1 < −α (4.21)
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to hold, (4.19) and a large deviation principle (the required exponential moments exist
due to (4.20)) yield the existence of c1, c2 > 0 such that

Pp(Yn ≥ −αn) ≤ c1 exp(−nc2).

Observe that an admissible λ-path started in some (n, bαnc) and reaching {0}×N0 going
only through Lα,1(1),≥ has only used sites to the right of {0} ×Z until the first time it hits

{0} ×N0. Hence,

Pp((n, bαnc)
Lα,1

(1),≥
� (0, h)) ≤ Pp((n, bαnc)

Lα,1
(1),≥
� {0} ×N0)

≤ Pp(Yn ≥ −nα) ≤ c1 exp(−nc2).

This is the last component needed to estimate (4.17) as it allows us to choose N ∈ N
such that for any h ∈ N

∞∑
n=N

Pp((n, bαnc)
Lα,1

(1),≥
� (0, h)) ≤ 1

8
.

On the other hand, using (4.18) again, we may now choose H sufficiently large such that
for all h ≥ H,

N−1∑
n=0

Pp((n, bαnc)
Lα,1

(1),≥
� (0, h)) ≤ 1

8
.

Hence, by (4.17) choosing q as in (4.21) implies

Pp(L
α,1
(1) � (0, h)) ≤ 1

2

for all h ≥ H. Recalling Lemma 4.2 this means that Pp(Fα,dη (0) = ∞) ≤ 1/2 and thus

1− Pp(LIPα,dη ) = Pp(F
α,d
η (0) =∞) = 0 yielding q < qL(α, 1, 1).

The corresponding upper bound is already given by Proposition 3.7.

4.2 Upper Bounds for qL(α, d, k)

It will be useful in this section to consider what we call reversed λ-paths. A
sequence of sites x0, x1, . . . , xn ∈ Zd+1 is called an (admissible) reversed λ-path, if
xn, xn−1, xn−2, . . . , x0 is an (admissible) λ-path in the sense of Definition 4.1.

Furthermore, the proof of Proposition 3.6 will take advantage of a comparison
to so-called ρ-percolation, see e.g. [9] and [8]. Here the setting is that of oriented
site-percolation in Zd, i.e., where in addition to our standard setting of Bernoulli site
percolation we assume the nearest neighbor edges of Zd to be oriented in the direction
of the positive coordinate vectors (which is the sense of orientation for the rest of this
section). We say that ρ-percolation occurs for ω ∈ {0, 1}Zd if there exists an oriented
nearest neighbor path 0 = x̄0, x̄1, . . . in Zd starting in the origin, such that

lim inf
n→∞

1

n

n∑
i=1

(1− ω(x̄i)) ≥ ρ.

Any such path is called a ρ-path. The probability of the existence of such a path exhibits a
phase transition in the parameter q and the corresponding critical probability is denoted
by qc(ρ, d). Theorem 2 in [8] states that for every ρ ∈ (0, 1],

lim
d→∞

d
1
ρ qc(ρ, d) =

θ
1
ρ

eθ − 1
=: R(ρ), (4.22)
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where θ is the unique solution to θeθ/(eθ − 1) = 1/ρ, and R(1) = 1. Note that we have
interchanged the role of ‘open’ and ‘closed’ (and thus p and q) with respect to [8] in
order to adapt the result to its application in our proof.

Before turning to the proof of Proposition 3.6, we observe a useful property of the
critical probability of ρ-percolation.

Lemma 4.5 (Continuity of qc). The critical probability of ρ-percolation is continuous in ρ,
i.e., for any d ∈ N the map

[0, 1) 3 ρ 7→ qc(ρ, d) (4.23)

is continuous.

Proof of Lemma 4.5. Since d is fixed and we only consider Zd in this proof, the index
is dropped for better readability. It is easy to see that the event of ρ-percolation also
undergoes a phase-transition in ρ (for fixed q) and thus we define

ρc(q) := sup{ρ | P1−q(ρ-percolation occurs) = 1}.

Note that strict monotonicity of ρc(q) for q ∈ [0, q̄], where q̄ := sup{q | ρc(q) < 1}, would
imply the desired continuity of qc(ρ) on [0, 1). In order to prove this strict monotonicity,
we will, however, first consider a different quantity: Still in the setting of oriented
percolation in Zd, for any ω ∈ {0, 1}Zd let

Y0,n(ω) := max
{
r ∈ N0 | ∃ directed nearest neighbor path 0 = x0, x1, . . . , xn :

n∑
i=1

(1− ω(xi)) = r
}
,

and denote by X̂n the site with the lowest lexicographical order that is the endpoint of
such a directed nearest neighbor path on which the value of Y0,n is attained. Then, for
m ≥ n define

Yn,m(ω) := max
{
r ∈ N0 | ∃ directed nearest neighbor path X̂n = x0, x1, . . . , xm−n :

m−n∑
i=1

(1− ω(xi)) = r
}
.

Then (−Yn,m)m≥n∈N, fullfils the assumptions of the Subadditive Ergodic Theorem
(see e.g. [4], Theorem 6.6.1), namely

1. −Y0,n − Yn,m ≥ −Y0,m

2. (−Ynk,(n+1)k)n∈N0
is stationary and ergodic for every k ∈ N.

3. The distribution of (−Yk,k+m)m∈N does not depend on k ∈ N.

4. E1−q[(−Y0,1)+] <∞ and for each n ∈ N, E1−q[−Y0,n] ≥ −n.

Thus the sequence (Y0,n/n)n∈N converges P1−q-a.s. and in L1(P1−q) to a (deterministic)
limit that we denote by γ(q). In fact,

γ(q) = ρc(q). (4.24)

To see this, fix q ∈ (0, 1) and choose ρ < ρc(q). Then for P1−q-almost any ω ∈ {0, 1}Zd

there exists an oriented nearest neighbor path X1(ω), X2(ω), . . . such that

ρ ≤ lim inf
n→∞

1

n

n∑
i=1

(1− ω(Xi(ω))).
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Since by definition
∑n
i=1(1 − ω(Xi(ω))) ≤ Y0,n(ω) for P1−q-almost all ω ∈ {0, 1}Zd and

n ∈ N, taking the limes inferior on both sites gives ρ ≤ γ(q), which implies ρc(q) ≤
γ(q). To prove the converse inequality, choose, for any ε > 0 an N ∈ N such that
1
NE1−q[Y0,N ] ≥ γ(q)−ε. For any ω ∈ {0, 1}Zd let X1(ω), X2(ω), . . . , XN (ω) be an (oriented

nearest neighbor) path, such that Y0,N =
∑N
i=1(1 − ω(Xi(ω))). Using i.i.d. copies of

(X1, . . . , XN ), one can construct an infinite oriented nearest neighbor path (X̃i)i∈N0
with

the property that by the law of large numbers

lim
n→∞

1

n

n∑
i=1

X̃i =
1

N
E1−q[Y0,N ] ≥ γ(q)− ε P1−q-a.s..

Thus γ(q)− ε ≤ ρc(q) and since ε was arbitrary, γ(q) ≤ ρc(q), which in combination with
the above establishes (4.24).

The strict monotonicity of γ(·) (and thus ρc(·)) can now be proven through a suitable
coupling argument. Denote by U[0,1] the uniform measure on the interval [0, 1] and define

µ := U⊗Z
d

[0,1] as the product measure on the spaceW := [0, 1]Z
d

. For any w ∈ W, q ∈ (0, 1)

and n ∈ N0 define

Y qn (w) := max
{
r ∈ N0 | ∃ directed nearest neighbor path 0 = x0, x1, . . . , xn :

n∑
i=1

1[0,q](w(xi)) = r
}
.

Observe that Lµ((Y qn )n∈N0
) = LP1−q ((Y0,n)n∈N0

), where Lν denotes the law with respect
to the measure ν. Therefore

lim
n→∞

1

n
Y qn = γ(q) µ-a.s. and in L1(µ).

As before, for any q ∈ (0, 1), w ∈ W and n ∈ N0, let Xq,n
1 (w), . . . , Xq,n

n (w) be an oriented
nearest neighbor path such that Y qn =

∑n
i=1 1[0,q](w(Xq,n

i (w))). Choose 0 ≤ q < q′ ≤ q̄,
then

Y q
′

n =

n∑
i=1

1[0,q′](w(Xq′,n
i (w))) ≥

n∑
i=1

1[0,q′](w(Xq,n
i (w)))

= Y qn +

n∑
i=1

1[q,q′](w(Xq,n
i (w))). (4.25)

Set Fq := σ(w 7→ 1[0,q](w(x)) | x ∈ Zd). Then, obviously, the Y qn are Fq-measurable and
the 1[0,q](w(Xq,n

i (w))), 1 ≤ i ≤ n, are independent given Fq. In addition,

µ(1[q,q′](w(Xq,n
i (w))) = 1 | Fq) =

q′ − q
1− q

1{w(Xq,ni (w))>q}.

Thus using (4.25) we obtain

Eµ[Y q
′

n − Y qn | Fq] ≥ Eµ
[ n∑
i=1

1[q,q′](w(Xq,n
i (w))) | Fq

]
= (n− Y qn )

q′ − q
1− q

,

where Eµ denotes the expectation with respect to µ. Using the L1(µ) convergence

γ(q′)− γ(q) = lim
n→∞

Eµ

[
Eµ

[ 1

n

(
Y q
′

n − Y qn
)
| Fq

]]
≥ lim
n→∞

Eµ

[ 1

n
(n− Y qn )

q′ − q
1− q

]
= (1− γ(q))

q′ − q
1− q
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and the right-hand side is positive, since γ(q) = ρc(q) < 1 for q < q̄. This shows the strict
monotonicity of the function ρc on [0, q] and hence implies (4.23).

Proof of Proposition 3.6. Note that the projection of a reversible λ-path onto its first d
coordinates is in fact a (lazy) nearest neighbor path in Zd. We will use this to compare
ρ-paths in Zd with reversed admissible λ-paths in Zd+1. To this end define for any
ω ∈ {0, 1}Zd+1

and x̄ ∈ Zd the quantity

Hω(x̄) := min
{
h ∈ N0 | ∃ an oriented nearest neighbor path 0 = x̄0, . . . , x̄m = x̄ ∈ Zd,

and a sequence 0 = h0, . . . , hm = h ∈ N0 s.t.

hi+1 =

{
hi, if ω(x̄i, hi) = 0,

hi + 1, otherwise.

}
.

A second’s thought reveals that this map is defined in such a way that the sequence
0 = (x̄0, h0), . . . , (x̄m, hm) = (x̄, Hω(x̄)) from the definition actually is an admissible λ-
path from (x̄, Hω(x̄)) to the origin, which takes advantage of many closed sites in the
configuration ω. (It is, however, not optimal, as it does not make use of consecutive
‘piled up’ closed sites in one step.) In addition, this λ-path is oriented in the sense that
its projection onto Zd, i.e. the sequence 0 = x̄0, . . . , x̄m = x̄, is oriented. With this we can
then define a map T : {0, 1}Zd+1 → {0, 1}Zd as

(T (ω))(x̄) :=

{
ω(x̄, Hω(x̄)), if x̄ ∈ Nd0,
ω(x̄, 0), otherwise.

The purpose of T is to map a configuration ω ∈ {0, 1}Zd+1

to a configuration ω̄ ∈ {0, 1}Zd ,
for which there exists an oriented path picking up almost as many closed sites as the
oriented reversed admissible λ-path in ω with lowest (d+ 1)-st coordinate. In order to be
more precise, we add an index to the probability measure used to indicate the space it is
defined on. I.e., Pp,d will denote the Bernoulli product-measure on Zd with parameter
p. Since the value of H(x̄) only depends on the state of the sites ȳ ∈ Nd0 with ‖ȳ‖ < ‖x̄‖,
Pp,d+1 ◦ T−1 = Pp,d. Thus, if q > qc(ρ, d), we have that

1 = Pp,d(ρ-percolation occurs)

≤ Pp,d+1

(
there exists an admissible reversed λ-path 0 = (x̄0, h0), (x̄1, h1), . . . (4.26)

s.t. lim sup
n→∞

1

n
hn ≤ 1− ρ

)
.

Now choose ρ > 1−α and set δ := 1− ρ+ (α− (1− ρ))/2 ∈ (1− ρ, α). Then (4.26) implies
the existence of a (deterministic) N ∈ N such that for all n ≥ N,

Pp,d+1

(
there exists an admissible reversed λ-path

0 = (x̄0, h0), (x̄1, h1), . . . , (x̄n, hn) s.t. hn ≤ δn
)
≥ 1

2
.

Recalling our choice of η = (1, . . . , 1), note that if there exists an admissible reversed
λ-path from the origin to some (x̄n, hn) with hn ≤ δn, then there actually exists an
admissible λ-path from Lα,dη −b(α− δ)nced+1 to the origin. Thus, by translation invariance
of Pp,d+1, we obtain that

∀n ≥ N : Pp,d+1

(
Lα,dη � (0, b(α− δ)nc)

)
≥ 1

2
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which, since α− δ > 0, implies

Pp,d+1

(
(LIPα,dη )c

)
= lim
n→∞

Pp,d+1

(
Lα,dη � (0, (α− δ)n)

)
≥ 1

2
.

By Proposition 2.2 we deduce that Pp
(
LIPα,dη

)
= 0 and hence q ≥ qL(α, d, d). We have

thus shown that for any ρ > 1 − α one has qc(ρ, d) ≥ qL(α, d, d). Since qc(ρ, d) is
continuous in ρ by Lemma 4.5, then the claim follows from (4.22).

Lemma 4.6 (Criterion for non-existence of an open Lipschitz surface). For any α > 0, and
d ∈ N define

T := inf{m ∈ N0 | ∃x̄ ∈ Nd0 : ‖x̄‖1 = m and (x̄, ‖x̄‖1) is closed}.

If for p ∈ (0, 1) one has

Ep[T ] <
1

1− α
, (4.27)

then P-a.s. there exists no open Lipschitz surface and q = 1− p ≥ qL(α, d, d).

Condition (4.27) has an intuitive interpretation: 1/(1−α) is the number of ‘downward-
diagonal’ steps a λ-path can take before decreasing its distance to the plane with
inclination α by one. Ep[T ] on the other hand is the expected number of such steps an
admissible λ-path must take before encountering a closed site and thus being able to
take an upwards step. (4.27) therefore means that this path will – on average – encounter
a closed site strictly before decreasing its distance to the plane by one, thus increasing
the distance in the long run and preventing the existence of an open Lipschitz surface
above it.

Proof. As in the proof of Proposition 3.6, the idea is to construct admissible reversed
λ-paths starting in 0 such that their endpoints (i.e., the starting points of the respective
λ-paths) are arbitrarily far below Lα,dη . With a simple shifting argument we can then see
that the Lipschitz surface would, with probability bounded away from 0, have to have
arbitrarily large height in 0 and can therefore almost surely not exist.

We begin with the construction of the reversed λ-paths. To this end, set X0 := Y0 := 0.
Let (z̄i)i∈N0

be an ordering of Nd0 compatible with ‖ · ‖1 in the sense that ‖zi+1‖1 ≥ ‖zi‖1,
for all i ∈ N0. Then define for any n ∈ N0,

ιn+1 := inf{i ∈ N0 | (z̄i, ‖z̄i‖1) + Yn is closed},
Xn+1 := (z̄ιn , ‖z̄ιn‖1),

Yn+1 := Yn +Xn+1 − ed+1.

By construction, there always exists an admissible λ-path from any Yn to 0. Note also that
(ιn)n∈N and (Xn)n∈N are i.i.d. sequences where ι1 is geometric on N0 with parameter q
and ‖X̄1‖1 = X1 · ed+1 is distributed as T .

We are now interested in the height of the starting points of these λ-paths relative to
Lα,dη . This is given by

H(n) := bα‖Ȳn‖1c − Yn · ed+1

=
⌊
α

n∑
j=1

‖X̄j‖1
⌋
−

n∑
j=1

(Xn − ed+1) · ed+1

=
⌊
α

n∑
j=1

‖X̄j‖1
⌋
−

n∑
j=1

‖X̄j‖1 + n.
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The law of large numbers then yields

lim
n→∞

1

n
H(n) = (α− 1)Ep[T ] + 1 Pp-a.s.

and the right-hand side is strictly negative by assumption. Thus with
∆ := − ((α− 1)Ep[T ] + 1) /2 > 0 we have in particular the existence of a deterministic
N ∈ N such that

∀n ≥ N : Pp(H(n) ≤ −∆n) ≥ 1

2
.

Now note that on the event {H(n) ≤ −∆n} there exists an admissible λ-path starting
in Lα,dη −∆ned+1 and reaching 0, since Yn is below the plane Lα,dη −∆ned+1. Hence, by
translation invariance of Pp we have that

∀n ≥ N : Pp(L
α,d
η � (0,∆n)) ≥ 1

2

which implies

Pp

(
(LIPα,dη )c

)
= lim
n→∞

Pp(L
α,d
η � (0,∆n)) ≥ 1

2
.

By Proposition 2.2, Pp
(
LIPα,dη

)
= 0 and p ≤ pL(α, d, d), i.e., q ≥ qL(α, d, d).

Proof of Proposition 3.7. Recall the ordering (z̄i)i∈N0
of Nd0 compatible with ‖ · ‖1 from

the proof of Lemma 4.6 and define the random variable

ι1 := inf{i ∈ N0 | (z̄i, ‖z̄i‖1) is closed},

which has a geometric distribution on N0 with parameter q. With B(j) := {x̄ ∈ Nd0 |
‖x̄‖1 ≤ j} denoting the ball with radius j ∈ N0, define the function

r(i) := inf{j ∈ N0 | |B(j)| − 1 ≥ i}

that gives the radius of the smallest ball such that its cardinality (without the origin) is
larger than or equal to a given i ∈ N0. Note that r(ι1) is distributed as T , for T defined
in Lemma 4.6. Using

|B(j)| =
(
j + d

d

)
≥ (j + 1)d

d!

we obtain

i ≥ |B(r(i)− 1)| ≥ r(i)d

d!

and can thus upper bound the expectation

Ep[T ] = Ep[r(ι1)] ≤ (d!Ep[ι1])
1
d ≤

(
d!

(
1

q
− 1

)) 1
d

,

where we used Jensen’s inequality in the first inequality. The right-hand side is strictly
smaller than 1/(1− α) if and only if

q >
d!(1− α)d

1 + d!(1− α)d
.

Thus Lemma 4.6 then implies that for such values of q no open Lipschitz surface can
exist, i.e., q ≥ qL(α, d, d), and the claim follows.
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