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Asymptotic distribution of two-protected nodes
in ternary search trees
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Abstract

We study protected nodes in m-ary search trees, by putting them in context of gener-
alised Pélya urns. We show that the number of two-protected nodes (the nodes that are
neither leaves nor parents of leaves) in a random ternary search tree is asymptotically
normal. The methods apply in principle to m-ary search trees with larger m as well,
although the size of the matrices used in the calculations grow rapidly with m; we
conjecture that the method yields an asymptotically normal distribution for all m < 26.

The one-protected nodes, and their complement, i.e., the leaves, are easier to
analyze. By using a simpler Pélya urn (that is similar to the one that has earlier been
used to study the total number of nodes in m-ary search trees), we prove normal limit
laws for the number of one-protected nodes and the number of leaves for all m < 26.
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1 Introduction

There are many recent studies of so-called protected nodes in various classes of
random trees, see e.g. [1, 3, 6, 8, 11, 18, 19]. A node is protected (more precisely,
two-protected) if it is not a leaf and none of its children is a leaf.

In this paper we consider the number of protected nodes in m-ary search trees (see
Section 1.1.2 for definitions), by putting them in context of generalised Pdlya urns. The

following result is our main theorem. We let < denote convergence in distribution and
denote a normal distribution with mean x and variance o2 by N(u, 02).

Theorem 1.1. Let Z,, be the number of protected nodes in a ternary search tree with n
keys. Then
Zo= Fon a, o (o, 1692302314867
vn ’ 43692253605000 ) °
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Protected nodes in ternary search trees

For a binary search tree, we obtain by the same method a new proof of the following
result, which earlier has been obtained by different methods, first by Mahmoud and
Ward [18] (using generating functions), and later in [11] (using fringe trees).

Theorem 1.2. Let Y, be the number of protected nodes in a binary search tree with n

keys. Then
Y,—in 4 29
n 30
—3 N[0, —
vn ( 225)
Remark 1.3. Theorems 1.1 and 1.2 imply that Zn" LN 7"070 and Y" LN %. It follows

from [12, Theorem 3.21] that moreover, for the sequence of search trees generated by

. . PR a.s. a S. . .
an infinite sequence of i.i.d. keys, Zn e W and Y" é. (Similarly, convergence

almost surely holds in the other limit theorems below too.) Since also 0 < @ <1and
0< Y" <1, the dominated convergence theorem 1mphes that ( o) and ( n) converge in

Lt to 700 and 1 30, respectively; in particular, (Z”) — W and E(Y”) —> . We conjecture

that also the variances (and higher moments) converge in Theorems 1 1 and 1.2.

The methods apply to larger m too, at least in principle, see Sections 1.1.3 and 5.

Similarly, we may consider the one-protected nodes, i.e. the non-leaves. These are
easier to analyze than the two-protected nodes and using a minor variation of a Pélya
urn earlier used to study the total number of nodes [12, 15, 16], we prove in Sections
4 and 5.2 normal limit laws for the number of one-protected nodes and the number of
leaves in an m-ary search tree for all m < 26.

1.1 Protected nodes in m-ary search trees described as generalised Pélya urns
1.1.1 A generalised Pdlya urn

A (generalised) Pdlya urn process is defined as follows, see e.g. [12] or [16]. There are
balls of ¢ types (or colours) 1, ..., ¢, and for each n a random vector X,, = (X, 1,...,Xnq),
where X, ; is the number of balls of type ¢ in the urn at time n. The urn starts with a given
vector X. For each type ¢, there is an activity (or weight) a; > 0, where a; € R, and a
random vector §; = (&1,...,&q), where & € Z% . The urn evolves according to a discrete
time Markov process. At each time n > 1, one ball is drawn at random from the urn,
with the probability of any ball proportional to its activity. Thus, the drawn ball has type
1 with probability % If the drawn ball has type 1, it is replaced together with

AX,(L))j balls of type j, j = 1,...,n, where the random vector AXS = (AX,(:l, cee AX,(L,ZZ)
has the same distribution as ¢; and is independent of everything else that has happened
so far. (We allow AXfl‘)l = —1, which means that the drawn ball is not replaced.) We let
A denote the ¢ x ¢ matrix

A= (a; B! -y (1.1)

The matrix A with its eigenvalues and eigenvectors is central for proving limit theorems.

The basic assumptions in [12] are the following. We say that a type ¢ is dominating, if
every other type j can be found with positive probability at some time in an urn started
with a single ball of type «.

(A1) For each type i, there is an integer d; > 1, such that Xy; and all {;; a.s. are divisible
by d;, &; > 0 for j # i (i.e., balls of other types than the drawn ball are never
removed) and &;; > —d;.

(A2) E(¢) < ooforalli,je{l,...,q}.

(A3) The largest real eigenvalue A, of A is positive.

(A4) The largest real eigenvalue \; is simple.

(A5) There exists a dominating type 7 with X, ; > 0, i.e., we start with at least one ball
of a dominating type.
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(A6) )\ is an eigenvalue of the submatrix of A given by the dominating types.

Furthermore, [12] says that the process becomes essentially extinct if at some time
there are no balls of any dominating type left. We will also use the following simplifying
assumption.

(A7) With probability 1, the urn never becomes essentially extinct.

Condition (A1) is stated here somewhat more generally than in [12], where d; = 1 is
assumed, but the general case follows by replacing X,, ; by Xd ; see [12, Remark 4.2].

In the Pdlya urns used in this paper, it is easily seen (from the definitions using
trees) that every type with non-zero activity is dominating. If we remove rows and
columns corresponding to the types with activity 0 from A, then the removed columns
are identically 0, so the set of non-zero eigenvalues of A is not changed. The remaining
matrix is irreducible, and using the Perron-Frobenius theorem, it is easy to verify all
conditions (A1)-(A6), see [12, Lemma 2.1]. Furthermore, in our urns there will always
be a ball of positive activity, so essential extinction is impossible.

Before stating the results that we use, we need some notation. With a vector v
we mean a column vector, and we write v’ for its transpose (a row vector). More
generally, we denote the transpose of a matrix A by A’. By an eigenvector of A we mean
a right eigenvector; a left eigenvector is the same as the transpose of an eigenvector
of the matrix A’. If v and v are vectors then uv is a scalar while uv’ is a ¢ x ¢ matrix
of rank 1. We also use the notation u - v for v/v. We let \; denote the largest real
eigenvalue of A. (This exists by our assumptions and the Perron-Frobenius theorem.)
Let a = (a1,...,a,) denote the (column) vector of activities, and let v} and v; denote
left and right eigenvectors of A corresponding to the largest eigenvalue A1, i.e., vectors
satisfying

UllA = /\1u'1, Av1 = )\11}1.
We assume that v; and u; are normalized such that
a- v :a,/’ul :via:l, Ul - V1 :uavl :viul :17 (]_2)

see [12, equations (2.2)—(2.3)]. We write v1 = (v11,...,014).
We define
Py, = vul,

and Pr = I, — Py,, where I, is the ¢ x ¢ identity matrix. (Thus Py, is the one-dimensional
projection onto the eigenspace corresponding to A; such that P\, commutes with the
matrix A, see [12, equation (2.2)]; note that P, typically is not orthogonal). We define
the matrices

q

B := ZvliaiBi (14)
i=1

Y= / PIeSABeSA/PI/e*/\lsds, (1.5)
0

where we recall that e’ = 377 /7 A7 /1.
It is proved in [12] that, under assumptions (A1)-(A7), X,, is asymptotically normal
if ReA < A\1/2 for each eigenvalue A # \;; more precisely, if Re A < \1/2 for each such

A, then n=Y2(X,, — nu) A N(0,%) for some p = (u1,..., %) and ¥ = (045)F =, (If
A = )\1/2, then X, is still asymptotically normal, however with another normalisation.)
The asymptotic covariance matrix 3 may be calculated in different ways; we use the

following results from [12], which apply under different additional assumptions.
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Theorem 1.4 ([12, Theorem 3.22 and Lemma 5.4]). Assume (Al)-(A7) and that we
have normalized as in (1.2). Also assume that Re A < \1/2 for each eigenvalue \ # \;.
Suppose that a - E(&;) = m for some m > 0 and every i. Then, asn — oo,

nV2 (X — ) 5 N (0, %),
with y = A\jv; and covariance matrix . equal to m>;, with ¥; as in (1.5). O

Theorem 1.5 ([12, Theorem 3.22 and Lemma 5.3]). Assume (Al1)-(A7), and that we
have normalized as in (1.2). Also assume that Re A < \{/2 for each eigenvalue \ # \;. If
the matrix A is diagonalisable, and {u}}!_, and {v;}!_, are dual bases of left and right
eigenvectors, respectively, i.e., u;A = \u;, Av; = \jv; and u; - v; = §;; (where ¢;; is the
Kronecker delta). Then, as n — oo,

n~Y2(X, —np) LN N(0,%),

with ¢ = A\jv1 and covariance matrix 3. equal to

a u’. Buy,
2= Ly 1.
A=A — A TR (1.6)

with the matrix B as in (1.4). O

1.1.2 M-ary search trees

We recall the definition of m-ary search trees, see e.g. [14] or [7]. An m-ary search
tree, where m > 2, is constructed recursively from a sequence of n keys (numbers). We
assume that the keys are i.i.d. uniform random numbers in [0, 1]. (Only the order of the
keys matter, so alternatively, we may assume that the keys form a uniformly random
permutation of {1,...,n}.) Each node may contain up to m — 1 keys. We start with a
tree containing just an empty root. The first m — 1 keys are put in the root, and are
placed in increasing order from left to right; they divide the set of real numbers into m
intervals Jy, ..., J,,. When the root is full (after the first m — 1 keys are added), it gets m
children that are initially empty, and each further key is passed to one of the children
depending on which interval it belongs to; a key in J; is passed to the i:th child. (The
binary search tree is the simplest case where keys are passed to the left or right child
depending on whether it is larger or smaller than the key in the root.) The procedure
repeats recursively in the subtrees until all keys are added to the tree.

Nodes that contain at least one key are called internal, while empty nodes are called
external. We regard the m-ary search tree as consisting only of the internal nodes; the
external nodes are places for potential additions, and are useful when discussing the
tree (e.g. below), but are not really part of the tree. Thus, a leaf is an internal node
that has no internal children, but it may have external children. (It will have external
children if it is full, but not otherwise.) Similarly, a protected node is an internal node
that is not a leaf, and has no child that is a leaf. (It may have external nodes as children.)

We say that a node with ¢ < m — 2 keys has ¢ + 1 gaps, while a full node has no gaps.
It is easily seen that a m-ary search tree with n keys has n + 1 gaps; the gaps correspond
to the intervals of real numbers between the keys (and +o0), and a new key has the
same probability 1/(n + 1) of belonging to any of the gaps. Thus the evolution of the
m-ary search tree may be described by choosing a gap uniformly at random at each step.
Equivalently, the probability that the next key is added to a node is proportional to the
number of gaps at that node.

Pélya urns have been used in some earlier studies, e.g. [12, 15], to describe the
number of nodes in m-ary search trees containing ¢ keys where 0 < ¢ < m — 1; then a
node containing 7 keys is called a node of type 7 and thus the generalised Pélya urn has
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m different types. It has been shown that for this process, when m < 26 the number
of different types has an asymptotic multivariate normal distribution, but this does not
hold for larger m. (Since the condition Re A < A1/2 for A # A, on the eigenvalues of the
matrix A in (1.1) holds only if m < 26.) Since the number of nodes in the whole tree is a
linear combination of these numbers, this implies in particular that the distribution of
the random number of nodes in an m-ary search tree containing n keys is asymptotically
normal for m < 26. In this Pélya urn, with one ball representing each node, the activity
of a ball is the number of gaps, i.e., ¢ + 1 for a ball of type : < m — 2, and 0 for a ball of
type m — 1.

Alternatively, see [12], we can use a Pdlya urn where each ball represents a gap; thus
a node with 7 keys corresponds to ¢ + 1 balls for 0 < ¢ < m — 2, and these balls are all
given type ¢. (Full nodes are ignored.) This is thus an urn with m — 1 types, all with
activities 1.

1.1.3 Protected nodes and generalised Pdlya urns

We will see that it is possible to use a generalised Pélya urn also to study protected
nodes in an m-ary search tree, although the urn consists of quite a few different types.

Description of the Types in the Polya urn. Given an m-ary search tree T with n
keys together with its external nodes, erase all edges that connect two internal non-
leaves. This yields a forest of small trees, where (assuming n > m) each tree has a root
that is a non-leaf in T" while all other nodes are leaves or external nodes in 7. We regard
these small trees as the balls in our generalised Pdlya urn. The type of a ball (tree) is the
type of the tree as an unordered tree, i.e., up to permutations of the children. The type of
a tree in the urn is thus described by the numbers k;, ¢ = 0,...,m — 1, of children of the
root with ¢ keys; each of these children is an external node (i = 0) or a leaf ( > 1), and it
has itself children only when ¢« = m — 1 when it has m external children; thus the type is
uniquely determined by ko, ..., k,,—1, and we can label the type by (ko, ..., kn—1). Since
the root of any of the small trees has m children (including external ones) in the original
tree T, we have Z?;ol k; < m, (with the remainder m — Z?;Ol k; equal to the number
of erased edges to children in the original tree 7' that are non-leaves). Furthermore,
the case kg = m is excluded, since the root of the small tree is a non-leaf in T'. The
total number of types is thus one less than the number of compositions of m into m + 1
non-negative parts, i.e., (27:?) —1.

The activity in the Pélya urn of one of these types is the number of gaps that it contains.
The root has no gaps, so a tree with type (ko,...,kn_1) has activity Z;’:Ol(i + 1)k;.
Moreover, if we add a new key to a leaf, it is still a leaf, so in the Pdlya urn, this
corresponds to replacing a tree by another tree where we have increased by 1 the
number of keys of one of the children of the root. The same holds if we add a key to
an external node that is a child of the root. However, if we add a key to an external
node that is a child of a leaf, then that leaf becomes a non-leaf, so the edge from it
to the root is erased and the tree is split into two (one of which always has the type
(m—1,1,0,...,0)). See Section 2 for examples. Note that in general, a small tree may
be transformed in several different ways when we add a new key, depending on which
gap it goes into. Hence, the additions &; in the Pélya urn will be random.

A protected node in T is a non-leaf, and is therefore a root in one of the small trees.
Moreover, it must not have any child that is a leaf, so all its children are external nodes.
Thus, the number of protected nodes in T equals the number of balls in the urn that
have types (ko,0,...,0) with 0 < ko <m — 1.

2 Protected nodes in binary search trees and Pdélya urns

In this section we demonstrate the technique of using the Pdlya urn defined above
to study the number of protected nodes, by applying it to the simplest case m = 2, the
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Type 3 Type 4 Type 5
(0,1) (1,0) (0,0)

’
’
’
’
’

Figure 1: The different types characterizing protected and unprotected nodes in binary
search trees. Type 4 and type 5 are the only ones that include protected nodes.

binary search tree. This gives us a new proof of Theorem 1.2; for earlier proofs, see [18]
and [11].

For a binary tree, the number of types in the Pélya urn defined above is (3) —1=5.
We show the different types in Figure 1, with a numbering that will be used below. (For
convenience we omit the external nodes in the figures. We use dotted lines for edges
attached to external nodes.) With our characterization of the types in Section 1.1.3, the
types i € {1,...,5} correspond to (0,2), (1,1), (0,1), (1,0) and (0, 0), respectively.

Let X,, = (Xn.1,Xn,2, Xn.3, Xn 4, Xn5), where X, ; is the number of balls of type 7 in
the urn corresponding to n keys (i.e., the number of trees that correspond to type i in
our forest). Recall that we assume that n > m = 2; the initial conditions are X, =1
and X, ; = 0 for i # 2. In a binary search tree, each leaf contains one key, so it has two
external children, whereas other internal nodes have either 1 or 0 external children.
There is one gap at each external node, and no gaps at any internal node. As explained
in Section 1.1.2, each gap (i.e. external node) has activity 1.

When a ball is drawn from the urn (i.e., a new key is added to the tree), as explained
in general in Section 1.1.3, a key is either added to an external node that is a child of
the root (we return a ball of another type), or to an external node that is a child of a leaf
(we return two balls). Figures 2-5 show the transitions in the Pdlya urn when a ball of
type i for i € {1,2,3,4} is drawn (where the types are shown in Figure 1), so that the
drawn ball is replaced by a new set of balls. (As said above, this set could depend on
which of the nodes in the drawn type the key is added to, see Figure 3.) The activities
of the different types depend on their number of gaps; the total activities for the types
1,2,3,4,5 are 4,3,2,1,0, respectively; thus a = (4,3,2,1,0)".

From the transitions that are shown in Figures 2-5, we easily obtain the matrix
A= (aj Egji)ij:l in (21)

—4 1 0 0 0
4 -1 2 0 0
A= 4 0 =2 1 0 (2.1)
0 2 0 -1 0
0 0 2 0 0

To do the matrix operations in this paper we use computer algebra in our case Mathe-
matica. The Mathematica codes for the calculations are given as supplementary files.
The eigenvalues of A are 1,0, —2,—3, —4. Corresponding right eigenvectors of A are:

1 0 1 1 1
5 0 2 1 0
1 1 1 1
N R I R (2.2)
5 0 —4 -1 0
6 1 3 2 1
EJP 20 (2015), paper 9. ejp.ejpecp.org
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Type 2 Type 3
[ ] |
{J — .+

Figure 2: Adding a key to type 1.

Type 2 Type 1 Type 2 Type 2 Type 4 @
* ¢ 23 +
Figure 3: Adding a key to type 2.
Type 3 Type 2 Type 5 @ Type 4 @ Type 3
.« ot J —
Figure 4: Adding a key to type 3 Figure 5: Adding a key to type
4
and corresponding left eigenvectors of A are:

N -1\ 2\ -4\ /1)’
3 -1 0 1 -3
21, ol , 11, -2, 31 . (2.3)
1 0 -1 1 -1
0 1 0 0 0

Since the eigenvalues for the matrix A are distinct it follows automatically that u; - v; = 0
for i # j (recalling that {u/}? , and {v;}, are the left and right eigenvectors of A4,
respectively). Note that we have scaled the eigenvectors so that u; - v; = 1 and (1.2)
hold. Note also that u; is equal to the activity vector a. This is a consequence of the fact
that the total activity always increases by 1 when we draw a ball from the urn, and thus
a-E& =1 foreach i, see [12, Lemma 5.4].

It is easy to see that we can apply Theorem 1.5 for this generalised Pélya urn. Note
that it is obvious that the matrix A is diagonalisable since all eigenvalues are simple.
From Theorem 1.5 we obtain that X,, = (X,, 1, X 2, Xn 3, X 4, X5, 5) has asymptotically
a multivariate normal distribution. Let Y,, be equal to the number of protected nodes in
the binary search tree with n nodes. Since type 4 and type 5 each contains exactly one
protected node, while the other types contain no protected nodes,

Yn = Xn,4 + Xn,5~

Thus, Theorem 1.5 implies that

Y2V, = npy ) S N(0,02) (2.4)

EJP 20 (2015), paper 9. ejp.ejpecp.org
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with parameters py = p4 + 5 and
0¥ =044+ 045+ 054+ 055. (2.5)

Since A\; = 1, Theorem 1.5 implies, using v; in (2.2), that

5 6 11

NY:M4+N5:%+%:%~

(2.6)
Thus, to show Theorem 1.2 it remains to calculate the sum in (2.5).

To calculate the matrix B in (1.4) we need to calculate B; = E(gigg) in (1.3). In all
cases except for B, these are deterministic and equal to §&;. We only show how to
obtain B, (since the other cases are simpler). As shown in Figure 3 when adding a key
to type 2 we can either add it to the leaf or to the external node. In case we add it to
the external node (which happens with probability 1/3) a node of type 2 is replaced by
a node of type 1; this change corresponds to the column vector (1,—1,0,0,0)". If the
key is instead added to the leaf (which happens with probability 2/3) a node of type 2 is
replaced by another node of type 2 (the change of type 2 is 0) and a node of type 4; this
change corresponds to the column vector (0,0,0,1,0)’. Hence

By =% -(1,-1,0,0,0)'(1,-1,0,0,0) + 2 - (0,0,0,1,0)'(0,0,0,1,0)
: -2 000
2000
= 0 00 00 |- (2.7)
0 00 20
0 00 00

By calculating the B;’s we obtain the matrix B in (1.4) as

0 w5 00

= BN SN
e I T 8

o o0 - 1 o0

L

From (1.6) in Theorem 1.5 it follows that the covariance matrix ¥ for the asymptotic
multivariate normal distribution of X,, = (X, 1, X, 2, X3, X4, X, 5), is given by

43 67 113 29 1
1575 2520 12600 2520 1400
67 23 1 13 71
2520 120 12 1260 2520
_ 113 1 443 1 59
x= 12600 T2 6300 T30 1800 : (2.9)
_ .29 _ 13 _1 181 _ 11
2520 1260 30 1260 504
1 71 59 11 13
1400 2520 1800 504 450
Thus, it follows that
181 13 11 29
2
Oy =044+ 045+054+055=""7>+ -2 —2- —=_——. (2.10)
Y 1260 450 504 225
Thus, the proof of Theorem 1.2 is completed. O
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Type 5
(0,3,0)

Type 11 Type 12
(0,2,0) (1,0,1)

Type 14 Type 15
0,0,1) (1,1,0)

Type 16 Type 17 Type 18 Type 19
(0,1,0) (2,0,0) (1,0,0) (0,0,0)

Figure 6: The different types characterizing protected and unprotected nodes in ternary
search trees. Type 17, type 18 and type 19 are the only ones that include protected
nodes.

3 Protected nodes in ternary search trees and Pélya urns

We now proceed by analyzing the number of protected nodes in ternary search trees,
by using the Pélya urn in Section 1.1.3 (described for general m-ary search trees ) when
m = 3. The 19 different types we get are shown in Figure 6 (with a numbering that will
be used below). From our characterization of the types in Section 1.1.3, for example type
2 corresponds to (0,1,2). Note that type 17, type 18 and type 19 contain one protected
node each, while the other types contain no protected nodes.

To determine the matrix A we proceed (as for the binary search tree) to find the
transitions when a ball (in our case one of the 19 trees in our forest) of type 7 is chosen.
Figure 7 illustrates the different situations for how a new key could be added to a ball (a
tree) of type 2. All the other cases are similar, and we leave these cases as an exercise
to the reader.

From the different transitions for changing a node of type ¢ we get the matrix A for
ternary search trees in Figure 8. The example in Figure 7 gives the second column of A.

Figure 7: The two possibilities for adding a key to a node in a tree of type 2 of a ternary
search tree.
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Figure 8: The transition matrix A for the Pélya urn defined in Section 1.1.3 in the case
of the ternary search tree.

The tree of type 2 has activity 8. If it is drawn, and the new key is added to the node
with only one key which happens with probability %, then a tree of type 2 is replaced
with a tree of type 1. If the new key is instead added to one of the nodes containing two
keys which happens with probability g, then the tree of type 2 is replaced by a tree of
type 8 and one tree of type 13. Thus, the second column of the matrix A for the ternary
search tree is given by

8- (%7 *1,0,0,0,0,0, gaovoaovoa 270,0»(%070’0)/-

In this way we obtain A in Figure 8.
The activities of the different types are given by the vector

a=1(9,8,7,7,6,6,6,5,5,5,4,4,4,3,3,2,2,1,0).

These correspond to the number of gaps for the different types. The eigenvalues of the
matrix A are

1,0,—2,-3, -3, —4,—4,—4, —4,—5,—5,—5,—6,—6, —6, —7, —7, —8, —9.

The eigenspace belonging to the eigenvalue —4 (which has algebraic multiplicity 4) has
dimension 3. Since the dimension of the eigenspace belonging to the eigenvalue —4 is
not equal to the algebraic multiplicity, the matrix A is not diagonalisable. (However, all
other eigenspaces have full dimension.) Hence, we can not apply Theorem 1.5. However,
Theorem 1.4 can be applied since a - E(§;) = 1 for each i (this follows since we always
add exactly one key when a tree of type i is chosen).

From Theorem 1.4 we obtain that the vector X,, = (X, 1,...,Xn19), where X,, ; are
the number of balls of type 7 (in our case the number of trees that correspond to type ¢
in our forest obtained from the ternary search tree), has asymptotically a multivariate
normal distribution. Let Z,, be the number of protected nodes in the ternary search tree
with n nodes. Since type 17, type 18 and type 19 each contains exactly one protected
node, while the other types contain no protected nodes,

Zn = Xp17+ Xp18 + X 10 (3.1)
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Thus, Theorem 1.4 implies that
n~ Y Z, —npy) iN(O,U%), (3.2)
with parameters

Bz = pi7 + pas + Hio

and, writing ¥ = (0;,7){%-,,

O’% = Z Z Ui,j~ (33)

Using the normalization in (1.2), we see that

vy (1,5,9,9,6,7,36,20,42,42, 15,30, 126, 28, 48, 35, 42, 45, 84)’ (3.4)

~ 2100
and that

uy = (9,8,7,7,6,6,6,5,5,5,4,4,4,3,3,2,2,1,0)’.
(As in the binary case, u; = a since a - [E§; = 1 for each i, see [12, Lemma 5.4].) Since

A1 =1, Theorem 1.4 and (3.4) yield

42 45 84 o7

=_—. 3.5
2100 + 2100 + 2100 700 (3-5)

Bz = pi7 + pis + p1g =

Thus, to show Theorem 1.1 it remains to calculate the sum in (3.3).

Since we want to determine the matrix >; in (1.5) we need to determine the matrices
Pr and B. We have P; = I19 — vy}, which is a 19 x 19 matrix that is shown in (A.1) in the
appendix. To calculate the matrix B in (1.4) we need to calculate B; = E(;&)) in (1.3).
We only describe how to get B, since the other cases are analogous. From Figure 7 (and
the explanation of that figure above) it is easy to see that

By =10t + 2 - bobl, where,
by = (1,—-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) and
by = (0,-1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0)".

Note that B is a 19 x 19 matrix. The matrix B is shown in (A.2) in the appendix. Now we
can use Mathematica to evaluate the integral in (1.5), which yields ¥;. Finally, ¥ = ¥,
by Theorem 1.4 with m = 1. This matrix is given last in the appendix.

By (3.1) and (3.3), we only need the submatrix

o . o 156031 826069 3453169
17,17 017,18 017,19 8085000 1387386000 15030015000
- — | __ 826069 2222557 439517549 ) 3.6
P 018,17 018,18 018,19 1387386000 118918800 87603516000 (3.6)
o . - 3453169 439517549 142536826
19,17 019,18 019,19 15030015000 ~ 87603516000 12384425625

Summing the o, ; in (3.6), which is equivalent to calculating (1,1,1)%,(1,1,1)’, we find

19 19
1692302314867
2 e et tutsdnlishet el
9z = 121:7 ];7 743 = 43692253605000

which completes the proof of Theorem 1.1. O
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SEEOREN I

a) An external b) A leaf c) A leaf d) An internal

node which is not containing one containing two node with two
a child of a leaf. key. keys and its three keys which is not
external children. a leaf.

Figure 9: The different types characterizing leaves and non-leaves in ternary search
trees.

4 Leaves in ternary search trees

Recall that a leaf is an internal node without internal children, i.e., a node that
contains at least one key and has no children except possibly external ones. The proof of
Theorem 1.1 yields also the following theorem. (The corresponding result for a binary
search tree was considered already by Devroye [5] using two different methods, one of
them a Pdlya urn as here.)

Theorem 4.1. Let L, be the number of leaves in a ternary search tree. Then,

Ln— 55m 5 N (0 89 ).

vn ’ 2100
First proof. Counting the number of leaves (of the original ternary search tree) in each
type in Figure 6, we see that the number of leaves in a subtree of type ¢, ¢ = 1,...,19, is
given by the vector
0=(3,3,3,2,3,2,2,2,2,1,2,1,1,1,1,1,0,0,0)". (4.1)

Hence, L, = ¢ - X,,. By the proof of Theorem 1.1, the vector X,, has asymptotically a
multivariate normal distribution, and it follows that

n~Y2(L, — nur) iN(O,ai) (4.2)
with, using (3.4) and (4.1),
3
MLZE"Ulley (4.3)

and, using the covariance matrix > shown in the appendix,
ol =Sl = (4.4)

O

However, it is also possible to show Theorem 4.1 using a much simpler Pdlya urn
process, where we only need to consider four different types. We again chop up the
ternary search tree into small trees, now using the following types of trees.

Type 1 is an external node which is not a child of a leaf. Type 2 is a node containing
one key. Type 3 is a leaf containing two keys together with its three external children.
Type 4 is an internal node containing two keys which is not a leaf (i.e., it has less than
three external children). The types are shown in Figure 9. Note that all nodes in the
ternary search tree belong to exactly one such subtree.
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A ball of type 1 has activity 1; when it is drawn it is replaced by one ball of type 2. A
ball of type 2 has activity 2; when it is drawn it is replaced by one ball of type 3. A ball
of type 3 has activity 3; when it is drawn it is replaced by one ball of type 2, two balls of
type 1 and one ball of type 4. A ball of type 4 has activity 0 and is thus never drawn. The
types that contain leaves are type 2 and type 3.

To simplify we can study another urn using the gaps as balls. Type 1 has one gap,
type 2 has two gaps, type 3 has three gaps and type 4 has 0 gaps. We label each gap
with the type it belongs to; thus the gaps have only the three types 1-3. The gaps evolve
as an urn with three types, with all activities 1 and the matrix A in (1.1) given by

-1 0 2
2 =2 2. (4.5)
0 3 -3

Since we consider the gaps (with activity 1) it is obvious that all columns add to 1
(since we always add one ball to the urn). The eigenvalues of A are 1, —3, —4. Theorem
1.5 shows that (X, 1, X 2, X 3) has asymptotically a multivariate normal distribution,
where X, ; is the number of balls of type ¢ in the Pélya urn, i.e., the number of gaps
of type i. Note that the number of subtrees of Types 1-3 thus is (X, 1, X, 2/2, X,,3/3),
which thus also is asymptotically multivariate normal.

Since the number of leaves L,, = X,, 2/2+ X, 3/3, it follows that L,, has asymptotically
a normal distribution (4.2).

To find the parameters p, and 0%, we note that right eigenvectors of A corresponding
to the eigenvalues 1, —3, —4 are:

3 -1 -2
1 1 1
wola) 20 )5 7a) (.0
3 1 3

and corresponding left eigenvectors of A are:

! ! !

1 -3 2
), 3], -3]. (4.7)
1 -1 2

Note that we have scaled the eigenvectors so that u; - v; = §;; and (1.2) holds. We have
a = (1,1,1)". Since type 2 has two gaps and one leaf and type 3 has three gaps and one
leaf, it follows that

1 11 3
= :7?)’473 '(07777):7a
Hr = p2 + [13 10( ) 23 10
corresponding to (4.3). By calculating B, we get from Theorem 1.5, that the covariance
matrix ¥ is given by

ar9 1 121
2100 150 700
7 32 10 | (4.8)
150 7 50
1271 19 393
700 50 700
We thus obtain
a9 7127 0
2100 150 700 89
2 _ (911 7 32 _19 O
o= (0.3:3) |~ 75 50 2 2100 (4.9)
_ler 19 393 1
700 50 700 3

(corresponding to (4.4)), which completes the proof of Theorem 4.1 with the simpler
Pélya urn model.
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5 Higher m

5.1 The Pélya urn defined in Section 1.1.3

The Pélya urn defined in Section 1.1.3 can be used for any given m, although the size
of the matrices used in the calculations grow rapidly with m. (For m = 4 we have 69
types; for m = 10 we would have 184755.) However, the central condition Re A < A\;/2 is
not satisfied for large m. We do not know any general formula for the eigenvalues of the
matrix A, but some of them are given as follows.

Lemma 5.1. Let m > 2. Then every root of the polynomial

m—1

Sm(\) = 1:[()\+i)—m! (5.1)

i=1
is an eigenvalue of the matrix A for the Pdélya urn in Section 1.1.3.

Proof. Let M := (27:;1) — 1 be the number of types, and let as above X,, € Z be the
composition of the Pélya urn described in Section 1.1.3. Furthermore, let V; ,, be the
number of nodes containing exactly ¢ keys (thus 1} ,, is the number of external nodes),
and consider the vector W,, = (Wi ,,...,Wp_1,,) where W, , = iV;_q ,; thus W, , is
the total number of gaps at nodes with ¢ gaps. The random vector W,, can also be
described by a Pélya urn, see e.g., [12, Example 7.8] and [16, Section 8.1.3]; we denote

the activity vector and the matrix (1.1) for this urn by aw = (1,...,1)’ and Ay, where
the (m — 1) x (m — 1) matrix Ay has elements a;,, = —ifori e {1,...,m—1}, a; ;1 =1
fori e {2,...,m}, a1 m—1 = m and all other elements a;; =0, i.e.,
-1 0 0o ... 0 m
2 -2 0 ... 0 0
0o 3 -3 ... 0 0
Aw=1 0 o0 4 0 0 (5.2)
0 0 0 m—1 —(m-—1)

As is well-known, the matrix Ay has characteristic polynomial ¢,,()\), see e.g., [12,
Example 7.8] or [16, Section 8.1.3].

Since the vector X,, determines the number of nodes with different numbers of keys,
there is a linear map 7' : R — R™ ! such that W,, = TX,,. T is determined by the
description of the types in Section 1.1.3, and it is easily seen that 7" is onto. Furthermore,
starting the urns with an arbitrary (deterministic) non-zero vector Xy € Z% and W, =
T Xy, the urn dynamics yield -

AX,

E(X1 - Xo) = = (5.3)
Aw W,

E(W, — W) = 7&WW Wﬁo' (5.4)

Consequently, since also a - Xy = ayw - Wy,
TAXO = (a . XU)T E(X1 — Xo) = (aW . Wo) E(Wl — Wo) = Awwo = AV[/TXV()7

and thus TA = Aw/T.
Suppose that ) is a root of ¢,,(A\) = 0. Then ) is an eigenvalue of Ay, and thus there
exists a left eigenvector v’ with v’ Ay = Au/. Consequently,

WTA=uAwT = T, (5.5)
so u'T = (T"u) is a left eigenvector of A. Since T is onto, 7" is injective and thus 7"u # 0.
This shows that )\ is an eigenvalue of A too. O
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The largest eigenvalue \; = 1 for the matrix A, since the total activity increases by
1 at each step, see [12, Lemma 5.4]. Let A1, Ao, ..., \;n_1 be the roots of (5.1) in order
of decreasing real parts. It is well-known that A; = 1 and, moreover, that Re Ay < 1/2
if m < 26 and Re Ay > 1/2 if m > 26, see [17] and [9]. Consequently, if m > 27, then
Lemma 5.1 shows that A has an eigenvalue A\ = Ay # \; with Re A2 > 1/2, and then X,
is not asymptotically normal. (See [12] for general results suggesting this, and [4] for a
rigorous proof in the present case, showing that the total number of internal nodes is
not asymptotically normal.) Furthermore, if o := Re Ay > 1/2, then (X,, — EX,,)/n® is
stochastically bounded, but has no limit in distribution (the distribution oscillates), see
[2, 4, 12].

Some exceptional linear combinations of the variables X,, ; are asymptotically normal
also in such cases [12], but we conjecture that for any m > 27, the number of protected
nodes is not one of these exceptional cases and that it has the same non-normal behaviour
as just described for the number of internal nodes.

On the other hand, if m < 26, although A has a much larger dimension than Ay, and
thus presumably many more eigenvalues, we conjecture that all additional eigenvalues
also have Re A < 1/2, so that Theorem 1.4 applies showing that the number of protected
vertices is asymptotically normal, with asymptotic variance linear in n, just as for
m = 2 and 3 in Theorems 1.2 and 1.1. (This conjecture has been verified for m < 6 by
Heimbirger [10].)

5.2 One-protected nodes and leaves in m-ary search trees.

As mentioned in Section 1, the number of one-protected nodes and the number
of leaves (the complement of the one-protected nodes) are easier to analyze than the
two-protected nodes, and we prove normal limit laws for all m-ary search trees where
m < 26. In these cases we can use a Pélya urn that is similar to the Pélya urn that has
earlier been used to study the total number of internal nodes in an m-ary search tree,
see e.g. Mahmoud [15] and [16, Section 8.1.3] or [12, Example 7.8].

We can generalise the study of the number of leaves in ternary search tree in Section 4
to arbitrary m > 2. (For m = 2, there are minor modifications in the formulas below;
we leave these to the reader. As mentioned above, the case m = 2 was considered by
Devroye [5].) We have in general m + 1 types, defined in analogy with Figure 9: Type
1 is as before, Type ¢ with 2 < i < m — 1 is a leaf with 7 — 1 keys, Type m is a leaf with
m — 1 keys together with its m external children, and Type m + 1 is an internal non-leaf.

Let V/, = Vi, be the number of nodes containing exactly i keys fori € {1,...,m —2};

let Vg ,, be the number of nodes containing 0 keys (external nodes) that are not children
of leaves; let V), _; ,, be the number of nodes containing m — 1 keys that are leaves (i.e.,
they have only external children); finally, let V,, , be the number of internal nodes that
are not leaves (all containing m — 1 keys). We consider again another, slightly simpler,
urn with the balls representing the gaps, giving them types 1,...,m, and consider the
vector W), = (W7 ,,..., W, ) where W/, =iV/_,  is the total number of gaps of type
i. The random vector W, can be described by a Pélya urn, with all activities 1. We
denote the m x m matrix (1.1) for this urn by A . It is a minor modification of the matrix

Aw described in Section 5.1, see (5.2); the entries of A;, are given by a;;, = —i for
ie{l,...,m}, a;,-1 =iforie{2,....,m}, a1, =m —1, az ,, = 2, and all other entries
EJP 20 (2015), paper 9. ejp.ejpecp.org
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Q5 = 0. e,
-1 0 0 0 0 m—1
2 -2 0 0 0 2
0 3 =3 0 0 0
A = 0 0 4 0 0 0 (5.6)
0 0 0 ... m—1 —(m-1) 0
0 0 0o ... 0 m -m
We can easily calculate the characteristic polynomial of A; and find that it is
Gm(X) = (M + N (N), (5.7)
where ¢,,()) is the characteristic polynomial of Ay, in (5.1). Thus, Ay has the same
eigenvalues as A, plus the additional eigenvalue A = —m. Since ¢,, has only simple roots

[14, Section 3.3], and —m is not one of them, also qﬁfn has only simple roots. Hence, Ay,
has m distinct eigenvalues, and is thus diagonalisable.

The largest eigenvalue of A, is A\; = 1 (as for A) and this eigenvalue corresponds to
the right and left eigenvectors

m—1
2(m+1) 1 '
3 1
1 1
1 4
U1 = Hm 1 1 ) ull = ) (58)
m—1 1
L 1
T
m+1 1

where we have normalized so that (1.2) holds (H,,, denotes the mth harmonic number).
Let L,, be the number of leaves in an m-ary search tree with n keys. Then

m—1 m
=1 k=2

i

Wi - (5.9)

| =

Theorem 5.2. Suppose that 3 < m < 26. Let L,, be the number of leaves in an m-ary
search tree. Then,

Ln — KL d
~ — N(0,0%), (5.10)
where
1 1 1 m—1
_ , - . 5.11
M=, —1 kzﬂk(k/‘—i—l) Hp—1 2(m+1) (5.11)
and 0% can be evaluated as
m
2 Gij
o2 = ¥ Zi (5.12)

where (0;;);";_; is given by (1.6).

Proof. As said above, for m < 26, ReA < A\1/2 = 1/2 for all eigenvalues A # A, of A, and
thus also of A;. Furthermore, A is diagonalisable. Hence, Theorem 1.5 applies and
shows asymptotic normality of W, . The result follows by (5.9), using v; in (5.8). O

Remark 5.3. Theorem 5.2 implies that
1.3.

E(Ly) .
= — iy, by the same argument as in Remark
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For m > 27, we expect the same non-normal asymptotic behaviour as for the number
of internal nodes [2, 4], see Section 5.1.

For the one-protected nodes we can use the first Pélya urn described above for the
leaves, with m + 1 types. For the leaves we could simplify by considering the gaps and
use a Pélya urn with m types, with all activities 1. However, now we also need to consider
type m + 1, which has 0 gaps. So in the analysis of the one-protected nodes we use the
urn with m + 1 different types (as explained in the beginning of this subsection) where
types i € {1,...,m} have activities 1,2, ..., m and type m + 1 has activity 0. In this Pélya
urn, the one-protected nodes correspond to type m + 1. All other types correspond to
leaves or external nodes. Theorem 1.5 implies the following result (the proof is analogous
to the proof of Theorem 5.2).

Theorem 5.4. Suppose that 3 < m < 26. Let (Q,, be the number of one-protected nodes
in an m-ary search tree. Then,

Q”ﬁ’;Q” 45 N(0,03), (5.13)
where
1 1
PO, —1 (m+1)y (5.14)
and aé can be evaluated as
aé = Om+1,m+1 (5.15)

m—+1

where (0y;);";_; is given by (1.6).

This urn can obviously also be used to study the number of leaves (the types 2 < i <m
correspond to the leaves), giving another proof of Theorem 5.2. (Note that o;; refers
to different urns and thus has different meanings in Theorems 5.2 and 5.4.) Moreover,
we can study L, and @, together and obtain joint asymptotic normality for m < 26;
the covariance oz of the limit variables in (5.10) and (5.13) equals Zzl 0i m+1 With
(aij);’_?;ll as in Theorem 5.4. In particular, this implies the well-known asymptotic
normality of the total number of internal nodes I, = L,, + @, see e.g. [4, 9, 13-17].
Example 5.5. For a binary search tree (m = 2), a straightforward calculation of the
covariance matrix ¥ = (0y;)7 ;_, in Theorem 5.4 yields

8 4 4

1 5 5

_ 4 2 2
= -5 = - |- (5.16)

4 _ 2 2

5 15 i

Hence
2

0tz =(0,1,0)2(0,1,0) =02 = =, (5.17)
as shown by Devroye [5]. Similarly, 03 , = 033 = Z and 0792 = 023 = —=. (We have
0} = 0ho = —0LQ,2 Since the total number of internal nodes L, + Q, = I, = n is

deterministic when m = 2.)

Example 5.6. For a ternary search tree (m = 3), similarly (cf. (4.8) for the corresponding
urn using the gaps as in Theorem 5.2)

479 7 127 101

2100 ~ 300 2100 1400
__T 8  _ 19 1

Y 300 75 300 100 (5.18)

127 19 131 43 ’ ’

2100 300 2100 1400
101 1 43 9
1400 100 1400 350
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Hence, cf. (4.4) and (4.9),

89
2 ;o
UL,B* (0,1,1,0)2(0,1,1,0) - 2100; (519)
9
JQQ’B = (0,0,0, 1) by (0,0,0, 1)/ = 350° (5.20)
29
O—LQa?’:(071a170)2(0707071)/:_m~ (5.21)

We also obtain the corresponding asymptotic variance (0,1,1,1)3(0,1,1,1) = 0%73 +
022’3 + 20003 = 72—5 for the number of internal nodes L, + @,,, as found by Mahmoud and
Pittel [17].
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