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The one-arm exponent
for mean-field long-range percolation
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Abstract

Consider a long-range percolation model on Zd where the probability that an edge
{x, y} ∈ Zd × Zd is open is proportional to ‖x − y‖−d−α2 for some α > 0 and where
d > 3min{2, α}. We prove that in this case the one-arm exponent equals 1

2
min{4, α}.

We also prove that the maximal displacement for critical branching random walk
scales with the same exponent. This establishes that both models undergo a phase
transition in the parameter α when α = 4.
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1 Introduction and main result

In this paper we study the asymptotic behavior of the one-arm event for two closely
related statistical mechanical models: branching random walk (BRW) and long-range
percolation (LRP). We study LRP only in the mean-field setting. That is, we require that
the dimension of the space is high enough that self-interactions become negligible.

Roughly speaking, we say that a percolation model on Zd is long-range with parameter
α if the edges {x, y} of the graph with vertex set Zd and edge set Zd ×Zd are indepen-
dently retained with a probability that is asymptotically proportional to ‖x − y‖−d−α2

(where ‖ · ‖2 denotes the Euclidean norm on Zd), and otherwise removed. We say a
retained edge is ‘open’ and a removed edge is ‘closed’. We assume throughout that
the edge retention probabilities are invariant under the symmetries of Zd (translations,
rotations, and reflections).

Our main result requires that we rigorize this notion of long-range percolation and
that we state some definitions and conditions, so let us first give a simple, somewhat
imprecise version. To state the theorem we define Qr as the intersection of the cube
with sides 2r + 1 and the lattice (i.e., Qr := {x ∈ Zd : ‖x‖∞ ≤ r}) and its complement
Qcr := Zd \Qr (where ‖ · ‖∞ denotes the supremum norm on Zd). We write Ppc for the
critical percolation measure, {x ←→ y} for the event that x and y belong to the same
open cluster, and {0←→ Qcr} for the event that the open cluster of the origin intersects
Qcr. We write f(n) � g(n) if there exist C ≥ c > 0 such that cg(n) ≤ f(n) ≤ Cg(n).
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The one-arm exponent for mean-field LRP

Theorem. Critical long-range percolation models on Zd that satisfy

Ppc(x←→ y) � ‖x− y‖min{2,α}−d
2

with α ∈ (0, 2) ∪ (2,∞) and d > 3 min{2, α} also satisfy

Ppc(0←→ Qcr) � r−min{4,α}/2.

The condition on Ppc(x ←→ y) is known to hold for a class of LRP models [3]. We
discuss this in more detail below.

The theorem implies that the one-arm exponent for high-dimensional LRP equals
1
2 min{4, α}, so the model undergoes a phase transition in α when α = 4. We also show
below that for critical BRW with long-range jumps the analogous exponent (for the
maximal displacement) also equals 1

2 min{4, α}.
It should moreover be noted that while there is another (well-known) phase transition

in αwhen α = 2 that is more readily apparent (for instance in the condition of the theorem
above and in (2.8) below), this paper presents the first rigorous proof of the existence of
the ‘α = 4’ phase transition for mean-field statistical mechanical models with long-range
interactions. The phase transition at α = 4 was conjectured by Heydenreich, van der
Hofstad, and the author [11], based on the observation that the maximal displacement
of simple random walk on large clusters of critical LRP appears to undergo a change at
α = 4. Moreover, the (easier) lower bound in the above theorem has been established by
the same authors in [10]. This paper, then, provides an upper bound that confirms the
conjecture.

Before we give the explicit version of this theorem, let us formally introduce the
models under consideration in this paper, starting with the simpler one: critical BRW. In
this paper we view branching random walk as a random embedding of a Galton-Watson
tree into Zd. We will restrict ourselves to critical Galton-Watson trees, i.e., trees with a
non-trivial i.i.d. offspring distribution {pm}∞m=0 such that

∞∑
m=1

mpm = 1 and σ2
p :=

∞∑
m=2

m(m− 1)pm <∞.

Writing ξv for the number of children of the vertex v in the rooted tree T , the probability
of any finite tree T under the Galton-Watson process is given by

P(T ) =
∏
v∈T

pξv .

We say that φ is an embedding of T into Zd if φ maps the root of T to the origin of Zd

and φ maps any other vertex v ∈ T to a single vertex φ(v) ∈ Zd. We define the branching
random walk measure as the measure on configurations (T, φ) such that if w is a child of
v in T , then the probability that φ(w) = y if φ(v) = x is equal to D(x, y), where D is the
random walk one-step distribution. That is,

P((T, φ)) = P(T )
∏

(v,w)∈T

D(φ(v), φ(w)), (1.1)

where the product is over pairs (v, w) such that w is a child of v in T .
In this paper we will consider a the following class of one-step distributions:

Definition 1.1. We always assume that D is invariant under the symmetries of Zd, i.e.,
that D(x, y) only depends on x, y ∈ Zd through x− y, and that D(x, y) = D(x′, y′) for any
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The one-arm exponent for mean-field LRP

x′, y′ ∈ Zd such that x′ − y′ is equal to x− y up to permutations and sign-changes of the
coordinates. We also assume that

D(0, x) =
h(x/Λ)∑

x∈Zd h(x/Λ)
∀x ∈ Zd, (1.2)

where Λ ∈ (0,∞) and h is a nonnegative bounded function on Rd that is piecewise
continuous, has the aforementioned symmetries, satisfies∫

Rd

h(x)ddx = 1,

and that is either

a. supported in [−1, 1]d,

b. exponentially decaying (i.e., that there exist C, κ > 0 such that h(x) ≤ Ce−κ‖x‖∞),

c. or else that there exists α, c1, c2 > 0 and k <∞ such that

c1‖x‖−d−α2 ≤ h(x) ≤ c2‖x‖−d−α2 for all ‖x‖2 ≥ k. (1.3)

We consider α as a parameter of the model. In such cases where h has bounded support
or decays exponentially we set α ≡ ∞.

Our focus will be on distributions that satisfy Definition 1.1(c). The canonical example
of a distribution that satisfies Definition 1.1(c) is

D(x, y) = N max

{
‖x− y‖2

Λ
, 1

}−d−α
(1.4)

where N is a normalizing constant.
Our choice to set α ≡ ∞ for models with bounded or exponentially decaying h

corresponds to the fact that for these models all spatial moments are finite. Indeed, with
this definition, the parameter α indicates which spatial moments are finite, i.e.,∑

x∈Zd
‖x‖q2D(0, x) <∞ iff q < α,

for any D that satisfies Definition 1.1.
We say that a branching random walk (T, φ) hits a set A ⊆ Zd if there exists at least

one vertex v ∈ T such that φ(v) ∈ A. For the event that a BRW started at x hits the set A
we write {x −→ A}, and if A = {y} for some y ∈ Zd we simply write {x −→ y}.

Now we introduce the long-range percolation model. We start with the complete
graph on Zd, i.e., the graph (Zd,Zd × Zd). We choose the percolation parameter
p ∈ [0, ‖D‖−1∞ ] and remove each edge {x, y} ∈ Zd × Zd independently with probability
1− pD(x, y) (where D is a one-step distribution), and retain it otherwise. In this paper
we only consider LRP models with one-step distributions that satisfy Definition 1.1(c).

We write Pp for the LRP measure at parameter p, and we write C(x) for the set of
all vertices that can be reached from x through a path of open edges. In this paper
we consider LRP at the critical point pc := inf{p : Pp(|C(x)| = ∞) > 0}. This does not
depend on our choice of x, and it is well established that pc is a non-trivial value, i.e.,
LRP undergoes a phase transition in p at pc. Given a vertex x and a vertex set A, we say
that x is connected to A, and write {x←→ A} for the event {C(x) ∩ A 6= ∅}. If A = {y}
we simply write {x←→ y}.
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We make one further assumption on D: we assume that our choice of D produces the
following two-point function asymptotics:

Ppc(x←→ y) � ‖x− y‖(2∧α)−d2 , (1.5)

where we write (a ∧ b) := min{a, b}. Chen and Sakai [3] recently proved that there exists
a class of LRP models for which this bound holds when α ∈ (0, 2)∪ (2,∞) and d > 3(2 ∧ α)
and Λ is sufficiently large. In Remark 1.9 below we briefly discuss this class and the
assumptions.

Theorem 1.2 (The one-arm exponent for BRW and LRP). (a) Consider critical branching
random walk on Zd with α ∈ (0, 2)∪ (2,∞) and d > (2 ∧ α) and with one-step distribution
D that satisfies Definition 1.1. Then,

P(0 −→ Qcr) � r−(4∧α)/2.

(b) Consider long-range percolation on Zd with α ∈ (0, 2) ∪ (2,∞) and d > 3(2 ∧ α)
and with one-step distribution D that satisfies Definition 1.1(c) and (1.5). Then,

Ppc(0←→ Qcr) � r−(4∧α)/2.

Let us make a few remarks about the theorem:

Remark 1.3. The lower bound in Theorem 1.2(b) has already been proved by Heyden-
reich, van der Hofstad, and the author [10, Section 5]. We repeat it here for completeness,
but will not prove it. For part (b) we moreover do not include the cases of Definition
1.1(a) and (b). Our proof does not work for these cases, and for models in case (a) Kozma
and Nachmias [15] have already proved that the one-arm exponent equals 2. In fact, our
proof is based on their work, and we will use their results throughout this paper. Proving
that the one-arm exponent equals 2 for case (b) requires several modifications to the
proof of Kozma and Nachmias, but none of these are interesting enough to warrant the
lengthy discussion that they require.

Remark 1.4. We do not treat the case ‘α = 2’. The reason is that our proof of Theo-
rem 1.2(a) uses asymptotics of the random walk Green’s function G(x) (see (2.6) below)
and our proof of Theorem 1.2(b) uses asymptotics of the percolation two-point function
(1.5), and these are not known when α = 2. When α = 2 it is conjectured (see [3]) that

G(x) � ‖x‖
2−d
2

log ‖x‖2
and Ppc(0←→ x) � ‖x‖

2−d
2

log ‖x‖2
,

when d ≥ 2 and d ≥ 6, respectively. Assuming these relations hold, a straightforward
modification of the proof of Theorem 1.2 shows that

P(0 −→ Qcr) �
log r

r
and Ppc(0←→ Qcr) �

log r

r
, (1.6)

when d ≥ 2 and d ≥ 6, respectively.

Remark 1.5. The event {0 −→ Qcr} is equivalent to the event that the maximal displace-
ment of the BRW exceeds r (i.e., the maximal distance of any particle produced by the
BRW from the starting point of the BRW).

There are a few related results about the maximal displacement of critical BRW. The
first is due to Kesten [14]: Consider one-dimensional critical BRW with a translation in-
variant one-step distribution D(0, x) that satisfies

∑
x xD(0, x) = 0 and

∑
x |x|αD(0, x) <

∞ for some α > 4 (no symmetry assumptions are made on D). Let Mn denote the
maximal displacement of a particle at level n of the tree T . Condition T on having height
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at least An for some large constant A. Then Mn/
√
n converges in distribution, and there

exists a constant C > 0 such that

P(Mn ≥ z
√
n | height(T ) > An) ≤ Cz−α(1 + log(z)2) ∀z > 0.

Kesten also proves that Mn/
√
n is not tight on {height(T ) > An} when α ≤ 4. Note that

even though this result is in some sense stronger than Theorem 1.2 when α > 4, it does
not imply the upper bound when α > 4.

Kesten’s result can be contrasted with an earlier result by Durrett, Kesten and
Waymire [5], where it is proved that when

∑
x xD(0, x) ∈ (0,∞) (i.e., the BRW has

non-zero drift), then roughly speaking, the maximal displacement of a critical BRW
conditioned to have n particles scales to the maximum of a Brownian excursion when
α > 2, while it scales to an α-dependent function when α < 2. In particular, there
appears to be no transition at α = 4 in the presence of a drift.

In a third related result, Janson and Marckert [13] determine the scaling limit of the
tour of the discrete snake. Roughly speaking, this process codifies the displacements of
critical BRW conditioned on offspring size. This scaling limit is different when α < 4 and
when α ≥ 4.

Remark 1.6. The restriction to the lattice Zd is easily adapted to any other transitive
lattice or to Rd. (But to achieve this one must reevaluate the bounds on moments of the
expected volume of the intersection of the BRW or the percolation cluster and the cube
Qr, such as (2.8) below.)

Remark 1.7. It is possible to extend the result of Theorem 1.2(a) to dimensions 1 and 2
for all α ∈ (0, 2) ∪ (2,∞). As it stands, the proof uses the existence of the random walk
Green’s function, which is not defined for recurrent random walks, whence we require
that d > (2 ∧ α). But it is not hard to see that with some minor modifications to the
definition (2.4) below it is possible to extend these results to d = 1 and d = 2 by instead
considering a branching random walk that is killed upon exiting a large cube QR with
R� r.

Remark 1.8. The proof of the upper bound uses an induction argument that is in-
spired by [15], where Kozma and Nachmias prove that the one-arm exponent for high-
dimensional finite-range percolation equals 2. In [15] the main difficulty of the proof
comes from the complicated dependence structure of percolation.

BRW has straightforward dependencies, and as a result parts of the proof presented
here are less involved for BRW. (Other parts are more involved because we consider
unbounded one-step distributions, whereas [15] only considers bounded steps, which
make the induction easier.)

The proof of Theorem 1.2(b) also uses a ‘regularity analysis’ that is similar to the one
in [15]. Indeed, our Claim 5.2 and [15, Theorem 2] are basically the same statement.
Our setting is different, but not so different that their proof fails completely. In fact, we
only need to modify their proof. Considering that the proof of [15, Theorem 2] takes
more than twenty pages, and that it ‘almost’ applies to our setting, we will only give an
outline of the proof of Claim 5.2 (and a detailed description of the modifications to the
proof of [15, Theorem 2]) in the appendix. This appendix should be read as a companion
to [15]. That is, we do not present a completely self-contained proof: the reader will
have to refer to [15] for some parts of the proof of the upper bound in Theorem 1.2(b).

Remark 1.9. Chen and Sakai [3] prove that the two-point function bound (1.5) holds
for models that satisfy Definition 1.1(c) if α ∈ (0, 2) ∪ (2,∞) and d > 3(2 ∧ α), if Λ is
sufficiently large, and if the following technical bound on the discrete second derivative
of the n-fold discrete convolution of D is satisfied:

|D∗(n)(0, x)− 1
2 (D∗(n)(x, y) +D∗(n)(x,−y))| ≤ CnL(2∧α) (‖y‖2 ∧ Λ)2

(‖x‖2 ∧ Λ)d+(2∧α)+2
, (1.7)
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for some C > 0 and for all x ∈ Zd and all y ∈ Zd such that ‖y‖2 ≤ 1
3‖x‖2. (We write

D∗(n)(x, y) :=
∑
x1,...,xn−1∈Zd

∏n−1
i=0 D(xi, xi+1) with x0 = x and xn = y.) In [3] it is

further shown that there exists a class of models that satisfy this bound, although it
should be noted that it is not known whether (1.7) holds for the canonical example (1.4).
Nevertheless, it is widely conjectured that the two-point function asymptotics (1.5) hold
for any model that satisfies Definition 1.1(c). Supporting evidence for this conjecture is
that the analogous bound holds without further assumptions for BRW when d > (2 ∧ α),
see (2.7) below, and for percolation models with one-step distributions as in Definition
1.1(a) and (b) when d > 6 and Λ is sufficiently large.

1.1 Notation and definitions

Parts of the proofs of Theorem 1.2(a) and (b) are presented separately, but they
are similar and use several analogous quantities. To make these similarities visible we
will denote analogous quantities for both models with the same symbols. That is, the
meaning of symbols will sometimes depend on the model under consideration.

General notation

For convenience of notation we will often write

γ(r) := P(0 −→ Qcr) for BRW,

and similarly
γ(r) := Ppc(0←→ Qcr) for LRP.

We will often state bounds in terms of the generic multiplicative constants C and c. We
always assume that 0 < c,C <∞ but otherwise the value of these constants may change
from line to line, even within equations.

When dealing with numbers, we will write a rather than bac or dae when it is clear
that the statement only holds for integers (e.g. in summation limits).

Notation for BRW

We write |T | for the number of vertices of the tree T , and in general, we write |S| or #S
for the cardinality of a set S. We say that v ∈ T is an ancestor of w ∈ T if the unique
path from the root of T to w passes through the vertex v. We say that w is a child of v if
v is the direct ancestor of w, and write (v, w). We write |v| = n if v is a vertex at graph
distance n from the root of T . We will abuse notation a bit and let (T, φ) also denote
the random realization of the BRW. We will also not distinguish the different probability
measures typographically, and just write P for whichever measure is appropriate in the
given context.

Notation for LRP

We abbreviate C(0) by C. Sometimes we abuse notation by letting C denote the induced
subgraph of the vertex set C in the percolation configuration. We write {x, y} ∈ C for the
event that {x, y} is an open edge with both end-points in C. Given a configuration ω and
a vertex set A, we define the restriction of ω to A as

ωA({x, y}) :=

{
ω({x, y}) if x, y ∈ A,
0 otherwise,

for all {x, y} ∈ Zd × Zd. That is, ωA is the configuration ω where all edges that do not
have both end-points in A have been closed. Given an event E we then define the event
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{E on A} as the set of all configurations ω such that ωA ∈ E. For connection events
we write A←→ to denote that the connection occurs on A. We similarly define {E off
A} := {E on Ac} and {E only on A} := E \ {E off A}.

We will frequently use the van den Berg-Kesten inequality (BK-inequality) [16],
which states that two increasing events that occur on edge-disjoint sets are negatively
correlated under the percolation measure. More precisely, we write A ◦ B if for each
ω ∈ A∩B there exists a set K(ω) ⊂ Zd×Zd such that ωK ∈ A and ωKc ∈ B. If moreover
A and B are increasing (i.e., Pp(A) ≤ Pq(A) if p < q), then the BK-inequality is that
Pp(A ◦B) ≤ Pp(A)Pp(B).

1.2 The structure of this paper

In Section 2 we prove the lower bound in Theorem 1.2 for BRW. Then, in Section
3 we state Proposition 3.1, and use it to prove Theorem 1.2 for both BRW and LRP. In
Section 4 we prove Proposition 3.1 for BRW, and in Section 5 we prove Proposition 3.1
for LRP subject to Claim 5.2. Finally, in Appendix A we give an outline of the proof of
Claim 5.2, closely following the proof of [15, Theorem 2].

2 Proof of the lower bound in Theorem 1.2(a)

In this section we prove the lower bound on the one-arm probability for critical BRW.
We prove the lower bound in two steps: first we show that the bound γ(r) ≥ cr−α/2 using
a truncation argument, and then we show that γ(r) ≥ cr−2 using the second-moment
method.

We start with the former. If a particle of the BRW at any time takes a step of length
greater than 2r + 1, then the BRW must hit Qcr. Moreover, we can restrict ourselves to
BRWs that have many children, so for any n we bound

γ(r) ≥ P(|T | ≥ n+ 1,∃(v, w) ∈ T such that ‖φ(w)− φ(v)‖∞ > 2r + 1).

Let Y be a (0,∞)-valued random variable whose law is the supremum norm of a single
step according to the one-step distribution D, i.e., Y is characterized by

P(Y ≥ t) =
∑
x∈Qct

D(0, x). (2.1)

It follows by independence of the steps that conditionally on the event {|T | ≥ n+ 1}, we
have the bound

γ(r) ≥ P(|T | ≥ n+ 1)(1− P(Y ≤ 2r + 1)n),

since the probability of the event that there is a large step is bounded from below by one
minus the probability that the first n steps of (T, φ) are not large. Since 1− x ≤ e−x, we
can further bound

(1− (1− P(Y > 2r + 1))n) ≥ 1− exp (−nP(Y > 2r + 1)) .

It follows from (1.2) and (1.3) that there exists a constant κ > 0 such that for all r,

P(Y > 2r + 1) =
∑

x∈Qc2r+1

D(0, x) ≥ κr−α.

Now since 1− e−x ≥ 1
2x when x < 1,

1− exp (−nP(Y > 2r + 1)) ≥ κn

2rα
, for all n <

2rα

κ
.

We thus have the bound
γ(r) ≥ κn

2rα
P(|T | ≥ n+ 1).
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To bound the right-hand side we use a special instance of the Hitting Time Theorem
[6]: Let (Yi) be a sequence of i.i.d. random variables with P(Yi = m − 1) = pm (where
{pm} is the offspring distribution of T ), and let Sn = Y1 + · · ·+ Yn. Then

P(|T | = n) =
1

n
P(Sn = −1).

Since Sn is a simple random walk and the Yi have mean one and variance σp, it easily
follows from the Local Central Limit Theorem (see e.g. [4, Theorem 3.5.2]) that

P(|T | ≥ n) � 1√
n
. (2.2)

Setting n = 2rα/κ− 1 we thus obtain the bound

γ(r) ≥ P(|T | ≥ 2rα/κ)(1− o(1)) ≥ cr−α/2. (2.3)

Now we prove the bound γ(r) ≥ cr−2. We use the second moment method. Let V(S)
denote the set of all particles of the BRW in the set S ⊆ Zd, i.e.,

V(S) := {v ∈ T : φ(v) ∈ S}. (2.4)

Let k be some sufficiently large number to be determined later, and define the random
variable

V := |V(Qkr \Qr)| = |V(Qkr)| − |V(Qr)|.

Clearly, V is supported on {0, 1, 2, . . . } and {V > 0} ⊆ {0 −→ Qcr}, so that by the
Paley-Zygmund inequality,

γ(r) ≥ P(V > 0) ≥ E[V ]2

E[V 2]
. (2.5)

Now define the BRW two-point function

τn(x) := E
[ ∑
v∈T :|v|=n

1{φ(v)=x}

]
.

It is an easy corollary of [17, Proposition 2.3] that τn(x) = D∗(n)(0, x). Therefore,

E[|V(Qr)|] =
∑
x∈Qr

∞∑
n=0

τn(x) =
∑
x∈Qr

∞∑
n=0

D∗(n)(0, x) =:
∑
x∈Qr

G(x), (2.6)

where G(x) is the RW Green’s function at its critical point, with step distribution D. For
the one-step distributions D considered in this paper it is a well-established fact (see e.g.
[3, 7, 9]) that when α ∈ (0, 2) ∪ (2,∞) and d > (2 ∧ α),

G(x) � ‖x‖(2∧α)−d2 , (2.7)

so it follows that
E[|V(Qr)|] �

∑
x∈Qr

‖x‖(2∧α)−d2 � r(2∧α), (2.8)

and therefore, if we choose k sufficiently large,

E[V ] = E[|V(Qkr)|]− E[|V(Qr)|] ≥ c(kr)(2∧α) − Cr(2∧α) = cr(2∧α).

To bound E[V 2] we define the three-point function

τn,m(x, y) := E
[ ∑
v∈T :|v|=n

∑
w∈T :|w|=m

1{φ(v)=x}1{φ(w)=y}

]
.
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It similarly follows from [17, Proposition 2.3] that

τn,m(x, y) = σ2
p

(n∧m)∑
k=0

∑
z∈Zd

D∗(k)(z)D∗(n−k)(x− z)D∗(m−k)(y − z).

Again using (2.7) to perform this sum we get when α ∈ (0, 2)∪ (2,∞) and d > (2 ∧ α) that

E[|V(Qkr)|2] =
∑

x,y∈Qkr

∞∑
n,m=0

τn,m(x, y)

= σ2
p

∑
x,y∈Qkr

∑
z∈Zd

G(z)G(x− z)G(y − z)

�
∑

x,y∈Qkr

∑
z∈Zd

‖z‖(2∧α)−d2 ‖x− z‖(2∧α)−d2 ‖y − z‖(2∧α)−d2 .

We evaluate the sum in two parts. If ‖z‖2 ≤ 10dr, then we first sum over x and y and
then z to obtain∑

‖z‖2≤10dr

∑
x,y∈Qkr

‖z‖(2∧α)−d2 ‖x− z‖(2∧α)−d2 ‖y − z‖(2∧α)−d2 � r3(2∧α).

If, on the other hand, ‖z‖2 > 10dr, then, since ‖x‖2 <
√
dr for all d ≥ 1, it follows that

1
2‖z‖2 < ‖x− z‖2 < 2‖z‖2, and similarly, 1

2‖z‖2 < ‖y − z‖2 < 2‖z‖2. Therefore,∑
x,y∈Qkr

∑
‖z‖2>10dr

‖z‖(2∧α)−d2 ‖x−z‖(2∧α)−d2 ‖y−z‖(2∧α)−d2 � r2d
∑

‖z‖2>10dr

‖z‖3(2∧α)−3d � r3(2∧α).

As a result
E[|V(Qkr)|2] � r3(2∧α), (2.9)

and it follows that E[V 2] ≤ Cr3(2∧α) as well.
Substituting the bounds on E[V ] and E[V 2] into (2.5) we obtain

γ(r) ≥ cr2(2∧α)

Cr3(2∧α)
≥ c

r2
. (2.10)

Taking the maximum among the bounds (2.3) and (2.10) completes the proof of the
lower bound of Theorem 1.2(a).

3 Proof of the upper bounds in Theorem 1.2

From here on we write ρ for the long-range one-arm exponent, i.e., ρ := 1
2 (4 ∧ α).

For both BRW and LRP we will prove the upper bound with an induction argument.
The following proposition provides the crucial bound for this induction:

Proposition 3.1. Let α ∈ (0, 2) ∪ (2,∞) and choose β such that

11

10(4 ∧ α)
< β <

(4 ∧ α) + 1

(4 ∧ α)
2 . (3.1)

For BRW with d > (2 ∧ α) that satisfies Definition 1.1, and for LRP with d > 3(2 ∧ α)
that satisfies Definition 1.1(c) and (1.5), there exists C1, c2 > 0 such that for all λ ∈ (0, 1]
there exists ε0(λ) such that for all ε ∈ (0, ε0),

γ(r(1 + λ)) ≤ C1√
εrρ

+ εβρrργ(r)γ
(
1
2λr
)

+ (1− c2)γ(r). (3.2)
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The one-arm exponent for mean-field LRP

Remark 3.2. (a) The constraints on the exponent β are of a technical nature. They
summarize a number of constraints that are needed in the proofs of Theorem 1.2 and
Proposition 3.1. In particular, these constraints guarantee that β satisfies −(β∧1/(2ρ)) <
1− 2βρ < 0 and 2βρ > 11

10 , which are needed in the proofs of both BRW and LRP, and that

β satisfies the constraint −1 < β
(

α
2α+2 − ρ

)
< 0, which is needed in the proof of LRP.

(b) The choice of ε0(λ) above should be so that ε0 < (λ4 )2ρ and small enough so that
(4.15) below holds for all ε < ε0 for BRW, and small enough so that (5.7) and (5.15) hold
for all ε < ε0 for LRP.

We will prove this proposition for BRW in Section 4, and for LRP in Section 5. Before
we do this, let us give the proof of the upper bounds in Theorem 1.2.

Proof of the upper bounds in Theorem 1.2 subject to Proposition 3.1. The proof is by in-
duction. For ease of notation, we will prove the claim for γ(r(1 + λ)). We assume that
there exists a constant M (to be determined below) such that

γ(s) ≤ M

sρ
∀s ≤ r. (3.3)

Choose λ sufficiently small so that

(1 + λ)ρ ≤ 2 and (1− c2)(1 + λ)ρ ≤ (1− 1
2c2). (3.4)

Now choose ε0(λ) as in Proposition 3.1. Fix M so large, and η ∈ (0, 1) so that

M−2η ≤ ε0(λ) (3.5)

and

2C1M
η−1 + 2

(
2

λ

)ρ
M1−2ηβρ ≤ 1

2c2. (3.6)

Note that such an M only exists when β satisfies 2ηβρ > 1. Recall the constraints on β
in (3.1) and observe that 2βρ ≥ 11

10 for all α > 0, so there always exists an η ∈ (0, 1) such
that this constraint is true.

For s = (r(1 + λ))ρ ≤ M the assumption (3.3) is true vacuously. We advance the
induction by applying Proposition 3.1 and (3.3)—(3.6) with ε = M−2η:

γ(r(1 + λ)) ≤ C1√
εrρ

+ εβρrργ(r)γ
(
1
2λr
)

+ (1− c2)γ(r)

≤ C1M
η 1

rρ
+

(
2

λ

)ρ
M2−2ηβρ 1

rρ
+ (1− c2)M

1

rρ

≤ M

(r(1 + λ))ρ

(
2C1M

η−1 + 2

(
2

λ

)ρ
M1−2ηβρ + 1− 1

2c2

)
≤ M

(r(1 + λ))ρ
.

This completes the proof of the upper bounds of Theorem 1.2.

4 The proof of Proposition 3.1 for BRW

Since the tree is critical it is unlikely that |T | is very large, but if |T | is very large,
then the BRW is likely to hit Qcr, so we choose ε > 0 sufficiently small (to be determined
later) and bound

γ(r(1 + λ)) ≤ P(0 −→ Qcr(1+λ), |T | ≤ εr
2ρ) + P(|T | > εr2ρ). (4.1)
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The one-arm exponent for mean-field LRP

For the second term in (4.1) we use (2.2), from which it follows that

P(|T | ≥ εr2ρ) ≤ C√
εrρ

, (4.2)

so this term contributes to the first term in (3.2).
To analyze the first term of (4.1) we split the event according to whether (T, φ)

contains a step longer than δr, with δ := ε1/(2ρ). That is, we define the event

Eδr := {∃(i, j) ∈ T such that ‖φ(j)− φ(i)‖∞ ≥ δr}.

If |T | ≤ εr2ρ, then it is not very likely that the BRW ever makes a jump longer than δr,
but if it does, then it has a good chance of hitting Qcr, so we bound

P(0 −→ Qcr(1+λ), |T | ≤ εr
2ρ) ≤ P(|T | ≤ εr2ρ, Eδr) + P(0 −→ Qcr(1+λ), |T | ≤ εr

2ρ, Ecδr).
(4.3)

We will first bound the first term. Let Y again denote a random variable whose law is
characterized by (2.1). There exists a constant ζ > 0 such that for all r,

P(Y > r) =
∑
x∈Qcr

D(x) ≤ ζr−α. (4.4)

Conditioning on |T | = n, the event Eδr is just the event that at least one of n i.i.d. random
variables with the law of Y exceeds δr, so that by the union bound and (2.2),

P(|T | ≤ εr2ρ, Eδr) =

εr2ρ∑
n=1

P(Eδr| |T | = n)P(|T | = n) ≤ P(Y > δr)

εr2ρ∑
n=1

nP(|T | = n)

≤ ζ

(δr)α

εr2ρ∑
n=1

P(|T | ≥ n) ≤ C

(δr)2ρ

εr2ρ∑
n=1

1√
n
≤ C

√
ε

δ2ρrρ
=

C√
εrρ

.

(4.5)

(Here we used for the first inequality that

N∑
n=1

P(|T | ≥ n) =

N∑
n=1

∞∑
i=n

P(|T | = i) ≥
N∑
n=1

nP(|T | = n),

and for the last equality we used that δ = ε1/(2ρ).) The term (4.5) contributes to the first
term in (3.2).

Now we bound the second term in (4.3). Fix L = εβr. For all integer j we define the
shell of outer radius j and thickness δr as

∂Qj,δr := {x ∈ Zd : j − δr < ‖x‖∞ ≤ j} = Qj \Qj−δr,

and we define the set

Xj := {v ∈ T : φ(v) ∈ ∂Qj,δr and all ancestors w of v satisfy φ(w) ∈ Qj−δr} (4.6)

and the random variable Xj := |Xj |. A moment’s reflection will convince the reader that
if the event {0 −→ Qcr(1+λ)} ∩ {|T | ≤ εr

2ρ} ∩ {Ecδr} occurs, and δ < 1
4λ, then either

B1 := {∃j ∈ [r(1 + 1
4λ), r(1 + 1

2λ)] s.t. 0 < Xj < Lρ} ∩ {0 −→ Qcr(1+λ)} ∩ E
c
δr

occurs, or

B2 := {Xj ≥ Lρ ∀j ∈ [r(1 + 1
4λ), r(1 + 1

2λ)]} ∩ {|T | ≤ εr2ρ} ∩ Ecδr
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occurs. Note in particular that on the event {0 −→ Qcr(1+λ)} ∩ E
c
δr it cannot happen that

Xj = 0 for some (or all) j ∈ [r(1 + 1
4λ), r(1 + 1

2λ)] because {0 −→ Qcr(1+λ)} ensures that
there exists a connection to Qcr(1+λ), while Ecδr ensures that this connection cannot skip
more than δr levels at a time, and if there is a particle at level j, then Xk 6= 0 for all
k ∈ {j + 1, . . . , j + δr}.

We bound P(B1) with a regeneration argument: let j0 be the first j in [r(1 + 1
4λ), r(1 +

1
2λ)] such that 0 < Xj ≤ Lρ. Given (T, φ), define the pair (Tj0 , φ) as the BRW that is
indexed by the tree Tj0 that is induced by the set of vertices

{v ∈ T : 0 −→ φ(v) and all ancestors w of v satisfy φ(w) ∈ Qj0−δr}.

Observe that on Ecδr this vertex set is equivalent to the set

Xj0 ∪ {w ∈ T : w is an ancestor of some v ∈ Xj0},

and that Xj0 is the set of leaves of Tj0 in ∂Qj0,δr.
We condition on the realizations of (Tj0 , φ):

P(B1) =
∑

(S,ψ) admissible

P
(
{0 −→ Qcr(1+λ)} ∩ E

c
δr | (Tj0 , φ) = (S, ψ)

)
P((Tj0 , φ) = (S, ψ)),

where ‘(S, ψ) admissible’ means that P((Tj0 , φ) = (S, ψ)) > 0. Note that ‘(S, ψ) admissible’
implies that {0 −→ Qcr} occurs for (S, ψ), since otherwise j0 would not be well-defined,
and thus (S, ψ) would not be admissible.

If {0 −→ Qcr(1+λ)} ∩ E
c
δr occurs, then there must exist some x ∈ Xj0 such that

{x −→ Qcr(1+λ)} occurs. The BRW coming out of any x ∈ Xj0 is an independent BRW

started at x, since the condition {Tj0 = S} tells us nothing about the BRWs of the
descendants of S besides their initial position. Moreover, since (S, ψ) is admissible, it
must be the case that ∂S, the set of leaves of S corresponding to Xj0 , satisfies |∂S| ≤ Lρ.
Moreover, ‖ψ(v)‖∞ ≤ r(1 + 1

2λ) for all v ∈ ∂S by our choice of j0. Therefore it follows
that

P
(
{0 −→ Qcr(1+λ)} ∩ E

c
δr | (Tj0 , φ) = (S, ψ)

)
≤
∑
v∈∂S

P(ψ(v) −→ Qcr(1+λ))

≤ Lργ
(
1
2λr
)
,

where the second inequality also uses translation invariance and monotonicity of the
one-arm event, i.e., P(x −→ Qca+b) ≤ P(0 −→ Qcb) for all x ∈ Qa. As a result,

P(B1) ≤ Lργ
(
1
2λr
) ∑
S admissible

P(Tj0 = S) ≤ Lργ
(
1
2λr
)
γ(r), (4.7)

where the second inequality follows since ‘S admissible’ implies that {0 −→ Qcr}. Because
L = εβr, this gives the second term in (3.2).

Finally we bound P(B2). Let

N := 1
4λ(εβ + δ)−1 = 1

4λ(εβ + ε1/(2ρ))−1.

For every integer 1 ≤ i ≤ N let

ji = r + 1
4λr + i(L+ δr) ∈ [r(1 + 1

4λ), r(1 + 1
2λ)].

We use these numbers below to (roughly) partition Qr(1+λ/2) \ Qr(1+λ/4) into N non-
overlapping annuli of width L.
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x

x′

0

∂Qj,δr

HL(x)

HL(x′)

2j + 1
2j + 1 − 2δr

Lρ/(2∧α)

2L
ρ
/(2∧

α
) +1

Figure 1: The annulus ∂Qj,δr with half-cubes HL(x) and HL(x′) for x, x′ ∈ ∂Qj,δr.

Let ιx ∈ {1, . . . d} be the index of the first component of x = (x1, . . . , xd) ∈ Zd that
satisfies ‖x‖∞ = |xιx |. Define the outward-facing half-cube

HL(x) := {y ∈ Zd : ‖x− y‖∞ ≤ Lρ/(2∧α) and |yιx | ≥ |xιx | and sign(yιx) = sign(xιx)}.
(4.8)

(See Figure 1.)
Recall the definition of Xj , (4.6), and define the random variables

Aj := #{w ∈ T : ∃v ∈ Xj s.t. v is an ancestor of w and φ(w) ∈ HL(φ(v))}

and
I := #{i : Xji ≥ Lρ and Aji < aL2ρ}, (4.9)

where a is a constant that will be determined later. Observe that on Ecδr, by the definition
of ji, Aj , and HL, the random variables Aji and Ajk count disjoint sets of particles when
i 6= k. So if |T | ≤ εr2ρ, then it follows deterministically that

J := #{i : Aji ≥ aL2ρ} < εr2ρ

aL2ρ
=

εr2ρ

a(εβr)2ρ
= a−1ε1−2βρ. (4.10)

The event B2 implies that all Xji ≥ Lρ and that |T | ≤ εr2ρ. Since the total number of ji’s
is N , it follows that

P(B2) ≤ P(I ≥ N − J). (4.11)

For (4.11) to be non-trivial (when ε is sufficiently small) we need that N � J � 1, which
implies that

− (β ∧ 1/(2ρ)) < 1− 2βρ < 0. (4.12)

The constraints on β in (3.1) ensure that this is the case.
We use Markov’s inequality to bound the right-hand side of (4.11). We write

E[I] =

N∑
i=1

P(Xji ≥ Lρ and Aji < aL2ρ). (4.13)
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We use the following claim to complete the proof:

Claim 4.1. For BRW with α ∈ (0, 2) ∪ (2,∞) and d > (2 ∧ α) that satisfies Definition 1.1,
there exists 0 < a < 1

2 such that

P(Xj ≥ Lρ and Aj < aL2ρ) ≤ (1− a)γ(r) (4.14)

for all δ > 0 and all integer j > r + δr.

Before we prove this claim, let us see how it completes the proof. By Markov’s
inequality, (4.13) and (4.14),

P(B2) ≤ P(I ≥ N − J) ≤ (1− a)N

N − J
γ(r)

≤ 1− a
1− 4

aλε
1−2βρ(εβ + ε1/(2ρ))

γ(r) ≤ (1− c3)γ(r)
(4.15)

where the last inequality holds if we can choose ε small enough so that the denominator
in the third inequality is arbitrarily close to one. That this is possible follows from (4.12).

Gathering together the bounds (4.1), (4.2), (4.3), (4.5), (4.7), and (4.15) gives the
bound in the proposition’s hypothesis. This completes the proof of Proposition 3.1 for
BRW.

Proof of Claim 4.1. We write

P(Xj ≥ Lρ and Aj ≤ aL2ρ) =

∞∑
n=Lρ

P(Aj ≤ aL2ρ | Xj = n)P(Xj = n). (4.16)

We again use the Paley-Zygmund inequality: if E[Aj | Xj = n] > aL2ρ, then

P(Aj > aL2ρ | Xj = n) ≥ (E[Aj | Xj = n]− aL2ρ)2

E[A2
j | Xj = n]

. (4.17)

Recall the definition of the half-cube HL in (4.8). By independence and translation
invariance of the BRW, the symmetries of D, and (2.8), there exists a constant 0 < b ≤ 1
such that

E[Aj | Xj = n] = nE[|V(HL(0))|] ≥ 1
2nE[|V(QLρ/(2∧α))|] ≥ bnLρ. (4.18)

Again using translation invariance and independence, the bounds (2.8) and (2.9), and
using in addition the fact that two vertices counted in Aj can either have the same parent
or different parents in Xj , we bound

E[A2
j | Xj = n] = n(n− 1)E[|V(HL(0))|]2 + nE[|V(HL(0))|2]

≤ n2E[|V(QLρ/(2∧α))|]2 + nE[|V(QLρ/(2∧α))|2]

≤ Cn2L2ρ + C ′nL3ρ ≤ Kn2L2ρ,

(4.19)

where the last bound only holds when n ≥ Lρ. We can assume that K ≥ 1 and choose
a = b/(K + 1) so that the condition E[Aj | Xj = n] > aL2ρ is satisfied. Substituting (4.18)
and (4.19) into (4.17) we obtain that for all n ≥ Lρ,

P(Aj ≤ aL2ρ | Xj = n) ≤ 1− (b− a)n2L2ρ

Kn2L2ρ
= 1− a.

Substituting this bound into (4.16) we get

P(Xj ≥ Lρ and Aj ≤ aL2ρ) ≤ (1− a)P(Xj ≥ Lρ) ≤ (1− a)γ(r),

since {Xj ≥ Lρ} ⊆ {0 −→ Qcr} whenever j > r + δr. This completes the proof of
Claim 4.1.
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5 The proof of Proposition 3.1 for LRP

The proof of Proposition 3.1 for LRP that we give in this section is similar to the
proof for BRW in the previous section, so we will supply fewer details in some of the
calculations. It should however be noted that LRP is a more complicated model than
BRW, because it has complicated dependencies. These dependencies will mostly manifest
themselves in Claim 5.2 below.

To prove the one-arm exponent for high-dimensional finite-range percolation, [15]
uses the Barsky-Aizenman bound [2, 8]

Ppc(|C| ≥ n) � 1√
n

(5.1)

to establish an ersatz upper bound γ(r) ≤ Ppc(|C| ≥ r/Λ) ≤ C/
√
r (where Λ is the

maximal edge length). Although (5.1) also holds for LRP [12, Theorem 1.3], the bound
γ(r) ≤ C/

√
r does not, because there is no maximal edge length (and because it contra-

dicts the lower bound in Theorem 1.2(b) when α < 1).
In the proof of Proposition 3.1 we will need an ersatz upper bound on γ(r) in several

places. The following lemma establishes such a bound:

Lemma 5.1. For LRP with d > 3(2 ∧ α) that satisfies Definition 1.1(c), let ξ = α
2α+2 .

There exists C > 0 such that

γ(r) ≤ C

rξ
. (5.2)

Proof. We use (5.1) to bound

γ(r) ≤ Ppc(|C| > r2ξ) + Ppc(|C| ≤ r2ξ, 0←→ Qcr)

≤ C

rξ
+ Ppc(|C| ≤ r2ξ,∃{v, w} ∈ C such that ‖v − w‖∞ > r1−2ξ).

(5.3)

To bound the second term we define the `-truncated cluster C̃` as the subgraph of C
with vertex set

{x ∈ C : 0←→ x with edges of ‖ · ‖∞-length < `},

and with the set of edges that this vertex set induces in C and that are shorter than `
as its edge set. That is, C̃` is the part of the cluster that can be reached from 0 by only
using open edges of length less than `.

We set ` = r1−2ξ and condition on the size of |C̃r1−2ξ |. Under this conditioning,
independent percolation models have a certain independence for short and long edges:
knowing C̃r1−2ξ tells us which vertices can be reached from the origin via ‘short’ edges
(i.e., edges of length less than r1−2ξ) but it does not provide us with any information
about the ‘long’ edges attached to these vertices. Since moreover the status of edges is
independent under Ppc , and Ppc is translation invariant, we bound

Ppc(∃{v, w} ∈ C s.t. ‖v − w‖∞ > r1−2ξ, |C̃r1−2ξ | ≤ r2ξ)

=

r2ξ∑
s=1

Ppc(∃{v, w} ∈ C s.t. ‖v − w‖∞ > r1−2ξ | |C̃r1−2ξ | = s)Ppc(|C̃r1−2ξ | = s)

≤ Ppc(∃x ∈ Qcr1−2ξ s.t. {0, x} is open)

r2ξ∑
s=1

sPpc(|C̃r1−2ξ | = s).

(5.4)

Using (4.4) we bound

Ppc(∃x ∈ Qcr1−2ξ s.t. {0, x} is open) ≤
∑

x∈Qc
r1−2ξ

pcD(0, x) ≤ Cr−(1−2ξ)α. (5.5)
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Using (5.1) we bound

r2ξ∑
s=1

sPpc(|C̃r1−2ξ | = s) ≤
r2ξ∑
s=1

Ppc(|C̃r1−2ξ | ≥ s) ≤
r2ξ∑
s=1

Ppc(|C| ≥ s) ≤
r2ξ∑
s=1

C√
s
≤ Crξ. (5.6)

Combining (5.3), (5.4), (5.5), and (5.6), and choosing ξ = α
2α+2 , we obtain

γ(r) ≤ C
(
r−ξ + rξ−(1−2ξ)α

)
≤ Cr−ξ.

Proof of Proposition 3.1 for LRP subject to Claim 5.2 below. Recall that ρ = 1
2 (4 ∧ α). It

follows from Lemma 5.1 that it suffices to show that Proposition 3.1 holds for ε ≤ rξ−ρ �
1, since

γ(r(1 + λ)) ≤ C

rξ
≤ C√

εrρ
. (5.7)

From here on we will thus assume that ε > rξ−ρ (this will be important for the validity
of Claim 5.2 below). Using (5.1) again we bound

γ(r(1 + λ)) ≤ C√
εrρ

+ Ppc(0←→ Qcr(1+λ), |C| ≤ εr
2ρ), (5.8)

so the first term here contributes to the first term in (3.2).
To analyze the second term of (5.8) we split the event according to whether C contains

an open edge longer than δr, with δ := ε1/(2ρ). That is, we define the event

Eδr := {∃{x, y} ∈ C such that ‖x− y‖∞ ≥ δr}.

We bound

Ppc(0←→ Qcr(1+λ), |C| ≤ εr
2ρ) ≤ Ppc(|C| ≤ εr2ρ, Eδr) + Ppc(0←→ Qcr(1+λ), |C| ≤ εr

2ρ, Ecδr).
(5.9)

We start with the first term. Consider the δr-truncated cluster C̃δr. As explained in
the proof of Lemma 5.1 above, the long and short edges are conditionally independent
on C̃δr, i.e.,

Ppc(|C| ≤ εr2ρ, Eδr) ≤ Ppc(|C̃δr| ≤ εr2ρ, Eδr)

=

εr2ρ∑
n=1

Ppc(Eδr | |C̃δr| = n)Ppc(|C̃δr| = n)

≤ Ppc(∃x ∈ Qcδr s.t. {0, x} is open)

εr2ρ∑
n=1

nPpc(|C̃δr| = n)

≤ C

(δr)α

εr2ρ∑
n=1

nPpc(|C̃δr| = n),

(5.10)

where the second inequality follows from translation invariance of the model and the
union bound, and the third from (5.5). Applying the same argument as used in (5.6) to
the right-hand side of (5.10) yields

Ppc(|C| ≤ εr2ρ, Eδr) ≤
C

(δr)2ρ

εr2ρ∑
n=1

1√
n
≤ C

√
ε

δ2ρrρ
=

C√
εrρ

, (5.11)

where for the equality we used that δ = ε1/(2ρ). The term (5.11) contributes to the first
term in (3.2).
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Now we bound the second term in (5.9). Fix L = εβr. Observe that the constraints
(3.1) on β ensure that 1� L� r when ε ≥ rξ−ρ (that L� r simply follows from β > 0).
We define the set

Xj :=
{
x ∈ ∂Qj,δr : 0 Qj←→ x

}
(5.12)

and the random variable Xj := |Xj |. If the event {0 ←→ Qcr(1+λ)} ∩ {|C| ≤ εr2ρ} ∩ Ecδr
occurs and δ < 1

4λ, then either

B1 := {∃j ∈ [r(1 + 1
4λ), r(1 + 1

2λ)] s.t. 0 < Xj < Lρ} ∩ {0←→ Qcr(1+λ)} ∩ E
c
δr

occurs, or

B2 := {Xj ≥ Lρ ∀j ∈ [r(1 + 1
4λ), r(1 + 1

2λ)]} ∩ {|C| ≤ εr2ρ} ∩ Ecδr

occurs.
We start with the bound on Ppc(B1): let j0 be the first j in [r(1 + 1

4λ), r(1 + 1
2λ)] such

that 0 < Xj ≤ Lρ. As in [15], we define the cluster until level j as Cj := C(0;Qj) as the
connected cluster of the origin in the modified configuration where all edges that do
not have both vertices in Qj are closed. That is, an edge {x, y} is in Cj if {x, y} is in the
cluster of the origin in ωQj . Observe that Xj0 is the vertex set of Cj0 in ∂Qj0,δr.

We condition on the realizations of Cj0 (i.e., we condition on all the information
needed to determine Cj0 : the cluster until level j0, and all the closed edges touching this
cluster), to obtain

Ppc(B1) =
∑

S admissible

Ppc

(
{0←→ Qcr(1+λ)} ∩ E

c
δr | Cj0 = S

)
Ppc(Cj0 = S),

where ‘S admissible’ means that Ppc(Cj0 = S) > 0. Observe that by the definition of
Cj0 , any admissible S must satisfy S ∩ Qcr 6= ∅. If {0 ←→ Qcr(1+λ)} ∩ E

c
δr occurs, then

there must exist a connection from x to Qcr(1+λ) ‘off Cj0 ’ for some x ∈ Xj0 , so if we write
∂S = S ∩ ∂Qj0,δr, then

Ppc

(
{0←→ Qcr(1+λ)} ∩ E

c
δr | Cj0 = S

)
≤
∑
x∈∂S

Ppc

(
x←→ Qcr(1+λ) off S | Cj0 = S

)
.

We can tell whether j = j0 by inspecting Cj (since j0 is the first j such that 0 < Xj < Lρ),
so conditioning on {Cj0 = S} reveals no information about the configuration ‘off S’.
Therefore,

Ppc

(
x←→ Qcr(1+λ) off S | Cj0 = S

)
= Ppc

(
x←→ Qcr(1+λ) off S

)
≤ Ppc

(
x←→ Qcr(1+λ)

)
,

where the inequality follows by monotonicity of the one-arm event. It follows that

Ppc

(
0←→ Qcr(1+λ) | Cj0 = S

)
≤
∑
x∈∂S

Ppc

(
x←→ Qcr(1+λ)

)
≤ Lργ

(
1
2λr
)
,

where the second inequality also uses translation invariance and monotonicity of γ(r).
As a result,

Ppc(B1) ≤ Lργ
(
1
2λr
) ∑
S admissible

Ppc(Cj0 = S) ≤ Lργ
(
1
2λr
)
γ(r), (5.13)

since ‘S admissible’ implies that {0←→ Qcr}. This gives the second term in (3.2).

Finally we bound Ppc(B2). The same computations as in Section 4 will complete the
proof, but we do need a percolation variant of Claim 4.1. Let

N := 1
4λ(εβ + δ)−1 = 1

4λ(εβ + ε1/(2ρ))−1.
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Recall that L = εβr and for every integer 1 ≤ i ≤ N let

ji = r + 1
4λr + i(L+ δr) ∈ [r(1 + 1

4λ), r(1 + 1
2λ)].

Recall the definition of Xj , (5.12), and define the random variable

Aj := #{y ∈ Qj+L \Qj : 0←→ y}.

Claim 5.2. For LRP with α ∈ (0, 2) ∪ (2,∞) and d > 3(2 ∧ α) that satisfies Definition
1.1(c) and (1.5) there exist constants 0 < a < 1

2 such that for any j sufficiently large, any
θ ∈ (0, 1), and any L ≥ jθ,

Ppc(Xj ≥ Lρ and Aj < aL2ρ) ≤ (1− a)γ(r). (5.14)

With this claim we can complete the proof of Proposition 3.1 for LRP. Earlier, we
chose ε > rξ−ρ, L = εβr, and j ∈ [r(1 + 1

4λ), r(1 + 1
2λ)], so by our constraints on β in (3.1)

we can find a θ > 0 such that L ≥ jθ. Define I and J as in the BRW case (see (4.9) and
(4.10)). Then, by Markov’s inequality and Claim 5.2,

Ppc(B2) ≤ Ppc(I ≥ N − J) ≤ (1− a)N

N − J
γ(r)

≤ 1− a
1− 4

aλε
1−2βρ(εβ + ε1/(2ρ))

γ(r) ≤ (1− c3)γ(r)
(5.15)

where the last inequality holds if we can choose ε small enough so that the denominator
in the third inequality is arbitrarily close to one. The constraint (3.1) on β guarantees
that we can do this.

Gathering together the bounds (5.8), (5.9), (5.11), (5.13), and (5.15) gives the bound
in the proposition’s hypothesis for ε > rξ−ρ.

All that remains is to prove Claim 5.2. We only give an outline of the proof of Claim
5.2 here, since, as mentioned before, the proof of the claim is very similar to the proof of
[15, Theorem 2]. In the appendix we give all the necessary modifications to that proof so
that it proves Claim 5.2, but we omit many details.

A An outline of the proof of Claim 5.2

This appendix contains an abridged version of the proof of [15, Theorem 2]. It is not
self-contained: it is intended to be read alongside [15]. Indeed, the difference between
the proof of [15, Theorem 2] and what we need is only superficial. The proof makes
hardly any direct use of properties of percolation that do not also hold for LRP, and in
the few places where it does, these properties are not crucial.

Let us start with some general remarks about the modifications. The main idea of
the proof of [15, Theorem 2] is the same as the proof of Claim 4.1 above. Namely, we
use the second moment method to bound the probability that there are many vertices
on the boundary Xj but that they have a combined cluster in Qj+L \Qj that is not too
big. For BRW we could use the independence of the offspring of different particles to
bound the first and second moment. For percolation this independence does not exist,
because two vertices may for instance connect to the same cluster. To deal with these
dependencies, Kozma and Nachmias perform a ‘regularity analysis’ on the boundary:
they show that the clusters emanating from most vertices on the boundary are close
to independent (i.e., ‘regular’) by showing that there are only a few vertices that are
not regular. (Roughly speaking, a vertex in C is regular if it has close to the expected
number of other vertices in C in it’s vicinity, and if these vertices are ‘nicely spread out’.)
For the proof of Claim 5.2 we need a similar analysis.
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One of the first things one might notice when comparing this paper with [15] is that
[15] frequently states events, summations, etc. in terms of ∂Qr, the surface of the cube
Qr. In our setting ∂Qr does not mean very much, since LRP can produce very sparse
clusters that may leave many surfaces ∂Qr empty while still reaching a great distance.
For this reason we consider Qcr instead when defining the one-arm event. In [15] also
uses the surface ∂Qj in regeneration arguments. Clearly that does not work for LRP
either, since Xj and Aj are defined in terms of ∂Qj,δr. The problem is easily solved by
replacing ∂Qj with ∂Qj,δr.

Before we proceed with a detailed treatment, let us remark that these are the key
modifications to the proof of [15, Theorem 2]:

• Replace ∂Qr with Qcr in the definition of the one-arm event.

• Replace ∂Qj with ∂Qj,δr when using ∂Qj as a regeneration surface.

• Replace the ersatz bound γ(r) ≤ C/
√
r (which does not hold for LRP) with the bound

from Lemma 5.1, γ(r) ≤ C/rξ with ξ = α
2α+2 (which does hold). To accommodate

this replacement we need to ‘stretch’ some length scales by a factor 1/ξ.

• Replace the two-point function bound Ppc(x ←→ y) � ‖x− y‖2−d2 with the bound

Ppc(x←→ y) � ‖x− y‖(2∧α)−d2 (i.e., (1.5)).

• Replace exponents that are integer multiples of 2 with exponents that are multiples
of (2 ∧ α) if the objects in question are related to the volume of a cluster, and
replace them with multiples of ρ if the exponents are related to the one-arm event.
(Powers of logarithms will remain unchanged.)

• Replace x+QL by HL,j(x) (as defined in (A.1) below) where needed.

In what follows, we give the required modifications to the proof of [15, Theorem 2]
per section (the proof spans [15, Sections 3, 4, and 5]). For ease of reference we will
maintain the numbering scheme of [15] in this appendix, but affix the letter ‘M’ to the
label to indicate that it is a modification.

Modifications for [15, Section 3]

This section proves [15, Lemma 1.1], which states a lower bound on a connection
probability. This bound is not used directly. What is used is the lemma’s corollary, [15,
Corollary 3.2]. This corollary is used only in the proof of [15, Lemma 4.5]. It turns out
that for LRP the bound that is needed in the proof of [15, Lemma 4.5] is trivial, since
connection probabilities in LRP can always be bounded from below by the probability of
a connection by a single edge, which is large enough. Hence we may skip [15, Section 3].

Modifications for [15, Section 4.1]

This section states the regularity result [15, Theorem 4], modified below. Roughly
speaking, this theorem states that it is unlikely that the cluster has many ‘dense patches’
on the boundary of a cube Qj .

We need to make several modifications in this section. We start by redefining ‘typical
clusters’:

Ts(x) := {|C(x) ∩ (x+Qs)| < s2(2∧α) log7 s}.

Recall that C(x;Qj) is defined as the connected cluster of the vertex x in the modified
configuration where all edges that do not have both vertices in Qj are closed. With ∂Qj,δr
replacing ∂Qj and the new definition of Ts(x), the definitions of s-bad and K-irregular
are essentially the same:
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Definition M4.1. For x ∈ ∂Qj,δr and positive integers s and K:

(i) We say that x is s-bad if C(x;Qj) satisfies

Ppc(Ts(x) | C(x;Qj)) ≤ 1− e− log2 s.

(ii) We say that x ∈ ∂Qj,δr is K-irregular if there exists s ≥ K such that x is s-bad.

We redefine the number of K-irregular vertices at level j,

XK−irr
j := #{x ∈ ∂Qj,δr : 0 Qj←→ x and x is K-irregular}.

With these redefinitions we can leave [15, Theorem 4] otherwise unchanged:

Theorem M4. There exist constants C, c > 0 such that for any K sufficiently large and
any j and M we have

Ppc
(
Xj ≥M and XK−irr

j ≥ 1
2Xj

)
≤ Cjde−c log

2M .

Modifications for [15, Section 4.2]

To verify whether a vertex x is K-regular we need to inspect the entire percolation
configuration. In this section, the notion of K-local-regularity is introduced, and it is
shown that K-local-regularity implies K-regularity. The advantage of K-local-regularity
is of course that we only need to inspect a finite region around x to verify whether x is
K-locally-regular. We again need to make several modifications.

Recall from Lemma 5.1 that γ(r) ≤ C/rξ with ξ = α
2α+2 . We redefine what it means to

be locally regular:

Definition M4.2. For x ∈ ∂Qj,δr and a positive integer s we say that the event T loc
s (x)

occurs if the following two events occur:

a. For all y ∈ x+Qs,

|C(y;x+Qs2d/ξ) ∩ (x+Qs)| < s2(2∧α) log4 s.

b. There exist at most log3 s disjoint open paths starting in x + Qs and ending at
x+Qc

s2d/ξ
.

Claim M4.1. For any x ∈ Zd and positive integer s,

T loc
s (x)⇒ Ts(x).

The proof of [15, Claim 4.1] holds, mutatis mutandis.
We continue.

Definition M4.3. For x ∈ ∂Qj,δr and positive integers s and K we define:

(i) We say that a cluster C in B := (x+Qs4d2/ξ) ∩Qj is a ‘spanning cluster’ if x ∈ C or
if C ∩Qj intersects both x+Qc

s4d2/ξ
and x+Qs2d/ξ .

(ii) We say that x is s-locally-bad if there exist spanning clusters C1, . . . , Cm in B such
that

Ppc(T loc
s (x) | C1, . . . , Cm) ≤ 1− e− log2 s.

(iii) We say that x ∈ ∂Qj,δr is K-locally-irregular if there exists s ≥ K such that x is
s-locally-bad.
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We modify [15, Claim 4.2]:

Claim M4.2. For any x ∈ ∂Qj,δr and a positive s we have that if x is s-locally-good, then
x is s-good.

Claim M4.2 has the same proof as [15, Claim 4.2], mutatis mutandis.

We redefine

XK−loc−irr
j := #{x ∈ ∂Qj,δr : 0 Qj←→ x and x is K-locally-irregular}.

With these new definitions, we can leave [15, Theorem 5] otherwise unchanged:

Theorem M5. There exist constants C > c > 0 such that for any K sufficiently large
and any j and M we have

Ppc
(
Xj ≥M and XK−loc−irr

j ≥ 1
2Xj

)
≤ Cjde−c log

2M .

Theorem M4 follows directly from Theorem M5 and Claim M4.2.

Modifications for [15, Section 4.3]

This section states two lemmas that give a large deviations type bound on the probability
that a vertex is s-locally bad. We state two modified lemmas:

Lemma M4.3. For x ∈ ∂Qj,δr and positive integer s we have

Ppc(x is s-locally-bad) ≤ Ce−c log
4 s.

Lemma M4.4. There exists some constant c > 0 such that for all s > 0 and λ > 0 we
have

Ppc(max
y∈Qs

|C(y) ∩Qs| > λs2(2∧α)) ≤ sd−3(2∧α)e−cλ.

Lemma M4.4 is used to prove Lemma M4.3. Note that the exponents 4 and 6 in [15,
Lemma 4.4] have been replaced here with 2(2 ∧ α) and 3(2 ∧ α), corresponding to the
fact that this is a volume estimate. Write Cmax for the maximum in Lemma M4.4. The
proof of Lemma M4.4 is the same as [15, Lemma 4.4], except that we now use the bound

Epc [Ckmax] ≤ k!Ck1 s
d−3(2∧α)+2(2∧α)k,

which follows from [1, §4.3, Lemma 2] (Aizenman’s η is (2 ∧ α) − 2 in our case, corre-
sponding to the assumption (1.5)).

The proof of [15, Lemma 4.3] does not work for Lemma M4.3 because it uses the
bound γ(r) ≤ Ppc(|C| ≥ r/Λ) ≤ C/

√
r, which does not hold for LRP. Therefore we need

to redo two of the bounds using Lemma 5.1, but the rest of the proof holds, mutatis
mutandis.

The first of these bounds is used to bound the probability of the complement of the
event in Definition M4.2(b): We use (5.2), translation invariance, monotonicity of the
one-arm event, and the union bound to bound

Ppc(x+Qs ←→ x+Qcs2d/ξ) ≤ Cs
dPp(0←→ Qcs2d/ξ−s) ≤

Csd

(s2d/ξ − s)ξ
≤ C

s
.

The second bound goes along exactly the same lines: the probability that there exist at
least log3 s spanning clusters is at most(

Cs2d/ξ
)log3 s (

C(s4d
2/ξ − s2d/ξ)−ξ

)log3 s

≤ Ce−c log
4 s.

All other parts of the proof are the same.
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Modifications for [15, Section 4.4]

This section presents an exploration process that is used to define two martingales.
These martingales are used to control the number of vertices and s-locally-bad vertices
on the boundary of Qj . To define the exploration for LRP we need a different notion of a
connection event ‘through’ a set B:

For a vertex x and vertex sets A and B, we write {x B
! A} for the event that there

exists a path of open edges from x to A such that all vertices along that path, except
possibly the terminal vertex of the path in A, belong to B. Another way of looking at
this event for the case A ∩B = ∅, is that there exists a path from x to some y ∈ B in the
modified percolation configuration where all edges that do not have both end-points in
B are are made closed, and there exists an open edge from y to a vertex z ∈ A in the
unmodified configuration.

We redefine the set of boxes

G(w) := {(Q2s4d2/ξ + v) ∩Qj : v ∈ (4s4d
2/ξ + 1)Zd + w} \ ∅,

and the sets of explored and active boxes: at time 1,

E1 := {q ∈ G(w) : q ∩Qcj−δr = ∅},
A1 := {q ∈ G(w) : ∃x ∈ q s.t. 0 ∪E1! x} \ E1,

and at time i:
Ei := Ei−1 ∪ {qi},

Ai :=
(
Ai−1 ∪ {q ∈ G(w) : ∃x ∈ q s.t. 0 ∪Ei! x}

)
\ Ei.

We say that q ∈ G(w) is s-bad if there exists an x ∈ ∂Qj,δr that is s-locally bad and such
that (x+Qs4d2/ξ) ∩Qj ⊂ q. The definition of the filtration {Fi} and the martingale (βi)
remain unchanged: The filtration {Fi} is the configuration restricted to

⋃
j≤iEj , and

βi = βi−1 + 1{qi is s-bad} − Ppc(qi is s-bad | Fi−1),

with β1 = 0. We redefine the martingale (γi): start with γ1 = 0 and let

γi = γi−1 + 1{
∃x∈qi∩∂Qj,δr : 0∪Ei!x

} − Ppc(∃x ∈ qi ∩ ∂Qj,δr : 0 ∪Ei! x | Fi−1).

We restate [15, Lemma 4.5] and its proof here with the needed modifications:

Lemma M4.5. There exist constants C1 > 0 and c1 > 0 such that for any j, s, and M we
have

Ppc(c1e−C1 log2 sτ ≥ Xj ≥M) ≤ Ce−cM+C log2 s,

where τ is the stopping time of the exploration defined above.

Proof of Lemma M4.5. For every i,

Xj ≥ γi +

i∑
k=1

Ppc(∃x ∈ qk ∩ ∂Qj,δr : 0 ∪Ek! x | Fk−1).

Since we explored qk, there exists some z ∈ qck such that {0 ∪Ek−1←→ z} occurs and {z qk! x}
occurs, so given Fk−1, the probability that there exists x ∈ qk∩∂Qj,δr such that {0 ∪Ek! x}
occurs is at least the probability of {z qk! x}. The probability of this event is bounded
from below by the probability that there exists an open edge between z and x, which, by
Definition 1.1(c), is at most c(s4d

2/ξ)−d−α ≥ c2e−C2 log2 s. From here the proof continues
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as in [15]. Observe that this short argument completely circumvents the calculations in
[15, Section 3] (but it only works for LRP).

Redefining
Xs-loc-bad
j := #{x ∈ ∂Qj,δr : x is s-locally-bad}

and

Xs-loc-bad
j (w) := #{x ∈ ∂Qj,δr : x is s-locally-bad, and ∃q ∈ G(w) s.t. x ∈ q},

the statement and proof of [15, Lemma 4.6] becomes

Lemma M4.6. There exist constants C3 > 0 and c3 > 0 such that for any j, s, w, and M ,
and for any real number µ ≥ C3e−c3 log4 s we have

Ppc(µ
−1Xs-loc-bad

j (w) ≥ τ ≥M) ≤ Cs8d
2/ξµ−2 exp

(
−cs−8d

2ξµ2M
)
.

The proof is basically the same as given in [15], but the proof given there contains
a small mistake, so we give a short version of the proof to indicate how the different
exponents come about.

Proof. By Lemma M4.3 it follows that

Ppc(qk is bad | Fk−1) ≤
∑

x : x+Q
s4d

2/ξ⊂qk

Ce−c log
4 s ≤ 1

2C3e−c3 log4 s.

It thus holds deterministically that

Xs-loc-bad
j (w) ≤ (2s4d

2/ξ + 1)d|{k ≤ τ : qk is bad}| ≤ (2s4d
2/ξ + 1)d

(
βτ + 1

2C3e−c3 log4 sτ
)

(In [15] this bound is stated with a factor sd−1 multiplying only the first term, but this
cannot hold deterministically even in the nearest neighbor case. It does not matter: the
polynomial factor is negligible compared to the exponential factor.) Now Xs-loc-bad

j (w) ≥
µτ implies

βτ ≥ cs−4d
3/ξτ

(
µ− 1

2C3e−c3 log4 s
)
≥ c4s−4d

3/ξµτ.

Continuing the proof with this bound we find

Ppc(µ
−1Xs-loc-bad

j (w) ≥ τ ≥M) ≤ Ppc
(
c−14 s4d

3/ξµ−1βτ ≥ τ ≥M
)

≤
∞∑
i=M

Ppc(βi ≥ c4s−4d
3/ξµi)

≤
∞∑
i=M

exp
(
−cs−8d

3/ξµ2i
)

≤ Cs8d
2/ξµ−2 exp

(
−cs−8d

2ξµ2M
)
.

Theorem M5 is proved using Lemmas M4.5 and M4.6, and goes as in [15], mutatis
mutandis.

Modifications for [15, Section 5]

This section uses a second moment method to bound the probability that the percolation
cluster contains many vertices on the boundary of Qj , given that there are precisely M
K-regular vertices. This is combined with Theorem M4 (which bounds the probability
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that there are too manyK-irregular vertices) to give the desired bound. The only changes
needed in this section pertain to the volume and one-arm exponents (i.e., replacing 2’s
with (2 ∧ α)’s or ρ’s).

We start by defining the shifted outward-facing half-cube

HL,j(x) := {y ∈ Zd : ‖x+ sign(xιx)(j − ‖x‖∞)eιx − y‖∞ ≤ Lρ/(2∧α)

and |yιx | > j and sign(yιx) = sign(xιx)}, (A.1)

where eιx is the unit vector in direction ιx (similar to (4.8)). Observe that HL,j(x) ⊂
Qj+L \Qj for all x ∈ ∂Qj,δr (this is the result of the extra outward shift with respect to
(4.8)).

We redefine the notion of (j, L,K)-admissible to be a pair of vertices (x, y) that
satisfies:

• x ∈ ∂Qj,δr and y ∈ HL,j(x).

• 0 Qj←→ x and x←→ y.

• x is K-regular.

• There exists a vertex x̃ ∈ Qcj such that {x, x̃} is an open and pivotal edge for the
event 0←→ y. (If there is more than one such edge, choose the lexicographically
first one).

With Y (j, L,K) denoting the number of pairs (x, y) that are (j, L,K)-admissible, [15,
Lemmas 5.1 and 5.2] can now be restated as follows:

Lemma M5.1. Let K be sufficiently large, and let j, M and L be integers such that
M ≥ Lρ/2. Then there exists a constant c = c(K) > 0 such that

Epc [Y (j, L,K)1{XK-reg
j =M}] ≥ cMLρPpc(X

K-reg
j = M).

Lemma M5.2. Let j, K, M and L be integers. Then

Epc [Y (j, L,K)21{XK-reg
j =M}] ≤ CM

2L2ρPpc(X
K-reg
j = M).

From here on the proof of Claim 5.2 easily follows: Using Theorem M4 we bound

Ppc(Xj ≥ Lρ and Aj ≤ aL2ρ) ≤ Ppc(Xj ≥ Lρ and XK-irr
j ≥ 1

2L
ρ)

≤ Cjde−c log
2 j +

∑
M≥Lρ/2

Ppc(X
K-reg
j = M and Aj ≤ cL2ρ)

(A.2)

(here we also used that L ≥ jθ for some θ > 0.)
Now we use that Aj ≥ Y (j, L,K) by definition,1 and we use the Paley-Zygmund

inequality and Lemmas M5.1 and M5.2 to bound

Ppc(X
K-reg
j = M and Aj ≤ cL2ρ) ≤ (1− c′)Ppc(X

K-reg
j = M).

Substituting this bound in (A.2), using that the exponential term is negligible and using
that {XK-reg

j ≥ 1
2L

ρ} implies {0←→ Qcr}, we complete the proof of Claim 5.2.

It remains to prove Lemmas M5.1 and M5.2. These proofs can be given exactly as in
[15] if we consistently adhere to the following substitutions:

1 Note that there is a small mistake in [15]: in [15, (5.2)] it is claimed that A ≥ Y . Using their definitions
this inequality does not hold since the random variable Y (j, L,K) may count vertices outside of Qj+L \Qj ,
while Aj does not. Our use of HL,j(x) rather than x+QL in the definition of (j, L,K)-admissible takes care
of this.
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• As above, we should always use x ∈ ∂Qj,δr instead of x ∈ ∂Qj and y ∈ HL,j(x)
instead of y ∈ x+QL.

• Two-point function estimates of the form ‖x − y‖2−d2 should be replaced with

‖x − y‖(2∧α)−d2 .

• Corresponding to the above two substitutions, all exponents pertaining to volume
estimates should be replaced with their corresponding multiples of ρ if they arise
due to summing over sets of the form HL,j(x), and with (2 ∧ α) if they are due to
bounds that use Ts.

For instance, the estimate [15, (5.5)] becomes∑
y∈HL,j(x)

Ppc(x
′ ←→ y only on A) ≤ CLρ

∑
z∈A
‖z − x′‖(2∧α)−d2 ,

and the claim [15, (5.7)] becomes

|At| < 22(2∧α)(t+1)(t+ 1)7 ∀t such that 2t ≥ K/2.

Indeed, in these final steps we estimate the first and second moment of the number of
(j, L,K)-admissible pairs by using the properties of K-regularity (i.e., that it is unlikely
that there are many vertices on the boundary near a K-regular vertex).

As a last remark: at the end of the proof of Lemma M5.1 we should note that the local
modification involves not (2K)d as in the proof of [15, Lemma 5.1], but (2K)2d edges.
This is of course of no importance.

This concludes the description of all the ways that the proof of [15, Theorem 2] should
be modified to prove Claim 5.2 above.
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