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Abstract

We modify Talagrand’s generic chaining method to obtain upper bounds for all p-th
moments of the supremum of a stochastic process. These bounds lead to an estimate
for the upper tail of the supremum with optimal deviation parameters. We use our
procedure to improve and extend some known deviation inequalities for suprema of
unbounded empirical processes and chaos processes. As an application we give a
simplified proof of the restricted isometry property of the subsampled discrete Fourier
transform.
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1 Introduction

This paper is concerned with generic chaining, a method introduced by Talagrand
to estimate the expected value of the supremum of a stochastic process. This method
grew out of the classical chaining method and the later majorizing measures method,
which were developed by, among others, Kolmogorov, Dudley, Fernique and Talagrand,
to understand the continuity properties of stochastic processes. Generic chaining yields
estimates for the expected value of the supremum in terms of so-called γ-functionals,
which measure the metric complexity of the index set of the process [25, 26]. The
resulting bounds are known to be sharp in several interesting situations. For instance,
the famous majorizing measures theorem [24] states that this is the case for suprema of
Gaussian processes, provided that the index set is equipped with the canonical metric
induced by the process.

In practical applications of generic chaining in statistics, compressed sensing, and
geometric functional analysis, see e.g. [8, 11], it is often not sufficient to have an upper
bound for the expected supremum of a process. One also needs to know how probable it
is that the supremum of the process exceeds the upper bound. To that aim, a generic
chaining bound is typically supplemented with a tail bound for the deviation of the
supremum with respect to its expected value. There is an extensive and rapidly growing
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Tail bounds via generic chaining

literature on such deviation inequalities, see for instance the monographs [4, 16] for a
detailed introduction and a historical overview.

The purpose of this paper is to provide an alternative to the two-step procedure
sketched above. We present a simple and general way to directly obtain upper deviation
inequalities for the supremum of a stochastic process (Xt)t∈T using generic chaining.
The idea is to alter the generic chaining procedure to produce bounds for not only the
first, but for all p-th moments of supt∈T |Xt|. Together with a standard optimization
argument using Markov’s inequality this yields an upper tail bound. The deviation
parameters in the resulting tail bound are sharp up to numerical constants. In particular,
the bound is qualitatively as good as the one obtained by combining the usual generic
chaining bound for E supt∈T |Xt| with the best possible upper tail bound for the deviation
supt∈T |Xt| − E supt∈T |Xt|.

To give a concrete illustration of these statements, consider the simplest case that
(Xt)t∈T is a centered Gaussian process and let d(s, t) = (E|Xt−Xs|2)1/2 be the canonical
metric on T . Under this assumption, we prove that for some universal constants C,D > 0

and any 1 ≤ p <∞, (
E sup
t∈T
|Xt|p

)1/p
≤ Cγ2,p(T, d) +Dσ

√
p,

where γ2,p is a truncated version of the γ2-functional familiar from generic chaining and
σ2 = supt∈T E(X2

t ) is the weak variance of the process. Estimates for the constants C
and D are provided in Remark 3.3, although these can certainly be improved. As a direct
consequence of the stated Lp-bounds we find

P
(

sup
t∈T
|Xt| ≥

√
e(Cγ2(T, d) + uDσ)

)
≤ e−u

2/2 (u ≥ 1). (1.1)

The bound (1.1) matches, up to a possibly worse constant D, the upper tail bound
obtained by combining the optimal generic chaining estimate for E supt∈T |Xt| with the
sharp concentration inequality for suprema of Gaussian processes due to Borell, Ibragi-
mov, Sudakov, and Tsirelson [4, Theorem 5.8]. Moreover, as is shown in Theorem 3.2, the
tail bound (1.1) more generally holds for any process which has subgaussian increments
with respect to a given metric d.

A first advantage of the method proposed here is its simplicity: an upper tail bound is
obtained essentially for free once one uses generic chaining to estimate the expected
value. In contrast, the usual proofs of deviation inequalities for suprema of stochastic
processes rely on sophisticated tools such as the entropy method, see for example [4,
Chapters 6 and 12]. A second advantage is that the method only requires knowledge
of the tail behavior of the individual increments of the process. In particular, one can
obtain deviation inequalities for processes with dependent increments, see for example
the uniform Azuma-Hoeffding inequality in Corollary 3.4. In the context of empirical
processes, the method can readily cover situations in which the summands of the
empirical process are unbounded and/or dependent. Under these conditions deviation
inequalities are still scarcely available, see [1, 9] for notable exceptions.

To demonstrate the wide applicability of our method, we establish an upper tail bound
for suprema of stochastic processes in several interesting situations. In Section 3 we
consider two ‘standard’ generic chaining situations. In Theorem 3.2 we investigate
processes which have exponentially decaying increments with respect to a single metric.
In Theorem 3.5, we consider processes with a mixed subgaussian-subexponential tail,
in particular suprema of empirical processes. This result positively answers an open
question raised in Talagrand’s new book [27]. In the second part of the paper, i.e.,
Sections 5.1 and 6, we consider two specialized, more involved chaining arguments. In
Theorem 5.5 we find Lp-bounds for the supremum of an empirical process which takes
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the form of an average of squares. It can be viewed as an Lp-version of a result due to
Mendelson, Pajor and Tomczak-Jaegermann [19], see Theorem 5.6 and Corollary 5.7 for
a detailed comparison. In the final section we deal with suprema of second order chaos
processes.

In Section 4 we use Theorem 3.2 to simplify the proof of the restricted isometry
property of the subsampled discrete Fourier transform. This cornerstone result in
compressed sensing was originally discovered by Candès and Tao [6] and was later
refined by Rudelson and Vershynin [22] and Rauhut [21]. The argument presented
in Section 4 more generally applies to matrices obtained by sampling from bounded
orthonormal systems, see Theorem 4.2. To keep this paper at a reasonable length we
discuss an application of Theorem 5.5 to dimensionality reduction in a separate note [7].
Further applications of our work can be found in [5, 12].

We conclude this introduction with a brief discussion of related work. In [29], Viens
and Vizcarra modified a classical, that is, non-generic chaining argument to obtain upper
deviation inequalities for so-called sub-n-th chaos processes. Theorem 3.2 below yields
an improvement of this result as a special case. We also improve a deviation inequality
for suprema of unbounded empirical processes obtained recently by Van de Geer and
Lederer [9], see the discussion after Corollary 5.2. In [15], Latała used a procedure
related to ours to prove a comparison result for the strong and weak moments of certain
log-concave random vectors. Finally, Krahmer, Mendelson, and Rauhut [13] used a
chaining argument to prove an upper tail bound for the supremum of a second order
chaos process. In Theorem 6.5 we give an improvement of their bound with a simplified
proof.

2 Preliminaries

Throughout, we will use (Ω,F ,P) to denote a probability space and write E for the
expected value. To describe the tail behavior of random variables we consider for every
0 < α <∞ the function

ψα(x) = exp(xα)− 1 (x ≥ 0).

For a complex-valued random variable X we define

‖X‖ψα = inf{C > 0 : Eψα(|X|/C) ≤ 1}.

If ‖X‖ψα < ∞ then we call X a ψα-random variable. It is common to say that X is
subgaussian if ‖X‖ψ2 < ∞ and subexponential if ‖X‖ψ1 < ∞. If α ≥ 1 then ψα is an
Orlicz function and the space

Lψα(Ω,F ,P) = {X : Ω→ C measurable : ‖X‖ψα <∞}

is an Orlicz space. For 0 < α < 1 the space Lψα is only a quasi-Banach space. We will
make use of the following Hölder type inequality, which can be derived from Young’s
inequality: if X,Y are ψ2-random variables, then XY is ψ1 and

‖XY ‖ψ1 ≤ ‖X‖ψ2‖Y ‖ψ2 . (2.1)

For more information on Orlicz spaces we refer to [14].
Let us recall some familiar concepts from generic chaining [26]. Let X be a normed

linear space and let (T, d) be a semi-metric space, i.e., d(x, z) ≤ d(x, y) + d(y, z) and
d(x, y) = d(y, x) for x, y, z ∈ T . To avoid complications with the measurability of suprema
of stochastic processes we will always assume that the cardinality |T | of T is finite.
Criteria for measurability of the supremum of a stochastic process in the case of an
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(uncountably) infinite index set can be found in [28, Section 1.7]. We denote the diameter
of T with respect to d by

∆d(T ) = sup
s,t∈T

d(s, t).

We say that an X -valued process (Xt)t∈T is ψα with respect to d if for all s, t ∈ T ,

P(‖Xt −Xs‖ ≥ ud(t, s)) ≤ 2 exp(−uα) (u ≥ 0). (2.2)

A sequence T = (Tn)n≥0 of subsets of T is called admissible if |T0| = 1 and |Tn| ≤ 22
n

for
all n ≥ 1. For any 0 < α <∞, the γα-functional of (T, d) is defined by

γα(T, d) = inf
T

sup
t∈T

∞∑
n=0

2n/αd(t, Tn),

where the infimum is taken over all admissible sequences and we write d(t, Tn) =

infs∈Tn d(t, s).
For any given u > 0 let N(T, d, u) denote the covering number of T , i.e., the smallest

number of balls of radius u in (T, d) needed to cover T . One can always estimate

γα(T, d) .α

∫ ∞
0

(
logN(T, d, u)

)1/α
du, (2.3)

see [26, Section 1.2] for the case α = 2 (the other cases are similar). However, the
reverse estimate fails in general [26, Section 2.1].

We conclude by fixing some notation. We use ‖ ·‖p, 1 ≤ p ≤ ∞, to denote the `p-norms.
We will write A .β B if A ≤ CβB for a constant Cβ which only depends on a parameter
β. Finally, if S is a finite set and π : S → R+ is a map, then argmins∈Sπ(s) denotes a
minimizer of this map, which may not be unique.

3 Suprema of ψα and mixed tail processes

We begin our discussion by considering two standard generic chaining situations.
First, in Theorem 3.2 we establish tail bounds for suprema of ψα processes. At the end
of the section, in Theorem 3.5, we do the same for processes with a mixed tail.

In the formulation of our Lp-bounds we will make use of the following truncated
version of the γ-functionals. For a given 1 ≤ p <∞, we will always write l := blog2(p)c,
where b·c denotes the integer part. We define

γα,p(T, d) = inf
T

sup
t∈T

∑
n≥l

2n/αd(t, Tn). (3.1)

Clearly, γα,p(T, d) ≤ γα(T, d) for all 1 ≤ p <∞ and γα,1(T, d) = γα(T, d). Since we assume
T to be finite, the infimum in (3.1) is actually attained. We will call a sequence T that
achieves the infimum optimal.

Remark 3.1. If T is an infinite set, then the Lp-bounds presented below continue to hold
if we interpret E supt∈T ‖Xt −Xt0‖p as the lattice supremum

E sup
t∈T
‖Xt −Xt0‖p := sup{E sup

t∈F
‖Xt −Xt0‖p : F ⊂ T, |F | <∞}.

Theorem 3.2. Let 0 < α < ∞. If (Xt)t∈T is ψα, then there exist constants Cα, Dα > 0

depending only on α, such that for any t0 ∈ T and 1 ≤ p <∞,(
E sup
t∈T
‖Xt −Xt0‖p

)1/p
≤ Cαγα,p(T, d) + 2 sup

t∈T
(E‖Xt −Xt0‖p)1/p. (3.2)
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As a consequence, for any u ≥ 1,

P
(

sup
t∈T
‖Xt −Xt0‖ ≥ e1/α(Cαγα(T, d) + uDα∆d(T ))

)
≤ exp(−uα/α). (3.3)

Remark 3.3. (i) If (Xt)t∈T is a real-valued Gaussian process and d is the canonical
distance d(s, t) := (E|Xt −Xs|2)1/2, then Theorem 3.2 produces a sharp Lp-bound
(up to universal constants). Indeed, Talagrand’s majorizing measures theorem
[24, 26] states that

γ2(T, d) . E sup
t∈T
|Xt −Xt0 |.

Moreover, it is of course always true that

sup
t∈T

(E|Xt −Xt0 |p)1/p ≤
(
E sup
t∈T
|Xt −Xt0 |p

)1/p
.

(ii) Although deviation inequalities are not discussed in [26], it is implicitly used there
that

P
(

sup
t∈T
‖Xt −Xt0‖ ≥ uc1γ2(T, d)

)
≤ c2e−u

2/2 (u ≥ 2)

in the case α = 2. Since ∆(T ) ≤ γ2(T, d) (and ∆(T ) is potentially much smaller),
this bound is qualitatively worse than (3.3). After the first version of this paper was
finished, the author learned that (3.3) is proved for α = 2 in Talagrand’s new book
using a different method (see [27, Theorem 2.2.27]).

(iii) Let n ∈ N. In [29, Theorem 3.1], it was shown that if (Xt)t∈T is a sub-n-th chaos
process, meaning in the terminology used here that it is ψ2/n, then it satisfies the
tail bound

P
(

sup
t∈T
|Xt −Xt0 | ≥ CnMn + uC ′n∆d(T )

)
≤ 2 exp

(
− u2/n

2

)
, (3.4)

where Cn, C ′n are constants depending only on n and Mn is the entropy integral

Mn =

∫ ∞
0

(
logN(T, d, u)

)n/2
du.

By (2.3) this result is a direct consequence of Theorem 3.2 (with possibly different
constants) but not vice versa. Note that already in the subgaussian case n = 1 the
bound (3.4) is not sharp (see [26, Section 2.1]).

(iv) To keep our exposition clear we do not keep precise track of the numerical constants
in the chaining arguments. However, from the proof below it is clear that Cα, Dα

are decreasing in α. Moreover, one can decrease Cα at the expense of increasing
Dα (and vice versa). To give an idea of their order of magnitude, one can readily
deduce from the proof (without making any effort to optimize the constants) that
C2 ≤ (1 +

√
2)(16

√
πe1/2e +

√
2) ≤ 86 and D2 ≤ 4

√
2πe1/ee−1/2 ≤ 9. Although these

estimates can certainly be improved, the method cannot yield optimal numerical
constants. In particular losses occur when passing between moment and tail
bounds (cf. Lemmas A.1 and A.2).

Proof of Theorem 3.2. Let T = (Tn)n≥0 be an optimal admissible sequence for γα,p(T, d)

and let π = (πn)n≥0 be a sequence of functions πn : T → Tn defined by πn(t) =

argmins∈Tnd(s, t). Set l = blog2(p)c. We make the decomposition(
E sup
t∈T
‖Xt −Xt0‖p

) 1
p ≤

(
E sup
t∈T
‖Xt −Xπl(t)‖

p
) 1
p

+
(
E sup
t∈T
‖Xπl(t) −Xt0‖p

) 1
p

. (3.5)
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We estimate the second term on the right hand side by Lemma A.3,(
E sup
t∈T
‖Xπl(t) −Xt0‖p

) 1
p ≤ 2 sup

t∈T
(E‖Xπl(t) −Xt0‖p)

1
p

≤ 2 sup
t∈T

(E‖Xt −Xt0‖p)
1
p . (3.6)

For the first term, we write the telescoping sum

Xt −Xπl(t) =
∑
n>l

Xπn(t) −Xπn−1(t).

Since the increments of X are ψα, we have for n > l,

P
(
‖Xπn(t) −Xπn−1(t)‖ ≥ u2n/αd(πn(t), πn−1(t))

)
≤ 2 exp(−uα2n).

Note that |{(πn(t), πn−1(t)); t ∈ T}| ≤ |Tn| |Tn−1| ≤ 22
n

22
n−1 ≤ 22

n+1

. Therefore, if Ωu,p
denotes the event

∀n > l, ∀t ∈ T : ‖Xπn(t) −Xπn−1(t)‖ ≤ u2n/αd(πn(t), πn−1(t)),

then by a union bound (cf. Lemma A.4),

P(Ωcu,p) ≤ c exp(−puα/4) (u ≥ 21/α).

If the event Ωu,p occurs, then∥∥∥∑
n>l

Xπn(t) −Xπn−1(t)

∥∥∥ ≤∑
n>l

‖Xπn(t) −Xπn−1(t)‖

≤ u
∑
n>l

2n/αd(πn(t), πn−1(t)) ≤ u(1 + 21/α)γα,p(T, d).

Thus, supt∈T ‖Xt −Xπl(t)‖ ≤ u(1 + 21/α)γα,p(T, d). In conclusion,

P
(

sup
t∈T
‖Xt −Xπl(t)‖ > u(1 + 21/α)γα,p(T, d)

)
≤ c exp(−puα/4),

whenever u ≥ 21/α. Lemma A.5 implies that(
E sup
t∈T
‖Xt −Xπl(t)‖

p
)1/p

≤ Cαγα,p(T, d). (3.7)

The moment bound (3.2) follows by combining (3.5), (3.6) and (3.7). For the tail bound,
note that (2.2) and Lemma A.2 together imply that

sup
t∈T

(E‖Xt −Xt0‖p)1/p ≤ Dα∆d(T )p1/α.

The final assertion follows by using this estimate in (3.2) and applying Lemma A.1.

Note that Theorem 3.2 does not require any independence assumptions on the
increments of the process (Xt)t∈T . To illustrate this, we recall the Azuma-Hoeffding
inequality, see e.g. [16, Lemma 4.1]. If X = (Xk)0≤k≤n is a discrete-time real-valued
martingale and ∆k(X) = Xk −Xk−1 denotes its k-th difference, then

P(|Xn −X0| ≥ u) ≤ 2 exp
(
− u2

2
∑n
k=1 ‖∆k(X)‖2∞

)
(u ≥ 0).

Combined with Theorem 3.2 we immediately obtain the following uniform version of the
Azuma-Hoeffding bound.

EJP 20 (2015), paper 53.
Page 6/29

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3760
http://ejp.ejpecp.org/


Tail bounds via generic chaining

Corollary 3.4. Let Xt = (Xt,k)1≤k≤n, t ∈ T , be a family of discrete-time martingales
with respect to the same filtration. We consider the metric

d(s, t) =
( n∑
k=1

‖∆k(Xt −Xs)‖2∞
)1/2

.

For any u ≥ 1,

P
(

sup
t∈T
|Xt,n −Xt,0| ≥

√
e(C2γ2(T, d) +D2∆d(T )u)

)
≤ e−u

2/2.

Let d1, d2 be two semi-metrics on T . We say that a process (Xt)t∈T has mixed
subgaussian-subexponential increments, or simply has a mixed tail, with respect to the
pair (d1, d2) if for all s, t ∈ T ,

P(‖Xt −Xs‖ ≥
√
ud2(t, s) + ud1(t, s)) ≤ 2e−u (u ≥ 0). (3.8)

This means that the first part of the tail behaves as the tail of a subgaussian random
variable and the second part as the tail of a subexponential random variable. In The-
orem 3.5 we prove a tail bound for the supremum of a process with a mixed tail. The
result improves [26, Theorem 1.2.9] and, in fact, positively answers an open question in
Talagrand’s new book (see the discussion after [27, Theorem 2.2.28]).

In the proof it will be convenient to work with an alternative definition of the γα-
functionals. Let us say that a sequence A = (An)n≥0 of partitions of T is admissible if
it is increasing with respect to the refinement ordering and |A0| = 1 and |An| ≤ 22

n

for
n ≥ 1. For any t ∈ T , let An(t) be the unique element in the partition An containing t.
We now set

γ′α(T, d) = inf
A

sup
t∈T

∞∑
n=0

2n/α∆d(An(t)),

where the infimum is taken over all admissible partitions A of T . It can be shown that

γα(T, d) ≤ γ′α(T, d) .α γα(T, d), (3.9)

see the discussion following [26, Theorem 1.3.5] for details.

Theorem 3.5. If (Xt)t∈T has a mixed tail, then there is a constant C > 0 such that for
any 1 ≤ p <∞,(

E sup
t∈T
‖Xt −Xt0‖p

)1/p
≤ C(γ2(T, d2) + γ1(T, d1)) + 2 sup

t∈T
(E‖Xt −Xt0‖p)1/p. (3.10)

As a consequence, there are constants c, C > 0 such that for any u ≥ 1,

P
(

sup
t∈T
‖Xt −Xt0‖ ≥ C(γ2(T, d2) + γ1(T, d1)) + c(

√
u∆d2(T ) + u∆d1(T ))

)
≤ e−u.

Proof. We select two admissible sequences of partitions B = (Bn)n≥0 and C = (Cn)n≥0
such that

sup
t∈T

∑
n≥0

2n/2∆d2(Bn(t)) ≤ 2γ′2(T, d2)

sup
t∈T

∑
n≥0

2n∆d1(Cn(t)) ≤ 2γ′1(T, d1).

Let An be the partition generated by Bn−1 and Cn−1, i.e., for n ≥ 0

An = {B ∩ C : B ∈ Bn−1, C ∈ Cn−1},
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where we set B−1 := B0 and C−1 := C0 so that A0 = {T}. Then A = (An)n≥0 is increasing
and

|An| ≤ |Bn−1| |Cn−1| ≤ 22
n−1

22
n−1

= 22
n

,

so A is admissible. Observe that An(t) = Bn−1(t) ∩ Cn−1(t). For every n ≥ 0 define a
subset Tn of T by selecting exactly one point from each A ∈ An. In this way, we obtain
an admissible sequence T = (Tn)n≥0 of subsets of T . For every n ∈ N≥0 and t ∈ T we let
πn(t) be the unique element of Tn ∩An(t). This yields a sequence π = (πn)n≥0 of maps
πn : T → Tn.

Set l = blog2(p)c. As in the proof of Theorem 3.2, we make the decomposition (3.5)
and estimate the second term on the right hand side of (3.5) as in (3.6). For the first
term, we write the telescoping sum

Xt −Xπl(t) =
∑
n>l

Xπn(t) −Xπn−1(t).

Since X has a mixed tail, we have for n > l and u ≥ 0,

P
(
‖Xπn(t) −Xπn−1(t)‖ ≥

√
u2n/2d2(πn(t), πn−1(t)) + u2nd1(πn(t), πn−1(t))

)
≤ 2 exp(−u2n).

Note that |{(πn(t), πn−1(t)); t ∈ T}| ≤ |Tn| |Tn−1| ≤ 22
n

22
n−1 ≤ 22

n+1

. Therefore, if Ωu,p
denotes the event

∀n > l, ∀t ∈ T : ‖Xπn(t) −Xπn−1(t)‖

≥
√
u2n/2d2(πn(t), πn−1(t)) + u2nd1(πn(t), πn−1(t)),

then by a union bound (cf. Lemma A.4)

P(Ωcu,p) ≤ c exp(−pu/4) (u ≥ 2).

If the event Ωu,p occurs, then∥∥∥∑
n>l

Xπn(t) −Xπn−1(t)

∥∥∥
≤
∑
n>l

‖Xπn(t) −Xπn−1(t)‖

≤
√
u
∑
n>l

2n/2d2(πn(t), πn−1(t)) + u
∑
n>l

2nd1(πn(t), πn−1(t)).

Observe that for n ≥ 2 we have πn(t), πn−1(t) ∈ An−1(t) ⊂ Bn−2(t) and so

d2(πn(t), πn−1(t)) ≤ ∆d2(Bn−2(t)).

Also,

d2(π1(t), π0(t)) ≤ ∆d2(B0(t)) = ∆d2(T ).

Therefore, by our choice of B,∑
n>l

2n/2d2(πn(t), πn−1(t)) ≤
∑
n>l

2n/2∆d2(Bn−2(t))

≤ 4
∑
n≥0

2n/2∆d2(Bn(t)) ≤ 8γ′2(T, d2).
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Analogously, by our choice of C,∑
n>l

2nd1(πn(t), πn−1(t)) ≤ 12γ′1(T, d1)

Thus, supt∈T ‖Xt−Xπl(t)‖ ≤ 8
√
uγ′2(T, d2) + 12uγ′1(T, d1). As a consequence, we conclude

that
P
(

sup
t∈T
‖Xt −Xπl(t)‖ > 12u(γ′2(T, d2) + γ′1(T, d1))

)
≤ c exp(−pu/4),

whenever u ≥ 2. By Lemma A.5 and (3.9)(
E sup
t∈T
‖Xt −Xπl(t)‖

p
)1/p

. γ′2(T, d2) + γ′1(T, d1) . γ2(T, d2) + γ1(T, d1).

This proves the moment bound (3.10). For the tail bound, note that (3.8) and Lemma A.2
together imply that

sup
t∈T

(E‖Xt −Xt0‖p)1/p . ∆d2(T )
√
p+ ∆d1(T )p.

The assertion follows by using this estimate in (3.10) and applying Lemma A.1.

In Corollary 5.2 below we use Theorem 3.5 to derive tail bounds for suprema of
empirical processes.

4 Restricted isometry constants of subsampled unitary matrices

In this section we present an application of Theorem 3.2 in compressed sensing. We
use the following terminology. We say that x ∈ CN is s-sparse if

‖x‖0 = |{i : xi 6= 0}| ≤ s.

For a given s ∈ N, the s-th restricted isometry constant δs of an m×N matrix A is the
smallest constant δ ≥ 0 such that

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22,

for all s-sparse x ∈ CN . Equivalently, if we let

Ds,N = {x ∈ CN : ‖x‖2 = 1, ‖x‖0 ≤ s},

then
δs = sup

x∈Ds,N

∣∣∣‖Ax‖22 − 1
∣∣∣.

The restricted isometry constants play an important role in compressed sensing, see [8,
Chapter 6] for more information. We restrict ourselves to the task of giving a simpler
proof of the fact that the random matrix obtained by uniformly sampling rows of the
discrete Fourier transform has small restricted isometry constants with high probability.
This result was obtained by Candès and Tao in the influential paper [6]. An improved
result was later found by Rudelson and Vershynin [22] using a different method. Finally,
by elaborating on this method a better probability estimate was obtained by Rauhut [21].

We consider the following (more general) setup. Let U be a unitary N ×N matrix
and suppose that for some constant K ≥ 1,

sup
k,l

√
N |Ukl| ≤ K. (4.1)
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Tail bounds via generic chaining

We consider a sequence (θi)1≤i≤N of i.i.d. copies of the random selector θ : Ω→ {0, 1}
which satisfies

P(θ = 1) =
m

N
.

Let I = {i ∈ [N ] : θi = 1} be the random set of selected indices and note that its
expected cardinality is E|I| = m. Let RI : CN → C|I| be the operator which restricts a
vector to its entries in I and consider the subsampled and rescaled matrix

UI :=

√
N

m
RIU. (4.2)

The subsampled discrete Fourier transform corresponds to taking

Ukl =
1√
N

exp(2πi(k − 1)(l − 1)/N) (k, l = 1, . . . , N).

Theorem 4.1. [6, 21, 22] Let U and I be as above. Set δs = δs(UI). There exist universal
constants d1, d2 > 0 such that for any given s ∈ N and 0 < δ, η < 1, we have P(δs ≥ δ) ≤ η,
provided that

m ≥ sK2δ−2 max{d1 log2 s logm logN, d2 log(η−1)}. (4.3)

The proof of Theorem 4.1 in [21] (see also [8, Theorem 12.32]), which refines the
approach in [22], consists of two parts: firstly, the expected value of δs is estimated using
a (classical) chaining argument. Secondly, a deviation inequality for suprema of bounded
empirical processes is used to show that δs is typically not much larger than its expected
value. Here we shorten the proof by merging these two steps, hence dispensing with the
concentration inequality. Note that we still use a certain entropy bound obtained in [22]
(see (4.6) below), which is nontrivial to prove.

Proof of Theorem 4.1. Let Ui be the i-th row of U . For every x ∈ Ds,N we define fx(θi) =

θi
1√
m
〈
√
NUi, x〉. Since U is unitary,

N∑
i=1

Ef2x(θi) =
N

m

N∑
i=1

E(θi)|〈Ui, x〉|2 =

N∑
i=1

|〈Ui, x〉|2 = ‖Ux‖22 = 1, (4.4)

and therefore we can write

δs = sup
x∈Ds,N

∣∣∣ N∑
i=1

f2x(θi)− Ef2x(θi)
∣∣∣.

Fix 1 ≤ p <∞ and let (εi)i≥1 be a Rademacher sequence, i.e., a sequence of independent
symmetric Bernoulli random variables. By a standard symmetrization argument [17,
Lemma 6.3],

(Eδps )1/p ≤ 2
(
EEε sup

x∈Ds,N

∣∣∣ N∑
i=1

εif
2
x(θi)

∣∣∣p)1/p. (4.5)

Now we fix ω ∈ Ω and let ti = θi(ω). By Hoeffding’s inequality,

Pε

( N∑
i=1

εi(f
2
x(ti)− f2y (ti)) ≥ u

( N∑
i=1

(f2x(ti)− f2y (ti))
2
)1/2)

≤ exp(−u2/2).

Moreover,

( N∑
i=1

(f2x(ti)− f2y (ti))
2
)1/2

=
( N∑
i=1

(fx(ti)− fy(ti))
2(fx(ti) + fy(ti))

2
)1/2
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Tail bounds via generic chaining

≤ 2 sup
z∈Ds,N

( N∑
i=1

f2z (ti)
)1/2

max
1≤i≤N

|fx(ti)− fy(ti)|.

In conclusion, the process

x 7→
N∑
i=1

εif
2
x(ti)

is subgaussian with respect to the metric

d(x, y) = sup
z∈Ds,N

( N∑
i=1

f2z (ti)
)1/2

dt(x, y),

where dt denotes the metric

dt(x, y) = max
1≤i≤N

|fx(ti)− fy(ti)|.

By Theorem 3.2,

(
Eε sup

x∈Ds,N

∣∣∣ N∑
i=1

εif
2
x(ti)

∣∣∣p)1/p
. γ2(Ds,N , dt) sup

x∈Ds,N

( N∑
i=1

f2x(ti)
)1/2

+ sup
x∈Ds,N

(
Eε

∣∣∣ N∑
i=1

εif
2
x(ti)

∣∣∣p)1/p.
We apply (2.3) with α = 2, i.e.,

γ2(Ds,N , dt) .
∫ ∞
0

(
logN(Ds,N , dt, u)

)1/2
du

and use that Rudelson and Vershynin already proved that (see inequalities (3.8) and (3.9)
in [22], or [8, 21])∫ ∞

0

(
logN(Ds,N , dt, u)

)1/2
du . K

√
s

m
log s

√
logm

√
logN. (4.6)

Moreover, by Khintchine’s (or Hoeffding’s) inequality,

(
Eε

∣∣∣ N∑
i=1

εif
2
x(ti)

∣∣∣p)1/p ≤ √p( N∑
i=1

f4x(ti)
)1/2

≤ √p
( N∑
i=1

f2x(ti)
)1/2

max
1≤i≤N

|fx(ti)|.

By Hölder’s inequality and (4.1)

max
1≤i≤N

|fx(ti)| ≤ max
1≤i≤N

1√
m
‖
√
NUi‖∞‖x‖1 ≤ K

√
s

m
,

where the final inequality follows from the s-sparsity of x. Collecting our estimates we
find

(
Eε sup

x∈Ds,N

∣∣∣ N∑
i=1

εif
2
x(ti)

∣∣∣p)1/p
. sup
x∈Ds,N

( N∑
i=1

f2x(ti)
)1/2

K

√
s

m

(
log s

√
logm

√
logN +

√
p
)
.

EJP 20 (2015), paper 53.
Page 11/29

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3760
http://ejp.ejpecp.org/


Tail bounds via generic chaining

We now take the Lp norm on Ω on both sides and obtain using (4.5)

(
E sup
x∈Ds,N

∣∣∣ N∑
i=1

f2x(θi)− Ef2x(θi)
∣∣∣p)1/p

.
(
E sup
x∈Ds,N

( N∑
i=1

f2x(θi)
)p/2)1/p

K

√
s

m

(
log s

√
logm

√
logN +

√
p
)

.
(
E sup
x∈Ds,N

∣∣∣ N∑
i=1

f2x(θi)− Ef2x(θi)
∣∣∣p)1/2pK√ s

m

(
log s

√
logm

√
logN +

√
p
)

+K

√
s

m

(
log s

√
logm

√
logN +

√
p
)
, (4.7)

where in the final step we use (4.4). Note that (4.7) is a quadratic inequality in (Eδps )1/2p.
By solving it and subsequently squaring both sides we find

(Eδps )1/p . K

√
s

m
log s

√
logm

√
logN +K2 s

m
log2 s logm logN

+
√
pK

√
s

m
+ pK2 s

m
.

Since 1 ≤ p <∞ was arbitrary, Lemma A.1 implies that for any u ≥ 1,

P
(
δs & K

√
s

m
log s

√
logm

√
logN +K2 s

m
log2 s logm logN

+
√
uK

√
s

m
+ uK2 s

m

)
≤ e−u.

Therefore, if we set u = log(η−1) and pick m as in (4.3), then

P(δs ≥ δ) ≤ P
(
δs & K

√
s

m
log s

√
logm

√
logN +K2 s

m
log2 s logm logN

+
√

log(η−1)K

√
s

m
+ log(η−1)K2 s

m

)
≤ η.

A small modification of the proof of Theorem 4.1 yields the following result. It implies
in particular the restricted isometry property of matrices obtained by sampling from
bounded orthonormal systems, which was established in [21, Theorem 8.4] (see also [8,
Theorem 12.32]).

Theorem 4.2. Let A be an m × N random matrix with independent rows given by
1√
m
X1, . . . ,

1√
m
Xm. Suppose that

1

m

m∑
i=1

E|〈Xi, x〉|2 = ‖x‖22 for all x ∈ CN

and

max
1≤i≤m

‖Xi‖∞ ≤ K.

Then there exist universal constants d1, d2 > 0 such that for any given s ∈ N and
0 < δ, η < 1, we have P(δs(A) ≥ δ) ≤ η, provided that (4.3) holds.
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5 Supremum of an empirical process

In this section we investigate tail bounds for suprema of empirical processes. We
begin by applying Theorem 3.5 to these processes. For this purpose we recall Bernstein’s
inequality. For a proof of this result, see for example [4, Theorem 2.10].

Lemma 5.1. (Bernstein’s inequality) Let X1, . . . , Xm be real-valued, independent, mean-
zero random variables and suppose that for some constants σ,K > 0,

1

m

m∑
i=1

E|Xi|q ≤
q!

2
σ2Kq−2, (q = 2, 3, . . .).

Then,

P
(∣∣∣ 1

m

m∑
i=1

Xi

∣∣∣ ≥ σ√
m

√
2u+

K

m
u
)
≤ 2 exp(−u) (u ≥ 0). (5.1)

In particular, if X1, . . . , Xm are subexponential, then

P
(∣∣∣ 1

m

m∑
i=1

Xi

∣∣∣ ≥ ν√
m

√
2u+

κ

m
u
)
≤ 2 exp(−u) (u ≥ 0), (5.2)

where ν2 = 1
m

∑m
i=1 ‖Xi‖2ψ1

and κ = max1≤i≤m ‖Xi‖ψ1 .

Consider the following setup. Fix an m ∈ N and consider m probability spaces
(Ω1,P1), . . . , (Ωm,Pm). Suppose that we are given a parameter set T consisting of m-
tuples t = (t1, . . . , tm). For every t ∈ T we are given an m-tuple Xt = (Xt1 , . . . , Xtm) of
subexponential random variables Xti : Ωi → R. We consider the empirical process

Et =
1

m

m∑
i=1

(Xti − EXti).

In the terminology used here, Bernstein’s inequality (5.2) implies that the process (Et)t∈T
has a mixed tail with respect to the metrics ( 1

md1,
1√
m
d2), where

d1(s, t) = max
1≤i≤m

‖Xti −Xsi‖ψ1
,

d2(s, t) =
( 1

m

m∑
i=1

‖Xti −Xsi‖2ψ1

)1/2
.

Theorem 3.5 can directly be applied to find the following tail bound.

Corollary 5.2. Let Et be as above and let σ,K > 0 be constants such that

sup
t∈T

1

m

m∑
i=1

E|Xti − EXti |q ≤
q!

2
σ2Kq−2, (q = 2, 3, . . .).

Then, for any 1 ≤ p <∞,(
E sup
t∈T
|Et|p

)1/p
.
( 1√

m
γ2(T, d2) +

1

m
γ1(T, d1)

)
+
√
p
σ√
m

+ p
K

m
.

In particular, there exist constants c, C > 0 such that for any u ≥ 1,

P
(

sup
t∈T
|Et| ≥ C

( 1√
m
γ2(T, d2) +

1

m
γ1(T, d1)

)
+ c
( σ√

m

√
u+

K

m
u
))
≤ e−u. (5.3)

EJP 20 (2015), paper 53.
Page 13/29

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3760
http://ejp.ejpecp.org/


Tail bounds via generic chaining

Inequality (5.3) can be compared to a deviation inequality in [9, Theorem 8]. In this
result the generic chaining estimate

1√
m
γ2(T, d2) +

1

m
γ1(T, d1)

occurring in (5.3) is replaced by an estimate obtained by ‘chaining along a tree’, which is
a variation of classical (i.e., non-generic) chaining. As a consequence, the estimate (5.3)
is in general better. The parameters σ and K governing the tail behavior in (5.3) are the
same in [9]. Note that [9] also contains a tail bound obtained by ‘generic chaining along
a tree’ (see Theorem 3 there). However, the parameters governing the tail behavior in
the latter result still depend on the metric complexity of the index set T .

5.1 Supremum of an average of squares

We continue in the above setup, but now assume that the random variables Xti :

Ωi → R are subgaussian instead of subexponential. For every t in T we consider the
average

At =
1

m

m∑
i=1

(X2
ti − EX

2
ti). (5.4)

Clearly, we could use Corollary 5.2 to find Lp-bounds for supt∈T At. In this section,
we will however look for a more natural bound involving a metric defined in terms of
the Xti instead of their squares. This type of result turns out to give better bounds in
certain applications. The main result of this section, Theorem 5.5, improves a result in
this direction of Mendelson, Pajor and Tomczak-Jaegermann [19] (see Theorem 5.6 and
Corollary 5.7 for a detailed comparison). We consider the metric dψ2 on T defined by

dψ2
(s, t) = max

i=1,...,m
‖Xsi −Xti‖ψ2

.

We define the associated radius of T by

∆̄ψ2
(T ) = sup

t∈T
max

i=1,...,m
‖Xti‖ψ2

and usually write ∆̄ψ2 instead of ∆̄ψ2(T ) for brevity. Finally, we denote by µm the
normalized counting measure on {1, . . . ,m}. With this notation,

‖Xt −Xs‖L2(µm) =
( 1

m

m∑
i=1

(Xti −Xsi)
2
)1/2

.

Lemma 5.3. Let s, t ∈ T . For any u ≥ 1,

P
(
‖Xt −Xs‖L2(µm) ≥ u2(1 +

√
2)dψ2(s, t)

)
≤ 2 exp(−mu2). (5.5)

Proof. Consider Bernstein’s inequality (5.2). If u ≥ m then, using that ν ≤ κ, we have

√
2ν

√
u

m
≤
√

2κ
u

m
.

Thus, for u ≥ m,

P
(∣∣∣ 1

m

m∑
i=1

Xi

∣∣∣ ≥ (1 +
√

2)κ
u

m

)
≤ 2 exp(−u).

We apply this inequality for Xi = (Xti −Xsi)
2 − E(Xti −Xsi)

2. Note that in this case

κ = max
1≤i≤m

‖(Xti −Xsi)
2 − E(Xti −Xsi)

2‖ψ1
≤ 2 max

1≤i≤m
‖Xti −Xsi‖2ψ2

= 2d2ψ2
(s, t).
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Therefore, we find for any u ≥ 1,

P
( 1

m

m∑
i=1

(Xti −Xsi)
2 − 1

m

m∑
i=1

E(Xti −Xsi)
2 ≥ u2(1 +

√
2)d2ψ2

(s, t)
)

≤ 2 exp(−mu).

Since
1

m

m∑
i=1

E(Xti −Xsi)
2 ≤ max

i=1,...,m
‖Xti −Xsi‖2ψ2

= d2ψ2
(s, t),

we deduce that

P
(
‖Xt −Xs‖L2(µm) ≥ u2(1 +

√
2)dψ2

(s, t)
)

= P
( 1

m

m∑
i=1

(Xti −Xsi)
2 − 1

m

m∑
i=1

E(Xti −Xsi)
2

≥ u24(1 +
√

2)2d2ψ2
(s, t)− 1

m

m∑
i=1

E(Xti −Xsi)
2
)

≤ P
( 1

m

m∑
i=1

(Xti −Xsi)
2 − 1

m

m∑
i=1

E(Xti −Xsi)
2

≥ 2(1 +
√

2)
(

2(1 +
√

2)u2 − 1

2(1 +
√

2)

)
d2ψ2

(s, t)
)

≤ 2 exp
(
−m

(
2(1 +

√
2)u2 − 1

2(1 +
√

2)

))
≤ 2 exp(−mu2),

if u ≥ 1.

The following two tail bounds will be used in the proof of Theorem 5.5.

Lemma 5.4. Let s, t ∈ T and n ∈ N. If 2n/2 ≤
√
m then for any u ≥ 1,

P
(
|At −As| ≥ u2n/2

10∆̄ψ2√
m

dψ2(s, t)
)
≤ 2 exp(−2nu).

On the other hand, if 2n/2 ≥
√
m, then for any u ≥ 1,

P
(
‖Xt −Xs‖L2(µm) ≥

√
u2n/2

5√
m
dψ2

(s, t)
)
≤ 2 exp(−2nu).

Proof. Suppose first that 2n/2 ≤
√
m. We apply Bernstein’s inequality (5.2) with Xi =

X2
ti − X

2
si − E(X2

ti − X
2
si). Let us first estimate the deviation parameters. We use the

Hölder type inequality (2.1) to obtain

ν =
( 1

m

m∑
i=1

‖X2
ti −X

2
si − E(X2

ti −X
2
si)‖

2
ψ1

)1/2
≤ 2 max

1≤i≤m
‖X2

ti −X
2
si‖ψ1

≤ 2 max
1≤i≤m

‖Xti −Xsi‖ψ2‖Xti +Xsi‖ψ2

≤ 4∆̄ψ2
dψ2

(s, t).

Similarly, κ ≤ 4∆̄ψ2dψ2(s, t). Thus, by (5.2), for any v ≥ 0,

P
(
|At −As| ≥

√
2v

4∆̄ψ2dψ2(s, t)√
m

+ v
4∆̄ψ2dψ2(s, t)

m

)
≤ 2 exp(−v).
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Taking v = 2nu yields

P
(
|At −As| ≥

√
2u2n/2

4∆̄ψ2dψ2(s, t)√
m

+ u2n
4∆̄ψ2dψ2(s, t)

m

)
≤ 2 exp(−2nu).

Now observe that 2n/2 ≤
√
m implies that

2n
4∆̄ψ2

dψ2
(s, t)

m
≤ 2n/2

4∆̄ψ2
dψ2

(s, t)√
m

.

Therefore,

P
(
|At −As| ≥ (

√
2u+ u)2n/2

4∆̄ψ2
dψ2

(s, t)√
m

)
≤ 2 exp(−2nu).

By using that u ≥ 1 we obtain the first assertion.
Suppose now that 2n/2 ≥

√
m. Lemma 5.3 implies that for any v ≥ 1,

P
(
‖Xt −Xs‖L2(µm) ≥ v5dψ2

(s, t)
)
≤ 2 exp(−mv2)

Let v = 2n/2
√
u 1√

m
, then v ≥ 1 and therefore,

P
(
‖Xt −Xs‖L2(µm) ≥

√
u2n/2

5√
m
dψ2

(s, t)
)

≤ 2 exp
(
−m

(
2n/2
√
u

1√
m

)2)
= 2 exp(−2nu).

We are now ready to prove the main result of this section.

Theorem 5.5. Let (At)t∈T be the process of averages defined in (5.4). Let σ,K be
constants satisfying

sup
t∈T

1

m

m∑
i=1

E|X2
ti − EX

2
ti |
q ≤ q!

2
σ2Kq−2 (q = 2, 3, . . .). (5.6)

For any 1 ≤ p <∞,(
E sup
t∈T
|At|p

) 1
p

.
1

m
γ22,p(T, dψ2

) +
1√
m

∆̄ψ2
(T )γ2,p(T, dψ2

) +
√
p
σ√
m

+ p
K

m
.

As a consequence, there are constants c, C > 0 such that for all u ≥ 1,

P
(

sup
t∈T
|At| ≥ C

( 1

m
γ22(T, dψ2

) +
∆̄ψ2(T )√

m
γ2(T, dψ2

)
)

+ c
(√

u
σ√
m

+ u
K

m

))
≤ e−u.

Note that we can always take the parameters

σ = sup
t∈T

( 1

m

m∑
i=1

‖Xti‖4ψ2

)1/2
K = sup

t∈T
max

1≤i≤m
‖Xi‖2ψ2

.

Proof. We again write ∆̄ψ2
:= ∆̄ψ2

(T ) for brevity. Set l = blog2(p)c. Let T be an optimal
admissible sequence for γ2,p(T, dψ2

) and let πn(t) = argmins∈Tndψ2
(s, t). We divide N>l

into two disjoint parts given by

Isubg =
{
n ∈ N>l : 2n/2 ≤

√
m
}
, Isubex =

{
n ∈ N>l : 2n/2 >

√
m
}
.
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We write the telescoping sum

At =
∑

n∈Isubg

Aπn(t) −Aπn−1(t) +
∑

n∈Isubex

Aπn(t) −Aπn−1(t) +Aπl(t). (5.7)

By Lemma 5.4, if n ∈ Isubg then for all t ∈ T and u ≥ 1,

P
(
|Aπn(t) −Aπn−1(t)| ≥ u

10∆̄ψ2√
m

2n/2dψ2
(πn(t), πn−1(t))

)
≤ 2 exp(−2nu),

whereas if n ∈ Isubex, then for all u ≥ 1,

P
(
‖Xπn(t) −Xπn−1(t)‖L2(µm) ≥

√
u

5√
m

2n/2dψ2(πn(t), πn−1(t))
)
≤ 2 exp(−2nu). (5.8)

Let Ωu,p be the event

∀n ∈ Isubg, t ∈ T : |Aπn(t) −Aπn−1(t)| ≤ u
10∆̄ψ2√

m
2n/2dψ2(πn(t), πn−1(t)),

∀n ∈ Isubex, t ∈ T : ‖Xπn(t) −Xπn−1
(t)‖L2(µm) ≤

√
u

5√
m

2n/2dψ2
(πn(t), πn−1(t)).

Since for any n > l the number of pairs (πn(t), πn−1(t)) is bounded by |Tn| |Tn−1| ≤
22
n

22
n−1 ≤ 22

n+1

, a union bound (see Lemma A.4) implies that there is an absolute
constant c > 0 such that if u ≥ 2,

P(Ωcu,p) ≤ c exp(−pu/4).

If the event Ωu,p occurs, then for any given t ∈ T ,∣∣∣ ∑
n∈Isubg

Aπn(t) −Aπn−1(t)

∣∣∣ ≤ u10∆̄ψ2√
m

∑
n∈Isubg

2n/2dψ2(πn(t), πn−1(t))

≤ u10(1 +
√

2)∆̄ψ2√
m

γ2,p(T, dψ2
).

For the subexponential part we write∣∣∣ ∑
n∈Isubex

Aπn(t) −Aπn−1(t)

∣∣∣
=
∣∣∣ ∑
n∈Isubex

1

m

m∑
i=1

X2
πn(t)i

−X2
πn−1(t)i

− E
( 1

m

m∑
i=1

X2
πn(t)i

−X2
πn−1(t)i

)∣∣∣. (5.9)

By the Cauchy-Schwarz inequality in L2(µm), we find∣∣∣ 1

m

m∑
i=1

X2
πn(t)i

−X2
πn−1(t)i

∣∣∣
=
∣∣∣ 1

m

m∑
i=1

(
Xπn(t)i −Xπn−1(t)i

)(
Xπn(t)i +Xπn−1(t)i

)∣∣∣
≤
( 1

m

m∑
i=1

(
Xπn(t)i −Xπn−1(t)i

)2)1/2( 1

m

m∑
i=1

(
Xπn(t)i +Xπn−1(t)i

)2)1/2
≤ ‖Xπn(t) −Xπn−1(t)‖L2(µm)

((
Aπn(t) +

1

m

m∑
i=1

EX2
πn(t)i

)1/2
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+
(
Aπn−1(t) +

1

m

m∑
i=1

EX2
πn−1(t)i

)1/2)
≤ 2
(

sup
t∈T
|At|+ ∆̄2

ψ2

)1/2√
u2n/2

5√
m
dψ2

(πn(t), πn−1(t))

≤ 2
(

sup
t∈T
|At|1/2 + ∆̄ψ2

)√
u2n/2

5√
m
dψ2(πn(t), πn−1(t)).

On the other hand,∣∣∣E( 1

m

m∑
i=1

X2
πn(t)i

−X2
πn−1(t)i

)∣∣∣
≤ E

(( 1

m

m∑
i=1

(
Xπn(t)i −Xπn−1(t)i

)2)1/2( 1

m

m∑
i=1

(
Xπn(t)i +Xπn−1(t)i

)2)1/2)
≤ (E‖Xπn(t) −Xπn−1(t)‖

2
L2(µm))

1/2
( 1

m

m∑
i=1

E
(
Xπn(t)i +Xπn−1(t)i

)2)1/2
.

By (5.8) we can apply Lemma A.5 (with p = 2 and α = 2) to the first term on the right
hand side to obtain∣∣∣E( 1

m

m∑
i=1

X2
πn(t)i

−X2
πn−1(t)i

)∣∣∣ ≤ 3
√

2∆̄ψ2
2n/2

5√
m
dψ2

(πn(t), πn−1(t)).

We now apply these estimates in (5.9) and find (for u ≥ 2)∣∣∣ ∑
n∈Isubex

Aπn(t) −Aπn−1(t)

∣∣∣
≤
(

2
√
u sup
t∈T
|At|1/2 + (3

√
2 + 2

√
u)∆̄ψ2

) 5√
m

∑
n∈Isubex

2n/2dψ2
(πn(t), πn−1(t))

≤
(

2 sup
t∈T
|At|1/2 + 5∆̄ψ2

)√
u

5(1 +
√

2)√
m

γ2,p(T, dψ2
).

In conclusion, if Ωu,p occurs then we find using (5.7)

sup
t∈T
|At| ≤

√
u

10 + 10
√

2√
m

γ2,p(T, dψ2) sup
t∈T
|At|1/2

+ u
(35 + 35

√
2)∆̄ψ2√

m
γ2,p(T, dψ2) + sup

t∈T
|Aπl(t)|,

which is a quadratic inequality in supt∈T |At|1/2. By solving this inequality, we obtain

sup
t∈T
|At|1/2 ≤

√
u

25√
m
γ2,p(T, dψ2

) +
(
u

85∆̄ψ2√
m

γ2,p(T, dψ2
) + sup

t∈T
|Aπl(t)|

)1/2
,

which implies that

sup
t∈T
|At|1/2 − sup

t∈T
|Aπl(t)|

1/2 ≤
√
u

25√
m
γ2,p(T, dψ2

) +
√
u
(85∆̄ψ2√

m
γ2,p(T, dψ2

)
)1/2

In conclusion, if u ≥ 2, then

P
(

sup
t∈T
|At|1/2 − sup

t∈T
|Aπl(t)|

1/2 ≥
√
u
( 25√

m
γ2,p(T, dψ2) +

(85∆̄ψ2√
m

γ2,p(T, dψ2)
)1/2))
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≤ c exp(−pu/4).

Since the random variable
sup
t∈T
|At|1/2 − sup

t∈T
|Aπl(t)|

1/2

is clearly positive, we can now apply Lemma A.5 (with α = 2) to obtain(
E
(

sup
t∈T
|At|1/2 − sup

t∈T
|Aπl(t)|

1/2
)p) 1

p ≤ C
( 25√

m
γ2,p(T, dψ2

) +
(85∆̄ψ2√

m
γ2,p(T, dψ2

)
)1/2)

.

We use the triangle inequality to write(
E sup
t∈T
|At|p/2

)1/p
≤ C 25√

m
γ2,p(T, dψ2

) + C
(85∆̄ψ2√

m
γ2,p(T, dψ2

)
)1/2

+
(
E sup
t∈T
|Aπl(t)|

p/2
)1/p

. (5.10)

Finally, we use Lemma A.3, Bernstein’s inequality (5.1) and our assumption (5.6) to
obtain (

E sup
t∈T
|Aπl(t)|

p/2
)2/p

≤ 4 sup
t∈T

(
E|At|p/2

)2/p
.
√
p
σ√
m

+ p
K

m
.

Taking squares on both sides in (5.10) and applying the latter estimate yields the
result.

Let us now compare Theorem 5.5 with [19, Corollary 1.9]. We consider the following
situation. Let X1, . . . , Xm be independent copies of a random variable X : Ω→ Θ, where
Θ is a measurable space. Let µX denote the probability distribution of X. Suppose that
F is a set of real-valued measurable functions on Θ and consider the process (Z(f))f∈F
defined by

Z(f) =
∣∣∣ 1

m

m∑
i=1

(f2(Xi)− Ef2(Xi))
∣∣∣.

Theorem 5.6. [19] There exist absolute constants C, c > 0 such that the following holds.
If ‖f‖L2(µX) = 1 for all f ∈ F , then with probability at least

1− exp
(
− cmin

(
m, γ22(F , dψ2

)/∆̄2
ψ2

(F)
))

we have

sup
f∈F

Z(f) ≤ C∆̄ψ2
(F)

( 1

m
γ22(F , dψ2

) +
1√
m
γ2(F , dψ2

)
)
.

Moreover, if F is symmetric, then

E sup
f∈F

Z(f) ≤ C∆̄ψ2
(F)

( 1

m
γ22(F , dψ2

) +
1√
m
γ2(F , dψ2

)
)
. (5.11)

Theorem 5.5 improves this result in several respects: we can assume the Xi to be only
independent instead of i.i.d., we do not need to assume that F lies on the L2(µX)-sphere
and, most importantly, we get an optimal deviation inequality.

Corollary 5.7. There exist constants c, C > 0 such that the following holds. Let Xi :

Ω → Θ, 1 ≤ i ≤ m be independent random variables and let F be a set of real-valued
measurable functions on Θ. Suppose that σ,K are such that

sup
f∈F

1

m

m∑
i=1

E|f2(Xi)− Ef2(Xi)|q ≤
q!

2
σ2Kq−2 (q = 2, 3, . . .).
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Then, for any u ≥ 1,

P
(

sup
f∈F

Z(f) ≥ C
( 1

m
γ22(F , dψ2

) +
∆̄ψ2(F)√

m
γ2(F , dψ2

)
)

+ c
(√

u
σ√
m

+ u
K

m

))
≤ e−u.

Corollary 5.7 readily implies a deviation inequality for the sample covariance operator
(with respect to the true covariance operator) of a set of i.i.d. subgaussian vectors in
a Banach space, see [12, Theorem 9] for details. In [7], Corollary 5.7 is used to give a
unified approach to dimensionality reduction with subgaussian matrices (see in particular
[7, Theorem 4.8]). In both applications, the set F consists of linear functionals.

Remark 5.8. The main point of Corollary 5.7 is to establish an improved tail bound for
Z(f). We note, however, that substantial improvements have been made to the bound
for the expected value in (5.11) [18, 20]. In particular, a special case of [20, Theorem
5.23] (see also [27, Theorem 9.3.1]) shows that for any q > 4 there is a constant Cq > 0

such that

E sup
f∈F

Z(f) ≤ Cq
( 1

m
γ22(F , dψ2

) +
∆̄Lq(µX)(F)
√
m

γ2(F , dψ2
)
)
.

We also remark that a few months after this paper was finished, a different proof of
Corollary 5.7 was obtained in [3, Theorem 1].

6 Supremum of a second order chaos process

In this section we will make use of the Schatten spaces. For any m× n matrix A with
complex entries Aij we use

‖A‖Sq = (Tr(A∗A)q/2)1/q (1 ≤ q <∞), ‖A‖S∞ = ‖A‖l2n→l2m

to denote the Schatten norms of A. We use

dq(A1, A2) = ‖A1 −A2‖Sq

to denote the associated metrics on the m× n matrices. Accordingly, for any set A of
m× n matrices and 1 ≤ q ≤ ∞ we define the radius

∆̄q(A) = sup
A∈A
‖A‖Sq .

Let ξ be an n-dimensional random vector. For any n×n matrix B we define the associated
second order chaos by

CB(ξ) = ξ∗Bξ − E(ξ∗Bξ) =

n∑
i,j=1

Bij(ξiξj − E(ξiξj)).

The tail behavior of CB(ξ) in the case that ξ has subgaussian components was described
by Hanson and Wright [10], see also [23] for a modern proof.

Theorem 6.1. Suppose that ξ1, . . . , ξn are independent, mean-zero, real-valued random
variables and maxi ‖ξi‖ψ2 ≤ 1. Then, there is a universal constant c > 0 such that for any
u ≥ 0,

P(|CB(ξ)| ≥ u) ≤ 2 exp
(
− cmin

( u2

‖B‖2S2

,
u

‖B‖S∞

))
. (6.1)

In the terminology of Section 3, (6.1) implies that the process (CB(ξ))B∈B has a mixed
tail with respect to the pair (d∞, d2). Thus, by Theorem 3.5(

E sup
B∈B
|CB(ξ)|p

)1/p
. γ1(B, d∞) + γ2(B, d2) +

√
p∆̄2(B) + p∆̄∞(B).
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As it turns out, the occurrence of the γ1-functional in this bound can lead to suboptimal
results in certain applications. To mend this, Krahmer, Mendelson and Rauhut proved
the following deviation inequality for chaos processes of a special form, which involves
only γ2-functionals.

Theorem 6.2. [13, Theorem 3.5] Let A be a set of m× n matrices. Set ξ = (ξ1, . . . , ξn),
where ξ1, . . . , ξn are independent, mean-zero, unit variance, real-valued, subgaussian
random variables. Define

E = γ22(A, d∞) + ∆̄2(A)γ2(A, d∞)

V = ∆̄∞(A)(∆̄2(A) + γ2(A, d∞))

U = ∆̄2
∞(A)

Then, there exist constants c1, c2 > 0 depending only on ‖ξ1‖ψ2
, . . . , ‖ξn‖ψ2

such that for
all u ≥ 0,

P
(

sup
A∈A

∣∣∣‖Aξ‖22 − E‖Aξ‖22∣∣∣ ≥ c1E + u
)
≤ 2 exp

(
− c2 min

{u2
V
,
u

U

})
.

As discussed in [13], this result has interesting applications in compressed sensing
with structured random matrices.

Note that due to the appearance of the γ2-functional in the factor V , the bound
does not exhibit the correct tail behavior for large u. In fact, one would expect from
Lemma A.3 and the Hanson-Wright bound that V can be replaced by the smaller, and in
general optimal, factor ∆̄2

4(A). In Theorem 6.5 we show that this is indeed possible. Our
proof follows in general lines the proof of [13], with some simplifications. For example,
we completely avoid the use of the majorizing measures theorem.

The main chaining argument in the proof is contained in the following lemma. We
follow the proof of [13, Lemma 3.2].

Lemma 6.3. Fix 1 ≤ p < ∞. Let ξ = (ξ1, . . . , ξn) be a random vector of independent,
mean-zero random variables with maxi ‖ξi‖ψ2

≤ 1 and let ξ′ be an independent copy of
ξ defined on a probability space (Ω′,F ′,P′). Set l = blog2(p)c. Let A be a collection of
matrices, let (An)n≥0 be an optimal admissible sequence for γ2,p(A, d∞) and define an
associated sequence of maps πn : A → An by πn(A) = argminB∈Ad∞(A,B). Then,(

E sup
A∈A

∣∣∣ξ∗(A∗A− πl(A)∗πl(A))ξ′
∣∣∣p)1/p ≤ Cγ2,p(A, d∞)

(
E sup
A∈A
‖Aξ‖p2

)1/p
.

Proof. We make the decomposition

ξ∗(A∗A− πl(A)∗πl(A))ξ′

=
∑
n>l

ξ∗πn(A)∗πn(A)ξ′ − ξ∗πn−1(A)∗πn−1(A)ξ′

=
∑
n>l

ξ∗(πn(A)− πn−1(A))∗πn(A)ξ′ +
∑
n>l

ξ∗πn−1(A)∗(πn(A)− πn−1(A))ξ′

=: S1(A) + S2(A).

Let us consider S1(A). Note that the terms ξ∗(πn(A)−πn−1(A))∗πn(A)ξ′ are subgaussian
in ξ when we condition on ξ′. Thus, for any n > l,

P(|ξ∗(πn(A)− πn−1(A))∗πn(A)ξ′| ≥ u2n/2‖(πn(A)− πn−1(A))∗πn(A)ξ′‖2)

≤ 2 exp(−u22n).
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Note that for any n > l,

|{((πn(A)− πn−1(A)), πn(A));A ∈ A}| ≤ |An| |An−1| ≤ 22
n

22
n−1

≤ 22
n+1

.

Let Ωu,p be the event

∀n > l, ∀A ∈ A :|ξ∗(πn(A)− πn−1(A))∗πn(A)ξ′|

≤ u2n/2‖(πn(A)− πn−1(A))∗πn(A)ξ′‖2.

By a union bound (cf. Lemma A.4),

P(Ωcu,p) ≤ c exp(−pu2/4) (u ≥
√

2).

If the event Ωu,p occurs, then

|S1(A)| ≤
∑
n>l

u2n/2‖(πn(A)− πn−1(A))∗πn(A)ξ′‖2

≤
∑
n>l

u2n/2‖πn(A)− πn−1(A)‖S∞‖πn(A)ξ′‖2

≤ u(1 +
√

2)γ2,p(A, d∞) sup
A∈A
‖Aξ′‖2.

In conclusion, for any u ≥
√

2,

P
(

sup
A∈A
|S1(A)| > u(1 +

√
2)γ2,p(A, d∞) sup

A∈A
‖Aξ′‖2

)
≤ c exp(−pu2/4).

By Lemma A.5, (
E sup
A∈A
|S1(A)|p

) 1
p ≤ Cγ2,p(A, d∞) sup

A∈A
‖Aξ′‖2.

Taking the Lp-norm over Ω′ yields(
E′E sup

A∈A
|S1(A)|p

) 1
p ≤ C

(
E′ sup

A∈A
‖Aξ′‖p2

) 1
p

γ2,p(A, d∞).

A very similar argument gives(
EE′ sup

A∈A
|S2(A)|p

) 1
p ≤ C

(
E sup
A∈A
‖Aξ‖p2

) 1
p

γ2,p(A, d∞).

The asserted estimate now follows by the triangle inequality.

In the proof of the main theorem of this section we use the following decoupling
inequality due to Arcones and Giné.

Lemma 6.4. [2] Let g be an n-dimensional standard gaussian vector, let g′ be an inde-
pendent copy of g and let B be a collection of self-adjoint n × n matrices. There is an
absolute constant C > 0 such that for any 1 ≤ p <∞,(

E sup
B∈B

∣∣∣g∗Bg − E(g∗Bg)
∣∣∣p)1/p ≤ C(EE′ sup

B∈B
|g∗Bg′|p

)1/p
.

We will also use the following decoupling inequality, which is elementary to prove (see
e.g. [8, Theorem 8.11]). Let ξ1, . . . , ξn be independent, real-valued, mean-zero random
variables and let ξ′1, . . . , ξ

′
n be independent copies. Then, for any 1 ≤ p <∞,(

E sup
B∈B

∣∣∣∑
i 6=j

ξiξjBij

∣∣∣p)1/p ≤ 4
(
EE′ sup

B∈B
|ξ∗Bξ′|p

)1/p
. (6.2)
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Theorem 6.5. Let A be a set of m×n matrices. Suppose that ξ1, . . . , ξn are independent,
real-valued, mean-zero random variables, let ξ = (ξ1, . . . , ξn) and set ‖ξ‖ψ2

= maxi ‖ξi‖ψ2
.

For any 1 ≤ p <∞,(
E sup
A∈A

∣∣∣‖Aξ‖22 − E‖Aξ‖22∣∣∣p)1/p . ‖ξ‖2ψ2

(
γ22,p(A, d∞) + ∆̄2(A)γ2,p(A, d∞)

+
√
p∆̄2

4(A) + p∆̄2
∞(A)

)
. (6.3)

As a consequence, there are constants c, C > 0 such that for any u ≥ 1,

P
(

sup
A∈A

∣∣∣‖Aξ‖22 − E‖Aξ‖22∣∣∣ ≥ C‖ξ‖2ψ2

(
γ22(A, d∞) + ∆̄2(A)γ2(A, d∞)

)
+ c‖ξ‖2ψ2

(√
u∆̄2

4(A) + u∆̄2
∞(A)

))
≤ e−u.

Proof. By dividing both sides of (6.3) by ‖ξ‖ψ2
if necessary, we may assume that ‖ξ‖ψ2

≤ 1.
Let l = blog2(p)c. Let (An)n≥0 and (πn)n≥0 be as in Lemma 6.3 and write

sup
A∈A

ξ∗A∗Aξ − E(ξ∗A∗Aξ)

≤ sup
A∈A

ξ∗A∗Aξ − ξ∗πl(A)∗πl(A)ξ − E(ξ∗A∗Aξ − ξ∗πl(A)∗πl(A)ξ)

+ sup
A∈A

ξ∗πl(A)∗πl(A)ξ − E(ξ∗πl(A)∗πl(A)ξ).

We continue by estimating the first term. We write B = B(A, l) := A∗A− πl(A)∗πl(A) for
brevity. By the triangle inequality and the decoupling inequality (6.2),(

E sup
A∈A
|ξ∗Bξ − E(ξ∗Bξ)|p

)1/p
≤
(
E sup
A∈A

∣∣∣∑
i 6=j

ξiξjBij

∣∣∣p)1/p +
(
E sup
A∈A

∣∣∣∑
i

(|ξi|2 − E|ξi|2)Bii

∣∣∣p)1/p
≤
(
EE′ sup

A∈A
|ξ∗Bξ′|p

)1/p
+
(
E sup
A∈A

∣∣∣∑
i

(|ξi|2 − E|ξi|2)Bii

∣∣∣p)1/p. (6.4)

Let ε be a Rademacher vector and let g be a standard Gaussian vector. By symmetrization
[17, Lemma 6.3], the contraction principle [17, Lemma 4.6] and de-symmetrization [17,
Lemma 6.3],(

E sup
A∈A

∣∣∣∑
i

(|ξi|2 − E|ξi|2)Bii

∣∣∣p)1/p
≤ 2
(
EEε sup

A∈A

∣∣∣∑
i

εi|ξi|2Bii
∣∣∣p)1/p

.
(
EEε sup

A∈A

∣∣∣∑
i

εig
2
iBii

∣∣∣p)1/p
.
(
E sup
A∈A

∣∣∣∑
i

(g2i − 1)Bii

∣∣∣p)1/p +
(
Eε sup

A∈A

∣∣∣∑
i

εiBii

∣∣∣p)1/p
.
(
E sup
A∈A

∣∣∣g∗Bg − E(g∗Bg)
∣∣∣p)1/p +

(
E sup
A∈A

∣∣∣∑
i6=j

gigjBij

∣∣∣p)1/p
+
(
Eε sup

A∈A

∣∣∣∑
i

εiBii

∣∣∣p)1/p
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.
(
EE′ sup

A∈A
|g∗Bg′|p

)1/p
+
(
Eε sup

A∈A

∣∣∣∑
i

εiBii

∣∣∣p)1/p, (6.5)

where in the final step we used the decoupling inequality (6.2) and Lemma 6.4. We first
estimate the second term on the far right hand side. By Khintchine’s inequality, for any
C,D ∈ A, (

Eε

∣∣∣∑
i

εi(C
∗C −D∗D)ii

∣∣∣p)1/p ≤ √p(∑
i

|(C∗C)ii − (D∗D)ii|2
)1/2

.

Let C(i) denote the i-th column of C. Then we can estimate(∑
i

|(C∗C)ii − (D∗D)ii|2
)1/2

=
(∑

i

(
‖C(i)‖22 − ‖D(i)‖22

)2)1/2
=
(∑

i

(
‖C(i)‖2 − ‖D(i)‖2

)2(
‖C(i)‖2 + ‖D(i)‖2

)2)1/2
≤
(∑

i

‖C(i) −D(i)‖22(‖C(i)‖2 + ‖D(i)‖2)2
)1/2

.

Moreover, for any fixed i,

‖C(i) −D(i)‖22 = ‖(C −D)(i)‖22
= ((C −D)∗(C −D))ii ≤ ‖(C −D)∗(C −D)‖S∞ = ‖C −D‖2S∞ .

In conclusion, we find(
Eε

∣∣∣∑
i

εi(C
∗C −D∗D)ii

∣∣∣p)1/p
≤ 2
√
pd∞(C,D) sup

A∈A

(∑
i

‖A(i)‖22
)1/2

= 2
√
p∆̄2(A)d∞(C,D).

Thus, by Lemma A.1 the process (∑
i

εi(A
∗A)ii

)
A∈A

is subgaussian with respect to the metric ∆̄2(A)d∞ and Theorem 3.2 immediately yields(
Eε sup

A∈A

∣∣∣∑
i

εiBii

∣∣∣p)1/p . ∆̄2(A)γ2,p(A, d∞).

By Lemma 6.3 and the (quasi-)triangle inequality in Lp/2,(
EE′ sup

A∈A
|ξ∗Bξ′|p

)1/p
. γ2,p(A, d∞)

(
E sup
A∈A
‖Aξ‖p2

)1/p
. γ2,p(A, d∞)

(
E

∣∣∣ sup
A∈A

∣∣∣‖Aξ‖22 − E‖Aξ‖22∣∣∣+ sup
A∈A

E‖Aξ‖22
∣∣∣p/2)1/p

. γ2,p(A, d∞)
((
E sup
A∈A

∣∣∣‖Aξ‖22 − E‖Aξ‖22∣∣∣p)1/2p + ∆̄2(A)
)
.
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This bounds the first term on the right hand side of (6.4) and, specialized to ξ = g, the
first term on the far right hand side of (6.5). Finally, by Lemma A.3, the Hanson-Wright
bound (6.1) and Lemma A.2,(

E sup
A∈A

∣∣∣‖πl(A)ξ‖22 − E‖πl(A)ξ‖22
∣∣∣p)1/p ≤ 2 sup

A∈A

(
E

∣∣∣‖Aξ‖22 − E‖Aξ‖22∣∣∣p)1/p
.
√
p∆̄2

4(A) + p∆̄2
∞(A).

Collecting our estimates, we find(
E sup
A∈A

∣∣∣‖Aξ‖22 − E‖Aξ‖22∣∣∣p)1/p
. γ2,p(A, d∞)

(
E sup
A∈A

∣∣∣‖Aξ‖22 − E‖Aξ‖22∣∣∣p)1/2p
+ γ2,p(A, d∞)

(
E sup
A∈A

∣∣∣‖Ag‖22 − E‖Ag‖22∣∣∣p)1/2p
+ γ2,p(A, d∞)∆̄2(A) +

√
p∆̄2

4(A) + p∆̄2
∞(A).

Since this estimate in particular holds for ξ = g, we obtain a quadratic inequality

max{x, y} . amax{x, y}1/2 + b,

where

x =
(
E sup
A∈A

∣∣∣‖Aξ‖22 − E‖Aξ‖22∣∣∣p)1/p, y =
(
E sup
A∈A

∣∣∣‖Ag‖22 − E‖Ag‖22∣∣∣p)1/p,
a = γ2,p(A, d∞), b = γ2,p(A, d∞)∆̄2(A) +

√
p∆̄2

4(A) + p∆̄2
∞(A).

By solving this inequality, we obtain the result.

An application of Theorem 6.5 to dimensionality reduction with sparse Johnson-
Lindenstrauss transforms can be found in [5] (see in particular section 2 there).

A Appendix

In this appendix we collect some elementary observations that are used throughout
the paper. The first lemma states how to pass from moment to tail bounds. The proof is
a straightforward consequence of Markov’s inequality, see e.g. [8, Propositions 7.11 and
7.15].

Lemma A.1. If X is a complex-valued random variable satisfying

(E|X|p)1/p ≤ ap1/α + b, for all p ≥ 1,

for some 0 < a, α <∞ and b ≥ 0, then

P(|X| ≥ e1/α(au+ b)) ≤ exp(−uα/α) (u ≥ 1).

If X satisfies
(E|X|p)1/p ≤ a1p+ a2

√
p+ a3, for all p ≥ 1,

for some 0 ≤ a1, a2, a3 <∞, then

P(|X| ≥ e(a1u+ a2
√
u+ a3)) ≤ exp(−u) (u ≥ 1).

The following observation is a converse statement.
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Lemma A.2. Let 0 < α <∞. If a random variable X satisfies

P(|X| ≥ e1/αau) ≤ be−u
α/α (u ≥ 0),

then for any p ≥ 1,

(E|X|p)1/p ≤ e1/2ea
(√2π

α
eα/12b

)1/p
p1/α.

If X satisfies
P(|X| ≥ a1u+ a2

√
u) ≤ exp(−u) (u ≥ 0) (A.1)

for some 0 ≤ a1, a2 <∞, then for all p ≥ 1

(E|X|p)1/p ≤ a12e1/(2e)(
√

2πe1/(12p))1/pe−1p+ a22(2e)−1/2e1/(2e)(
√
πe1/(6p))1/p

√
p.

Proof. For a proof of the first statement, see [8, Proposition 7.13]. For the second
assertion, note that (A.1) implies

P( 1
2 |X| ≥ u) ≤

{
e−u

2/a22 , if 0 ≤ u ≤ a22/a1;

e−u/a1 , if u ≥ a22/a1.

Using integration by parts and a change of variable we find

2−pE|X|p = p

∫ ∞
0

up−1P( 1
2 |X| ≥ u) du

≤ p
∫ a22/a1

0

up−1e−u
2/a22 du+ p

∫ ∞
a22/a1

up−1e−u/a1 du

= 1
2pa

p
2

∫ a22/a
2
1

0

v
p
2−1e−v dv + pap1

∫ ∞
a22/a

2
1

vp−1e−v dv

≤ 1
2pa

p
2Γ(p/2) + pap1Γ(p),

where Γ(p) =
∫∞
0
vp−1e−v dv is the gamma function. The result now readily follows using

Stirling’s formula, which states that

Γ(p) =
√

2πpp−1/2e−peθ(p)/12p

for some 0 ≤ θ(p) ≤ 1. Indeed,

pΓ(p) ≤ pp
√

2π
√
pe−pe1/(12p)

and therefore
(pΓ(p))1/p ≤ p(

√
2πe1/(12p))1/pe−1e1/(2e),

where we used that p1/(2p) ≤ e1/(2e) if p ≥ 1. In the same way,

( 1
2pΓ(p/2))1/p ≤ (2e)−1/2e1/(2e)(

√
πe1/(6p))1/p

√
p.

The following three lemmas are used in every chaining argument in this paper.

Lemma A.3. Fix 1 ≤ p <∞, set l = blog2(p)c and let (Xt)t∈T be a collection of complex-

valued random variables. If |T | ≤ 22
l

, then(
E sup
t∈T
|Xt|p

)1/p
≤ 2 sup

t∈T
(E|Xt|p)1/p.
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Proof. Since |T | ≤ 2p,

E sup
t∈T
|Xt|p ≤

∑
t∈T

E|Xt|p ≤ |T | sup
t∈T

E|Xt|p ≤ 2p sup
t∈T

E|Xt|p.

Lemma A.4. Fix 1 ≤ p <∞, 0 < α <∞, u ≥ 21/α and set l = blog2(p)c. For every n > l

let (Ω
(n)
i )i∈In be a collection of events satisfying

P(Ω
(n)
i ) ≤ 2 exp(−2nuα), for all i ∈ In.

If |In| ≤ 22
n+1

, then for an absolute constant c ≤ 17,

P
( ⋃
n>l

⋃
i∈In

Ω
(n)
i

)
≤ c exp(−puα/4). (A.2)

Proof. By a union bound, using that uα ≥ 2,

P
( ⋃
n>l

⋃
i∈In

Ω
(n)
i

)
≤
∑
n>l

22
n+1

2 exp(−uα2n)

= 2
∑
n>l

exp(2(log 2)2n) exp(−uα2n)

≤ 2
∑
n>l

exp((log 2− 1)uα2n).

Clearly,∑
n>l

exp((log 2− 1)uα2n) = exp(−2luα/2)
∑
n>l

exp((log 2− 1)uα2n + 2luα/2)

≤ exp(−2luα/2)
∑
n≥0

exp((log 2− 1)uα2n + 2nuα/4).

Since log 2− 3
4 < 0 and −2l ≤ −p2 , we conclude that (A.2) holds. Note that

c ≤ 2
∑
n≥0

exp(2n(2(log 2− 1) + 1
2 ))

≤ 2
∑
n≥1

exp(n(2(log 2− 1) + 1
2 )) ≤ 2

1− exp(2(log 2− 1) + 1
2 )
− 2 ≤ 17.

Lemma A.5. Fix 1 ≤ p <∞ and 0 < α <∞. Let γ ≥ 0 and suppose that ξ is a positive
random variable such that for some c ≥ 1 and u∗ > 0,

P(ξ > γu) ≤ c exp(−puα/4) (u ≥ u∗).

Then, for a constant c̃α > 0 depending only on α,

(Eξp)1/p ≤ γ(c̃αc+ u∗).

Proof. By integration by parts and a change of variable,

Eξp =

∫ ∞
0

pup−1P(ξ > u)du
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= γp
∫ ∞
0

pvp−1P(ξ > vγ)dv

≤ γp
(∫ ∞

u∗

pvp−1c exp(−pvα/4)dv +

∫ u∗

0

pvp−1dv
)

= γp
(
c

∫ ∞
u∗

pvp−1 exp(−pvα/4)dv + up∗

)
.

To complete the proof, observe that by another change of variable∫ ∞
0

pvp−1e−pv
α/4dv = p−p/α2p/α

2p

α

∫ ∞
0

u
2p
α −1e−u

2/2du

= p−p/α2p/α
2p

α

√
2π

2
E|g|

2p
α −1,

where g is a standard Gaussian. If p ≥ α then

E|g|
2p
α −1 ≤

(2p

α
− 1
) p
α−

1
2

,

and therefore ∫ ∞
0

pvp−1e−pv
α/4dv ≤

√
2π

2
2p/α

( 2

α

) p
α+ 1

2

p1/2.

On the other hand, if p ≤ α, then we can trivially estimate the integral by 2
√

2π. The
result follows by combining all of the above estimates.
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