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Abstract

Consider the dynamics of a particle whose speed satisfies a one-dimensional stochastic differential
equation driven by a small symmetric α-stable Lévy process in a potential of the form a power
function of exponent β + 1. Two cases are studied: the noise could be path continuous, namely
a standard Brownian motion, if α = 2, or pure jump Lévy process, if α ∈ (0, 2). The main goal is
to study a scaling limit of the position process with this speed, and one proves that the limit is
Brownian in either case. This result is a generalization in some sense of the quadratic potential
case studied recently by Hintze and Pavlyukevich [9].
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1 Introduction

In this paper we consider the one-dimensional and non-linear Langevin type equation driven by a
symmetric α-stable Lévy process. Let us denote by xεt the one-dimensional process describing the
position of a particle at time t ≥ 0, having the speed vεt

xεt = x0 +

∫ t

0

vεsds, t ≥ 0, (1.1)

and such that vεt is a small symmetric α-stable Lévy process in a potential U(x) := 2
β+1 |x|

β+1,

dvεt = εd`t −
1

2
U ′(vεt )dt, vε0 = v0. (1.2)

In other words vεt verifies the following integral equation

vεt = v0 + ε`t −
∫ t

0

sgn(vεs)|vεs |βds, t ≥ 0. (1.3)
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Here β > −1 and {`t : t ≥ 0} is an α-stable Lévy process, α ∈ (0, 2]. The 2-stable Lévy process is the
standard Brownian motion {bt : t ≥ 0} which is a path continuous process. If α ∈ (0, 2), the Lévy
process is a pure jump process with càdlàg paths and the jump measure is given by

ν(dz) = |z|−1−α[a−1{z<0} + a+1{z>0}
]

dz.

A Lévy process ` is α-stable if and only if the property of self-similarity holds (see Proposition
13.5 in [14], p. 71). In fact this means that the processes {`t : t ≥ 0} and {c−1/α`ct : t ≥ 0} have the
same law, for any c > 0. The α-stable Lévy process is said to be symmetric if a− = a+. In this paper,
we will consider only symmetric α-stable Lévy processes.

The case of a harmonic potential when the speed is an Ornstein-Uhlenbeck process, was already
considered by Hintze and Pavlyukevich [9]. The dynamics of the integrated Ornstein-Uhlenbeck
process appears in some financial mathematics (volatility) models (see for instance Barndorff-
Nielsen and Shephard [2]) or in models in physics of plasma (see for instance Chechkin, Gonchar
and Szydlowski [5]). In the paper by Hintze and Pavlyukevich, the authors study the asymptotic
behaviour of the integrated Ornstein-Uhlenbeck and prove that this process converges weakly, as
ε→ 0, to the underlying α-stable Lévy process. In particular, when the driving process is a Brownian
motion (α = 2), the asymptotic behaviour is Gaussian. In [9], asymptotics of the first exit time from
an interval are deduced. Several papers in physics pointed out that new interesting phenomena
appear when one considers super-harmonic potentials (see for instance Metzler, Chechkin, Klafter
[11]).

Our goal is to answer the same question in the situation of a super-harmonic potential: what is
the asymptotic behaviour of the position process xεt , as ε→ 0 ? On the one hand, the non-linear case
introduces new technical difficulties, mainly since the solution is no longer explicit. Indeed, this fact
was essential to prove weak convergence in the linear case. On the other hand, different conditions
on the two parameters α and β will generate different asymptotics for the position process. The
intuition suggests that the big jumps should be compensated by a over-damped negative drift, and
that small jumps should have some regularizing effect. In the present paper, we answer the question
by showing that for α and β in some unbounded domain, the position process xεt will behave as a
Brownian motion when ε goes to 0. In other words, we get Gaussian asymptotic behaviour even if α
is smaller than 2, provided that β is not very small, more precisely if β + α

2 > 2. When α and β are
somehow "small" the previous heuristic fails. To get convergence toward a stable process, one needs
to change the approach and other technical difficulties appear. This case would be presented in a
forthcoming work (see [8]).

2 Main result

To state the main result of the present paper, we will perform some scaling transformations.
Without loss of generality, we can assume that the initial position is the origin x0 = 0. Moreover
we will assume that the initial speed vanishes v0 = 0, contrary to the linear case. By using the
self-similarity, it is clear that the process {Lεt := ε`ε−αt : t ≥ 0} is also an α-stable process. Let us
denote, for t ≥ 0,

X εt := xεε−αt and V ε
t := vεε−αt (2.1)

satisfying, respectively,

X εt =
1

εα

∫ t

0

V ε
s ds and V ε

t = Lεt −
1

εα

∫ t

0

sgn(V ε
s )|V ε

s |βds. (2.2)

To simplify the notations, all along the paper we will set

θ = θα,β :=
α

α+ β − 1
> 0, provided that α+ β − 1 > 0. (2.3)

Moreover we introduce

Lεt :=
Lεt εαθ
εθ

=
`t ε−(β−1)θ

ε
(β−1)θ/α

and V εt :=
V ε
t εαθ

εθ
, (2.4)
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By self-similarity again, Lε is distributed as an α-stable Lévy process and we have

X εt = ε(2−β)θ

∫ tε−αθ

0

V εs ds and V εt = Lεt −
∫ t

0

sgn(V εs )|V εs |βds. (2.5)

Let us note that if α = 2, all previous computations hold true with `, L or L replaced respectively by
b, B or B a standard Brownian motion.

Our main result is the following:

Theorem 2.1. 1. (Brownian driving noise) Assume that α = 2, β > −1 and recall that θ = 2
β+1 .

There exists a positive constant κ2,β such that the process

{ε(β−1)θxεε−2t : t ≥ 0} = {ε(β−1)θX εt : t ≥ 0} (2.6)

converges in distribution, in the space of continuous functions C([0,∞)) endowed with the
uniform topology, to a Brownian motion process with variance κ2,β , as ε→ 0. The constant κ2,β

has the integral representation given in (3.9) below.

2. (symmetric stable driving noise) Assume that α ∈ (0, 2), β + α
2 > 2 and recall that θ = α

α+β−1 .
There exists a positive constant κα,β such that the process

{ε(β+α
2−2)θxεε−αt : t ≥ 0} = {ε(β+α

2−2)θX εt : t ≥ 0} (2.7)

converges in distribution, in the space of continuous functions C([0,∞)) endowed with the
uniform topology, to a Brownian motion process with variance κα,β , as ε→ 0. The constant κα,β
has the integral representation given in (4.30) below.

Remark 2.2. 1. Hypotheses α ∈ (0, 2) and β + α
2 > 2 imply that β > 1, in other words the drift is

over-damped. In particular we have θ ∈ (0, 1).

2. If the driving noise is the Brownian motion α = 2, the normalizing factor behaves differently
following with the position of β with respect to 1. If β = 1, the position process Xε converges
in distribution to a standard Brownian motion, see also Remark 3.3 below.

3. The case when β + α
2 = 2 should be considered as critical for some phase transition from

Gaussian to stable case. It should be reasonable that there is some continuity but the proof
seems more delicate since natural integrability conditions are not fulfilled (see the method of
proof described below).

4. As an application one can find asymptotics of the first exit time from an interval:
Corollary 2.1, p. 269, in [9] applies.

Let us explain the method of the proof and the organization of the paper. It is a simple observation
that

εθ(β+α
2−2)X εt = ε

αθ
2

∫ tε−αθ

0

V εs ds ,

hence, since L is a symmetric α-stable process, V is zero mean and Theorem 2.1 is a second order
type ergodic theorem. Let us only note that in the asymmetric case, a drift term appears in the Lévy-
Itô decomposition of the driving noise. Consequently, the expression of the infinitesimal generator
of V will be different and finally a first order term should appear in the limit, for an asymmetric
situation. By using the stochastic calculus, we will show that the latter quantity is the sum of a
square integrable martingale, provided that β + α

2 > 2 for the case α ∈ (0, 2), and a term which tends
in probability toward 0, as ε→ 0. The result is then obtained by using the functional central limit
theorem for martingales and the continuous-mapping theorem. In the critical case β + α

2 = 2 and
α ∈ (0, 2), the L2-integrability fails. We point out that the critical case for the Brownian noise is the
case studied in [9].
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In the next section, we consider the case when the driving noise is the Brownian motion: in this
case computations are performed by using Itô’s calculus and are more explicit. For instance, the
constant κ2,β can be written in terms of the scale function and the speed measure. In Section 3,
we follow the same structure of the proof for a pure jump driving noise. Computations are more
technical and new ideas are employed: for instance, we need to find and use a Lyapunov function
which allows to perform the same reasoning by using the Itô-Lévy calculus. We give in the appendix
two technical proofs.

3 Brownian motion driving noise

Let us note that for the case, α = 2, {bt : t ≥ 0} is the standard one-dimensional Brownian motion.
If β > −1, then θ = θ2,β = 2

β+1 > 0 and we set Bεt := εbε−αt,

Bεt :=
Bεt ε2θ
εθ

=
bt ε(1−β)θ

ε(β−1)θ/2
, and V εt :=

V ε
t ε2θ

εθ
. (3.1)

Recall also that

X εt = ε
2(2−β)
(β+1)

∫ tε
−4/(β+1)

0

V εs ds and V εt = Bεt −
∫ t

0

sgn(V εs )|V εs |βds . (3.2)

Bε is distributed as the standard Brownian motion so, to simplify the notation, we will suppress the
index ε, as well as for V ε.

3.1 The scaled speed process

3.1.1 Existence and uniqueness

Thanks to (3.12), V ε and V are connected to each other. If β ≥ 1, the drift coefficient in (3.22) is
a locally Lipschitz function hence by well known results (see, for instance, Theorem 12.1, p. 132
in [12]), we get a path-wise unique strong solution V to equation (3.22), whereas if −1 < β < 1,
Girsanov’s theorem gives the existence of a weak solution to equation (3.22). For both situations, the
solution is defined up to an explosion time τe, but it is not difficult to prove that τe =∞ a.s. by using
Theorem 10.2.1, p. 254, in [15] and a convenient Lyapunov function. For instance, we can choose as
a Lyapunov function h(x) = 1 + x2 for all |x| ≥ 1, h(x) = 1 for all |x| ≤ 1/2, and h ≥ 1. Introduce the
scale function and the speed measure associated to the diffusion V given by (3.22)

sβ(x) :=

∫ x

0

e−cβ(y)dy and mβ(dx) := 2ecβ(x)dx, where cβ(x) := − 2

β + 1
|x|β+1 . (3.3)

Since
∫∞

0
mβ([0, x])e−cβ(x)dx =∞, by Theorem 52.1, p. 297 in [12], the path-wise uniqueness holds

for the equation (3.22). Finally, there exists a path-wise unique strong solution V of the equation
(3.22).

3.1.2 Convergence in probability

The main result of this section is the following:

Proposition 3.1. 1. Fix p ≥ 4 and T > 0. There exists a positive constant C ′p,β such that

E
[
( sup
0≤t≤T

|Vt ε−2θ |)p
]
≤ C ′p,β T 2 ε−4θ. (3.4)

2. As ε→ 0, {V ε
t : t ≥ 0} converges to 0 in probability uniformly on each compact time interval.

Proof. Before proving the first part we provide a simpler estimate than (3.4). Precisely, we show
that if p ≥ 2, there exists a positive constant Cp,β such that, for any t ≥ 0,

E
(
|Vt|p

)
≤ Cp,β t. (3.5)
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Indeed, by using Itô’s formula and the equation (3.22), we can write

|Vt|p = p

∫ t

0

sgn(Vs)|Vs|p−1dBs + p

∫ t

0

(p− 1

2
|Vs|p−2 − |Vs|p−1+β

)
ds

Since β > −1, there exists a constant Cp,β > 0 such that

p
(

(1/2)(p− 1)|x|p−2 − |x|p−1+β
)
≤ Cp,β , ∀x ∈ R.

We deduce that

|Vt|p ≤ Cp,βt+ p

∫ t

0

sgn(Vs)|Vs|p−1dBs (3.6)

We show that
∫ t

0
sgn(Vs)|Vs|p−1dBs is a martingale. Fix T > 0, for all t ≤ T , since (a+ b)2 ≤ 2(a2 + b2)

and |x|2p−2 ≤ 1 + |x|2p, by using the Burkholder-Davis-Gundy inequality, we can see that there exists
a positive constant C ′1 such that

E
[
( sup
0≤u≤t

|Vu|p)2
]
≤ 2C2

p,β T
2 + 2p2E

[
( sup
0≤u≤t

∫ u

0

sgn(Vs)|Vs|p−1dBs)
2
]
≤ 2C2

p,β T
2

+ 2p2 C ′1

∫ t

0

E
(
|Vs|2p−2

)
ds ≤ 2p2 C ′1 T + 2C2

p,β T
2 + 2p2 C ′1

∫ t

0

E
(
|Vs|2p

)
ds

≤ 2p2 C ′1 T + 2C2
p,β T

2 + 2p2 C ′1

∫ t

0

E
[
( sup
0≤u≤s

|Vu|p)2
]
ds.

By Gronwall’s lemma, we get, for all t ≤ T ,

E
[
( sup
0≤u≤t

|Vu|p)2
]
≤ (2p2 C ′1 T + 2C2

p,β T
2) exp(2p2 C ′2 T ) .

Hence
∫ t

0
sgn(Vs)|Vs|p−1dBs is a martingale. By taking the expectation in (3.6) we get (3.5).

It is now possible to improve the inequality (3.5) and get the first part of the proposition. Indeed,
by (3.5) we can see that

E
[
( sup
0≤t≤T

|Vt ε−2θ |)p
]

= E
[
( sup
0≤t≤T

|Vt ε−2θ |
p
2 )2
]
≤ p2

2
E
[
( sup
0≤t≤T

∫ t ε−2θ

0

|Vs|
p
2−1dBs)

2
]

+ 2C2
p
2 ,β

T 2 ε−4θ

≤ p2

2
C ′1

∫ T ε−2θ

0

E
(
|Vs|p−2

)
ds+ 2C2

p
2 ,β

T 2 ε−4θ ≤ p2

4
C ′1 Cp−2,β T

2 ε−4θ + 2C2
p
2 ,β

T 2 ε−4θ.

Therefore (3.4) follows by taking C ′p,β := p2

4 C
′
1 Cp−2,β + 2C2

p
2 ,β

.

To prove the second part we note that from (3.12), the relation between V ε and V is V ε
t = εθVt ε−2θ .

By taking p > 4 in the first part, we deduce that for any T > 0, as ε→ 0, sup0≤t≤T |V ε
t | converges to

0 in Lp(Ω). The conclusion follows.

3.1.3 Ergodicity

Recall that the scale function and the speed measure were introduced in (3.3). Since sβ(∞) = ∞
and mβ(R) <∞, the diffusion V is regular (see for instance (45.2) and (46.10) pp. 272-275 in [12]).
Moreover, it is a recurrent and ergodic process with the invariant measure mβ (see for instance
Theorem 53.1, p. 300 in [12]). Therefore, for all f ∈ L1(mβ),

lim
T→∞

1

T

∫ T

0

f(Vs)ds =
1

mβ(R)

∫
R

f(x)mβ(dx), almost surely. (3.7)
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3.2 The scaled position process

We recall that the infinitesimal generator of V is given by A2,β = 1
2

d2

dx2 − sgn(x)|x|β d
dx . Introduce

gβ(x) :=

∫ x

0

(∫ +∞

y

−2zecβ(z)dz

)
e−cβ(y)dy, x ∈ R, (3.8)

and note that (A2,β gβ)(x) = x, for all x ∈ R. Set

κ2,β :=
1

mβ(R)

∫
R

g ′β(x)2mβ(dx) = − 2

mβ(R)

∫
R

xgβ(x)mβ(dx), (3.9)

where the latter equality is obtained by integration by parts. Now we can give the proof of the main
result.

Proof of Theorem 2.1 for the case α = 2. By applying Itô’s formula, we can see that

gβ(Vt) =

∫ t

0

g ′β(Vs)dBs +

∫ t

0

(A2,β gβ(Vs)ds =

∫ t

0

g ′β(Vs)dBs +

∫ t

0

Vsds,

and therefore

ε(β−1)θX εt = −εθ
∫ t ε−2θ

0

g ′β(Vs)dBs + εθgβ(Vt ε−2θ ) .

The continuous local martingale

Mε
t := −εθ

∫ t ε−2θ

0

g ′β(Vs)dBs

has the quadratic variation

〈Mε〉t = ε2θ

∫ t ε−2θ

0

g ′β(Vs)
2ds .

Thanks to (3.7), for all t ≥ 0,
lim
ε→0
〈Mε〉t = κ2,βt, almost surely.

Here κ2,β is given by (3.9), and it is the constant in the statement of first part of Theorem 2.1.
By using Whitt’s theorem (see Theorem 2.1(ii), p. 270 in [17]), we deduce that Mε converges in
distribution, as a process, toward κ

1/2
2,βB.

We will prove that the second term on the right hand side converges in probability, uniformly on
compact sets, toward 0. In order, to prove this convergence we need a technical result:

Lemma 3.2. There exist two positive constants a0, a1 such that for all x ∈ R,

|gβ(x)| ≤ a1|x|(2−β)∨1 + a0. (3.10)

We postpone the proof of the lemma to the appendix and finish the proof of Theorem 2.1 for the case
α = 2. By using the classical inequality (a + b)2m ≤ 22m−1(a2m + b2m), m ≥ 1 being an integer, we
obtain

|εθgβ(Vt ε−2θ )|2m ≤ 22m−1a2m
1 ε2mθ|Vt ε−2θ |2m((2−β)∨1) + 22m−1a2m

0 ε2mθ .

By choosing the integer m ≥ 1 such that p := 2m((2 − β) ∨ 1) > 4, the first part of Proposition 3.1
can be used, and we get, for all T > 0,

lim
ε→0

E
[

sup
0≤t≤T

ε2mθg2m
β (Vt ε−2θ )

]
= 0.

We can finish the proof of the theorem by employing the joint convergence theorem and the simple
continuous-mapping theorem on the space of continuous functions C([0,∞)) endowed with the
uniform topology (see Theorem 11.4.5 p. 379 and Theorem 3.4.1, p. 85 in [16]).

Remark 3.3. Let us note that if β = 1 (Ornstein-Uhlenbeck case), g1(x) = −x, κ2,1 = 1 and the result
of Theorem 2.1 coincides with the result of Proposition 2.1, p. 268, in [9].
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4 Symmetric stable driving noise

We recall that Lε is distributed as a α-stable Lévy process (see (2.41)) so, to simplify the notation,
we will suppress the index ε, as well as for V ε (see (2.52)).

4.1 The scaled speed process

4.1.1 Existence and uniqueness

Once again, the processes V ε and V satisfy relation (2.4). If β > 1, the drift coefficient in (2.52) is
a locally Lipschitz function and it is well known (see, for instance, Theorem 6.2.11, p. 376 in [1])
that there exists a locally path-wise unique strong solution V for equation (2.52) defined up to an
explosion random time τ . Moreover, it can be proved that τ =∞ almost surely, hence V is a global
solution. For the sake of completeness, we give the proof of the latter statement (see also [13], p.
73) by following some ideas in [6], pp. 156-157.

Lemma 4.1. For any α ∈ (0, 2), any δ ∈ (0, α) and any T > 0, E
[

sup
t∈[0,T ]

|Vt|δ
]
<∞.

Proof. By the Lévy-Itô decomposition, there exists a Poisson process N and its compensated Ñ such
that

Lt =

∫ t

0

∫
|z|≤1

zÑ(ds,dz) +

∫ t

0

∫
|z|>1

zN(ds,dz).

Therefore the equation satisfied by V , starting from any x ∈ R, is

Vt = x+

∫ t

0

∫
|z|≤1

zÑ(ds,dz) +

∫ t

0

∫
|z|>1

zN(ds,dz)−
∫ t

0

sgn(Vs)|Vs|βds. (4.1)

Firstly, we skip the big jumps term and show that the resulting process Y has moments of any order.
Secondly, we use an interlacing procedure to handle the process V . In fact, we consider the equation

Yt = x+

∫ t

0

∫
|z|≤1

zÑ(ds,dz)−
∫ t

0

sgn(Ys)|Ys|βds, (4.2)

and apply the Itô-Lévy formula. We obtain

Y 2
t = x2 + M̃t +

∫ t

0

∫
|z|≤1

[(Ys + z)2 − Y 2
s − 2zYs]ν(dz)ds− 2

∫ t

0

|Ys|β+1ds

= x2 + M̃t + t

∫
|z|≤1

z2ν(dz)− 2

∫ t

0

|Ys|β+1ds, (4.3)

where the local martingale term is given by

M̃t :=

∫ t

0

∫
|z|≤1

[(Ys + z)2 − Y 2
s ]Ñ(ds,dz).

In this proof, the constants depending only on α and β will be denoted cα or kα,β and could change
from line to line. Let us denote the third term in (4.3) as cαt and it is clear that lim|y|→∞(cα−2|y|β+1) =

−∞. We deduce that there exists a positive constant kα,β such that, for all t ≥ 0,

Y 2
t ≤ x2 + kα,βt+ M̃t. (4.4)

By the Kunita-Watanabe inequality (see for instance [1], p. 265) and by our convention on constants,

E

[
sup

0≤s≤t
Y 2
s

]
≤ x2 + kα,βt+ cα

∫ t

0

∫
|z|≤1

E
[
(Ys + z)2 − Y 2

s

]2
ν(dz)ds

≤ x2 + kα,βt+ cα

∫ t

0

E[Y 2
s ]ds ≤ x2 + kα,βt+ cα

∫ t

0

E

[
sup

0≤u≤s
Y 2
u

]
ds. (4.5)
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Applying Gronwall’s inequality, we get

E

[
sup

0≤u≤t
Y 2
u

]
≤ (x2 + kα,βt)e

cαt. (4.6)

Hence M is a square integrable martingale and, taking expectation in (4.4), we obtain

E[Y 2
t ] ≤ x2 + kα,βt. (4.7)

Re-injecting this in (4.5), we get that, for any T > 0, there exists a positive constant Cα,β,T depending
also on T , such that

E
[

sup
t∈[0,T ]

Y 2
t

]
≤ Cα,β,T (1 + x2). (4.8)

We proceed with the study of (4.1). Denote by 0 = T0 < T1 < T2 < . . . the jumping times of N re-
stricted to {|z| > 1}. The jumps (Zn) are i.i.d. random variables with the distribution λ−11{|z|>1}ν(dz),

where λ :=
∫
{|z|>1} ν(dz). Therefore

∫ t
0

∫
|z|>1

zN(ds,dz) =
∑
n∈N Zn1{Tn≤t} and (4.1) coincides with

(4.2) on each time interval (Tn, Tn+1). Since V is a solution of (4.2) on [0, T1), by using (4.8),

E
[

sup
t∈[0,T1∧T )

V 2
t

∣∣∣G] ≤ Cα,β,T (1 + x2), almost surely, with G := σ(T1, T2, . . . ).

By using Jensen’s inequality and the classical inequality (|a|+ |b|)δ ≤ cδ(|a|δ + |b|δ), we get

E
[

sup
t∈[0,T1∧T )

|Vt|δ
∣∣∣G] ≤ Cα,β,δ,T (1 + |x|δ) almost surely.

Furthermore, VT1
= VT1− + Z1, hence |VT1

|δ ≤ cδ
(
|VT1−|δ + |Z1|δ

)
. Since δ < α, E(|Z1|δ) < ∞.

Consequently we obtain

E
[

sup
t∈[0,T1∧T ]

|Vt|δ
∣∣∣G] ≤ Cα,β,δ,T (1 + |x|δ) almost surely.

By using the strong Markov property and the latter inequality on (Tn, Tn+1), but starting from VTn ,
we can show that, for any n ≥ 0,

un := E
[

sup
t∈[Tn∧T,Tn+1∧T ]

|Vt|δ
∣∣∣G] ≤ C ′T,δ(1 + E[|VTn |δ|G]).

Then the sequence (un)n≥0 satisfies u0 ≤ C ′T,δ and un+1 ≤ C ′T,δ(1 + un), implying that there exists

CT,δ,x > 1 such that un ≤ Cn+1
T,δ,x. We deduce that

E
[

sup
t∈[0,Tn∧T ]

|Vt|δ
∣∣∣G] ≤ u0 + · · ·+ un−1 ≤

Cn+1
T,δ,x

CT,δ,x − 1
almost surely.

Finally,

E
[

sup
t∈[0,T ]

|Vt|δ
]
≤
∑
n≥0

E
[
1Tn<T<Tn+1

E
(

sup
t∈[0,Tn∧T ]

V δt
∣∣G)] ≤ 1

CT,δ,x − 1

∑
n≥0

Cn+2
T,δ,x

(λT )n

n!
e−λT <∞.

4.1.2 Ergodicity

The ergodic feature of the process V is a consequence of Proposition 0.1, p. 604 in [10]. In-
deed, provided that β > 1, the drift coefficient b(x) = −sgn(x)|x|β and the jump measure ν(dz) =

|z|−1−α1R\{0}dz clearly satisfy the conditions in the cited result. Hence V is an exponential ergodic
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and Harris recurrent process having an unique invariant distribution, denoted by mα,β . The measure
mα,β satisfies

mα,β([x,+∞)) ∼
|x|→∞

∫ +∞

|x|

ν([u,+∞))

−b(x)
du =

C

|x|α+β−1
, (4.9)

as it follows from Theorem 4.1, p. 92 in [13]. Let us note that in [13], p. 76, it is conjectured that the
tail behaviour of mα,β remains true in the asymmetric case, but the proof seems more technical.

Clearly, under the hypothesis of Theorem 2.1, β + α
2 − 2 > 0, the identity function id belongs to

L1(mα,β). By the classical ergodic theorem, for all f ∈ L1(mα,β),

lim
T→∞

1

T

∫ T

0

f(Vs)ds =

∫
R

f(x)mα,β(dx), a.s. (4.10)

Recall that we are interested on the behaviour as ε→ 0 of

εθ(β+α
2−2)xεε−αt = ε

αθ
2

∫ tε−αθ

0

Vsds, (4.11)

where θ is given by (2.3). In other words, we are studying a large time behaviour of a functional of V ,
hence it is quite natural to perform the study in steady state. This fact is contained in the following
lemma (see also [3], Theorem 2.6, p. 194):

Lemma 4.2. Suppose that β + α
2 − 2 > 0. Assume that the process

{
εαθ/2

∫ tε−αθ
0

Vsds : t ≥ 0
}

converges, as ε→ 0, in distribution to a Brownian motion, provided that V is starting with mα,β as
an initial distribution. Then the same process converges in distribution to a Brownian motion when
V0 = 0.

Proof. In this proof we will denote the process in (4.11) by Zε,0(t), and for ∆ ≥ 0,

Zε,∆(t) := ε
αθ
2

∫ tε−αθ+∆

∆

Vsds.

Firstly, let us prove that Zε,∆(·) converges in distribution, as ∆ → ∞ and ε → 0, to a Brownian
motion, when V0 = 0. Denoting by µ∆ the distribution of V∆, for each bounded continuous real
function ψ on C([0,+∞)), by the Markov property, we have

E
[
ψ(Zε,∆(·))|V0 = 0

]
= E

[
ψ(Zε,0(·))|V0 ∼ µ∆

]
.

We can write, for all ε > 0,∣∣∣E[ψ(Zε,0(·))|V0 ∼ µ∆

]
− E

[
ψ(Zε,0(·))|V0 ∼ mα,β

]∣∣∣ =
∣∣∣ ∫
R

E
[
ψ(Zε,0(·))|V0 = y

](
µ∆(dy)− mα,β(dy)

)∣∣∣
≤ ||ψ||∞

∫
R

∣∣p(∆, 0,dy)− mα,β(dy)
∣∣ ≤ ||ψ||∞||p(∆, 0,dy)− mα,β(dy)||TV ,

where p(t, x,dy) = Px(Vt ∈ dy) is the transition kernel of V (and therefore p(∆, 0,dy) = µ∆(dy)), and
‖ · ‖TV is the norm in total variation. Since V is exponentially ergodic, we get that

lim
∆→∞

∣∣E[ψ(Zε,0(·))|V0 ∼ µ∆

]
− E

[
ψ(Zε,0(·))|V0 ∼ mα,β

]∣∣ = 0, uniformly in ε.

Secondly, by choosing ∆ = ∆(ε) = ε−αθ/4 we obtain

sup
t≥0

{∣∣∣Zε,∆(ε)(t)− ε
αθ
2

∫ tε−αθ+∆(ε)

0

Vsds
∣∣∣} ≤ εαθ2 ∫ ∆(ε)

0

|Vs|ds = ε
αθ
4

1

∆(ε)

∫ ∆(ε)

0

|Vs|ds.

The right hand side term of the latter inequality tends to 0 almost surely, by using the ergodicity

(4.10). Therefore εαθ/2
∫ •ε−αθ+∆(ε)

0
Vsds converges in distribution, as ε → 0, to a Brownian motion

when V0 = 0. Clearly, limε→0(t−∆(ε)εαθ) = t, and applying a consequence of the continuous mapping
theorem for the composition function stated in Lemma p. 151 in [4], we can conclude.
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In the sequel, we will always assume that the initial distribution of V is mα,β. Let us recall that the
infinitesimal generator of V is given by

(Aα,β g)(x) = −sgn(x)|x|βg′(x) +

∫
R

[
g(x+ y)− g(x)− yg′(x)1|y|≤1

]
ν(dy) , (4.12)

with the domain DAα,β . Also, denote by (Tt)t≥0 the semi-group associated to the operator Aα,β or to
the process V . We collect in the following lemma some useful properties of the process V .

Lemma 4.3.

1. The domain DAα,β contains the space of bounded twice differentiable functions C2
b(R).

2. For all p ≥ 1, Tt is a contraction semi-group on Lp(mα,β) and for each f ∈ Lp(mα,β),

lim
t→0
‖Ttf − f‖Lp(mα,β) = 0. (4.13)

Proof. To prove the first point, we fix f ∈ C2
b(R) and we show that (Aα,β f)(x) <∞. Let us note that,

−sgn(x)|x|βf ′(x) is well defined for all x ∈ R. Since f ∈ C2
b(R), for any y ∈ [−1, 1],∣∣∣f(x+ y)− f(x)− yf ′(x)

∣∣∣ ≤ y2 sup
z∈[x−1,x+1]

|f ′′(z)| <∞,

and we find∫
|y|≤1

[
f(x+ y)− f(x)− yf ′(x)

]
ν(dy) ≤

[
sup

z∈[x−1,x+1]

|f ′′(z)|
] ∫
|y|≤1

y2ν(dy) <∞.

Since f is bounded, we can see that∫
|y|>1

[
f(x+ y)− f(x)

]
ν(dy) ≤ 2||f ||∞

∫
|y|>1

ν(dy) <∞ ,

hence f ∈ DAα,β .

We proceed with the proof of the second point. Fix f ∈ Lp(mα,β) and we show first that

‖Ttf‖Lp(mα,β) ≤ ‖f‖Lp(mα,β).

Since

‖Ttf‖pLp(mα,β) =

∫
R

|Ttf(x)|pmα,β(dx) =

∫
R

|Ex(f(Vt))|pmα,β(dx),

by Jensen’s inequality (p ≥ 1), we get

‖Ttf‖pp ≤
∫
R

Ex(|f(Vt)|p)mα,β(dx) = Emα,β (|f(Vt)|p) = ||f ||pLp(mα,β).

Finally, we prove (4.13). Since C2
b(R) is dense in Lp(mα,β), there exists fη ∈ C2

b(R) such that
||f − fη||Lp(mα,β) ≤ η/3. Since Tt is a contraction semi-group and mα,β is a probability measure, we get

‖Ttf − f‖Lp(mα,β) ≤ 2‖f − fη‖Lp(mα,β) + ‖Ttfη − fη‖∞ ≤ (2η)/3 + ‖Ttfη − fη‖∞.

Clearly Tt is a Feller semi-group (see for instance, [1], p. 151). Hence ‖Ttfη − fη‖∞ ≤ η/3, for t small
enough, and we deduce (4.13). The proof is complete.
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4.1.3 Convergence in probability

One describes the behaviour of the speed process by using a Lyapunov function. The statement of
this important result is given below.

Proposition 4.4. Suppose that β + α
2 > 2 and let p and γ such that

p > 1, pγ > 2, 2− β < γ <
α

2
. (4.14)

Introduce the Lyapunov function
hp,γ(x) := (1 + |x|pγ)1/p. (4.15)

Then, as ε→ 0, {εαθ/2hp,γ(ε−θV εt ) : t ≥ 0} converges to 0 in probability, uniformly on each compact
time interval. More precisely, there exists q > 2 such that, for any fixed T > 0,

lim
ε→0

E
[(

sup
t∈[0,T ]

ε
αθ
2 hp,γ

(
ε−θV ε

t

))q]
= E

[(
sup
t∈[0,T ]

ε
αθ
2 hp,γ

(
Vt ε−αθ

))q]
= 0. (4.16)

In order to prove this result, we need the following lemma whose proof is postponed to the
appendix. The first part of the lemma collects some regularity properties and the asymptotic
behaviour of the Lyapunov function, while the second part contains the Foster-Lyapunov conditions
which allows to solve Poisson’s equations.

Lemma 4.5.

1. If pγ > 2, hp,γ is a twice differentiable function and there exists a positive constant k such that
for all (x, y) ∈ R2,

- if |x| < 1 then
|hp,γ(x+ y)− hp,γ(x)| ≤ k(|y|1{|y|≤1} + |y|γ1{|y|>1});

- if |x| ≥ 1 then

|hp,γ(x+ y)− hp,γ(x)| ≤ k(|y||x|γ−11{|y|≤i(x)} + |y|γ1{i(x)<|y|}),

where i(x) := (2|x|pγ + 1)1/pγ − |x|.

2. Assume that pγ > 2 and 2− β < γ < α. There exist a continuous function fp,α,β,γ , a compact
set K and a constant d, depending only on p, α, β, γ, such that

∀x ∈ R, fp,α,β,γ(x) ≥ 1 + |x|, fp,α,β,γ(x) ∼
|x|→∞

γ|x|γ+β−1, (4.17)

and
(Aα,β hp,γ)(x) ≤ −fp,α,β,γ(x) + d1K . (4.18)

Proof of Proposition 4.4. By (2.42), we can write

ε
αθ
2 hp,γ

(V ε
t

εθ

)
= ε

αθ
2 hp,γ

(
Vt ε−αθ

)
(4.19)

and the first equality in (4.16) is clear. Since 2 − β < α
2 and β > 1, we can fix q such that

2
p ∨ (2− β) < γ < 2γ < qγ < α and 2 < q < β−1

α + 2. By noting that hp,γ(x)q = h p
q ,qγ

(x), we can write

E
[(

sup
t∈[0,T ]

ε
αθ
2 hp,γ

(
Vt ε−αθ

))q]
= εq

αθ
2 E

[(
sup
t∈[0,T ]

h p
q ,qγ

(
Vt ε−αθ

))]
.

Employing Itô’s formula with h p
q ,qγ

, we get

h p
q ,qγ

(Vt)− h p
q ,qγ

(V0) = Rt +

∫ t

0

(Aα,β h p
q ,qγ

)(Vs)ds, (4.20)
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where

Rt :=

∫ t

0

∫
R

(
h p
q ,qγ

(Vs + y)− h p
q ,qγ

(Vs)
)
Ñ(dy,ds).

By Lemma 4.5 applied to the function h p
q ,qγ

, we see that there exists c > 0 such that, for all t ∈ [0, T ],

∫ t

0

(Aα,β h p
q ,qγ

)(Vs)ds ≤ c t.

Moreover, let us note that h p
q ,qγ

is continuous and that h p
q ,qγ

(x) ∼ |x|qγ , as |x| → ∞. Hence, by the

choice of q, we have h p
q ,qγ
∈ L1(mα,β). Taking the expectation in (4.20), we obtain

εq
αθ
2 E

[(
sup
t∈[0,T ]

h p
q ,qγ

(
Vt ε−αθ

))]
≤ εq αθ2 ‖h p

q ,qγ
‖L1(mα,β) + ε(q−2)αθ2 cT + εq

αθ
2 E

(
sup
t∈[0,T ]

Rt ε−αθ
)
.

Since q > 2, the first and the second term converge to 0. For the last term, we use the Kunita-
Watanabe inequality (see for instance [1], p. 265). Since V0 ∼ mα,β , then for all t, Vt ∼ mα,β and there
exists a positive constant C such that

E
(

sup
t∈[0,T ]

Rt ε−αθ
)
≤ E

(
sup
t∈[0,T ]

R2
t ε−αθ

)1/2

≤ C
√
T ε−

αθ
2

∫∫
R2

(
h p
q ,qγ

(x+ y)− h p
q ,qγ

(x)
)2
ν(dy)mα,β(dx).

It is sufficient to show that∫∫
R2

(
h p
q ,qγ

(x+ y)− h p
q ,qγ

(x)
)2
ν(dy)mα,β(dx) <∞. (4.21)

This fact is obtained by using Lemma 4.5. If |x| ≥ 1,(
h p
q ,qγ

(x+ y)− h p
q ,qγ

(x)
)2 ≤ k2(|y|2|x|2qγ−21{|y|≤i(x)} + |y|2qγ1{i(x)<|y|}),

hence ∫
R

(
h p
q ,qγ

(x+ y)− h p
q ,qγ

(x)
)2

ν(dy) = O(|x|2qγ−α), as |x| → +∞,

and, since q < β−1
α + 2, we get (4.21). If |x| < 1,(

h p
q ,qγ

(x+ y)− h p
q ,qγ

(x)
)2 ≤ k2(|y|21{|y|≤1} + |y|2qγ1{|y|>1})

and
∫
R2

(
h p
q ,qγ

(x+y)−h p
q ,qγ

(x)
)2
ν(dy) is finite independently of x. Since mα,β is a probability measure,

(4.21) is verified again. The proof is complete except for Lemma 4.5.

4.2 The position process

We are ready to give the proof of our main result concerning the behaviour of the position process.
Recall that, thanks to Lemma 4.2, we assume that the initial distribution of V is the measure mα,β .

Proof of Theorem 2.1 for the case α ∈ (0, 2). Thanks to (4.17), Theorem 3.2, p. 924 in [7] applies and
we deduce that the Poisson equation Aα,βg = id admits a solution gα,β satisfying |gα,β | ≤ c(hp,γ + 1),
with c a positive constant. Applying the Itô-Levy formula with gα,β , we get

gα,β(Vt)− gα,β(V0) =

∫ t

0

Vsds+Mt, (4.22)

where

Mt :=

∫ t

0

∫
R

[gα,β(z + Vs)− gα,β(Vs)]Ñ(ds,dz). (4.23)
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Step 1) We prove that M , given by the latter formula, is a square integrable martingale. On one
hand we have

E[gα,β(Vt)
2] = E[gα,β(V0)2] =

∫
R

gα,β(x)2mα,β(dx) <∞.

Indeed, recall that h2
p,γ is continuous and it behaves as |x|2γ , as |x| → ∞. Recalling that γ was chosen

such that 4
p ∨ (4− 2β) < 2γ < α, by using (4.9), we see that∫

R

hp,γ(x)2mα,β(dx) <∞. (4.24)

We point out that the assumption β + α
2 > 2 is essential for the latter condition of integrability.

On the other hand, we can write

E

[(∫ t

0

Vsds
)2
]

= E

∫ t

0

∫ t

0

VuVs duds = 2E

∫ t

0

ds

∫ s

0

duVuVs ≤ 2E

∫ t

0

ds

∫ s

0

du |Vu||Vs|.

Using the Markov property and that Vu and V0 follow the invariant law, we obtain, for u < s,
E
(
|Vs||Vu|

)
= E

(
|Vs−u||V0|

)
. Therefore

E
[( ∫ t

0

Vsds
)2]
≤ 2

∫ t

0

ds

∫ s

0

duE
(
|Vs−u||V0|

)
= 2

∫ t

0

ds

∫ s

0

duE
(
|Vu||V0|

)
= 2

∫ t

0

dsE
(
|V0|

∫ s

0

Tu|id|(V0)du
)
.

Applying again Theorem 3.2, p. 924 in [7], we deduce that the Poisson equation Aα,β g = |id| admits
a solution g̃α,β , This solution satisfies |g̃α,β | ≤ c′(hp,γ + 1), with c′ a positive constant. Moreover∫ s

0

Tu|id|(V0)du = Tsg̃α,β(V0)− g̃α,β(V0).

Replacing in the latter inequality

E
[( ∫ t

0

Vsds
)2]
≤ 2

∫ t

0

E
(
|V0||Tsg̃α,β(V0)− g̃α,β(V0)|

)
ds = 2

∫ t

0

ds

∫
R

|x||Tsg̃α,β(x)− g̃α,β(x)|mα,β(dx).

At this level, we need to apply the Hölder inequality to conclude that

E
[ ∫ t

0

Vsds
]2
<∞. (4.25)

Firstly, if β < 2 then we choose γ close enough to 2 − β such that g̃α,β ∈ L(3−β)/(2−β)(mα,β). Since
3−β
2−β > 1, using the second part of Lemma 4.3, we get

‖Tsg̃α,β − g̃α,β‖L(3−β)/(2−β)(mα,β)
≤ 2‖g̃α,β‖L(3−β)/(2−β)(mα,β)

.

By the Hölder inequality and the fact that |id| ∈ L3−β(mα,β), we get (4.25). Secondly, if β ≥ 2, we
choose γ < 1 close enough to 0 such that |id| ∈ L1/(1−γ)(mα,β). Since g̃α,β ∈ L1/γ(mα,β), using again
Lemma 4.3, we get

‖Ttg̃α,β − g̃α,β‖L1/γ(mα,β) ≤ 2‖g̃α,β‖L1/γ(mα,β).

Since |id| ∈ L1/(1−γ)(mα,β), we can apply the Hölder inequality and get (4.25) again.
We conclude that M given by (4.23) is a square integrable martingale. Moreover, we can compute

its quadratic variation

〈M〉t =

∫ t

0

∫
R

[gα,β(y + Vs)− gα,β(Vs)]
2ν(dy)ds. (4.26)

Hence

E[〈M〉t] = t

∫∫
R2

[gα,β(x+ y)− gα,β(x)]2ν(dy)mα,β(dx) <∞. (4.27)
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Step 2) Performing a simple time change in (4.22), we see that the process in (2.7) can be written

εθ(β+α
2−2)X εt = ε

αθ
2

[
gα,β

(
Vt ε−αθ

)
− gα,β(V0)

]
− εαθ2 Mt ε−αθ . (4.28)

In this step, we show that the martingale term on the right hand side of the latter equality converges
to a Brownian motion by using Whitt’s theorem (see Theorem 2.1 (ii) in [17], pp. 270-271). We need
to verify the hypotheses of this result. Indeed, since the function

x 7→
∫
R

[gα,β(x+ y)− gα,β(x)]2ν(dy) ∈ L1(mα,β),

by using (4.26) and the ergodic theorem (4.10), we deduce that

lim
ε→0
〈εαθ2 M• ε−αθ 〉t = lim

ε→0
ε
αθ
2

∫ tε−αθ

0

∫
R

[gα,β(y + Vs)− gα,β(Vs)]
2ν(dy)ds

= t

∫∫
R2

[gα,β(x+ y)− gα,β(x)]2ν(dy)mα,β(dx).

The condition (6) in [17], p. 271 is fulfilled. Again by (4.26), we see that 〈M〉 has no jump, hence the
condition (4) in [17], p. 270 is trivial. Let us note also that, by (4.22), the jumps of the martingale Mt

are J(Mt) := gα,β(Vt)− gα,β(Vt−). Therefore we deduce that the jumps of the martingale term on the
right hand side of (4.28) are

J
(
ε
αθ
2 Mt ε−αθ

)
:= ε

αθ
2

[
gα,β

(
Vε−αθt

)
− gα,β

(
Vε−αθt−

)]
≤ c εαθ2

[∣∣hp,γ(Vε−αθt)∣∣+
∣∣hp,γ(Vε−αθt−)∣∣+ 2

]
≤ 2c ε

αθ
2

[
sup
t∈[0,T ]

∣∣∣hp,γ(ε−θV εt )∣∣∣+ 1
]
,

by using the fact that |gα,β | ≤ c(hp,γ + 1) and (4.19). By Proposition 4.4,

lim
ε→0

E
[

sup
t∈[0,T ]

J
(
ε
αθ
2 Mt ε−αθ

)2]
= 0.

Therefore we can apply Whitt’s theorem to deduce that
{
ε(αθ)/2Mt ε−αθ : t ≥ 0

}
converges in distribu-

tion (as a process) to κ
1/2
α,βB, where B is the standard Brownian motion and

κα,β :=

∫∫
R2

[gα,β(x+ y)− gα,β(x)]2ν(dy)mα,β(dx) > 0. (4.29)

Let us explain why the constant κα,β is positive. Indeed it suffices to note that ν is absolutely
continuous with respect to the Lebesgue measure, that mα,β has a non-empty support, and that gα,β
could not be a constant function, since Aα,βgα,β = id.

Step 3) By using that |gα,β | ≤ c(hp,γ + 1), we get∣∣∣gα,β(Vt ε−αθ)− gα,β(V0)
∣∣∣2 ≤ 4c2

(∣∣∣hp,γ(Vt ε−αθ)∣∣∣2 +
∣∣∣hp,γ(V0)

∣∣∣2 + 2
)
.

Hence, by using Proposition 4.4,

lim
ε→0

E
[
εαθ sup

t∈[0,T ]

∣∣∣gα,β(Vt ε−αθ)− gα,β(V0)
∣∣∣2] = 0.

Therefore,
{
ε(αθ)/2

[
gα,β

(
Vt ε−αθ

)
− gα,β(V0)

]
: t ≥ 0

}
converges in probability to 0, uniformly on com-

pact sets.

Step 4) Our processes are valued in the Skorokhod space of càdlàg functions D([0,∞)) endowed
with J1 Skorokhod topology (see [16], §3.3). It is not difficult to see that a sequence which converges
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in probability to 0, uniformly on compact sets, is also convergent in probability for J1 metric, hence
in distribution in J1 topology. Recall that in the Skorokhod space, the summation is not a continuous
map (see for instance [16], p. 84). In our case, the limits of the terms on the right hand side of
equality (4.28) are, respectively, 0 and a Brownian motion, and have continuous paths. By using the
joint convergence theorem (Theorem 11.4.5, p. 379 in [16]) and the continuous-mapping theorem
(Theorem 3.4.3, p. 86 in [16]), we obtain the conclusion of Theorem 2.1. More precisely, the
convergence in the theorem holds in the space of continuous functions C([0,∞)) endowed with the
uniform topology. Let us note that our situation is simpler than in [9] since the limit is a continuous
paths process.

Proposition 4.6. Assume that α ∈ (0, 2) and β + α
2 > 2. The constant κα,β of the second part of

Theorem 2.1, given in (4.29), satisfies

κα,β = −2

∫
R

xgα,β(x)mα,β(dx) > 0. (4.30)

Proof. Since, by (4.27) and (4.29), κα,β = 1
tE
[
M2
t

]
, for all t > 0, by taking t = εαθ and using Itô’s

formula, we get

κα,β = ε−αθE
[(

gα,β
(
Vεαθ

)
− gα,β(V0)−

∫ εαθ

0

Vsds
)2]

= ε−αθ
{
E
[(

gα,β
(
Vεαθ

)
− gα,β(V0)

)2]
+ E

[( ∫ εαθ

0

Vsds
)2]
− 2E

[(
gα,β

(
Vεαθ

)
− gα,β(V0)

)∫ εαθ

0

Vsds
]}
. (4.31)

The first term on the right hand side of (4.31) can be written :

E
[(

gα,β
(
Vεαθ

)
−gα,β(V0)

)2]
= 2

∫
gα,β(x)2mα,β(dx)−2E

[
gα,β

(
V0)gα,β(Vεαθ

)]
= 2

∫
gα,β(x)2mα,β(dx)

− 2E
[

gα,β(V0)E
(

gα,β
(
Vεαθ

)
|V0

)]
= 2

∫
gα,β(x)2mα,β(dx)− 2E

[
gα,β(V0)

(
Tεαθgα,β

)
(V0)

]
= 2

∫
gα,β(x)2mα,β(dx)− 2E

[
gα,β(V0)

(
gα,β(V0) +

∫ εαθ

0

(Tsid)(V0)ds
)]

= −2E
[

gα,β(V0)

∫ εαθ

0

(Tsid)(V0)ds
]

= −2

∫
gα,β(x) mα,β(dx)

∫ εαθ

0

(Tsid)(x)ds

= −2 εαθ
∫
xgα,β(x)mα,β(dx)− 2

∫
gα,β(x) mα,β(dx)

∫ εαθ

0

(
(Tsid)− id

)
(x)ds.

By using the Hölder inequality, we prove that,

E

[(
gα,β

(
Vεαθ

)
− gα,β(V0)

)2
]
∼ −2 εαθ

∫
xgα,β(x)mα,β(dx), as ε→ 0. (4.32)

We need to distinguish two cases following the position of β with respect to 2. Indeed, if 2− α
2 < β < 2,

gα,β ∈ L
(3−β)/(2−β)(mα,β) and lim

s→0
‖(Tsid)− id‖L3−β(mα,β) = 0.

If β ≥ 2,
gα,β ∈ L

1
γ (mα,β) and lim

s→0
‖(Tsid)− id‖L1/(1−γ)(mα,β) = 0.

By using (4.25) and Fubini’s theorem, the second term on the right hand side of (4.31) can be written

E
[( ∫ εαθ

0

Vsds
)2]

=

∫ εαθ

0

ds

∫ s

0

E
(
VsVu

)
du =

∫ εαθ

0

ds

∫ s

0

E
(
Vs−uV0

)
du

=

∫ εαθ

0

ds

∫ s

0

E
(
V0 (Ts−uid)(V0)

)
du =

∫ εαθ

0

duE
(
V0

∫ εαθ

u

(Ts−uid)(V0) ds
)

=

∫ εαθ

0

duE
[
V0

((
Tεαθ−ugα,β

)
(V0)− gα,β(V0)

)]
=

∫ εαθ

0

du

∫
x
((

Tεαθ−ugα,β
)
− gα,β

)
(x)mα,β(dx).
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Once again by the Hölder inequality, we prove that

E

[(∫ εαθ

0

Vsds
)2
]

= o(εαθ), as ε→ 0. (4.33)

Indeed, if 2− α
2 < β < 2 then id ∈ L3−β(mα,β), and we note that

lim
ε→0

sup
0≤u≤εαθ

‖(Tεαθ−ugα,β)− gα,β‖L3−β/2−β(mα,β) = 0.

Similarly, if β ≥ 2 then id ∈ L1/(1−γ)(mα,β), and we see that

lim
ε→0

sup
0≤u≤εαθ

‖Tεαθ−ugα,β)− gα,β‖
L

1
γ (mα,β)

= 0.

Finally, the third term in (4.31) is analysed by using the Cauchy-Schwarz inequality and the behaviour
of the other terms. We get that

− 2E
[(

gα,β
(
Vεαθ

)
− gα,β(V0)

)∫ εαθ

0

Vsds
]

= o(εαθ), as ε→ 0. (4.34)

Putting together (4.31)-(4.33), we obtain that

κα,β = −2

∫
xgα,β(x)mα,β(dx) + o(1), as ε→ 0.

and the result is proved.

4.3 Appendix

Proof of Lemma 3.2. We note that gβ is an odd function. Let us introduce ϕβ(x) = −
∫ +∞
x

2yecβ(y)dy.
By the continuity of gβ on [0, 1], it is sufficient to prove (3.2) for x > 1. Assume that β ∈ [1,∞). Then,
since x > 1,

ϕβ(x) =

∫ +∞

x

z1−β
(
−2zβe−

2
β+1 z

β+1
)

dz ≥
∫ +∞

x

−2zβe−
2

β+1 z
β+1

dz = −e−
2

β+1x
β+1

,

hence ∫ x

1

e
2

β+1y
β+1

ϕβ(y)dy ≥ 1− x.

(3.2) is true in this case. If β ∈ [0, 1), by integration by parts,

ϕβ(x) =

∫ +∞

x

z1−β(− 2zβe−
2

β+1 z
β+1)

dz = −x1−βe−
2

β+1x
β+1

+
1− β

2

∫ +∞

x

z−2β
(
− 2zβe−

2
β+1 z

β+1)
dz

≥ −x1−βe−
2

β+1x
β+1

− 1− β
2

x−2βe−
2

β+1x
β+1

.

Hence, ∫ x

1

e
2

β+1y
β+1

ϕβ(y)dy ≥
∫ x

1

(
−y1−β − 1− β

2
y−2β

)
dy,

and (3.2) follows. More generally, assume that β ∈ [− n
n+2 ,

1−n
n+1 ), for an integer n ≥ 0. Set d0 = 1 and

dk := 2−k
k−1∏
j=0

((1− β)− j(1 + β)), for k ≥ 1 integer. By the choice of n, we can see that dn > 0. If we

iterate n times the integration by parts, we get:

ϕβ(x) = −
n∑
k=0

dkx
(1−β)−k(1+β)e−

2
β+1x

β+1

+ dn

∫ +∞

x

z(1−β)−(n+1)(β+1)(−2zβe−
2

β+1 z
β+1

)dz.
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Since (1− β)− (n+ 1)(β + 1) ≤ 0, we can write

ϕβ(x) ≥ −

(
n∑
k=0

dkx
(1−β)−k(1+β) + dnx

(1−β)−(n+1)(β+1)

)
e−

2
β+1x

β+1

.

By integrating, we have∫ x

1

e
2

β+1y
β+1

ϕβ(y)dy ≥
∫ x

1

(
n∑
k=0

dky
(1−β)−k(1+β) + dny

(1−β)−(n+1)(β+1)

)
dy,

and we easily deduce (3.2). The proof of (3.2) is complete for all β ∈ (−1,∞).

Proof of Lemma 4.5. Recall that hp,γ(x) = (1 + |x|pγ)1/p and assume firstly that |x| < 1. Since hp,γ is
continuously differentiable and equivalent to |x|γ , as |x| → ∞, there exists k > 0 such that

|hp,γ(x+ y)− hp,γ(x)| ≤ |y| sup
z∈[−2,2]

|h′p,γ(z)|1{|y|≤1} + k|y|γ1{|y|>1}.

The desired inequality is then clear. Secondly, assume that |x| ≥ 1. It is a simple computation to see
that for all z ≥ 0 and r > 0, there exists cr > 0, such that

(1 + z)r − 1 ≤ cr
(
z1{z≤1} + zr1{z>1}

)
.

We deduce that, for all (u, v) ∈ [0,∞)× [0,∞), there exist kr > 0 such that

(u+ v)r − ur = ur
[(

1 +
v

u

)r
− 1
]
≤ kr

(
vur−11{v≤u} + vr1{u<v}

)
. (4.35)

Since x 6= 0,

|hp,γ(x+ y)− hp,γ(x)| = |x|γ
∣∣∣∣( 1

|x|pγ
+
∣∣∣1 +

y

x

∣∣∣pγ)1/p

−
( 1

|x|pγ
+ 1
)1/p

∣∣∣∣
≤ |x|γ

[( 1

|x|pγ
+
(

1 +
∣∣y
x

∣∣)pγ)1/p

−
( 1

|x|pγ
+ 1
)1/p

]
.

Applying (4.35) with u = 1
|x|pγ + 1, v =

(
1 +

∣∣∣ yx ∣∣∣)pγ − 1 and r = 1
p , we obtain

|hp,γ(x+ y)− hp,γ(x)| ≤ k1/p|x|γ
[((

1 +
∣∣y
x

∣∣)pγ − 1
)1/p

1{i(x)≤|y|}

+
((

1 +
∣∣y
x

∣∣)pγ − 1
)( 1

|x|pγ
+ 1
) 1−p

p

1{|y|<i(x)}

]
.

Since i(x) > |x|, we can use again (4.35) to estimate the first term in the bracket on the right hand
of the latter inequality. We let u = 1, v =

∣∣ y
x

∣∣ and r = pγ and we get

|hp,γ(x+ y)− hp,γ(x)| ≤ k1/pkpγ |y|γ1{i(x)≤|y|} + k1/p|x|γ
((

1 +
∣∣y
x

∣∣)pγ − 1
)( 1

|x|pγ
+ 1
) 1−p

p

1{|y|<i(x)}.

Since |x| ≥ 1, i(x)/|x| is bounded, and since p > 1, (1/|x|pγ + 1)(1−p)/p ≤ 1. Using that pγ > 2 and the
fact that |y|/|x| is bounded, we obtain the existence of a k′ > 0 such that((

1 +
|y|
|x|
)pγ − 1

)
≤ k′ |y|

|x|
.

Taking k = max(k1/pkpγ , k1/pk
′), we get the second inequality of the first part of Lemma 4.5.
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We proceed with the second part and we note that, since pγ > 2, hp,γ is twice differentiable with

h′′p,γ(x) = γ |x|pγ−2
[
(γ − 1)|x|pγ + pγ − 1

]
(1 + |x|pγ)

1/p−2.

Moreover, since γ < α < 2, h′′p,γ ∈ L∞. We split (Aα,β hp,γ)(x) into three terms

Aα,βhp,γ(x) = −γ |x|pγ+β−1

(1 + |x|pγ)1−1/p
+

∫
|y|≤1

[
hp,γ(x+ y)− hp,γ(x)− yh′p,γ(x)

]
ν(dy)

+

∫
|y|>1

[
hp,γ(x+ y)− hp,γ(x)

]
ν(dy).

The first term on the right hand side is equivalent to −γ|x|γ+β−1 at infinity, while for the second
term, since |y| ≤ 1, we have∣∣∣hp,γ(x+ y)− hp,γ(x)− yh′p,γ(x)

∣∣∣ ≤ y2 sup
|z|≤1

|h′′p,γ(x+ z)| ≤ y2‖h′′p,γ‖∞.

Hence ∣∣∣∣∣
∫
|y|≤1

[
hp,γ(x+ y)− hp,γ(x)− yh′p,γ(x)

]
ν(dy)

∣∣∣∣∣ ≤ cα‖h′′p,γ‖∞,
where cα :=

∫
|y|≤1

y2ν(dy). We use the first part of the lemma to estimate the third term on the right

hand side of the expression of Aα,βhp,γ(x). There are two situations: if |x| ≥ 1, we get∣∣∣hp,γ(x+ y)− hp,γ(x)
∣∣∣ ≤ k(|y||x|γ−11{|y|≤i(x)} + |y|γ1{i(x)<|y|}).

Hence∣∣∣ ∫
|y|>1

[
hp,γ(x+ y)− hp,γ(x)

]
ν(dy)

∣∣∣ ≤ k|x|γ−1

∫
{i(x)≥|y|>1}

|y|ν(dy) + k

∫
{max(1,i(x))≤|y|}

|y|γν(dy)

≤ k|x|γ−1

∫
{i(x)≥|y|>1}

|y|ν(dy) + kc′α,γ ,

where c′α,γ :=
∫
{|y|>1} |y|

γν(dy). Since i(x) = O(|x|), as |x| → ∞,

k|x|γ−1

∫
{i(x)≥|y|>1}

|y|ν(dy) = O(|x|γ−1) +O(|x|γ−α), as |x| → ∞.

If |x| < 1, since |y| > 1,
|hp,γ(x+ y)− hp,γ(x)| ≤ k|y|γ ,

so ∣∣∣ ∫
|y|>1

[
hp,γ(x+ y)− hp,γ(x)

]
ν(dy)

∣∣∣ ≤ ∫
|y|>1

|y|γν(dy) < +∞.

Denote by u the continuous function −Aα,βhp,γ . Putting together the previous estimates we obtain
that, since β > 1 and 2

p < γ < α,

u(x) ∼ |x|γ+β−1, as |x| → ∞,

and since γ > 2− β,
1 + |x| = o(u(x)), as |x| → ∞.

Set K = [k−, k+], with

k+ := inf{x > 0 : y ≥ x⇒ u(y) > y + 1}, k− := sup{x < 0 : y ≤ x⇒ u(y) > −y + 1} ,

and
d := − inf

{x∈K}
(u(x)− 1− |x|), fp,α,β,γ(x) := u(x)1Kc + (1 + |x|)1K .

Then relations (4.17) and (4.18) hold true and the proof is complete.
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